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On the Geometric–Arithmetic Index

José M. Rodŕıguez, José M. Sigarreta

Abstract. The concept of geometric-arithmetic index was introduced 
in the chemical graph theory recently, but it has shown to be useful. The aim of 
this paper is to obtain new inequalities involving the geometric-arithmetic 
index GA1 and characterize graphs extremal with respect to them. In 
particular, we improve some known inequalities and we relate GA1 to 
other well known topological indices.

1.Introduction

A single number, representing a chemical structure in graph-theoretical terms via the

molecular graph, is called a topological descriptor and if it in addition correlates with a

molecular property it is called topological index; it is used to understand physicochemical

properties of chemical compounds. Topological indices are interesting since they capture

some of the properties of a molecule in a single number. Hundreds of topological indices

have been introduced and studied, starting with the seminal work by Wiener [30] in which

he used the sum of all shortest-path distances of a (molecular) graph for modeling physical

properties of alkanes.

Topological indices based on end-vertex degrees of edges have been used over 40 years.

Among them, several indices are recognized to be useful tools in chemical researches.



GA1(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

where uv denotes the edge of the graph G connecting the vertices u and v, and du is the

degree of the vertex u, is one of the successors of the Randić index. Although GA1 was

introduced just five years ago, there are many papers dealing with this index. There are

other geometric-arithmetic indices, like Zp,q (Z0,1 = GA1), but the results in [7, p.598]

show empirically that the GA1 index gathers the same information on observed molecules

as other Zp,q indices.

The reason for introducing a new index is to gain prediction of some property of

molecules somewhat better than obtained by already presented indices. Therefore, a test

study of predictive power of a new index must be done. As a standard for testing new

topological descriptors, the properties of octanes are commonly used. We can find 16

physico-chemical properties of octanes at www.moleculardescriptors.eu.

The GA1 index gives better correlation coefficients than Randić index for these proper-

ties, but the differences between them are not significant. However, the predicting ability

of the GA1 index compared with Randić index is reasonably better (see [7, Table 1]).

Although only about 1000 benzenoid hydrocarbons are known, the number of possible

benzenoid hydrocarbons is huge. For instance, the number of possible benzenoid hydro-

carbons with 35 benzene rings is 5851000265625801806530 [24]. Therefore, the modeling

of their physico-chemical properties is very important in order to predict properties of

currently unknown species.

The graphic in [7, Fig.7] (from [7, Table 2], [27]) shows that there exists a good

linear correlation between GA1 and the heat of formation of benzenoid hydrocarbons (the

correlation coefficient is equal to 0.972).

Furthermore, the improvement in prediction with GA1 index comparing to Randić

index in the case of standard enthalpy of vaporization is more than 9%. Hence, one can

think that GA1 index should be considered in the QSPR/QSAR researches.

Probably, the best know such descriptor is the Randić connectivity index (R) [25]. There 

are more than thousand papers and a couple of books dealing with this index (see, e.g.,

[13], [17], [18] and the references therein). During many years, scientists were trying to 

improve the predictive power of the Randić index. This led to the introduction of a large 

number of new topological descriptors resembling the original Randić index. The first 

geometric-arithmetic index GA1, defined in [28] as



• G is a regular graph if and only if GA1(G) = m.

• If G is a (∆, δ)-biregular graph, then

GA1(G) =
2m
√

∆δ

∆ + δ
.

• If Cn is the cycle graph with n vertices, then GA1(Cn) = n.

• If Kn is the complete graph with n vertices, then GA1(Kn) =
(
n
2

)
.

• If Qn is the n-cube graph with 2n vertices, then GA1(Qn) = n2n−1.

• If Kn1,n2 is the complete bipartite graph with n1, n2 vertices, then

GA1(Kn1,n2) =
2(n1n2)3/2

n1 + n2

.

• If Sn is the star graph with n vertices, then

GA1(Sn) =
2(n− 1)3/2

n
.

The aim of this paper is to obtain new inequalities involving the geometric-arithmetic 

index GA1 and characterize graphs extremal with respect to them. In particular, we 

improve some known inequalities in Theorems 2.4, 3.7 and 3.10, and we relate GA1 to 

other well known topological indices in Section 3.

Throughout this paper, G = (V (G), E(G)) denotes a (non-oriented) finite simple 

(without multiple edges and loops) connected graph with E(G) 6= ∅. Note that the 

connectivity of G is not an important restriction, since if G has connected components 

G1, . . . , Gr, then GA1(G) = GA1(G1)+· · ·+GA1(Gr); furthermore, every molecular graph 

is connected.

2. Bounds for Geometric-Arithmetic Index

We start with the following elementary result which allows to compute GA1 for many 

graphs. Recall that a (∆, δ)-biregular graph is a bipartite graph for which any vertex in 

one side of the given bipartition has degree ∆ and any vertex in the other side of the 

bipartition has degree δ.

Proposition 2.1. Let G be any graph. Then the following statements hold:



• If Wn is the wheel graph with n vertices, then

GA1(Wn) = n− 1 +
6 3

n+ 2
(n− 1)3/2.

• If Pn is the path graph with n vertices, then

GA1(P2) = 1, GA1(Pn) = n− 3 +
4
√

2

3
, if n ≥ 3.

• The double star graph Sn1,n2 is the graph consisting of the union of two star graphs

Sn1+1 and Sn2+1 together with an edge joining their centers. We have

GA1(Sn1,n2) =
2n1

√
n1 + 1

n1 + 2
+

2n2

√
n2 + 1

n2 + 2
+

2
√

(n1 + 1)(n2 + 1)

n1 + n2 + 2
.

• If Kn1,...,nk
is the complete multipartite graph with n = n1 + · · ·+ nk vertices, then

GA1(Kn1,...,nk
) =

k−1∑
i=1

k∑
j=i+1

2ninj
√

(n− ni)(n− nj)
2n− ni − nj

.

We will need the following result.

Lemma 2.2. Let f be the function f(t) = 2t
1+t2

on the interval [0,∞). Then f strictly

increases in [0, 1], strictly decreases in [1,∞), f(t) = 1 if and only if t = 1 and f(t) = f(t0)

if and only if either t = t0 or t = t−1
0 .

Proof. The statements follow from

f ′(t) =
2(1− t2)

(1 + t2)2
.

Corollary 2.3. Let g be the function g(x, y) =
2
√
xy

x+y
with 0 < a ≤ x, y ≤ b. Then

2
√
ab

a+ b
≤ g(x, y) ≤ 1.

The equality in the lower bound is attained if and only if either x = a and y = b, or x = b

and y = a, and the equality in the upper bound is attained if and only if x = y. Besides,

g(x, y) = g(x′, y′) if and only if x/y is equal to either x′/y′ or y′/x′.

Proof. It suffices to apply Lemma 2.2, since g(x, y) = f(t) with t =
√

x
y

, and
√

a
b
≤ t ≤√

b
a

.



In [21] and [28] (see also [7, p.609-610]) appear the following inequalities:

GA1(G) ≥ 2(n− 1)3/2

n
, GA1(G) ≥ 2m

n
. (2.1)

Our next result provides a lower bound of GA1(G) depending just on n and m, im-

proving both inequalities in (2.1).

Theorem 2.4. We have for any graph G

GA1(G) ≥ 2m
√
n− 1

n
,

and the equality is attained if and only if G is a star graph.

Proof. Recall that 1 ≤ du ≤ n − 1 for every u ∈ V (G). By Corollary 2.3, taking a = 1

and b = n− 1, we have

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
≥

∑
uv∈E(G)

2
√

(n− 1) · 1
n− 1 + 1

=
2m
√
n− 1

n
.

By Corollary 2.3, the equality holds for G if and only if every edge joins a vertex of degree

1 with a vertex of degree n− 1, and this holds if and only if G is a star graph.

In [6] (see also [7, p.609-610]) we find the bounds

2m
√

∆δ

∆ + δ
≤ GA1(G) ≤ m. (2.2)

In the papers [29] and [31] the authors obtain lower bounds of sum-connectivity and

harmonic indices, respectively, depending just on n, for every graph with δ ≥ 2. The

following inequality provides a lower bound of GA1(G) for every graph G with δ ≥ k, for

any fixed k ≥ 2. This result improves the first inequality in (2.1).

Theorem 2.5. Consider any graph G with δ ≥ k ≥ 2.

(1) If n ≤ 10, then

GA1(G) ≥ nk

2
.

(2) If n ≥ 11, then

GA1(G) ≥ min

{
nk

2
,

(k + 1)
√
k (n− 1)3/2

n− 1 + k

}
.



Proof. We have

2m =
∑

v∈V (G)

dv ≥ (n− 1)δ + ∆ .

We obtain from this inequality and (2.2)

GA1(G) ≥ 2m
√

∆δ

∆ + δ
≥
(
(n− 1)δ + ∆

) √∆δ

∆ + δ
=
√
δ U(∆),

where we consider the function

U(t) =
(
(n− 1)δ + t

) √t
t+ δ

=
t3/2 + (n− 1)δt1/2

t+ δ

for t ∈ [δ, n− 1]. Since

U ′(t) =
t2 + (4− n)δt+ (n− 1)δ2

2
√
t (t+ δ)2

,

we have U ′(t) = 0 if and only if

t = t± =
δ

2

(
n− 4±

√
(n− 2)(n− 10)

)
.

Hence, if n ≤ 10 then U ′(t) ≥ 0 for every t, and we conclude U(t) ≥ U(δ) for every

t ∈ [δ, n− 1]. Therefore,

GA1(G) ≥
√
δ U(∆) ≥

√
δ U(δ) =

nδ

2
≥ nk

2
.

Assume now that n ≥ 11, then t−, t+ ∈ R and t− < t+. Since
√

(n− 2)(n− 10) <

n− 6, we have

δ =
δ

2

(
n− 4− (n− 6)

)
<
δ

2

(
n− 4−

√
(n− 2)(n− 10)

)
= t−.

Furthermore, since n ≥ 11 and δ ≥ 2,
√

(n− 2)(n− 10) ≥ 3 and

n− 1 ≤ δ

2

(
n− 4 + 3

)
≤ δ

2

(
n− 4 +

√
(n− 2)(n− 10)

)
= t+.

We have two possibilities:

(i) If t− < n − 1, then δ < t− < n − 1 ≤ t+, U increases on [δ, t−] and decreases on

[t−, n− 1], and U(t) ≥ min
{
U(δ), U(n− 1)} for every t ∈ [δ, n− 1].

(ii) If n− 1 ≤ t−, then δ ≤ n− 1 ≤ t−, U increases on [δ, n− 1], and U(t) ≥ U(δ) =

min
{
U(δ), U(n− 1)

}
for every t ∈ [δ, n− 1].



Hence, in both cases

GA1(G) ≥
√
δ U(∆) ≥

√
δ min

{
U(δ), U(n− 1)

}
= min

{
nδ

2
,

(δ + 1)
√
δ (n− 1)3/2

n− 1 + δ

}

≥ min

{
nk

2
,

(k + 1)
√
k (n− 1)3/2

n− 1 + k

}
.

Remark 2.6. One can check that if k = 2, then

min

{
n,

3
√

2 (n− 1)3/2

n+ 1

}
=

{
n, if n = 11,
3
√

2 (n−1)3/2

n+1
, if n ≥ 12,

and that if k = 3, then

min

{
3n

2
,

4
√

3 (n− 1)3/2

n+ 2

}
=

{
3n
2
, if n = 11, 12,

4
√

3 (n−1)3/2

n+2
, if n ≥ 13.

The study of Gromov hyperbolic graphs is a subject of increasing interest, both in

pure and applied mathematics (see, e.g., [1], [2], [3], [4], [20] and the references cited

therein). We say that a graph is t-hyperbolic (t ≥ 0) if any side of every geodesic triangle

is contained in the t-neighborhood of the union of the other two sides. We define the

hyperbolicity constant δ(G) of a graph G as the infimum of the constants t ≥ 0 such that

G is t-hyperbolic. We consider that every edge has length 1.

The following inequality relates the geometric-arithmetic index with the hyperbolicity

constant δ(G).

Theorem 2.7. We have for any graph G that is not a tree

GA1(G) ≥ 2(4δ(G)− 1)3/2

4δ(G)
.

Proof. It is well known that if G is not a tree then δ(G) > 0. We have that δ(G) is always

an integer multiple of 1
4

by [1, Theorem 2.6] and that δ(G) /∈ {1
4
, 1

2
} by [20, Theorem 11],

since G has not loops or multiple edges. Hence, δ(G) ≥ 3
4

.

The function f(x) = 2(x−1)3/2

x
is increasing in [1,∞), since

f ′(x) =
(x− 1)1/2

x2

(
x+ 2

)
> 0

for every x ∈ (1,∞). We know by (2.1) that

GA1(G) ≥ 2(n− 1)3/2

n
.



Since δ(G) ≤ n
4

by [20, Theorem 30], we have n ≥ 4δ(G) ≥ 3 and

GA1(G) ≥ 2(n− 1)3/2

n
≥ 2(4δ(G)− 1)3/2

4δ(G)
.

One can think that perhaps it is possible to obtain an upper bound of GA1(G) in

terms of δ(G), i.e., the inequality

GA1(G) ≤ Ψ
(
δ(G)

)
,

for every graph G and some function Ψ. However, this is not possible, as the following

example shows. For each integer d ≥ 3 consider two copies Ad and Bd of the path graph

with (ordered) vertices a1, . . . , ad and b1, . . . , bd, respectively. LetGd be the graph obtained

from Ad and Bd by connecting with an edge the vertices ai and bi for every i ∈ {1, . . . , d}.

One can check that δ(G) = 3
2

for every d ≥ 3. However, limd→∞GA1(Gd) =∞.

3. Relations between GA1 and other well known topological indices

In order to obtain relations between GA1 and other well known topological indices we need

the following classical result, which provides a converse of Cauchy-Schwarz inequality (see

[15, p.62]).

Lemma 3.1. If 0 < n1 ≤ aj ≤ N1 and 0 < n2 ≤ bj ≤ N2 for 1 ≤ j ≤ k, then(
k∑
j=1

a2
j

)1/2( k∑
j=1

b2
j

)1/2

≤ 1

2

(√
N1N2

n1n2

+

√
n1n2

N1N2

)(
k∑
j=1

ajbj

)
.

We will denote by M1(G) and M2(G) the first and the second Zagreb indices of the

graph G, respectively, defined in [14] as

M1(G) =
∑

u∈V (G)

d2
u, M2(G) =

∑
uv∈E(G)

dudv.

These indices have attracted growing interest, see e.g., [5], [14], [19] (in particular, they

are included in a number of programs used for the routine computation of topological

indices).



In [8] (see also [7, p.611]) we find the bound

GA1(G) ≤
√
mM2(G)

δ
. (3.3)

The following result gives a lower bound for GA1 similar to (3.3).

Proposition 3.2. We have for any graph G

GA1(G) ≥
2δ
√
mM2(G)

∆2 + δ2
,

and the equality is attained if and only if G is a regular graph.

Proof. Since

δ ≤
√
dudv ≤ ∆,

1

∆
≤ 1

1
2
(du + dv)

≤ 1

δ
,

Lemma 3.1 gives

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
≥

(∑
uv∈E(G) dudv

)1/2(∑
uv∈E(G)

4
(du+dv)2

)1/2

1
2

(
∆
δ

+ δ
∆

)
≥

2∆δ
(
M2(G)

)1/2
(∑

uv∈E(G)
1

∆2

)1/2

∆2 + δ2
≥

2δ
√
mM2(G)

∆2 + δ2
.

If the graph is regular (i.e., δ = ∆), then the lower and upper bound are the same,

and they are equal to GA1(G). If we have the equality, then 4(du+dv)
−2 = ∆−2 for every

uv ∈ E(G); hence, du = ∆ for every u ∈ V (G) and the graph is regular.

We will use the following particular case of Jensen’s inequality.

Lemma 3.3. If f is a convex function in R+ and x1, . . . , xm > 0, then

f
(x1 + · · ·+ xm

m

)
≤ 1

m

(
f(x1) + · · ·+ f(xm)

)
.

As we have said, we will denote by R(G) the Randić index of the graph G, defined in

[25] as

R(G) =
∑

uv∈E(G)

1√
dudv

.

We recall that probably R is the best know topological index (see, e.g., [13], [17], [18], [26]

and the references cited therein). The following result provides lower and upper bounds

of GA1 involving the Randić index.



Theorem 3.4. We have for any graph G

m2

∆R(G)
≤ GA1(G) ≤ ∆R(G),

and the equality in each inequality holds if and only if G is regular.

Proof. Since f(x) = 1/x is a convex function in R+, Lemma 3.3 gives

m∑
uv∈E(G)

√
dudv

1
2

(du+dv)

≤ 1

m

∑
uv∈E(G)

1
2
(du + dv)√
dudv

≤ ∆

m

∑
uv∈E(G)

1√
dudv

,

m

GA1(G)
≤ ∆R(G)

m
.

If the equality holds, then 1
2
(du + dv) = ∆ for every uv ∈ E(G) and we conclude du = ∆

for every u ∈ V (G).

In order to prove the upper bound note that

GA1(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

≤
∑

uv∈E(G)

1
2
(du + dv)√
dudv

≤ ∆
∑

uv∈E(G)

1√
dudv

= ∆R(G).

If the equality holds, then 1
2
(du + dv) = ∆ for every uv ∈ E(G) and we conclude du = ∆

for every u ∈ V (G).

Reciprocally, if G is regular, then R(G) = m
∆

. Hence, the lower and upper bound are

the same, and they are equal to m = GA1(G).

Remark 3.5. If we replace the function f(x) = 1/x by the convex function f(x) = x2 in

the proof of Theorem 3.4, we obtain the known inequality (3.3).

We will need also the following lemma.

Lemma 3.6. We have for any graph G∑
uv∈E(G)

1

du + dv
≥ m2

M1(G)
.

Furthermore, the equality is attained if only if G is regular or biregular.

Proof. Note that in the sum
∑

uv∈E(G)(du + dv) each term du appears exactly du times,

since u is the endpoint of precisely du edges. Hence,∑
uv∈E(G)

(du + dv) =
∑

u∈V (G)

d2
u = M1(G),



and Cauchy-Schwarz inequality gives

m2 =

 ∑
uv∈E(G)

1√
du + dv

√
du + dv

2

≤

 ∑
uv∈E(G)

1

du + dv

 ∑
uv∈E(G)

(du + dv)


= M1(G)

 ∑
uv∈E(G)

1

du + dv

 .

Furthermore, by Cauchy-Schwarz inequality, the inequality is attained if only if there

exists a constant µ such that, for every uv ∈ E(G),

1√
du + dv

= µ
√
du + dv , du + dv = µ−1. (3.4)

If uv, uw ∈ E(G), then

µ−1 = du + dv = du + dw , dw = dv,

and we conclude that (3.4) is equivalent to the following: for each vertex u ∈ V (G), every

neighbor of u has the same degree. Since G is connected, this holds if and only if G is

regular or biregular.

In [21] (see also [7, p.610]) appears the inequality

GA1(G) ≤ 1

2
M1(G). (3.5)

Our next result improves this inequality and also gives a lower bound of GA1 involving

the first Zagreb index.

Theorem 3.7. We have for any graph G

2δm2

M1(G)
≤ GA1(G) ≤ 1

2δ
M1(G).

Furthermore, the equality in each inequality is attained if and only if G is regular.

Proof. First of all we have

GA1(G) ≤ m =
1

2

∑
u∈V (G)

du ≤
1

2

∑
u∈V (G)

d2
u

δ
=

1

2δ
M1(G).

If we have the equality, then GA1(G) = m and G is regular. If the graph is regular, then

M1(G) = nδ2 = 2mδ, GA1(G) = m and the equality holds.



Lemma 3.6 gives

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
≥ 2δ

∑
uv∈E(G)

1

du + dv
≥ 2δm2

M1(G)
.

If the equality holds, then
√
dudv = δ for every uv ∈ E(G); hence, du = δ for every u ∈

V (G) and the graph is regular. If G is regular, then M1(G) = nδ2 = 2mδ, GA1(G) = m

and the equality holds.

The following result gives a lower bound for GA1 involving the Zagreb indices M1 and

M2.

Theorem 3.8. We have for any graph G

GA1(G) ≥ 2δm

∆2 + δ2

√
2∆M2(G)

M1(G)
,

and the equality is attained if and only if G is a regular graph.

Proof. Since

δ ≤
√
dudv ≤ ∆,

1

∆
≤ 2

du + dv
≤ 1

δ
,

Lemmas 3.1 and 3.6 give

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
≥

(∑
uv∈E(G) dudv

)1/2(∑
uv∈E(G)

4
(du+dv)2

)1/2

1
2

(
∆
δ

+ δ
∆

)
≥

2∆δ
(
M2(G)

)1/2
(

2
∆

∑
uv∈E(G)

1
du+dv

)1/2

∆2 + δ2
≥ 2δm

∆2 + δ2

√
2∆M2(G)

M1(G)
.

If the equality holds, then 1
2
(du+dv) = ∆ for every uv ∈ E(G); hence, du = ∆ for every

u ∈ V (G). If G is regular, then M1(G) = n∆2 = 2m∆, M2(G) = m∆2, GA1(G) = m and

we have the equality.

We deal now with two additional topological descriptors, called harmonic and sum-

connectivity index, defined respectively as

H(G) =
∑

uv∈E(G)

2

du + dv
, S(G) =

∑
uv∈E(G)

1√
du + dv

.

These indices have attracted a great interest in the lasts years (see, e.g., [9], [10], [16],

[29], [31], [32], [33] and [34]). Next, we relate them with the geometric-arithmetic index.



Proposition 3.9. We have for any graph G

δH(G) ≤ GA1(G) ≤ ∆H(G),

and the equality in each inequality is attained if and only if G is regular.

Proof. We have
2δ

du + dv
≤ 2
√
dudv

du + dv
≤ 2∆

du + dv
,

for every uv ∈ E(G). Hence, we obtain the inequalities by summing in uv ∈ E(G).

The equality in the first (respectively, second) inequality is attained if and only if
√
dudv = δ for every uv ∈ E(G), i.e., du = δ (respectively, du = ∆) for every u ∈ V (G).

Reciprocally, if G is regular, then both bounds have the same value, and they are equal

to GA1(G).

Next, we obtain inequalities relating the geometric-arithmetic index with the second

Zagreb index. Note that, since nδ ≤ 2m by the handshaking lemma, the upper bound

improves the known inequality (3.3).

Theorem 3.10. We have for any graph G

2

∆ + δ

√
δmM2(G)

∆
≤ GA1(G) ≤

√
nM2(G)

2δ
,

and the equality in each inequality is attained if and only if G is a regular graph.

Proof. Since
δ

∆
≤
√
dudv

1
2
(du + dv)

≤ 1,

Lemma 3.1 gives

GA1(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

≥

(∑
uv∈E(G)

4dudv
(du+dv)2

)1/2 (∑
uv∈E(G) 1

)1/2

1
2

(√
∆
δ

+
√

δ
∆

)
≥ 2
√

∆δm

∆ + δ

 ∑
uv∈E(G)

1

∆2
dudv

1/2

=
2

∆ + δ

√
δmM2(G)

∆
.

In order to prove the upper bound, fix any function h. Note that in the sum
∑

uv∈E(G)

(
h(du)+

h(dv)
)

each term h(du) appears exactly du times, since u is the endpoint of precisely du

edges. Hence,∑
uv∈E(G)

(
h(du) + h(dv)

)
=

∑
u∈V (G)

duh(du),
∑

uv∈E(G)

( 1

du
+

1

dv

)
=

∑
u∈V (G)

du
1

du
= n.



Therefore, Lemma 3.3 with f(x) = x−1 gives∑
uv∈E(G)

2

du + dv
≤

∑
uv∈E(G)

1

2

( 1

du
+

1

dv

)
=
n

2
.

Cauchy-Schwarz inequality gives

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
≤

 ∑
uv∈E(G)

dudv

1/2 ∑
uv∈E(G)

4

(du + dv)2

1/2

≤ (M2(G))1/2

1

δ

∑
uv∈E(G)

2

du + dv

1/2

≤
√
nM2(G)

2δ
.

If the graph is regular, then the lower and upper bound are the same, and they are

equal to GA1(G). If the equality holds in the lower bound, then 4(du + dv)
−2 = ∆−2 for

every uv ∈ E(G); hence, du = ∆ for every u ∈ V (G) and the graph is regular. If the

equality is attained in the upper bound, then 1
2
(du + dv) = δ for every uv ∈ E(G) and we

conclude du = δ for every u ∈ V (G).

Theorem 3.11. We have for any graph G

2δS(G)2

m
≤ GA1(G) ≤

√
2∆S(G).

and the equality in each inequality holds if and only if G is regular.

Proof. Since f(x) = x2 is a convex function in R+, Lemma 3.3 gives

2δS(G)2

m2
=

 √2δ

m

∑
uv∈E(G)

1√
du + dv

2

≤

 1

m

∑
uv∈E(G)

(
2
√
dudv

du + dv

)1/2
2

≤ 1

m

∑
uv∈E(G)

2
√
dudv

du + dv
=

1

m
GA1(G).

If the equality holds, then
√
dudv = δ for every uv ∈ E(G) and we conclude du = δ for

every u ∈ V (G).

In order to prove the upper bound note that

2
√
dudv√

du + dv
≤ du + dv√

du + dv
=
√
du + dv ≤

√
2∆ ,

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
=

∑
uv∈E(G)

2
√
dudv√

du + dv

1√
du + dv

≤
∑

uv∈E(G)

√
2∆

1√
du + dv

=
√

2∆S(G).



If the equality holds, then du + dv = 2∆ for every uv ∈ E(G) and we conclude du = ∆ for

every u ∈ V (G).

Reciprocally, if G is regular, then S(G) = m√
2∆

. Hence, the lower and upper bound

are the same, and they are equal to m = GA1(G).

Theorem 3.12. We have for any graph G

GA1(G) ≥ 2S(G)2

R(G)
,

and the equality holds if and only if G is regular or biregular.

Proof. Using the Cauchy-Schwarz inequality, we obtain

2S(G)2 =

 ∑
uv∈E(G)

√
2√

du + dv

2

=

 ∑
uv∈E(G)

√
2
√
dudv

du + dv
· 1

(dudv)1/4

2

≤

 ∑
uv∈E(G)

2
√
dudv

du + dv

 ∑
uv∈E(G)

1√
dudv

 = GA1(G)R(G).

Hence, the equality is attained if and only if there exists a constant c such that for every

uv ∈ E(G)√
2
√
dudv

du + dv
= c

1

(dudv)1/4
, 2dudv = c2(du + dv),

2

c2
=

1

du
+

1

dv
. (3.6)

If uv, uw ∈ E(G), then

2

c2
=

1

du
+

1

dv
=

1

du
+

1

dw
, dw = dv,

and we conclude that (3.6) is equivalent to the following: for each vertex u ∈ V (G), every

neighbor of u has the same degree. Since G is connected, this holds if and only if G is

regular or biregular.

The modified Narumi-Katayama index

NK∗ = NK∗(G) =
∏

u∈V (G)

dduu =
∏

uv∈E(G)

dudv

is introduced in [11], inspired in the Narumi-Katayama index defined in [23] (see also [12],

[22]). Next, we prove an inequality relating the modified Narumi-Katayama index with

the geometric-arithmetic index.



Theorem 3.13. We have for any graph G

GA1(G) ≥ m

∆
NK∗(G)1/(2m),

and the equality holds if and only if G is regular.

Proof. Using the fact that the geometric mean is at most the arithmetic mean, we obtain

1

m
GA1(G) =

1

m

∑
uv∈E(G)

2
√
dudv

du + dv
≥

 ∏
uv∈E(G)

2
√
dudv

du + dv

1/m

≥

 1

∆m

∏
uv∈E(G)

√
dudv

1/m

=
1

∆
NK∗(G)1/(2m).

If the equality holds, then 1
2
(du + dv) = ∆ for every uv ∈ E(G); hence, du = ∆ for every

u ∈ V (G) and the graph is regular. If the graph is regular, then NK∗(G) = ∆2m and the

equality holds.
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