
Machine Learning Algorithms for Provisioning
Cloud/Edge Applications

by

Constantine Ayimba

in partial fulfillment of the requirements for the degree of Doctor in

Telematic Engineering

Universidad Carlos III de Madrid

Advisor(s):

Vincenzo Mancuso
Paolo Casari

April 2022

iii

Machine Learning Algorithms for Provisioning Cloud/Edge Applications

Prepared by:
Constantine Ayimba, IMDEA Networks Institute, Universidad Carlos III de Madrid
contact: constantine.ayimba@imdea.org

Under the advice of:
Vincenzo Mancuso, IMDEA Networks Institute
Telematic Engineering Department, Universidad Carlos III de Madrid

This work has been supported by:

Unless otherwise indicated, the content of is thesis is distributed under a
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA).

To my late brother, Benjamin.

“Tis grace hath brought me safe thus
far and grace will lead me home.”
–John Newton, 1779

Acknowledgements

Firstly, I thank God for His providence that led me to IMDEA Networks and for the
bountiful graces to persevere through seemingly insurmountable odds. I am also truly
grateful to Dr. Vincenzo Mancuso and Dr. Paolo Casari, my supervisors. It was a good
humoured conversation with them that set me on the path to this defining moment. This
good humor persisted throughout and was a great support during the course of the PhD.

I thank Dr. Vincenzo Mancuso for his firm insistence on excellence coupled with good
humor that inspired me to think of novel solutions to the research problems we were
considering. His ability to elicit good ideas and refine them to their essential rudiments
ensured that I avoided many pitfalls in pursuing unworkable approaches. His unyielding
yet measured critiques resulted in important improvements of the algorithms presented
in this thesis.

I would like to thank Dr. Casari in particular for his meticulous attention to detail in
every aspect of the projects we undertook. His insightful questions, in our meetings, gave
me a more profound understanding of the problems we were seeking to solve and inspired
the creativity of the approaches we proposed and implemented. His watchful eye caught
many misstatements in our papers and helped clarify them prior to submission and this
went a long way in securing their eventual publication. I also appreciate his painstaking
efforts in guiding me through draft versions and improving their look and feel.

I also extend my sincere gratitute to Gaetano Somma who took pains during his
internship to implement our algorithms on a new testbed with docker containers. His
untiring efforts to work over the Christmas break to meet the submission deadline was
the epitome of dedication. My gratitude also goes to Dr. Michele Segata who guided
me through my first steps in using state of the art simulators for vehicular networks.
His help was indispensable in our foray into platooning and in correcting missteps in our
simulations. Special thanks go to my IMDEA colleagues who were always generous with
their time for consultations and even more crucially as a reminder of the grandeur of life
aside from the PhD.

My heartfelt thanks go to my parish community, especially Jorge and Pilar, as well
as my family for their untiring support throughout. Saving the best for last, my warmest
gratitute to my fiancée María for bearing with me over these last gruelling months.

vii

Published Content

The ideas and investigations of this thesis resulted in the following refereed
publications:

[1] C. Ayimba, P. Casari and V. Mancuso. "Adaptive Resource Provisioning based
on Application State". Published in proc. 2019 International Conference on Computing,
Networking and Communications (ICNC), February 18-21, 2019, Honolulu, Hawaii, U.S.
https://doi.org/10.1109/ICCNC.2019.8685605

• This work is fully included and its content is reported in Chapter 3.

• The author participated in writing most of this paper, worked on the Discrete Time
Markov Chain modelling of the Application Under Test and the scaling algorithm. Having
set up the testbed, the author investigated the performance of the proposed scheme.

[2] C. Ayimba, P. Casari and V. Mancuso. "SQLR: Short-Term Memory Q-Learning
for Elastic Provisioning". Published in IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1850-1869, June 2021. https://doi.org/10.1109/TNSM.
2021.3075619

• This work is fully included and its content is reported in Chapter 4.

• The author participated in writing most of this paper, developed the Context Aware
Q-Learning scaling algorithm in this work as well as the exploration/exploitation trade-off
mechanism. Additionally, the author set up the test-bed and investigated the performance
of the proposed scheme.

[3] G. Somma, C. Ayimba, P. Casari, S. P. Romano and V. Mancuso, "When Less
is More: Core-Restricted Container Provisioning for Serverless Computing". Published
in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2020 https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.
9162876

• This work is partially included in Chapter 5.

• The author participated in writing several parts of this paper and in designing the
Context Aware Q-Learning scaling algorithm and testbed.

ix

https://doi.org/10.1109/ICCNC.2019.8685605
https://doi.org/10.1109/TNSM.2021.3075619
https://doi.org/10.1109/TNSM.2021.3075619
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162876
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162876

x

[4] C. Ayimba, M. Segata, P. Casari, and V. Mancuso, "Closer than close: Mec-Assisted
Platooning with Intelligent Controller Migration". published in proc. 24th Inter-national
ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
November 22 - 26, 2021, Alicante, Spain. https://doi.org/10.1145/3479239.3485681

• This work is fully included and its content is reported in Chapter 6 and Chapter 7.

• The author participated in writing most of this paper, developed the Context Aware
Q-Learning migration algorithm and configured the simulation frameworks to run in
tandem to create coordinated simulations of the wireless network and the communicating
vehicles.

[5] C. Ayimba, M. Segata, P. Casari, and V. Mancuso, "Driving under influence: Mec-
Assisted Platooning". Under review in Elsevier, Computer Communications

• This work is fully included and its content is reported in Chapter 6 and Chapter 7.

• The author participated in writing most of this paper, developed the Context
Aware Q-Learning migration algorithm, ancillary safety mechanism and configured the
simulation frameworks to run in tandem to create coordinated simulations of the wireless
network and the communicating vehicles.

https://doi.org/10.1145/3479239.3485681

Abstract

Reinforcement Learning (RL), in which an agent is trained to make the most
favourable decisions in the long run, is an established technique in artificial intelligence. Its
popularity has increased in the recent past, largely due to the development of deep neural
networks spawning deep reinforcement learning algorithms such as Deep Q-Learning. The
latter have been used to solve previously insurmountable problems, such as playing the
famed game of “Go” that previous algorithms could not. Many such problems suffer the
curse of dimensionality, in which the sheer number of possible states is so overwhelming
that it is impractical to explore every possible option.

While these recent techniques have been successful, they may not be strictly necessary
or practical for some applications such as cloud provisioning. In these situations, the
action space is not as vast and workload data required to train such systems is not
as widely shared, as it is considered commercialy sensitive by the Application Service
Provider (ASP). Given that provisioning decisions evolve over time in sympathy to
incident workloads, they fit into the sequential decision process problem that legacy RL
was designed to solve. However because of the high correlation of time series data, states
are not independent of each other and the legacy Markov Decision Processes (MDPs)
have to be cleverly adapted to create robust provisioning algorithms.

As the first contribution of this thesis, we exploit the knowledge of both the application
and configuration to create an adaptive provisioning system leveraging stationary Markov
distributions. We then develop algorithms that, with neither application nor configuration
knowledge, solve the underlying Markov Decision Process (MDP) to create provisioning
systems. Our Q-Learning algorithms factor in the correlation between states and the
consequent transitions between them to create provisioning systems that do not only
adapt to workloads, but can also exploit similarities between them, thereby reducing
the retraining overhead. Our algorithms also exhibit convergence in fewer learning steps
given that we restructure the state and action spaces to avoid the curse of dimensionality
without the need for the function approximation approach taken by deep Q-Learning
systems.

A crucial use-case of future networks will be the support of low-latency applications
involving highly mobile users. With these in mind, the European Telecommunications

xi

xii

Standards Institute (ETSI) has proposed the Multi-access Edge Computing (MEC)
architecture, in which computing capabilities can be located close to the network edge,
where the data is generated. Provisioning for such applications therefore entails migrating
them to the most suitable location on the network edge as the users move. In this thesis,
we also tackle this type of provisioning by considering vehicle platooning or Cooperative
Adaptive Cruise Control (CACC) on the edge. We show that our Q-Learning algorithm
can be adapted to minimize the number of migrations required to effectively run such
an application on MEC hosts, which may also be subject to traffic from other competing
applications.

Table of Contents

Acknowledgements VII

Published Content IX

Abstract XI

Table of Contents XIII

List of Tables XVII

List of Figures XIX

List of Acronyms XXV

1. Introduction 1
1.1. Enabling technologies in cloud provisioning 1
1.2. Provisioning as a sequential decision process 3
1.3. Design of Reinforcement Learning Agents 4
1.4. Contributions . 5
1.5. Outline of the thesis . 6

I Cloud Provisioning 7

2. Background and Related Work 9
2.1. Threshold setting . 9
2.2. Reactive methods . 10
2.3. Proactive methods . 10

3. Provisioning for a delay tolerant application 13
3.1. System response modelling . 13

3.1.1. System functions . 14
3.1.2. Large scale deployments . 17

xiii

xiv TABLE OF CONTENTS

3.2. Experimental results . 17
3.2.1. Testbed setup . 18
3.2.2. System calibration . 19
3.2.3. Evaluation . 20

3.3. Summary and discussion . 22

4. Provisioning without application knowledge 23
4.1. RL modeling and modified Q-Learning approximation 24

4.1.1. Key idea . 24
4.1.2. System model for decision making 25
4.1.3. RL short-memory decision agents 26
4.1.4. Decoupled learning of agents . 27
4.1.5. Modified Q-learning approximation 27
4.1.6. Exploration/exploitation tradeoff mechanism 28

4.2. SQLR design . 30
4.2.1. Key idea . 30
4.2.2. Problem formalization . 30
4.2.3. Load Balancer . 33
4.2.4. Admission Control . 33
4.2.5. Scaling agent . 37

4.3. Experiments . 43
4.3.1. Testbed . 43
4.3.2. Implementation on large scale . 46

4.4. Results . 46
4.4.1. Admission control policy convergence 46
4.4.2. Scaling agent’s policy convergence and complexity 48
4.4.3. Scaling profiles . 52
4.4.4. Service times . 57
4.4.5. CPU utilization . 60
4.4.6. Summary of results . 60

4.5. Discussion . 61

5. Container based provisioning 63
5.1. Container provisioning . 64
5.2. Automatic provisioning system . 67

5.2.1. Admission controller . 67
5.2.2. Auto-scaler . 68

5.3. Experiment setup . 70
5.4. Results . 71

5.4.1. Docker experiments . 71

TABLE OF CONTENTS xv

5.4.2. Kubernetes experiments . 73
5.5. Discussion . 74

II MEC Provisioning 77

6. Background and Related Work 79
6.1. Related work . 80

6.1.1. Controllers . 80
6.1.2. Service migration . 81

7. V2I platooning 83
7.1. Controller adaptations for V2I platooning 84

7.1.1. Controller operation adaptations 84
7.1.2. Latency compensation in the control law 85
7.1.3. Slow down And spLiT (SALT) . 86

7.2. Q-learning agents for controller migration 87
7.2.1. Data for state context definition 88
7.2.2. Problem Formulation . 90
7.2.3. Q-learning . 91
7.2.4. Reward functions . 93
7.2.5. Asynchronous shared learning . 95

7.3. Performance evaluation . 97
7.3.1. Method . 97
7.3.2. Asynchronous shared learning extension 100
7.3.3. Evaluation results . 101

7.4. Summary and discussion . 108

8. Conclusions 111

References 113

List of Tables

2.1. Summary of key related work . 12

3.1. Transition probabilities of a busy VM Node 19

4.1. Key notation employed in the definition of SQLR 29
4.2. Summary of Results . 61

7.1. Simulation Parameters . 97
7.2. Parallel episodes until convergence . 109

xvii

List of Figures

1.1. Schematic of Cloud provisioning . 2
1.2. Contextualized Q-Table structure. 4

3.1. Block diagram of our transcoding service chain. The Admission Control
(AC) ensures that requests are only admitted when there is sufficient
capacity. The Load Optimizer (LO) ensures that the active Virtual
Machines (VMs) are well utilised before new ones can be provisioned. . . 14

3.2. Relationship between CPU Utilization and concurrent transcoding
processes in a VM. CPU usage is monitored by querying the number of
ongoing transcoding requests as described in Section 3.2.2. 16

3.3. Schematic of large scale deployment. 17
3.4. Testbed setup. (1) Host PC (2) Client PCs (3) Gigabit per second (Gbps)

capable switch. 18
3.5. Blocking probabilities under different values of γ. Between minute 10 and

20 the average traffic is 23 requests/min. Between minute 70 and 90 the
average traffic is 20 requests/min. The rest of the time the average traffic
is 8 requests/minute. η = 0.8. 20

3.6. Scaling actions by orchestrator. Given that only 3 VM nodes were available,
scaling to a 4th VM node is included to show that if the capacity of the
host had not been exceeded then there would have been another VM node
added to the active set. η = 0.8. 20

3.7. CPU utilization. Between minute 10 and 20 the average traffic is 23
requests/min. Between minute 70 and 90 the average traffic is 20
requests/min. The rest of the time the average traffic is 8 requests/minute.
Except for the “LB“ and “LO“ case VM2 and VM3 are shut down at certain
periods, see Figure 3.6. η = 0.8. 21

3.8. Distribution of Service times for transcoding h264(1080p) to
VP8(640x360). The other input and output formats mentioned in
Section 3.2 show similar results. 21

xix

xx LIST OF FIGURES

4.1. Response time variation with load based on queuing theory results [49].
The variation is approximately linear just below the “knee” of the curve. If
utilization levels remain below this value, response times are highly likely
to be predictable and reliable. 31

4.2. Block diagram of training process. 32
4.3. SQLR block diagram. “LB” is the Load Balancer agent and “AC” is the

Admission Control agent. 33
4.4. Influence of CPU utilization on service response times. 35
4.5. Q function table to train the AC. The gray area represents the ideal

operating region at which resources are highly utilized and the service
times are within Service Level Objectives (SLOs). The red-shaded area on
the right represents the region where VM operation is likely to cause SLO
violations. 36

4.6. SQLR action and state space. K is the current number of active VMs,
N∆ is the number of VMs that can be added and N∇ is the number of
VMs that can be removed. In general, N∆ 6= N∇. The state space, whose
parameters are prefixed by (*), comprises the number of active VMs and
the quantized values of the average CPU utilization for the set of active
VMs. 37

4.7. State space detail for a “card” in the action space. Each cell’s index pair
is given by the quantized level of average system-wide resource utilization
in successive epochs. 39

4.8. Modified error function to estimate the blocking probability component of
the initial Q values of card “0” (Figure 4.6) diagonals. 39

4.9. SQLR’s horizontal scaling mechanism. We compare the Q-values of
the grey-shaded cells in order to determine the best action according
to Equation (4.6). Here, we choose a scale-out of +1 VM. After the
scaling action a, the Q-value in the red cell receives the update as specified
in Equation (4.4). One component of the update is the Q-value contained
in the green cell of card “0” in bubble “{K + 1}”. 42

4.10. Testbed setup. (1) Dell T640 server: Hosts KVM hypervisor, VMs,
Admission controllers and Scaling Agent. (2) Client PCs: Generate
requests towards the server according to demand profile. (3) Gbps switch:
Creates LAN between Clients and Server. 44

4.11. Pre-training workload profile. The red line is the moving average of the
number of requests per minute, computed over windows of 30 samples. . . 45

4.12. Test workload profile. The red line is the moving average of the number of
requests per minute, computed over windows of 30 samples. 45

4.13. Schematic of a modular large-scale deployment. (cf. Section 3.1.2.) 47

LIST OF FIGURES xxi

4.14. Admission Control training. Red curves: low utilization level between 30%
and 45%. Blue curves: intermediate utilization levels between 45% and
53%. Cyan curves: high utilization levels of 60% and above. Dashed lines
convey the Q-values of DROP decisions, solid lines of ADMIT decision. . 48

4.15. Scaling agent convergence behavior. 49
4.16. Cumulative Q-Values, i.e., the sum of Q-values for all states, taken at

different snapshots in the course of the experiment. 51
4.17. Markov chain of possible actions from selected states. The numbers in

curly brackets within each bubble, {·}, point to the number of VMs.
Right-pointing arrows from a state indicate scale-out, whereas left-pointing
arrows indicate scale-in. The re-entrant arrows above each bubble indicate
no scaling. 51

4.18. VM scaling for the EKF-based horizontal scaling scheme proposed in [25].
We represent resource savings with respect to static over-provisioning with
10 VMs via the gray-shaded area. 52

4.19. VM Scaling for RLPAS: the Q-Learning horizontal scaling scheme proposed
in [22]. We represent resource savings with respect to static over-
provisioning with 10 VMs via the gray-shaded area. 52

4.20. SQLR scaling behavior evolving with experience. For this training phase,
we set Pblk = 0.001. 53

4.21. Blocking rates over two-minute intervals. Two SQLR configurations are
shown: Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001). For
clarity, a moving average filter is applied with a window size of 30 samples. 55

4.22. Blocking rate distribution. Two SQLR configurations are shown: Case 1
(θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001). 55

4.23. Service time distribution per job. Two SQLR configurations are shown:
Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001). The service
time for each request is divided by the corresponding number of iterations
it generates to obtain the time per job. 56

4.24. Moving averages of service times (taken over a window of 30 samples to
smooth out switching overheads). Two SQLR configurations are shown:
Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001). 56

4.25. Soft Blocking Probability for the EKF scaler 58
4.26. Soft Blocking Probability for the RLPAS Scaler 58
4.27. Soft Blocking Probability for SQLR’s Case 1 (θ = 1, β = 0.01) 58
4.28. Soft Blocking Probability for SQLR’s Case 2 (θ = 10, β = 0.001) 58
4.29. Moving averages of CPU utilization (taken over a window of 10 samples

to smooth out switching overheads). Two SQLR configurations are shown:
Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001). 59

xxii LIST OF FIGURES

5.1. Vertical vs. horizontal scaling: two containers running on distinct cores
provide more predictable performance than one container running on two
cores. 65

5.2. Proposed container auto-scaling architecture. 66
5.3. Relationship between CPU utilization and service time. When the reported

utilization is 6 50%, the iteration time is predictable. 68
5.4. Short-Term Memory Q-Learning mechanism used for the auto-scaler, cf.

Chapter 4. This schematic shows a scale out operation where in the epoch
given by the interval [t, t+ 1), action a increases the number of containers
from N to N + 1 and the state transitions from s(t) to s(t+1). 69

5.5. Traffic profile observed during the Docker experiments. Traffic rates are
taken over two-minute windows. The red line is the moving average over
30 samples. 70

5.6. Scaling decisions taken by Auto-Scaler algorithm during the Docker
experiment (using β = 0.02). 70

5.7. The blocking rate observed over the time during Docker experiments in
terms of rejected requests per second. 72

5.8. Empirical CDF of the service time for Docker experiments. 72
5.9. Traffic profile observed during the Kubernetes experiments. Traffic rates

are taken over two-minute windows. The red line is the moving average
over 30 samples. 73

5.10. Scaling decisions taken by the AS algorithm during the Kubernetes
experiment (with θ = 1.0 and β = 0.02). 73

5.11. CDF of the service time for the Kubernetes experiments. 74
5.12. Blocking rate observed over time during Kubernetes experiments in terms

of rejected requests per second. 75

7.1. V2I Platooning on the network edge . 84
7.2. Controller delay compensation. At time ti, car i generates the report packet

with its own speed, acceleration and distance from vehicle i− 1, and sends
it to the MEC controller. Car i+ 1 does likewise at time ti+1. At tctrl, the
controller collates the data. 85

7.3. Platoon metrics as reported to the MEC Host. “PM” denotes a platoon
member; dλ is the required vehicle spacing; d∆ is the spacing tolerance. . 88

LIST OF FIGURES xxiii

7.4. Migrator State and Action Spaces. The relative migration delay and
relative candidate MEC power tuple {θ, β}, the change in processing time
between successive epochs, T∆ and the platoon topology given by the tuple
{Γ(−),Γ(+)} constitute the state space. The actions “Remain in the current
MEC host” and “Migrate to any MEC host characterized by TR < 1” form
the action space. The table (·) indicates migration options to MEC hosts
with the same power as the current host; (↑) to more powerful MEC hosts;
and (↓) to less powerful hosts than the current one. 93

7.5. The Q-learning update process of the migration agent. The gray cell
represents the Q-value of the MEC currently hosting the controller. The
red cell represents Q(S,A), the Q-value of the MEC host chosen to host
the controller from the context of the current host and platoon topology
specified by {Γ(−)

1 ,Γ(+)
1 }. The green cell represents Q(S′, a): the Q-

value of the chosen MEC in the eventual context specified by the platoon
topology {Γ(−)

1 ,Γ(+)
1 }. The blue cells represent Q-values of the other

alternative MEC hosts not chosen for the migration. 94
7.6. Simulation frameworks . 96
7.7. Road and MEC Network for evaluating SALT. The scale corresponds to

the road network, eNodeBs and the MEC host are exaggerated to make
them discernible. 98

7.8. Road and MEC Network. The scale corresponds to the road network,
eNodeBs and MEC hosts are exaggerated to make them discernible. . . . 99

7.9. MEC host load due to background traffic. 99
7.10. Spacing errors of platoon members (negative means farther). 101
7.11. Platoon effectiveness (spacing fairness × average speed) for different SALT

triggers. 102
7.12. Filtered overall delay (interval between a vehicle sending packet to receiving

a control directive from the controller) for the SALT scenario. 103
7.13. SALT performance for varying degrees of delay with Ψ = 0.3 104
7.14. Sample Q-migration policies . 105
7.15. Follow ME migration policy [74] . 105
7.16. AUSP migration policy [85] . 105
7.17. Speed profiles of the first follower. 107
7.18. Distribution of spacing between platoon members. Each box plot

represents data taken over 20 s windows. The last box plot represents
data in the last 10 s. 108

List of Acronyms

5G fifth-generation

AC Admission Control

ACC Adaptive Cruise Control

ASP Application Service Provider

AUSP Adaptive User-managed Service Placement

AWS Amazon Web Services

CACC Cooperative Adaptive Cruise Control

CAPEX capital expenditure

CFS Completely Fair Scheduler

CSP Cloud Service Provider

DTMC Discrete-Time Markov Chain

EKF Extended Kalman Filter

ETSI European Telecommunications Standards Institute

FaaS Function-as-a-Service

GCP Google Cloud Platform

HPA Horizontal Pod Autoscaler

IaaS Infrastructure-as-a-Service

ITS Intelligent Transportation Systems

LB load balancer

LO Load Optimizer

xxv

MDP Markov Decision Process

MEC Multi-access Edge Computing

NFV Network Function Virtualization

NUMA non-uniform memory allocation

OPEX OPerating EXpenditure

PaaS Platform-as-a-Service

QoS Quality of Experience

QoS Quality of Service

RL Reinforcement Learning

RLPAS Reinforcement Learning-based Proactive Auto-Scaler

SaaS Software-as-a-Service

SALT Slow down And spLiT

SDN Software Defined Networking

SFC Service Function Chain

SHA-256 256-bit Secure Hash Algorithm

SLA Service Level Agreement

SLO Service Level Objective

SQLR Short-term memory Q-Learning pRovisioning

SUMO Simulation of Urban MObility

V2I Vehicle-To-Infrastructure

VANET Vehicular Ad hoc NETwork

VeINS Vehicles in Network Simulation

VM Virtual Machine

1 Introduction

Cloud networks are increasingly becoming the preferred medium through which
services are delivered to end users. Cloud Service Providers (CSPs) may offer
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) or Software-as-a-Service
(SaaS) [6]. In IaaS, the tenants enjoy greater flexibility on deploying their own network
management tools. In PaaS, tenants instead rely on the management tools supplied by the
CSPs. In SaaS, all network resource management operations are deferred to the CSP and
the end users simply consume the application offered. In many deployments, Application
Service Providers (ASPs) are either IaaS or PaaS tenants of CSPs while they in turn offer
their services on a SaaS basis to their own end users.

The main reasons for this is ASPs can save on capital expenditure (CAPEX) as they
do not have to invest large sums of money on building up their own infrastructure to
deliver their services. They also reduce OPerating EXpenditure (OPEX) given that the
maintenance of these networks is not part of their running costs. An attractive feature of
cloud networks is that they can scale to increasing demands given the substantial footprint
of data center infrastructure that CSPs have.

However, cloud resources, though vast, are finite. Owing to this, provisioning (the
process by which these resources are allocated to tenants of the CSPs) is a crucial part
of cloud network operations. Prudent provisioning is indispensable if CSPs are to extract
maximum return on investment by accommodating more ASPs without jeopardising the
quality of service for their existing tenants or the quality of experience for the ASP end
users. These objectives are often counter-posed, given that minimizing resource use of
a given ASP increases the likelihood of hosted applications performing poorly. Such
undesirable outcomes may result in considerable penalties for the CSP [7].

1.1. Enabling technologies in cloud provisioning

Elastic provisioning or the dynamic allocation of resources is therefore crucial to
achieving these objectives. Resource virtualization technologies, such as Network Function

1

2 Introduction

Figure 1.1: Schematic of Cloud provisioning

Virtualization (NFV) and Software Defined Networking (SDN), under-pinning cloud
infrastructure make dynamic resource allocation possible. Extra resources can be brought
online when demand increases and released when demand decreases. However, the latter
is a non-trivial operation given that it requires fore-knowledge of future workloads to
pro-actively service the dynamic demand.

Recently, the concept of edge clouds has also emerged as a compelling paradigm. In
this scheme, latency sensitive applications are hosted in smaller data centres close to
the user so as to curtail long round trip times. Taking user mobility into account, the
challenge here is to ensure that the application keeps pace with the users to maintain the
low latency connection. Provisioning in this case not only requires allocating resources
but also migrating the application and its state to the most suitable edge location in the
network.

An illustration of the various provisioning scenarios we consider in this thesis is shown
in Figure 1.1. Application "A" here may require more cloud resources than Application
"B", given that it is experiencing greater demand in comparison at the moment. Moreover,
Application "C", which is hosted at the edge of the network with stringent latency
requirements, has users with high mobility. As the users move into the coverage area
of another edge cloud, it is expedient to migrate the application taking into account the

1.2 Provisioning as a sequential decision process 3

presence of Application "D" which is also competing for resources on the edge.
In the first part of this thesis we consider provisioning as scaling of cloud resources

to match application demand. In the second part of the thesis we consider provisioning
in edge cloud environments where application migration is indispensable as part of the
provisioning process.

1.2. Provisioning as a sequential decision process

If the cloud application or service is known, it is possible to calibrate operation support
systems such that appropriate thresholds can be used to trigger the addition or removal
of network resources. This method enjoys wide usage in many commercial deployments
given its simplicity but is limited in its applicability to diverse cloud applications. While
it might be possible to predict demand by learning patterns based on vast amounts of
historical data using deep neural networks, these models would have to be retrained to
fit each cloud application with its own traffic pattern.

It is however quite feasible to exploit the time-series nature of demand to make
sequential decisions on the evolution of allocated resources and subsequently evaluate
their quality. In this way, should similar conditions be encountered in future, better
decisions will be made based on previous experiences. This is achieved by treating the
cloud infrastructure as a state machine given that the addition or removal of resources
influences certain performance indicators which if properly chosen can define the state.
The ability to learn online means that we can dispense with requirements for large data-
sets and the massive training overhead for each different application.

Markov Decision Process (MDP) can be used to describe scenarios involving sequential
decisions. With the environment in a given state S, an agent takes an action A which
results in the state transitioning to S′ with a probability T and elicits a reward R. For
cases where the environment is suitably bounded, with known transition probabilities, the
environment can be suitably modelled as an MDP and dynamic programming methods
or other such heuristics used to learn the best action to take when in a given state.

However, when the complexity of the underlying environment is such that an MDP
is infeasible to obtain, Reinforcement Learning (RL) techniques can be employed which
develop suitable action policies to apply in a given state [8]. In this thesis, we enhance
one of these techniques, Q-Learning, to cover myriad applications and show that they
outperform other state of the art approaches. We also present novel improvements that
ensure that the agents have good convergence properties.

4 Introduction

∆

*State space

*χ2

A
ction

space {*K}

*χ
1

·
∇

Figure 1.2: Contextualized Q-Table structure.

1.3. Design of Reinforcement Learning Agents

In this thesis, we use application performance indicators to define the state in
designing the resource allocation agents. To handle the stochastic nature of the compute
environment, the states are contextualized so that provisioning decisions take into account
the evolution of application performance as shown in Figure 1.2. Discretising the state
space and organising the consequent Q-tables in this way ameliorates the ‘curse of
dimensionality’ [8] and makes it possible to learn on a tight data budget.

From the figure, χ1 and χ2 represent utilization metrics of the compute resource.
These are usually quite noisy and are as such averaged between decision intervals. The
element K represents the application related aspects of the state space e.g. how many
resources are currently assigned to it or what its response is over the decision intervals.
The ∇, ∆ and · label the provisioning actions available to the agent. If it is a scaling agent
the actions are: remove resources from the assigned pool, add resources to the assigned
pool and maintain the resource pool as it currently is. If it is a migration agent, these
actions are: move the application to a host of lower capacity, move the application to
a host with a higher capacity and move the application to a host with similar capacity
or maintain it on the current one. The most rewarding action settled on by a learned
policy is dependent on the current overall state of the environment determined by the
interaction of: resources assigned, the application response and incident workload.

1.4 Contributions 5

1.4. Contributions

This thesis investigates machine learning techniques for adaptive provisioning with its
main contributions appearing in 5 publications: 1 in IEEE ICNC, 1 in IEEE Transactions
on Network and Service Management (indexed in Journal Citation Reports (JCR)), 1
article is under review in Elsevier Computer Communications (indexed in JCR), 1 in
IEEE INFOCOM workshops and 1 in tier-1 conference ACM MSWiM as reported by
CORE20211 or ERA20102. Concretely:
Contribution 1: Adaptive resource scaler based on Discrete Time Markov approximation
Leveraging the highly correlated relationship between the workload and the resource
utilization in defining the state, an adaptive provisioning system is developed. By profiling
the transition probabilities between states, patterns emerge which we exploit to carry out
adaptive resource scaling. We consider the case of transcoding video segments, a resource
hungry, delay tolerant application. Further, since the application is delay tolerant, we
design a load optimizer function that endeavours to extract the most feasible utility from
compute resources before deploying others.

C. Ayimba, P. Casari, and V. Mancuso, “Adaptive Resource Provisioning
based on Application State”. Published in IEEE International Conference on
Computing, Networking and Communications (ICNC), 2019, pp. 663–668.

Contribution 2 Admission Control based on Q-Learning
Given the stochastic nature of instantaneous demand, it is not always feasible to
accommodate all incident requests to a cloud resident application with the resources on
hand. Therefore before a scaling operation can be successfully completed, it is important
to admit only those requests that can be reliably served using an Admission Control (AC)
function. By using Q-Learning to determine the appropriate thresholds for resource use,
an application and resource configuration agnostic admission control function is presented.
Contribution 3 Short Term Memory Q-learning resource scaler
Given that a universal application and workload model suitable for all cloud applications
would be impractical, we present a model-free Q-Learning agent capable of scaling
resources for myriad cloud applications with distinct workload patterns. It uses the
variation of resources in successive temporal intervals contextualized by the amount of
compute resources to define system state.

G. Somma, C. Ayimba, P. Casari, S. P. Romano and V. Mancuso,
“When Less is More: Core-Restricted Container Provisioning for Serverless
Computing,” Published in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2020, pp. 1153-1159.

1CORE2021: http://portal.core.edu.au/conf-ranks
2ERA2010: http://www.conferenceranks.com/

6 Introduction

C. Ayimba, P. Casari, and V. Mancuso. SQLR: Short-term memory Q-
learning for elastic provisioning. Published in IEEE Transactions on Network and
Service Management, Vol. 18, no. 2, pp. 1850–1869

Contribution 4 Context Aware Q-Learning edge application placement algorithm
In edge computing scenarios, latency is a crucial consideration so that not only the amount
of compute resources availed to an application but also where these resources are located
on the network have to be considered. Taking platooning as a quintessential use case, we
present a context aware migration agent based on Q-learning that considers the available
edge resources and moves the platooning controller to the most suitable position on the
network. Owing to the commercial and research interest in autonomous driving and the
growing field of edge computing, we show how these two technologies can be fused to
enhance coordinated driving and its attendant benefits.

C. Ayimba, M. Segata, P. Casari, and V. Mancuso. 2021. “Closer than
Close: MEC-Assisted Platooning with Intelligent Controller Migration,” Published
In Proceedings of the 24th International ACM Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM ’21).

C. Ayimba, M. Segata, P. Casari, and V. Mancuso. “Driving Under Influence:
MEC-Enabled Platooning,” Under review In Elsevier Computer Communications.

1.5. Outline of the thesis

Each chapter of this work presents a cloud/edge application with unique provisioning
challenges. In Part I of the thesis we present algorithms that dynamically adjust compute
resources for cloud applications. Part II of the thesis considers the case of provisioning for
Multi-access Edge Computing (MEC) applications with strict low latency requirements
whose users are highly mobile.

In Chapter 3, we present transcoding as a delay tolerant cloud application. We exploit
this property to develop a novel provisioning scheme which focuses on improving the utility
of resources. Our scheme leverages admission control to create a Finite State Machine
with workload dependent transition probabilities.

In Chapter 4, we consider more generic applications whereby service availability
and reliability are key performance indicators. In this case, leveraging the evolution of
utilization between scaling decisions, we present a novel short term memory Q-Learning
provisioning scheme. Further in Chapter 5, we show how this scheme can be extended for
use in serverless (container based) Function-as-a-Service (FaaS) environments.

In Part II, we present a Q-Learning based application migration algorithm which uses
the spacing between vehicles in a platoon and the available cloud resource utilization as
context to decide on the best location to host the controller application.

Part I

Cloud Provisioning

7

2 Background and Related Work

Legacy provisioning involved the dimensioning of resources to match peak loads. This
over-provisioning was particularly prudent given that resources were mainly physical
machines. The downside to this approach was that during off-peak periods, the excess
resources became under-utilised. With the advent of virtualization and cloud computing,
dynamic provisioning is now commonplace. The delicate balance between allocating
sufficient resources for an application and avoiding wastage of said resources is an active
field of research and innovation. In the following, I present some of the recent work aimed
at striking this balance.

2.1. Threshold setting

One of the most pervasive methods in dynamic scaling involves setting a threshold
on utilization, at which point additional resources can be brought online or released. A
proportional thresholding policy that adapts to workloads so that a tenant can carry
out horizontal scaling has been proposed in [9]. In [10] a control theory-based approach
to threshold setting is proposed to counteract the instability caused by oscillations due
to improper thresholds. In [11–13], fuzzy logic thresholds are used to ameliorate the
oscillation problem.

Threshold setting is also quite popular in commercial offerings such as [14, 15] given
its simplicity. The Kubernetes Horizontal Pod Autoscaler (HPA) for instance, obtains the
utilization metrics of all containers in a given deployment, gets their mean and based on
their ratio with the desired (configured) value adds or removes containers from the cluster.
To avoid the oscillation problem, removals are only performed after a set timeout from
the time they were triggered. Proper threshold setting however requires good knowledge
of the application as well as knowledge of the CSP infrastructure configuration.

9

10 Background and Related Work

2.2. Reactive methods

Heuristic based methods such as [16, 17] rely on Monitoring, Analysis, Planning
and Execution (MAPE) pipelines to make scaling decisions. These techniques extract
instantaneous workloads and react to allocate sufficient resources to meet demands as
specified in Service Level Agreements (SLAs). In particular, the authors of [16] focus
on response time as a key metric which is challenging to guarantee given the complex
distributed nature of cloud applications and unpredictable workloads. They propose a
provisioning system that identifies bottlenecks in multi-tier web applications, in order
to maintain reasonable response times. On the other hand, the costs for the Cloud
Service Provider (CSP) are the primary focus of the scheme proposed by [17]. Their
proposal is a workload model that exploits cloud heterogeneity assigning applications
with complementary resource requirements to the same physical server. In this way, both
high resource usage is achieved as well as reasonable application performance.

Other approaches further explore this idea. The authors of [18] for instance propose
leveraging admission control to mix heterogeneous workloads so as to better utilize
resources. Additionally, they apply scheduling so that the overall system achieves SLA
enforcement by re-configuring and scaling resources as required depending on the demand.
These methods require workload profiling and as such only react to demand which may
not be sustained but short lived. They are thus quite prone to SLA violations.

2.3. Proactive methods

In order to address the shortfalls of reactive methods, recent research has focused on
using Machine Learning techniques to predict demand. The approach presented in [19]
employs a neural network trained on data from the TPC-W [20] benchmarking tool and
a sliding window for CPU utilization predictions. These are then used to decide when
scaling is required.

Assuming high predictability in arrival rates and system responses, the authors of [21],
propose a theoretical, model based, Reinforcement Learning (RL) approach to cloud
resource allocation which factors in both Service Level Objective (SLO) violations and
net gains for the CSP. They propose finding the optimal policy by optimizing for the
highest accumulated reward. They also carry out admission control to guarantee Quality
of Service (QoS) for the Application Service Providers (ASPs).

In [22] an on-policy Reinforcement Learning-based Proactive Auto-Scaler (RLPAS)
technique is proposed. This scheme uses single step temporal difference RL with multiple
coordinating agents which communicate constantly to update the Q-value table. They also
employ function approximation to optimize the value function. Their reward functions are
based on application-specific targets for throughput and response times. They propose

2.3 Proactive methods 11

adjusting both the number and type of Virtual Machines (VMs) i.e. hybrid horizontal
and vertical scaling.

A vertical scaling agent based on Q-learning is proposed in [23]. Multiple RL agents
re-apportion virtual CPUs, memory and bandwidth to active VMs hosting applications.
Response times and throughput of the applications act as the basis for the reward
functions that influence the policies learned by the agents. In order to accelerate learning,
a the Q-table is stored in a Cerebellar Model Articulation Controller (CMAC) structure
so that multiple state action pairs map on to a limited set of indices. The indices are then
used to calculate the Q-values. This technique reduces the combined state and action
space considerably. The authors of [24] propose an RL-based technique which causes the
migration of VMs from servers with low utilization and subsequently shuts the servers
down.

An Extended Kalman Filter (EKF) based scaler is proposed by the authors of [25] who
employ a queue model as the observation model. A 3-tier cloud application with 3 request
classes forms the basis of their measurement model. With these models response times
are estimated according to the incident workload to trigger the corresponding scaling
operations. In [26], a modified Q-Learning technique is used to adjust the resources of
running VMs. Multiple cooperating agents, whose state space is a fuzzy logic combination
of response times and utilization levels, are employed to expedite convergence by exploring
different areas of the state space concurrently.

It may happen that in the intervening period between a sudden workload increase and
a resource scale out operation, SLA violations occur. To address this issue, the authors
of [27] use a Q-Learning scheme that allocates more resources than needed when the
workload increases. Any superfluous resources are then gradually released as needed. In
another recent work, a resource profiling system that predicts the near-term demand is
proposed by the authors of [28]. This prediction is then used to adjust system resources
appropriately trading off scaling costs and SLOs.

In [29], the authors consider a provisioning system that schedules resources in order
to minimize costs incurred as a result of SLO violations and those arising from leasing
cloud resources. A summary of key related proactive state of the art proposals is given
in Table 2.1

12
B
ackground

and
R
elated

W
ork

Table 2.1: Summary of key related work

Reference Parameters Considered Scaling type Technique used Limitations

Rightscale [14] Configurable triggers (e.g.,
memory, utilization, etc.)

Horizontal Application dependent rule-
based threshold setting

Requires knowledge of cloud
application and underlying
configuration.

Alsarhan et al.
[21]

Theoretical: arrival rates,
service times

Horizontal Theoretical model-based
reinforcement learning.

Dependent on workload
profiling.

Benifa et al. [22] Measured arrival rates, response
times, throughput

Horizontal Q-Learning with function
approximation.

Too sensitive to transients in
workload and CPU utilization.

Rao et al. [23] CPU, memory and I/O
utilization

Vertical Model-free reinforcement
learning with distributed
agents.

VMs require autonomous
control of host resources.

Gandhi et al.
[25]

Measured arrival rates, response
times

Vertical and
Horizontal

Application modeling and
extended Kalman filter (EKF).

Produces stiff scaling response,
requires knowledge of expected
response times.

Vasić et al. [30] Measured arrival rate Horizontal Workload profiling,
classification and pattern
matching.

Unexpected workloads may
cause erratic behavior.

Ibidunmoye et
al. [26]

CPU utilization, response times Vertical Model-free reinforcement
learning based on fuzzy logic
with multiple agents.

Fuzzy state classification
requires knowledge of cloud
application and configuration.

Liu et al. [27] CPU and memory utilization Horizontal Standard reinforcement learning
with aggressive rewards for over-
provisioning.

Prone to wasteful over-
provisioning.

Fernandez et al.
[28]

Measured arrival rates, CPU
utilization and throughput

Horizontal Threshold-based technique
based on short-term capacity
forecasts.

Vulnerable to over/under
provisioning when faced with
unpredictable workloads.

Xu et al. [31] Pricing and availability of
transient servers

Horizontal Long-short term memory price
prediction of transient servers.

Relies on short-lived virtual
instances, possibly yielding
inconsistent application
performance.

3 Provisioning for a delay
tolerant application

Many approaches in the literature seek to model the workload so as to determine the
appropriate amount of resources to provision. We argue that when the cloud application
is known, it is more apt to model how the resources respond to workloads, given that the
resource capabilities and hence their responses are bounded. In this way resources can be
better adapted to the workloads.

To illustrate the operation of the proposed provisioning scheme, we use transcoding
(the conversion from one video format to another) as a case study of a cloud service.
Transcoding is a resource-demanding process and is therefore a suitable application to be
run as a service in the cloud. This is particularly important when the device on which the
media is consumed has limited computational resources and power, as would be the case
for a mobile phone. Given the use of buffers in streaming applications, some delay can
be tolerated in provisioning for this service. We take advantage of this delay allowance in
designing our provisioning scheme.

3.1. System response modelling

Adaptive provisioning can be considered a special case of sequential decision
making [32]. An agent monitors the environment in order to obtain its state. It then
decides on an action to take. Feedback from the environment, in the form of an immediate
positive or negative reward signal or an eventual outcome, indicates how good or bad the
action or a sequence of actions was. Such an action or sequence of actions results in a
transition of the environment from one state to another.

If we let T be the set of decision epochs, S be the set of states the environment can
be in, As be the set of actions that the agent can take when the environment is in state
s, pt(·|s, a) be the distribution of state changes given the state and action at the current
decision epoch, following [33], the sequential decision process can be described by the set

{T, S,As, pt(·|s, a)}. (3.1)

13

14 Provisioning for a delay tolerant application

VMN

Admission
Control

R
eq
u
es
ts

Orchestrator

R
es
p
on

se
s

Blocked requests

Load
Optimizer

VM2

VM1

Figure 3.1: Block diagram of our transcoding service chain. The AC ensures that requests
are only admitted when there is sufficient capacity. The LO ensures that the active VMs
are well utilised before new ones can be provisioned.

3.1.1. System functions

Our system uses discrete time epochs to make scaling decisions based on the current
state of the resource environment. A state refers to the number of requests being
served concurrently by a Virtual Machine (VM) node and will be used interchangeably
throughout this chapter. The actions to be taken are predefined based on an average
system-wide value obtained by monitoring the set of active VM nodes for a finite time
and counting the number of times each was servicing a specified number of requests.

A block diagram of the transcoding Service Function Chain (SFC) is shown in
Figure 3.1. The admission control function carries out the instantaneous monitoring of
individual nodes: it has the effect of converting each VM node into a finite-state machine,
given that it conditionally admits requests based on the current state of the node, thereby
limiting the number of possible states. An admitted request increases the state value of
a VM node while a request that is fully served decreases the state value. Each of these
events occurs with a probability that depends on the workload and computing power of
the VM node respectively. These managed transitions can be modelled via a Discrete-
Time Markov Chain (DTMC). Systemic environment monitoring is carried out by the
Orchestrator function.

3.1.1.1. Orchestrator

The orchestrator takes action in response to perceived resource state as gleaned from
polling the set of active VM Nodes. The actions that can be taken are:

Scale out: Increase the number of active VM nodes to handle increased

3.1 System response modelling 15

demand.

Scale in: Reduce the number of active VM nodes when demand is low.

No action: If the current number of active nodes can handle the traffic
satisfactorily.

Scaling Out: The orchestrator employs a provisioning algorithm that calculates the
average number of concurrent requests being served by the entire set of active VM nodes
using reports they send. These are obtained over a time window that is at least an order
of magnitude longer than the service time of a single request, and are sent at intervals
slightly shorter than the observation window. This setting preserves the memory of traffic
events in previous epochs, and reduces the possibility of premature system scaling, which
may result in oscillations (scaling in shortly after scaling out, or vice-versa) [10].

The average number of concurrent requests being served, Kσ can be calculated as

Kσ =
k∑
i=0

iN(t)∑
j=1

wj(t)pij(t)

 , (3.2)

where k is the size of the state space, N(t) is the number of active VM nodes in observation
window t, wj(t) is the fraction of counts in node j w.r.t. the total counts from all active
nodes taken over observation window t and pij(t) is the probability a given VM node j is
running i concurrent transcoding jobs over observation window t.

The scale-up condition compares the average number of concurrent requests the system
is serving to the average calculated experimentally when the system is close to saturation.
Specifically, the orchestrator checks if

Kσ ≥ K∆ , K∆ =
∑k
i=0 iπi
γ

, (3.3)

where K∆ is the upper bound metric, γ is a tunable parameter, and πi is the long-term
probability of being in state i (the long-term probabilities, π, are derived from the state
transition matrix of a VM node operating under saturation conditions). If the condition
in (3.3) is verified, a new VM node is added to the set of VM nodes.

The tradeoff between the blocking probability and resource utilization is not trivial.
The choice of γ should be such that the orchestrator only adds to the set of VM nodes
when the joint utilization of the current set is high enough. Similarly, γ should be chosen
such that the orchestrator is responsive to perceptible changes in demand that may lead
to reduced service availability, owing to an increase in the likelihood that a new request
finds all active VM nodes too busy to admit it (blocking probability). In a scenario with
known rates of arrival and departures the blocking probability can be computed using a
queue model for instance, however we use observations to make the system more robust

16 Provisioning for a delay tolerant application

0 1 2 3 40

20

40

60

80

100

Concurrent transcoding requests

%
C
PU

ut
ili
za
tio

n Median value
Regression fit

Figure 3.2: Relationship between CPU Utilization and concurrent transcoding processes
in a VM. CPU usage is monitored by querying the number of ongoing transcoding requests
as described in Section 3.2.2.

to dynamic demands.
Scaling In: A lower bound metric, K∇ of system utilization also needs to be

established, which specifies the lowest average number of concurrent processes that can
justify the use of extra resources. It is fittingly chosen in relation to K∆ as

K∇ = ηK∆ , 0 < η < 1 , (3.4)

where η is a tuning parameter specifying the tolerance of the system.
Should Kσ become lower than K∇, we determine which node should be shut down by

computing the average number of concurrent processes, Kε(n), for each node:

Kε(n) = min
1≤n≤N

k∑
i=0

ipin , (3.5)

where pin is the probability of being in state i for VM node n, N is the total number of
active VM nodes and k is the size of the state space.

No Action: If the state of the system is such that: K∇ < Kσ < K∆, no scaling
action is undertaken.

3.1.1.2. Load Optimizer and Admission Control

Our system includes a load-optimizer network function which informs the decision of
the admission controller to admit or drop a request. By monitoring CPU utilization during
the system calibration process described in Section 3.2.2, we obtain the relationship shown
in Figure 3.2. Given the strong correlation depicted in Figure 3.2, the optimizer obtains

3.2 Experimental results 17

Load Balancer

Requests

Load Optimizer and Orchestrator

Physical Servers

Figure 3.3: Schematic of large scale deployment.

the utilization level of each of the active VM nodes in turn by querying the number of
concurrent requests in service. If the utilization of a VM node is such that a new request
will not cause it to saturate, the optimizer directs the admission controller to admit the
new request to the given VM node. If all the active VM nodes are saturated, the optimizer
instructs the admission controller to drop the new request. Therefore, unlike a fair load
balancer which channels traffic uniformly among nodes, the load optimizer only redirects
requests to an alternative node when the ones under consideration are saturated or near
saturation.

3.1.2. Large scale deployments

Though the experiments outlined in this chapter were carried out on a single server,
large scale deployments can be handled in a modular fashion as shown in Figure 3.3.
Here, a set of VNFs is employed in each physical server, and a standard load balancer
mediates the channeling of the traffic to each server.

A simple round robin policy can be used for the standard load balancer given that the
LO and AC, resident in each server, will ensure that these individual resources are not
overloaded thereby ensuring that system as a whole is not saturated either.

3.2. Experimental results

In this section, we describe the operation of the transcoding experimental testbed and
our scaling scheme. We first present the calibration of the VMs that are deployed to serve

18 Provisioning for a delay tolerant application

Figure 3.4: Testbed setup. (1) Host PC (2) Client PCs (3) Gigabit per second (Gbps)
capable switch.

the transcoding requests. We then show how our scaler responds to dynamic demand by
adapting the number of deployed VMs by leveraging the metrics obtained by calibration.

3.2.1. Testbed setup

We setup the experiment as shown in Figure 3.4. The Host PC has 4 hyperthreaded
cores (8 logical CPUs) and 16 GB RAM. Each of the client PCs has at least 2
hyperthreaded cores (4 logical CPUs) and 8 GB RAM. The host uses KVM [34] as the
hypervisor and libvirt [35] to manage the deployment of the VM nodes. Each VM Node
is configured with 4vCPUs and 2GB of RAM.

The host launches VM nodes running G-Streamer [36] as the transcoder. It also runs
ancillary Python and Shell scripts which handle the signalling and control aspects ensuring
that each response is correctly mapped to the requesting process running on the client
PCs. The Admission Control, Load Optimizer and the Orchestrator Network Functions
are located in the host. All physical and virtual machines run on Ubuntu Linux 16.04
LTS.

We obtained the source video files from the official “Big Buck Bunny” repository [37]
in 3 formats/resolutions: avi (720p), h264 (1080p), h264 (2160p). These formats represent
mature standards widely adopted by content providers for video encoding [38]. We
subsequently carried out scene selection and length splitting to create short video segments
of 5 seconds for each file, using FFMPEG [39], without changing the source formats
or other properties. This is common practice in adaptive bit rate streaming, whereby
the same video content is encoded in different resolutions and file formats that support
fragmentation. Each short fragment can be streamed interchangeably with others (bearing

3.2 Experimental results 19

Table 3.1: Transition probabilities of a busy VM Node

Target State
0 1 2 3 4

So
ur
ce

St
at
e 0 0.259 0.441 0.218 0.076 0.006

1 0.025 0.345 0.409 0.209 0.012
2 0.004 0.068 0.415 0.467 0.046
3 0 0.018 0.186 0.791 0.005
4 0 0.002 0.030 0.248 0.720

the same content but of a different format/resolution) depending on available network
bandwidth [40].

Each request specifies the source file to transcode from the three formats/resolutions.
The format of the output stream is selected randomly by the control script as VP8 with
either 320x180 or 640x360 resolution. The audio stream is transcoded from 448 kbps AC-
3 format with 6 channels (5.1 surround) to 128 kbps mp3 audio with 2 channels (stereo).
These formats were chosen for their popularity in video streaming [41]. For each request,
the time taken to complete the simultaneous transcoding and streaming operation (as
reported by G-Streamer) is logged with a timestamp indicating when it was received.

3.2.2. System calibration

In order to establish the upper-bound metric, K∆, the SFC was constrained to use only
one VM node. This threshold was obtained by running transcoding requests at random
intervals between 0 and 5 seconds of each other for a sustained period of 16 hours. This
rate ensured that the VM node was operating close to saturation for the entire duration.
The admission control was set to only admit new requests if CPU utilization was below
saturation.

A monitoring script, running at 1 second intervals, keeps track of the process IDs of
ongoing transcoding streams, in order to obtain the probabilities of transitioning from
one state to another. The script checks the process IDs of running transcoder threads
and compares the set of current IDs with the previous set. The intersection of the two
sets indicates the number of transcoding processes that were ongoing in the system, the
number of IDs present in the current set but absent in the previous set indicates the new
requests. The number of IDs absent in the new but present in the previous set indicates
completed streams. The total number of parallel transcodings in progress define the state.

Table 3.1 shows the transition probabilities obtained with our testbed. Using (3.3)
and the stationary distribution derived from Table 3.1, we computed K∆ = 2.709

γ . State
occupancy reports were obtained over a duration of 5 minutes and sent to the orchestrator
every 3 minutes to provide some filtering to spurious traffic events which may result in
premature scaling [10].

20 Provisioning for a delay tolerant application

0 20 40 60 80 100 120
0

0.2

0.4

0.6

Reference Time (min)

B
lo
ck
in
g
P
ro
b
a
b
il
it
y

γ = 1.0 γ = 1.2 γ = 1.4
γ = 1.8 LO LB

Figure 3.5: Blocking probabilities under different values of γ. Between minute 10 and 20
the average traffic is 23 requests/min. Between minute 70 and 90 the average traffic is 20
requests/min. The rest of the time the average traffic is 8 requests/minute. η = 0.8.

0 20 40 60 80 100 120
0

1

2

3

4

Reference Time(min)

N
u
m
b
er

of
V
M

N
o
d
es

γ = 1.0
γ = 1.2
γ = 1.4
γ = 1.8

Figure 3.6: Scaling actions by orchestrator. Given that only 3 VM nodes were available,
scaling to a 4th VM node is included to show that if the capacity of the host had not been
exceeded then there would have been another VM node added to the active set. η = 0.8.

The blocking probability is calculated as the proportion of requests that are not
admitted over the 3 minute epoch to the total number of requests received in that epoch.

3.2.3. Evaluation

In the referenced figures, “LO” refers to the case where only the Optimizer (with all
three nodes active) is used and not the Orchestrator whilst “LB” refers to the case where
Load Balancing (round robin) is applied with all three VM nodes active.

As depicted in Figure 3.5, a higher value of γ results in lower blocking probability
as the SFC becomes more sensitive to smaller increases in traffic. When γ = 1.0 high

3.2 Experimental results 21

0 20 40 60 80 100 120
0

20

40

60

80

100

Reference Time (min)

%
C
P
U

u
ti
li
sa
ti
o
n

γ = 1.0 γ = 1.2 γ = 1.4
γ = 1.8 LO,VM1 LO,VM2

LO,VM3 LB

Figure 3.7: CPU utilization. Between minute 10 and 20 the average traffic is 23
requests/min. Between minute 70 and 90 the average traffic is 20 requests/min. The rest
of the time the average traffic is 8 requests/minute. Except for the “LB“ and “LO“ case
VM2 and VM3 are shut down at certain periods, see Figure 3.6. η = 0.8.

15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Transcoding time (s)

C
D
F

γ = 1.0
γ = 1.2
γ = 1.4
γ = 1.8
LO
LB

Figure 3.8: Distribution of Service times for transcoding h264(1080p) to VP8(640x360).
The other input and output formats mentioned in Section 3.2 show similar results.

blocking probabilities are sustained for longer periods. If all the VM nodes are active and
either “LB” or “LO” is employed, the lowest blocking probability is experienced as an
alternate VM node is immediately available to handle the increase in demand.

Figure 3.6 shows the number of VM nodes dynamically provisioned by the
orchestrator. A higher setting of γ increases the sensitivity of the orchestrator resulting
in more scaling actions as the SFC adjusts to subtler changes in demand. When γ = 1.0,
the orchestrator exhibits the smallest sensitivity and no scaling action is made leaving
only the primary VM node to handle all the traffic.

Figure 3.7 shows the average CPU utilization of the primary node (VM1) for different

22 Provisioning for a delay tolerant application

values of γ, and that of all VMs for the two cases in which the orchestrator is not used.
At low demand, when only the LO is used, VM1 experiences most of the traffic while
VM2 and VM3 are mostly idle. In the case where the orchestrator is used together with
the optimizer, it shuts down the least busy VM nodes thereby eliminating superfluous
resources. When load balancer (LB) is used, the levels of CPU utilization at low demand
are about 50% less than those experienced when the load optimization is used together
with the orchestrator.

Figure 3.8 shows the distribution of the service times of transcoding requests. The
greater the number of active nodes, the worse the service time, given that more context
switching [42] has to be performed (whereby the hypervisor has to stop, save state, handle
interrupts and resume processing on a VM Node), which results in less CPU time for
performing the transcoding. Context switching compounds when the hypervisor manages
multiple VM nodes. The orchestrator ameliorates this effect by shutting down idle VM
nodes resulting in improved performance.

The median transcoding time with γ = 1.8 (which provides a good compromise
between service times and service availability) is about 1.3 s shorter than when round-
robin LB is used. When extra VM nodes are not added, as is the case with γ = 1.0, the
best response is observed.

From the results it is clear that a trade-off between system sensitivity to changes in
demand and service performance has to be made. The settings for the orchestrator can be
customized with reference to Service Level Agreement (SLA) terms agreed with tenants.

3.3. Summary and discussion

In this chapter, we presented a load optimizing and an orchestrator network function.
When used together in a SFC, they improve the utility of VM nodes involved in servicing
requests and limit the use of resources to those strictly necessary to meet SLAs.

We demonstrated that by learning the response of virtual machines handling a cloud
service, decision bounds can be obtained for scaling up or down. We also showed
that shutting down under-utilized nodes improves service times by reducing hypervisor
overheads involved in managing multiple virtual machines.

The approach we presented in this chapter however does not scale well given the need
for empirical calibration of system resources with regard to the cloud application. In
the following chapter we address this limitation by presenting a more robust provisioning
system.

4 Provisioning without
application knowledge

Cloud applications vary widely in the services they offer, their acceptable Quality
of Experience (QoS), their demand profiles among others [43]. Service Level Objective
(SLO) violations can have grave consequences for an Application Service Provider (ASP),
including loss of users and revenue [7]. Depending on the SLA contract signed, the
ASP may even seek compensation from the Cloud Service Provider (CSP) for such
violations [44]. For CSPs, this creates the need for dynamic provisioning/scaling tools.
Such tools increase the resources allocated to an application when sudden increases in
demand occur (or are foreseen), and release resources when they are no longer needed.
The adaptations of allocated resources (i) save costs for ASPs and (ii) free capacity for
other CSP tenants.

A significant number of state-of-the-art solutions to this problem guide scaling by
continuously monitoring application and system metrics [45]. Other recent proposals
addressing similar resource allocation problems, such as those presented in [46], leverage
model-based machine learning. Though computationally efficient, they rely on extensive
modelling and simulations, which may not always correspond to real-world demand and
cloud application dynamics. Significantly different applications may require very different
scaling configurations. Therefore, the challenge is to minimize the resources assigned to
any application, while guaranteeing service quality in the face of variable demand.

To address this challenge, in this chapter we develop an application-agnostic Short-
term memory Q-Learning pRovisioning (SQLR) system. Our scheme leverages two
distinct and co-operating model-free Reinforcement Learning (RL) agents. The first
agent uses conventional Q-Learning to make admission control decisions. Specifically,
it learns the utilization threshold of compute resources that would make further task
admissions inconvenient. The second RL agent uses a customized, context-aware Q-
Learning algorithm to make resource scaling decisions when the system is exposed to
dynamic and stochastic workloads. Since RL works by learning from experience rather
than training on static data-sets, RL offers a practical and adaptive solution to the
problem. Concretely, our main contributions are:

23

24 Provisioning without application knowledge

1. A configuration-agnostic admission control agent based on Q-Learning, that learns
the most appropriate action to take given the level of resource utilization reported
by a VM instance.

2. A flexible RL scaling agent that

is horizontal, i.e., it adapts resources in terms of the number of VMs
allocated to a service, without resizing them by changing, e.g., the number of
virtual CPUs, or the amount of memory allotted;

given high-level objectives, learns and enforces the best tradeoff between
service availability and resource costs, even in the presence of challenging
workloads;

quickly adapts to previously unexplored workloads by learning from
observed resource utilization patterns rather than from the workloads per se;

progressively improves with every scaling decision, resulting in better
service reliability and availability as time passes by.

3. A weighted fair learning mechanism to scale resources horizontally. This scheme
encourages the exploration of new system states, while consistently exploiting better
known states; this increases the likelihood of selecting near-optimal actions prior to
completing the exploration of all possible states, i.e., much before reaching full policy
convergence.

Our work is also relevant for modern cloud deployments such as Multi-access Edge
Computing (MEC) for fifth-generation (5G) networks. Here, vertical scaling (which
entails adjusting the capacity of running VMs) is not preferred given the constraints
on MEC deployments, and horizontal scaling represents a more viable solution [47,48].

The remainder of this chapter is organized as follows: in Section 4.1, we discuss the
conventional Q-Learning algorithm and some ancillary modifications we made to it. In
Section 4.2, we present the design of our system. In Section 4.3, we outline the experiments
made to test the scaling and admission control algorithms. We present the results of our
approach compared to other methods in Section 4.4. In Section 4.5, we reiterate the key
contributions of this chapter.

4.1. RL modeling and modified Q-Learning approximation

4.1.1. Key idea

We assume a resource scaling system that allocates tasks to available VMs in a cloud
computing environment, and that horizontally scales the number of VMs in face of time-
varying workload. The scaling system is composed of three agents: a LB agent, an AC

4.1 RL modeling and modified Q-Learning approximation 25

agent, and a scaling agent. The LB assigns each incoming tasks to a VM, then the AC
decides whether or not to admit the task to that VM. Periodically, the scaler oversees
the utilization of active VMs and adapts their number to match workload requirements.

By design, our system is oblivious to the particular application that runs in the cloud:
therefore, we only rely on system-level metrics (e.g., CPU utilization and time evolution
thereof) in order to make admission and scaling decisions. We tackle the complexity
of this scenario while keeping the system responsive to changes in stochastic workload
patterns. To do so, we design our AC and scaling agents as sequential decision processes,
where optimal decisions are identified thanks to a Q-learning approach.

In the following, we detail our system model for decision making (Section 4.1.2),
discuss the admissible actions and state space of the AC and scaling agents (Section 4.1.3),
explain our decoupled learning mechanisms (Section 4.1.4 and Section 4.1.5) and how we
drive the exploration of new decisions against the exploitation of best decisions found up
to a certain time (Section 4.1.6).

4.1.2. System model for decision making

Like in [21], we treat AC and horizontal scaling as sequential decisions, and assume
that load balancing policies exist to evenly share workload among active VMs in the long
run. Specifically, we consider a simple load balancer that dispatches incoming tasks to
VMs by privileging the least utilized VM. We can then approximate the admission control
and scaling processes as two separate classes of Markov Decision Processs (MDPs) with
distinct sets of actions A, states S, state transition probabilities T and reward functions
R.

We consider separate admission control and scaling decisions because: (i) the AC
needs to operate at a much shorter time scale than resource scaling, and (ii) resource
scaling cannot instantaneously obviate a lack of resources, because starting VMs up takes
a non-negligible time. Moreover, the AC dropping rate for a given workload offered to
a VM depends on the utilization of that VM and not on the number of deployed VMs.
Therefore we can make AC decisions locally at each VM, in contrast with the necessarily
global scope of scaling decisions.

We remark that treating our decision processes as MDPs requires a necessary
approximation. The transition probabilities of a standard MDP are well defined: by
way of contrast, our transition probabilities depend on the input workload, which is not
necessarily stationary or known. Moreover, instantaneous fluctuations in the workload
patterns are possible, which may lead to unexpected transitions. For such events, a plain
memory-less decision process is inadequate [8, §17.3].

Yet, approximating a decision process through the MDP framework is still feasible,
because we can track stochastic workload fluctuations by incorporating some memory of
the past in the state definition, as will become clear later.

26 Provisioning without application knowledge

4.1.3. RL short-memory decision agents

Our system encompasses a load balancing component, a scaling component, and an
AC component. We implement AC and scaling as reinforcement learning agents, whereas
the load balancing component does not require learning in our setup.

A learning step, 1 or epoch, consists of the agent observing its state, taking some
action allowed in that state, and monitoring the environment to compute and accrue
some positive or negative reward as the environment transitions to a new state.

For an AC agent, the permissible actions are to either (i) pass an incoming request on
to the VM that will serve the request, or (ii) refuse service to an incoming request. Either
action results in a VM transitioning from one level of utilization to another with some
probability. By defining the state as the utilization level of the VM handling the request,
we are able to formulate this process as a per-VM reinforcement learning problem. We
structure the reward values of the AC agent based on the predictability of job service
times, which in turn relates to VM utilization level. For a given machine, the service time
increases exponentially with its load [49]. The role of the AC agent is therefore to infer
the next VM utilization level after an AC decision.

For the horizontal scaling agent, the actions are: (i) increasing, (ii) decreasing, or
(iii) maintaining the same number of VMs. The state, in this case, is defined by three
values:

1. the average system-wide utilization over the previous epoch;

2. the average system-wide utilization in the current epoch;

3. and the number of active VMs.

The action of the scaling agent changes this set of values, hence the system state.
Therefore, unlike conventional RL, decisions depend not only on the current state, but also
on the transition that led to the current state. This means that decisions are not memory-
less. Rather, the agents have to embed some short-term memory in their decisions. To
make this setting compatible with an MDP model, we define the system state such that it
includes the average utilization level in the previous state, along with the previous number
of active VMs. Thus, our modified RL algorithm retains a memory of the immediate past
in the present state.

Thanks to this definition of state, our scaling agent exploits the rate of change in
global average utilization levels, and can thus distinguish different workload patterns.
This allows the agent to cumulatively learn different VM scaling policies for different
workload profiles without overriding previously learned policies. We structure the reward
function of the scaling agent to include both the blocking rate resulting from AC and the
number of VMs used.

1Also called time-step in RL literature.

4.1 RL modeling and modified Q-Learning approximation 27

4.1.4. Decoupled learning of agents

Given that the AC decision is local to each VM, the AC agent must learn admission
policies before the scaling agent can refine scaling policies. AC policies can be learned
offline for a single VM, and do not need later refinements. Once AC policies have
stabilized, the scaling agent can continuously learn its policies as new workloads are
observed. For this purpose, the scaling agent simply needs to use a reward function that
includes the blocking rate resulting from the use of the AC.

4.1.5. Modified Q-learning approximation

Since our RLs can be described by MDPs, the optimal AC and scaling decision policies
could be determined by evaluating the corresponding MDPs. This entails tracking how
much reward an action receives and obtaining the state transition probabilities that yield
the highest accumulated reward given a particular system state. Then, we can program
an agent via either value or policy iteration, in order to execute the resulting policies.

However, policy evaluations of the MDPs are impractical given that transition
probabilities can vary widely depending on the workload and configuration of the system.
A practical solution that applies to this case is Q-Learning [50]. Here, the agent develops
a mapping of states to actions (known as the Q function) by tracking the accumulated
reward (or “Q-value”) for each state-action pair. With reference to Table 4.1, which
summarizes the key notations used in this chapter, we now explain the design principles
and behavior of the scaling and admission control agents. From [8], at learning step t,
the optimal action-value function q∗ is approximated as:

Q(S(t), A(t))← αR′ + (1− α)Q(S(t), A(t)), (4.1)

where
R′ = R(t+1) + γmax

a
Q(S(t+1), a), (4.2)

Q(S(t), A(t)) is the action-value,2 and R(t+1) is the immediate reward the agent receives
after taking action a and ending up in state S(t+1), whose action-value is Q(S(t+1), a). The
factor γ anticipates the contribution of future rewards towards the immediate reward [50].

However, the use of a fixed learning rate α in Equation (4.1) assumes that all states
are visited evenly during training [8]. Given the formulation of the state space, this
may not always be the case for our AC and scaling agents. Further, the update process
in Equation (4.1) typically leads to a stochastic policy, with Q function values oscillating
slightly about an estimated expected value. To ameliorate this effect, we employ a
modified reward mechanism, which takes into account the number of times that the
agent visited the given state. This method follows closely the algorithm for the online

2In this chapter, we use the terms action-value and Q-value interchangeably.

28 Provisioning without application knowledge

computation of the mean:

µk = 1
k

k∑
j=1

(Xj) = 1
k

(Xk + (k − 1)µk−1) . (4.3)

The Q function update then becomes:

Q(S(t), A(t))← 1
k

[
∆ + (k − 1)Q(S(t), A(t))

]
, (4.4)

where ∆ = R′ −Q(S(t), A(t)), and k is the number of learning steps (prior to the current
action) when the agent found itself in state S(t) and acted with action A(t).

Note that we modify the commonly adopted update mechanism by using the
discounted reward ∆ instead of the immediate reward R′ in Equation (4.4). This reduces
the chance of wrongly estimating the mean action value at the initial learning phases. The
update equation in Equation (4.4) also guarantees that the policy will eventually converge,
since the update value on the right-hand side of Equation (4.4) becomes progressively
smaller as the number of learning steps increases.

4.1.6. Exploration/exploitation tradeoff mechanism

For both AC and resource scaling, we train the agents by initially encouraging random
actions (exploration phase). As the agent develops a policy, it progressively acts less
randomly, i.e., it chooses those actions that are known to yield the highest reward
(exploitation phase). We accomplish this by employing ε-greedy action selection [8]. In
this scheme, the agent selects the action that yields the highest reward with probability
1− ε(s), and a random action with probability ε(s).

We remark that the agent does not visit all states with the same frequency. Therefore,
a global assignment and decrease of ε may bias the learned policy towards the most visited
states. To avoid this, we employ a scheme that reduces ε independently for each state,
proportional to the number of times i(s) that state s is visited. This accelerates the
learning process by encouraging exploration for the least visited states, while exploiting
optimal actions for the most visited states. Specifically, we set:

ε(s) =

1− i(s)
M

, if i(s) < M

εmin, if i(s) >M,
(4.5)

where M is a design parameter representing the number of statistically significant visits
that should result in convergence to a stable policy. We consider that state s has achieved
convergence when ε(s) equals εmin > 0. For clarity, in what follow we drop the dependence
of ε and i on the state s.

In order for the system to perform satisfactorily prior to convergence, we devise

4.1 RL modeling and modified Q-Learning approximation 29

Table 4.1: Key notation employed in the definition of SQLR

Variable Meaning Description

Q(S(t),A(t))Action-value The value of the Q function at time t.

R(t+1) Immediate reward The reward the agent receives after taking action a and ending up in
state S(t+1).

α Learning rate A fraction that modifies the reward update and influences the speed of
convergence.

ε Randomness factor The probability of selecting an exploratory action prior to convergence.

εmin
Minimum
randomness factor

The minimum probability of selecting an off-policy action after
convergence. We set this at 0.

k
State visits/action
counter

The state- and action-dependent number of times the system was in
state s and selected action a.

M
Visits to state s
after which ε(s) =
εmin

A statistically significant number of visits to achieve a stable policy for
a given state. For the AC, we set M = 1000. For the scaling agent, we
set it at ten times the number of actions allowed in that state.

γ
Discount rate
∈ (0, 1]

Expresses the current value of a future reward due to the present action.
We set γ = 0.8.

xbnd
Utilization upper
bound

The utilization level above which response times become
unpredictable [49]. We set xbnd = 60%.

xn
Highest quantized
utilization

The quantized utilization level closest to xbnd used in the AC policy
(see Fig. 4.5). We set n = 3 in (4.9).

xlim
Utilization
admission limit

The practical limit of resource utilization obtained after training the
AC.

θ
Resource cost
modifier

Multiplier that weighs the cost of deploying resources in the reward
function.

β
Blocking
probability modifier Multiplier that weighs the blocking rate in the reward function.

Pblk
Target blocking
probability We set Pblk = 0.001, corresponding to service availability of 99.9%.

Rmin Minimum reward Small, positive reward for maintaining the blocking probability lower
than Pblk. We set Rmin = 0.001.

a weighted fair guided exploration scheme. Consider learning instance i. If the
most rewarding action is not chosen (which occurs with probability ε) the conditional
probability P (i)

a of selecting any of the L possible actions depends on its present action-
value Q(i)(s, a), and on the number of times k(i) that action a has previously been selected
when the system was in state s:

P (i)
a =


1
L
, for Ψ(i)

a = 0

Ψ(i)
a (1− tanhφ(i)

a)∑L
j=1 Ψ(i)

j (1− tanhφ(i)
j)

, for Ψ(i)
a > 0

(4.6)

where

Ψ(i)
a = Q(i)(s, a) +

L∑
j=1

∣∣Q(i)
j (s, a)

∣∣,
φ(i)
a = k(i)

i
.

(4.7)

30 Provisioning without application knowledge

Note that, in Equation (4.6), Ψ(i) > 0 is used in place of the action value Q(i)(s, a) which,
if negative, would result in unfeasible probabilities. We choose the hyperbolic tangent as
a weighting function since 0 6 tanh(φ) 6 1 for φ > 0.

The above strategy achieves a tradeoff between exploration and exploitation, and
curtails the detrimental effects of unguided exploration on performance.

4.2. SQLR design

4.2.1. Key idea

In Section 4.1, we have described a system that performs load balancing, admission
control and horizontal scaling. The load balancer is simple and fair to active VMs, and
optimizes resource utilization while minimizing AC blocking events [51]. The AC agent
runs based on a Quality of Service (QoS) consideration: accepted tasks should receive
a reasonably predictable service time. Another learning agent runs the third and most
central component of our algorithm: horizontal resource scaling. This agent decides based
on a cost-benefit tradeoff: utilize the least number of VMs so that the AC blocking rate be
under a target threshold. With the above, we can formalize an optimization problem and
design a framework to dynamically optimize the resources allotted to service a workload,
as shown hereon.

4.2.2. Problem formalization

With the learning model described in Section 4.1, the resource adaptation problem
we tackle in this chapter can be stated as follows: Maximize the number of served tasks
by horizontally scaling the number of VMs as workload evolves over time. Minimize
the number of instantiated VMs that run a given service, under the constraint that the
probability to block a service request remains below a predefined threshold. Formally, let
Xji(t) = 1 if task j arrives at time t and is assigned to VM i, and Xji(t) = 0 otherwise.
Also, let Yji(t) = 1 if task j is running on VM i at time t, and 0 otherwise. Call V (t)
the number of VMs activated at time t, Vmax the maximum number of VMs reserved
for an ASP, A(t) the set of tasks arriving at time t, and J (t) the set of tasks to be
served at time t. Let Pblk be the ideal blocking probability set out in the SLA, and ρj

be the contribution of task j to the utilization level of a given VM. Finally, call xlim the
utilization level above which response times become unpredictable.

4.2 SQLR design 31

0 0.2 0.4 0.6 0.8 1

l

C

Knee

CPU Utilization

R
es
p
on

se
T
im

e
[s
]

Figure 4.1: Response time variation with load based on queuing theory results [49]. The
variation is approximately linear just below the “knee” of the curve. If utilization levels
remain below this value, response times are highly likely to be predictable and reliable.

We can express our problem formally as:

min 1
T

∫ T

0
V (t) dt (4.8a)

s.t.:
∫ T

0
∑V (t)
i=1

∑A(t)
j=1 Xji(t) dt∫ T

0 A(t) dt
> 1− Pblk , (4.8b)

1 6 V (t) 6 Vmax ∀t , (4.8c)∑V (t)
i=1 Xji(t) 6 1 , (4.8d)∑V (t)
i=1 Yji(t) 6 1 , (4.8e)∑
j∈J (t) ρjYji(t) 6 xlim, 1 6 i 6 V (t) . (4.8f)

Constraint (4.8b) ensures that the number of tasks dropped remain within SLA bounds
for service unavailability. Constraint (4.8c) ensures that the number of VMs reserved
for an ASP is bounded. Constraint (4.8d) mandates that each task be assigned to a
single VM, and (4.8e) indicates that each task can only be running on one VM at a
time. Constraint (4.8f) avoids driving the utilization of the VM above an allowable level
xlim, which is the threshold learned by the AC agents. This ensures that tasks admitted
to a VM will not suffer from unpredictable response times. Figure 4.1, extracted from
the extensive analysis in [49], illustrates what AC agents typically observe. Section 4.2.4
details how the AC agents detect and learn the knee of the curve, so as not to drive a
VM’s CPU utilization beyond limits that would make the response time unpredictably
high.

Besides A(t) and ρj being unknown functions, the problem presented
in Equation (4.8a) is a variant of the knapsack problem, which is NP-hard and

32 Provisioning without application knowledge

AC

VM

AC

VMVMVM

LB

Admission

Policy

Admission Control
Training

Scaling Agent Training

U
ti

li
za

ti
o
n

Utilization

Traffic

Traffic

Blocking Probability

Scaling Policy

Figure 4.2: Block diagram of training process.

cannot be solved exactly in polynomial time. Furthermore, the analytical modelling of ρj
is impractical in real environments, because of the excessively high number of concurrent
factors that affect it. These include the complexity of an incoming task, the architecture
of computing hardware, operating system scheduling and thread handling, the presence
of ongoing background processes, etc. Instead, the Q-Learning approximation described
in Section 4.1 solves the NP-hard problem near-optimally, under the uncertainty of
operational system conditions. Indeed, Q-Learning is known for its versatility in finding
near optimal solutions in uncertain settings [8]. We remark that problem (4.8a) optimizes
VM provisioning. This means that the horizontal scaler should learn the behavior of
the AC agent so as to block the least number of tasks with the least possible number of
VMs. Therefore, we chain two separate learning processes: first the AC agent learns how
to accept or reject workload to avoid unpredictable service times; then the scaler learns
how to act around the AC’s behavior to avoid blocking with the least number of VMs.
A schematic of this learning process is shown in Figure 4.2

For a practical implementation of the optimization, we use the block diagram shown in
Figure 4.3. We call the resulting system SQLR, read as “scaler,” because we have crafted
a definition of state that embeds short-term memory, as described in Section 4.1.3, for
the scaling agent, and because SQLR can be classified as a dynamic resource-provisioning
scheme. SQLR comprises: a LB, AC and a scaling agent. We describe each component
in the following subsections.

4.2 SQLR design 33

LB

AC

VM1

VM2

VMn

Hypervisor

Scaling Agent

Monitor

Action
Analyzer

Scaler

Action
Evaluation

SQLR

Figure 4.3: SQLR block diagram. “LB” is the Load Balancer agent and “AC” is the
Admission Control agent.

4.2.3. Load Balancer

As this component does not constitute a contribution of our work, we only mention
it briefly here. We log CPU utilization at 1 s intervals. Our LB works by delivering
an incoming task to the VM with the lowest, most recently logged CPU utilization at
the time such task arrives. This policy is similar to server state-based strategies used for
classic web traffic [52], and yields a high probability that the available resources are evenly
loaded in the long run. Hence, the disparity in overall response times is also reduced.

4.2.4. Admission Control

In a resource-constrained system, admission control ensures that the system does not
take on more tasks than it can satisfactorily handle. According to [49], it is possible to
use the theoretical utilization bound (xbnd) to make the admission decision. However, to
obtain the best results for an actual system, the admission control agent must learn an
appropriate admission limit (xlim) that takes the system configuration into account. As
mentioned in Section 4.1, we do this by treating admission control as an MDP.
AC action and state spaces—The action space of the AC agent consists of the mutually
exclusive options:

1. ADMIT: allow an incoming task to be served by a VM;

34 Provisioning without application knowledge

2. DROP: refuse service to an incoming task.

The state space derives from the quantized levels of resource utilization on the VM
serving the task. The resource we consider in this work is CPU utilization. This low-
level metric correlates well with the workload, and does not require any domain-specific
knowledge of the deployed application [27]. Bearing in mind that CPU utilization greatly
impacts response times, we choose the upper utilization threshold as the one beyond
which the service times will likely violate the agreed SLO. We use this threshold as a
target to determine the rewards/penalties the admission controller will accrue as it builds
a policy using Q-Learning. Building an AC policy therefore consists in identifying the
most rewarding action (ADMIT or DROP) for each state.
Discretized AC state space—In order to obtain a discretized state space, we partition
the utilization values corresponding to predictable response times into regions. To this
end, we employ the geometric quantizing function:

xj =
⌊(

1−
(1

2
)j)

xbnd

⌋
, j = 0, 1, . . . , n, (4.9)

All values above xn (which correspond to a CPU utilization greater than
(
1−(1/2)n

)
xbnd)

can be regarded as a single, undesired state, and need no further quantization. Note that
xn is the quantization level closest to the ideal utilization. Therefore, operating a VM
beyond xn likely leads to service times that violate SLOs.

By using the geometric quantizer provided in Equation (4.9), we achieve both coarse
and fine adjustment. The quantizer is coarse and reduces the state space (and hence the
time needed to train the agent) by sparsely quantizing the load levels just below xbnd. At
loads closer to xbnd, the quantizer becomes fine-grained. Therefore, the AC agent learns
how the VM responds to such high loads with a small quantization error. Indeed, it is
fundamental to accurately learn which load value xlim < xbnd ensures predictable service
times in a real system. In fact, the value of xbnd is inferred from ideal theoretical analysis,
hence it is practically too high and may lead to undesirable service times. Therefore the
AC agent employs xlim < xbnd to make admission choices.

We now explain the details of load limit calculations in theory (xbnd) and in practice
(xlim).
Theoretical AC admission bound—We choose the CPU utilization threshold xbnd

based on the analytical results described in [49], and relating response times to occupancy
in a processor sharing queue. The time T , taken by a processor with capacity C operations
per second to serve a request requiring ` operations is given by:

T (ρ) = `

C − ρ
, ρ = λ

µ
, (4.10)

4.2 SQLR design 35

40 45 50 55 60 65 70 75 80
0

0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4

Reference Time [s]

S
er
v
ic
e
T
im

e
[s
]

40 45 50 55 60 65 70 75 80
38
43
48
53
58
63
68
73
78 %

C
P
U

U
tiliza

tion

Figure 4.4: Influence of CPU utilization on service response times.

where λ is the arrival rate (i.e., the workload) and µ is the departure rate. The occupancy
of the processor ρ is here considered as its utilization level.

We refer the reader back to Figure 4.1, which plots Equation (4.10). The point at
which the gradient of the curve changes from an almost constant value to an exponential
rise is chosen as the threshold beyond which service times become unpredictable and
unreliable. We compute this value by taking the intersection of the tangent to the curve
at the initial point with 0% utilization with the tangent at the point where the gradient
is approximately 0.5s per 1% rise in utilization. This queuing theory result for xbnd

assumes Poisson arrivals, but it fits well our experimental observations. An example of
such an observation is depicted in Figure 4.4, for the hardware/software configuration of
a VM in our testbed. Considering tasks that require about 1.2 s to complete, we observe
that service times are relatively constant around 1.2 s for utilization values lower than
62%. Instead, service times vary wildly for higher utilization levels. Accordingly, we set
xbnd = 60% to ensure a safety margin when building the discretized state space.
AC admission bound based on learned rewards—The immediate reward R for the
action taken by the AC agent is the load x, discretized to the nearest quantized level
boundary (downwards for a DROP decision or upwards for an ADMIT decision), after
an AC decision is made. Therefore, with reference to Figure 4.5, we calculate the reward
for making a decision while the quantized load is xi and observing a resulting level of
utilization x as:

R(x | xi) =

xk, if DROP;

xk+1, if ADMIT,
(4.11)

where k = arg maxj(xj < x). At the boundary, xk = xn, and xk+1 = xbnd. Beyond the

36 Provisioning without application knowledge

0

x0 x1 x2
... xn

1xbnd

DROP

ADMIT

A
ct
io
n
S
p
ac
e

State Space

Figure 4.5: Q function table to train the AC. The gray area represents the ideal operating
region at which resources are highly utilized and the service times are within SLOs. The
red-shaded area on the right represents the region where VM operation is likely to cause
SLO violations.

boundary, when x > xbnd, R(x) is defined as

R(x | xi) =

xbnd, if DROP
1
2(xbnd − 1), if ADMIT.

(4.12)

As xbnd < 1, Equation (4.12) states that the reward for an ADMIT decision beyond
the boundary is negative. This represents a penalty for violating the allowable CPU
utilization limit.

For each xi, the AC agent learns the optimal ADMIT/DROP policy by using the
weighted fair exploration mechanism detailed in Section 4.1.6. Initially, the agent drops
the tasks with probability 0.5, and subsequently it drops or accepts them according to the
action that corresponds to the highest Q-value (as computed with Equation (4.4)) with
probability 1−ε. The training continues until each state (i.e., each quantized load region)
is eventually marked as either ADMIT or DROP. This is when the AC policy converges.
To do so, the final ADMIT/DROP marking of a region is determined after a minimum
number of visits. In our case, ε goes to 0 after 1000 learning steps per load interval, so
that if the accumulated Q-value for ADMIT is higher than the one for DROP, the load
region will be marked as ADMIT, and DROP otherwise. Therefore, by training the AC
agent with stochastic load variations, we can identify xlim as the highest quantized value
xi for which the AC agent admits tasks.

Given the structure of the chosen reward function, xlim prudently aims at maximizing
the utilization of resources at a VM without violating response time requirements.
Therefore, the scaling agent can use xlim to make optimal scaling decisions, as shown
in the next Section 4.2.5.
Training the AC agent in practice—Having determined xbnd to be 60%, the geometric

4.2 SQLR design 37

+N∆

*State space

*x
(t)

A
ction

space {*K}

*
x

(t
−

1
)

0

−N∇

Figure 4.6: SQLR action and state space. K is the current number of active VMs, N∆ is
the number of VMs that can be added and N∇ is the number of VMs that can be removed.
In general, N∆ 6= N∇. The state space, whose parameters are prefixed by (*), comprises
the number of active VMs and the quantized values of the average CPU utilization for
the set of active VMs.

quantizer is fully defined and the AC training phase can start. In practice, we only need
to train one VM, because we have assumed homogeneity across VMs. Thus, we send
tasks towards one VM and start updating the Q-values for ADMIT an DROP actions
in each state. To explore all quantized levels of CPU utilization, we generate workload
with high variability in inter-arrival times. When we visit a state for the number of times
prescribed in Equation (4.5), this state converges, and we lock the policy for this state into
either an ADMIT or DROP decision, according to which one has the highest accumulated
Q-value Equation (4.4).

4.2.5. Scaling agent

We design and implement a Q-Learning scaling agent whose objective is to achieve as
low a blocking rate as possible with as few resources as possible, according to the task
admission policy AC agents previously learned.

38 Provisioning without application knowledge

Action and state spaces for horizontal scaling—The scaling agent adds VMs (scale-
out) or removes VMs (scale-in) as appropriate, given the recent history of utilization of
active VMs. Therefore the action space for the scaling agent is given by the range of VMs
that can be added or removed. The state space consists of three values (i) the current
number of VMs, (ii) the quantized values of the average CPU utilization for the set of
active VMs in the previous epoch, and (iii) the quantized values of the average CPU
utilization for the set of active VMs in the current epoch.

We show the state and action spaces for our horizontal scaling agent in Figure 4.6.
We represent each permissible action as a “card” indicating the number of VMs that must
be added or removed when taking the action associated with the card. Moreover, each
card consists of a grid (see Figure 4.7) whose rows and columns are indexed with load
levels. These levels represent the immediate past load and the current quantized load,
respectively, thus expressing the short-term memory hidden in the state. The cells contain
the cumulative reward obtained by a given state-action pair. Here, we quantize VM loads
uniformly, so as to obtain a more granular view of system-wide resource utilization than a
geometric quantizer would achieve. We choose uniform steps of 2% in the region between
0 and 20% of utilization, and steps of 5% in the region between 20% and xlim. The
finer sampling between 0 and 20% utilization yields better control when the workload
is low: in these cases, only a marginal change is observed when a VM is added or
removed. By way of contrast, if utilization is already high, adding or removing a VM
causes significant utilization changes. Thus, quantizing utilization more coarsely already
enables the detection of such changes, while reducing the state space. Finally, the region
above xlim conglomerates into a single, large level. In fact, at this region of utilization, a
coarse scale-out decision is most likely, and does not require a fine resolution in the state
space representation.
Scaling rewards—The scaling reward function (Rsqlr) consists of two components: (i)
Rblk, computed by comparing the blocking probability P observed after a scaling to
the maximum allowable blocking rate Pblk, and (ii) Rres 6 0, which expresses the cost
of resources, and depends on the number K of active VMs after the scaling decision).
Specifically:

Rsqlr = Rblk +Rres;

Rblk =

Rmin, if P 6 Pblk;

θ (Pblk − P) , if P > Pblk;

Rres = β(1−K),

(4.13)

where Rmin is a small positive reward that the agent accrues as an incentive for keeping
the system within the allowable service outage limits. The training parameters θ and β
act as modifiers, so that blocking probability violations receive a different penalty than the

4.2 SQLR design 39

0

x
(t−1)
1

x
(t−1)
2

x
(t−1)
3

x
(t−1)
n

1.0

x
(t
)

1

x
(t
)

2

x
(t
)

3

x
(t
)

n 1.
0

Figure 4.7: State space detail for a “card” in the action space. Each cell’s index pair
is given by the quantized level of average system-wide resource utilization in successive
epochs.

0.5

1.0

xlim xbnd

x

B
lo
ck
in
g
P
ro
b
a
b
il
it
y

Average system-wide CPU utilization

Figure 4.8: Modified error function to estimate the blocking probability component of the
initial Q values of card “0” (Figure 4.6) diagonals.

use of unneeded extra resources. This makes the scaling agent flexible. In fact, different
CSPs may give different weight to SLOs violation penalties and cost savings achieved by
reducing resource usage.
Initialization—As stated earlier, each card in the bubble shown in Figure 4.6 consists
of a grid, whose cell indices correspond to the average level of utilization of the active
VMs over the previous epoch and the current epoch (cf. Figure 4.7). We initialize the

40 Provisioning without application knowledge

diagonal elements for the cases where the number of VMs remain unchanged (card “0” in
Figure 4.6) as non-zero values. This helps drive initial decisions, e.g., to penalize scale-in
and promote scale-out if the average utilization of the current number of VMs is too high.
We set these diagonal values based on the following rationale: if the average utilization
is below xlim, i.e., the safe limit learned by the AC agent, no blocking is expected (zero
probability). Conversely, if the utilization exceeds xbnd, blocking is almost sure to happen.
Instead, intermediate utilization values xlim < x < xbnd yield a blocking probability that
increases with x. Formally, we set the diagonal elements to equate the blocking probability
P0(x), defined as follows:

P0(x) =


0, x < xlim

1, x > xbnd
1
2

[
1 + erf

(
η(x) e√

2

)]
, otherwise

(4.14)

where
η(x) = x− xlim

xbnd − xlim
, (4.15)

and x = x
(t)
1 , x

(t)
2 , . . . , x

(t)
n , 1. The above definition for the case xlim < x < xbnd yields a

smooth transition between blocking probabilities 0 and 1, as shown in Figure 4.8. We
recall the AC agent adaptively learns xlim during its own training phase, so we can assume
that the scaler knows the safe value of xlim for any admissible number of active VMs. The
diagonal elements computed above serve as the reference action values, Q(S(t+1), a), for
the updates in Equation (4.4) after horizontal scaling.
The scaling procedure—With the actions, states, rewards and initialization described
above, the scaling process is succintly depicted in Algorithm 1. Figure 4.9 details a scale-
out action. To describe the latter, we consider starting after a previous action having
taken place at instant t − 1. The first cell index is the quantized level of the average
utilization in the interval [t− 2, t− 1). At instance t (bottom bubble), our scaler obtains
the quantized level of the average utilization in the interval [t − 1, t). This serves as the
second cell index to be considered in selecting the action. The current number of active
VMs, K, is also evaluated.

With this triplet of values, the current state is established, and we are ready to
choose a scaling action (i.e., scale-in, scale-out, or keep the current number of VMs) based
on Equation (4.5) and Equation (4.6). To do so, recall that every card corresponds to a
scaling action, e.g., add 1 VM, remove 2 VMs, etc. We check the convenience of every
action by reading the Q-value of the cell indexed by the quantized average utilization
values at the current epoch (t), and at the previous one (t− 1).

Then, we choose a scaling action based on Equation (4.5) and Equation (4.6), by
leveraging the above Q-value entries in every card of the action space within the bubble

4.2 SQLR design 41

Algorithm 1: Scaling Agent Algorithm
Result: Scaling action, updated table of Q-values

1 RunCount← 0
2 n← 0
3 while True do
4 Nt ← getActiveVMs()
5 Ucurrent ← 0
6 foreach vm ∈ VMs do
7 Ucurrent ← Ucurrent + getUtils(interval, vm)
8 end
9 xt = getQuantizedUtil(Ucurrent/Nt)

10 if RunCount >= 2 then
11 Qt+1 = ReadQTable(Nt, xt, xt−1)
12 n = getStateVisits(Nt, xt, xt−1)
13 Qt = ReadQTable(Nt−1, xt−1, xt−2)
14 R = ComputeR(Nt,getBlocking(interval))
15 R′ = R+ γ ∗Qt+1
16 ∆ = R′ −Qt

// update Q-value
17 Q(S(t), A(t))← (n/(n− 1)) ∗Qt + (1/n) ·∆

// update state visits
18 N(S(t), A(t))← n+ 1
19 end
20 if n < NRefV isits then
21 ε← 1− (n/NRefV isits)
22 else
23 ε← εmin
24 end
25 ArrWFE = 01000ε×1000ε
26 ArrGRD = 11000(1−ε)×1000(1−ε)
27 ArrALL = concatenate(ArrWFE,ArrGRD)
28 if ArrALL[RandomInt()] == 0 then
29 Scale with weighted fair exploration
30 else
31 Scale according to max(ReadQTable(Nt, xt, xt−1))
32 end
33 Nt−1 ← Nt

34 xt−2 ← xt−1
35 xt−1 ← xt
36 RunCount← RunCount+ 1
37 end

defined by K VMs.
For later reference we term the cell of the chosen action card as R-Cell (marked red

in Figure 4.9). After waiting shortly for the VMs to start up or shut down, and for the

42 Provisioning without application knowledge

+1
+2

0
-1
-2

+1
+2

0
-1
-2

Update the Q-value
of the red cell based on
that of the green cell

A
ct
io
n
a
:
a
d
d
1
V
M

{K}

{K + 1}

s(t+1)

s(t)

Figure 4.9: SQLR’s horizontal scaling mechanism. We compare the Q-values of the grey-
shaded cells in order to determine the best action according to Equation (4.6). Here,
we choose a scale-out of +1 VM. After the scaling action a, the Q-value in the red cell
receives the update as specified in Equation (4.4). One component of the update is the
Q-value contained in the green cell of card “0” in bubble “{K + 1}”.

effect of the change to become manifest, we reach instant t + 1. We can now compute
the immediate reward as described in Equation (4.13): this accounts for the blocking
probability observed between time instants t and t+ 1, and for the number of active VMs

4.3 Experiments 43

at instant t + 1. We also take into account the accumulated reward stored in card “0”
at the diagonal cell indexed by the quantized average utilization value over the interval
[t, t+1) (this cell is colored green in Figure 4.9). The above two values are used to update
the Q-value in R-Cell as prescribed in Equation (4.4).
How to train the scaling agent—After having trained the AC, we need to create a
set of tables of the Q-values for all scaling actions. The number of tables depends on
the highest number of VMs that can be provisioned, as well as on the number of VMs
that can be added or removed within a single scaling decision. Then, with an instance of
the (already trained) AC running at each active VM and a global scaling agent running,
we expose the system to varying offered load profiles, and act according to Algorithm 1.
As the scaling agent adds or removes VMs from the host, we monitor the blocking rates
experienced and the number of running VMs, and generate rewards to update the table
of Q-values related to the scaling agent’s decision.

We check the relevant table every 120 seconds, which constitutes one epoch, and
immediately call for a scaling decision whose action is selected according to Equation (4.5)
and Equation (4.6). When the number of visits of a state reaches the prescribed count
level M , then ε = εmin and the policy for that state has converged.

4.3. Experiments

4.3.1. Testbed

In order to evaluate the effectiveness of our scheme, we run experiments on a testbed
that mirrors the operations of a CSP. We set up the testbed as shown in Figure 4.10. The
architecture of our Dell T640 server consists of two processor sockets with non-uniform
memory allocation (NUMA), 10 hyper-threaded CPU cores per socket for a total of 40
logical cores with a variable clock rate. The server memory is 128 GB.

The server runs Ubuntu 18.04 LTS as its operating system and acts as a host for VMs.
The client PCs run on Ubuntu 16.04.3 LTS. We use the KVM hypervisor, and manage
the VMs using libvirt [35]. Each instance of a VM is configured with 4 virtual CPUs and
4 GB of memory. The client PCs and the server are connected via a Cisco switch to form
a Gigabit/s local area network. The PCs function as ASPs running bash scripts that
generate requests to the server with varying rates as depicted in Figures 4.11 and 4.12.

As our cloud application, we choose the algorithm used for proof-of-work computation
in bitcoin mining [53]. It is a suitable stand-in for resource-hungry, computationally
challenging tasks that are commonly deferred to the cloud such as encryption [54] and
transcoding [55]. Each iteration of this computation involves incrementing a counter
variable (nonce), hashing it together with a given hash code and merkle root, and then
hashing the outcome again. The hashing mechanism is the 256-bit Secure Hash Algorithm

44 Provisioning without application knowledge

Figure 4.10: Testbed setup. (1) Dell T640 server: Hosts KVM hypervisor, VMs,
Admission controllers and Scaling Agent. (2) Client PCs: Generate requests towards
the server according to demand profile. (3) Gbps switch: Creates LAN between Clients
and Server.

(SHA-256). We will use the word job to refer to one proof-of-work iteration from hereon.
In order to mimic the varying degrees of complexity of typical cloud applications, we
consider a different number of iterations for each request. Specifically, a request can
generate any number of iterations in the discrete set {300k, 400k, . . . , 1200k}.

The server launches VMs to handle incoming requests according to one of the
following schemes: static provisioning, extended Kalman filtering based prediction [25],
Reinforcement Learning-based Proactive Auto-Scaler (RLPAS) [22] and our proposed
scaling scheme. All agents, including the admission control and load balancer, are
implemented in Python and run within the host operating system. For reproducibility,
we fully share SQLR’s code.3

The scheme proposed in [25] leverages a queuing system model enhanced with an
Extended Kalman Filter (EKF). It makes near time predictions of response times based
on measurements of arrival rates and system utilization. Using a queue model refined by
a tuned EKF with the maximum allowable response time (from an SLA) as input, the
scheme then calculates the number of nodes needed and scales appropriately to approach
this number.

We make some slight modifications to the EKF algorithm to make it more robust.
We increase the interval between the predict and update phases from 10s to 90s. This
provides sufficient time for starting up a VM and letting it handle tasks. Additionally,
instead of the instantaneous measured system utilization and response times, we provide

3https://github.com/Constantine-Ayimba/SQLR

https://github.com/Constantine-Ayimba/SQLR

4.3 Experiments 45

0 6 12 18 24
0

20

40

60

80

100

Time [h]

R
eq
u
es
ts
/
m
in

Figure 4.11: Pre-training workload profile. The red line is the moving average of the
number of requests per minute, computed over windows of 30 samples.

0 6 12 18 24
0

20

40

60

80

100

Time [h]

R
eq
u
es
ts
/m

in

Figure 4.12: Test workload profile. The red line is the moving average of the number of
requests per minute, computed over windows of 30 samples.

their average over the predict and update intervals of the filter as input to the EKF. This
prevents the scaler from over/under estimating input parameters, and thus yields a fairer
comparison to our scheme. Further, we dispense with the network delay in the system
model as the response times are taken directly on the server. We consider a single-tiered
application, and one class of requests. This also has the effect of simplifying the process
and measurement noise covariance matrices to have size 2×2 (as only two parameters are
taken into account in each case), thereby enhancing the tuning of the EKF.

We also compare our scaling system to the state-of-the-art RLPAS proposed in [22].
We only consider the response time parameter in our implementation and not throughput,
since our stand-in cloud application is compute-intensive. Owing to the use of the
load balancer, which distributes the offered load evenly, we set the ratio of utilized to
provisioned VMs to 1.

For our scheme, we limit the number of VMs that can be added or removed within a

46 Provisioning without application knowledge

single scaling action to 2. This truncates the action space, reducing the number of visits
required for a state to achieve a stable policy to M = 50 (cf. Table 4.1). Therefore, it
also limits the number of learning steps needed to attain a stable policy.

As part of the training for our scheme, we combine several workload profiles with
different averages, resulting in the composite shown in Figure 4.11.

For the test workload, we again use a combination of several profiles with different
averages to obtain the composite shown in Figure 4.12. To achieve this, we configure
requests to be sent with inter-arrival times ω drawn uniformly at random from the set of
values {0, 1, · · · , ωmax} seconds, for each hour slot. For example for the busy-hour slot,
ωmax = 5 s, and for low workload period, ωmax = 9 s. This results in high entropy (given
the uniform distribution of inter-arrival times) but still allows us to procure similarities
between workloads, and evaluate contextual knowledge re-use. Our choice of inter-arrival
statistics leads to patterns encountered in real workloads, with rapid variations over short
intervals, but with veritable trends over longer observation windows. It also includes
sudden bursts and drops, such as those observed at the start of hours 8, 10, 14 and 18.

4.3.2. Implementation on large scale

Although our experiments took place on a small testbed, our scheme still lends itself
well to large-scale deployments, e.g., in data centers. The latter can be achieved via the
modular approach presented in Section 3.1.2. A conventional layer-4 load balancer such
as [56] can be used to route tasks to physical servers as shown in Figure 4.13. Given the
cost benefits of operating homogeneous hardware in large scale settings [57], most servers
in a data center will have the same specifications. This means that, in most cases, the
scaling policies learned for one server can be re-used with no need for retraining.

4.4. Results

In this section, we show the effectiveness of the AC and scaling policies. We then
examine the results with respect to two SLOs: service availability (as measured via
blocking rates) and response times.

4.4.1. Admission control policy convergence

First, we briefly discuss our AC agent. We recall that this component learns the
appropriate utilization limit, xlim, that ensures bounded response times.

Figure 4.14 shows how the learning algorithm for the AC trades off exploration and
exploitation using our weighted fair exploration scheme, cf. Equation (4.6). The evolution
of the accumulated reward for a subset of three state-action pairs is shown in Figure 4.14a.
Red, blue and teal-colored lines denote the Q-value evolution for low, intermediate, and

4.4 Results 47

L4 Load Balancer

Requests

SQLR
Physical servers

Figure 4.13: Schematic of a modular large-scale deployment. (cf. Section 3.1.2.)

high utilization levels, respectively. Dashed lines refer to Q-values for drop decisions,
wheres solid lines refer to admit decisions. In the initial learning phases, the difference
between the values is not as distinct, and the admission control agent makes a DROP or
ADMIT decision with about the same probability. After 1000 learning steps, the agent has
understood which decisions yield better rewards (or at least lower penalties). For example,
in high utilization regimes (teal lines), DROP decisions (dashed line) have a much higher
Q-value, and are thus much more likely than ADMIT decisions (solid line). Conversely,
at low utilization (red lines), ADMIT decisions are much more likely. At intermediate
utilization, the difference between the Q-values of ADMIT and DROP decisions is not as
stark, but still associated with a DROP decision.

The above results suggest that utilization levels up to 0.45 result in ADMIT decisions,
whereas levels exceeding 0.45 start making DROP decisions more convenient. In other
words, the scaling agent learns the limiting value of utilization xlim to be 45%. Therefore,
once the LB has chosen a VM that should serve an incoming task, the AC agent drops
the task if the VM’s utilization is higher than this learned value of xlim, and accepts the
requests otherwise.

48 Provisioning without application knowledge

0 20 40 60 80 100

-0.2

0

0.2

0.4

0.6

Total number of learning steps

Q
-V

a
lu
e

Intermediate utilization: DROP
decision (consistently higher Q-value
on dashed curve after 25 steps)

Low utilization:
ADMIT decision (high
Q-value on solid curve)

High utilization: DROP decision (higher Q-value on dashed curve)

– – DROP decision — ADMIT decision

(a) Reward accumulated with experience.

0 20 40 60 80 100
0

20

40

60

Total number of learning steps

N
u
m
b
er

of
S
ta
te

V
is
it
s

Initial exploration
phase: the admission
agent is still learning
which decisions yield
the best rewards

Learned policy: Admit at low utilization
and drop at limit or higher utilization

Inconvenient decisions discarded: drop at low
utilization and admit at limit or higher utilization

(b) Frequency of DROP and ADMIT decisions.

Figure 4.14: Admission Control training. Red curves: low utilization level between 30%
and 45%. Blue curves: intermediate utilization levels between 45% and 53%. Cyan
curves: high utilization levels of 60% and above. Dashed lines convey the Q-values of
DROP decisions, solid lines of ADMIT decision.

4.4.2. Scaling agent’s policy convergence and complexity

In order to characterize the overall state of convergence of the scaling agent, we
consider the probability of randomness in action selection, ε. Recall that, for each state,
we decrease ε from 1 down to 0 linearly with the number of visits to that state. Therefore,
we use 1− ε to express the convergence level, where ε is the average value of ε computed

4.4 Results 49

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Randomness factor ε

E
C
D
F

Cycle 1 Cycle 5 Cycle 10
Cycle 20 Cycle 30

(a) Convergence inferred from the distribution of the randomness factor. The rate is faster in the
initial cycles as the weighted fair exploration drives the agent to the most promising states more
often.

(
2
,9

—
1
)

(
9
,6

—
1
)

(
2
,7

—
2
)

(
5
,7

—
2
)

(
1
,3

—
3
)

(
3
,5

—
3
)

(
5
,4

—
3
)

(
8
,9

—
3
)

(
2
,4

—
4
)

(
4
,4

—
4
)

(
6
,3

—
4
)

(
7
,8

—
4
)

(
2
,1

—
5
)

(
5
,3

—
5
)

(
6
,8

—
5
)

(
8
,8

—
5
)

(
5
,4

—
6
)

(
6
,8

—
6
)

(
1
0
,7

—
6
)

(
6
,3

—
7
)

(
7
,7

—
7
)

(
9
,7

—
7
)

(
9
,7

—
8
)

0

0.02

0.04

0.06

States sorted by number of VMs

P
ro
b
ab

il
it
y
of

v
is
it

0

0.2

0.4

0.6

0.8

1

R
an

d
om

n
es
s
F
ac
to
r
ε

(b) State visitation probability with convergence at approx 93.5% (ε̄ = 0.065). The scaling agent
acts more greedily, exploiting actions in the converged states.

Figure 4.15: Scaling agent convergence behavior.

across all states.
In Figure 4.15a, in the initial stages are shown, e.g., after one full cycle of the test

50 Provisioning without application knowledge

workload in Figure 4.12 (green curve), ε is high in every state, such that its distribution
has a mean ε̄ = 0.97, corresponding to approximately 3% convergence.

The scaling agent progressively gains greater experience about the workload profile
and the corresponding system states. Thanks to this, the agent develops the appropriate
scaling policy for each state, and acts less randomly. This yields diminishing values of ε in
the related states and its distribution shifts leftwards and upwards, such that ε̄ = 0.065 at
the 30th cycle (brown curve) in Figure 4.15a, which corresponds to approximately 93.5%
convergence.

Over subsequent runs, the weighted fair exploration mechanism drives the scaling
agent to visit the most pertinent states more often, as they procure better rewards.
These states correlate more strongly to the underlying workload profile. At advanced
levels of convergence, with low values of ε̄, the scaling agent chooses actions promising
higher rewards, resulting in more visits to familiar states with fully converged policies.
This is shown in Figure 4.15b, where those states for which the policy has converged
(yellow bars) are visited most likely as expected. However, weighted fair exploration still
ensures a few visits to less familiar states (blue and green bars), and guarantees that the
agent will be able to learn different policies, should it observe different workload patterns
in the future.

For a reinforcement learning agent, the ultimate aim is take actions that maximize
the accumulated reward; or minimize the penalties (negative rewards). Figure 4.16 shows
the sum of all the Q-values corresponding to any action, computed at different snapshots.
For an increasing number of learning steps, the scaling agent approaches convergence,
and accrues progressively lower penalties. As depicted in Figure 4.16, policy convergence
occurs rapidly within the first 5000 epochs. This is because the parts of the workload
with similar patterns influence the scaling agent to visit some states more often. The rate
then slows as the scaling agent should observe less frequent workload patterns repeatedly
in order to decide on the best policy. After about 30k epochs, most pertinent states have
fully converged. The negative values are expected because of the way we structured the
reward function in Equation (4.13): this function issues penalties commensurate to the
number of VMs provisioned in excess of the first one.
Complexity—We first consider complexity in terms of the number of learning steps
required to attain convergence. Recall the representation of utilization in the agent’s state
space as depicted in the “cards” of Figures 4.7 and 4.9. Each cell of a grid requires M
updates (the number of visits until εmin) for convergence. Call S the utilization component
of the agent’s state space and define χ := |S|. Define also the total number of actions
from all states as ζ :=

∑
i∈n |A(i)| where n is the maximum number of VMs available to

an ASP, and A(i) is the total number of actions available to the scaling agent when i VMs
are active. In the worst case, the maximum number of steps required to reach convergence
is at most O(Mζχ) steps. Given that χ < Mζ < χ2 by design, our complexity is between

4.4 Results 51

0 5 10 15 20 25 30 35
-350

-300

-250

-200

-150

-100

-50

0

Total number of epochs (in thousands)

S
u
m

of
Q
-V
al
u
es

Figure 4.16: Cumulative Q-Values, i.e., the sum of Q-values for all states, taken at different
snapshots in the course of the experiment.

{1} {n− 1} {n}{2} {3} {4} {5}

Figure 4.17: Markov chain of possible actions from selected states. The numbers in curly
brackets within each bubble, {·}, point to the number of VMs. Right-pointing arrows from
a state indicate scale-out, whereas left-pointing arrows indicate scale-in. The re-entrant
arrows above each bubble indicate no scaling.

O(χ2) and O(χ3) which aligns with the classical analysis presented in [58].
In our implementation, for the worst-case complexity we have that the total number of

VMs is n = 10, and the number of permissible actions A(i) depends both on the number
of active VMs i and on n. We clarify this through the Markov chain representation
in Figure 4.17, which shows all possible transitions between different numbers of VMs,
denoted as the value {i} inside each bubble, 1 6 i 6 n. For example, when 1 VMs is
active, the agent can decide to keep 1 VM or rather scale out to 2 or 3 VMs. Instead,
when 5 VMs are active, the agent can remove or add up to N∇ = N∆ = 2 VMs, or
keep the current 5 VMs. Therefore, the admissible actions are 3 (for states having 1
and 10 VMs), 4 (for states having 2 and 9 VMs) and 5 for the rest. Therefore ζ =
2 · 3 + 2 · 4 + 6 · 5 = 44. The utilization component of the state space comprises 10
quantized levels (from 0% to 20%), 5 levels (from 20% to 45%) and 1 level (beyond 45%).
Therefore, χ = 16 · 16 = 256. Because we set M = 10|A(i)|, 1 6 i 6 n, the complexity of
our implementation is O(10 · 44 · 256) = O(112640) steps. We ameliorate this worst-case

52 Provisioning without application knowledge

0 6 12 18 24
0

2

4

6

8

10

Time [h]

N
u
m
b
er

of
V
M
s

Figure 4.18: VM scaling for the EKF-based horizontal scaling scheme proposed in [25].
We represent resource savings with respect to static over-provisioning with 10 VMs via
the gray-shaded area.

0 6 12 18 24
0

2

4

6

8

10

Time [h]

N
u
m
b
er

of
V
M
s

Figure 4.19: VM Scaling for RLPAS: the Q-Learning horizontal scaling scheme proposed
in [22]. We represent resource savings with respect to static over-provisioning with 10
VMs via the gray-shaded area.

complexity by implementing weighted fair exploration (cf. Section 4.1.6) and initializing
the Q-values of the diagonal elements (cf. Section 4.2.5). Furthermore, the operational
complexity of the scaling agent presented in Algorithm 1 is O(1) for all operations except
for the load summation loop, which is O(it), where it is the number of active VMs at
epoch t.

4.4.3. Scaling profiles

We now move to discussing scaling profiles in response to the test workload of
Figure 4.12. We do so for all schemes considered in this work, namely SQLR, RLPAS [22],
static provisioning, and the EKF-based scheme [25]. The latter produces the profile

4.4 Results 53

0 6 12 18 24
0

2

4

6

8

10

Time [h]

N
u
m
b
er

of
V
M
s

(a) After 10 cycles, at 59% convergence (ε̄ =
0.41). With θ = 1, β = 0.01. We represent
resource savings with respect to static over-
provisioning with 10 VMs via the gray-shaded
area.

0 6 12 18 24
0

2

4

6

8

10

Time [h]

N
u
m
b
er

of
V
M
s

(b) After 20 cycles, at 89% convergence (ε̄ =
0.11). With θ = 1, β = 0.01. profile. We
represent resource savings with respect to static
over-provisioning with 10 VMs via the gray-
shaded area.

0 6 12 18 24
0

2

4

6

8

10

Time [h]

N
u
m
b
er

of
V
M
s

Case 2 {θ = 10.0, β = 0.001}
Case 1 {θ = 1.0, β = 0.01}

(c) After 30 cycles, at 93.5% convergence (ε̄ = 0.065). The lighter
shade of gray area represents resource savings made compared to static
over-provisioning with 10 VMs for Case 2. The darker shade of gray
represents extra resource savings made in Case 1 compared to Case 2.

Figure 4.20: SQLR scaling behavior evolving with experience. For this training phase,
we set Pblk = 0.001.

depicted in Figure 4.18. The scaling behavior in this scheme is quite stiff, because the
EKF tends to filter out bursty workload, that would require greater agility instead.

The RLPAS scaling profile is depicted in Figure 4.19. RLPAS is quite agile compared
to the EKF-based scaler. However, it is susceptible to premature scaling decisions. In
fact, it relies on the instantaneous workload arrival rate, which is highly stochastic in the
test workload profile. Moreover, both the EKF-based scaler and RLPAS require some
knowledge of the underlying application, such as its ideal response time. From empirical
observations on our test application, we set such ideal response time at 5 µs per job for
both schemes, as this amount of time is amply sufficient to serve the greatest majority of

54 Provisioning without application knowledge

the jobs.
The scaling profile obtained from our proposed scheme, in reference to the test

workload, is shown in Figure 4.20. The behavior of the scaler steadily improves with
increased exposure to the test workload. As more states converge, the scaling behavior
becomes more predictable, as seen by moving from Figure 4.20a to Figure 4.20b and
Figure 4.20c. The number of VMs provisioned settles around a suitable number that
achieves the best tradeoff between resource cost and penalties as driven through the
training parameters θ and β.

Moreover, in Figure 4.20b, we see that the first intervals to exhibit convergence (hence
greater stability in the scaling behavior) are those with higher similarity to the training
workload of Figure 4.11. For instance the intervals of hours 6 to 8 and 16 to 18, with
an average of 40 requests per minute (cf. Figure 4.12), closely resemble those of hours
1 to 4 and 20 to 23 of the training workload (cf. Figure 4.11). This shows that SQLR
can re-use contextual knowledge learned from one workload on any subsequent one with
similar characteristics.

Assigning different values to the training parameters θ and β results in different scaling
responses. As shown in Figure 4.20c, a low value of θ relative to β (Case 1) results in cost-
focused scaling policies that emphasize resource cost more than service unavailability due
to blocking. This is the same configuration as in Figures 4.20a and 4.20b. When θ � β,
as in Case 2, more service-focused policies are learned, giving greater importance to
service availability than to resource cost. The exploration mechanism of the Q-Learning
algorithm at the core of SQLR means that it may sometimes make sub-optimal decisions
in less known states, resulting in under-provisioning (such as at hour 18 for Case 1, and
at hour 5 for Case 2 in Figure 4.20c). This results in relatively high blocking rates, as
shown in Figure 4.21. Our guided fair exploration mechanism ameliorates the effects of
such under-provisioning, ensuring that their duration is short.

Since the EKF-based scaler relies on workload measurements to predict response
times and scale accordingly, it is particularly susceptible to under-estimating resource
requirements when demand is low. This is evident at off-peak intervals in Figure 4.21
where, between hours 0 and 7 and between hours 17 and 24, the EKF-based scaler allocates
1 VM on average, resulting in considerable blocking, much higher than the other schemes.
The RLPAS scaler adjusts resources too abruptly, resulting in unpredictable blocking
at both peak and off-peak hours. This is due to its dependence on direct workload
measurements, which are highly stochastic.

Static provisioning results in significant under or over-provisioning, as exhibited by
the black (2 VMs) and blue (10 VMs) curves, respectively. Both situations are clearly
untenable: on the one hand, the CSP risks serious penalties for service unavailability; on
the other hand, the CSP incurs significant yet unnecessary operational expenditure to
maintain superfluous resources, even though over-provisioning results in zero blocking.

4.4 Results 55

0 6 12 18 24
0

0.1

0.2

Time [h]

B
lo
ck
in
g
R
a
te

Static 2 VMs SQLR (Case 1)

Static 10 VMs SQLR (Case 2)
EKF RLPAS

Figure 4.21: Blocking rates over two-minute intervals. Two SQLR configurations are
shown: Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001). For clarity, a moving
average filter is applied with a window size of 30 samples.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

Blocking Rate

C
D
F

Static 2 VMs
Static 10 VMs
EKF
RLPAS

SQLR (Case 1)

SQLR (Case 2)

Figure 4.22: Blocking rate distribution. Two SQLR configurations are shown: Case 1
(θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001).

The distribution of blocking rates is shown in Figure 4.22. The greater the number
of VMs provisioned, the lower the blocking rate, as an incoming request will likely find
a sufficiently under-utilized VM. Given the preceding insight, the EKF-based scaler that
provisions the lowest number of VMs, exhibits poor blocking rate performance. RLPAS
also performs poorly because of its premature scaling behavior, which occasionally leads
to VM removals too soon when workload transients occur. Consider instead Case 2 of
our scaling scheme. This configuration penalizes blocking more heavily than provisioning
extra VMs by setting θ � β in Equation (4.13). Hence, it performs nearly as well as
over-provisioning with 10 VMs. If lower service availability is acceptable, our scheme

56 Provisioning without application knowledge

4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

Time per job [µs]

C
D
F

Static 2 VMs SQLR (Case 1)

Static 10 VMs SQLR (Case 2)
EKF RLPAS

Figure 4.23: Service time distribution per job. Two SQLR configurations are shown:
Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001). The service time for each
request is divided by the corresponding number of iterations it generates to obtain the
time per job.

0 6 12 18 24
4

5

6

7

Time [h]A
ve
ra
ge

se
rv
ic
e
ti
m
e
p
er

jo
b
[µ
s]

Static 2 VMs SQLR (Case 1)

Static 10 VMs SQLR (Case 2)
EKF RLPAS

Figure 4.24: Moving averages of service times (taken over a window of 30 samples to
smooth out switching overheads). Two SQLR configurations are shown: Case 1 (θ =
1, β = 0.01) and Case 2 (θ = 10, β = 0.001).

can prioritize resource cost over blocking, but still achieve reasonably low blocking rates
(Case 1).

4.4 Results 57

4.4.4. Service times

The distribution of service times is shown in Figure 4.23. We obtain the service time
per job by dividing the service time of each request by the corresponding number of proof-
of-work iterations it generates. These response times include the administrative overhead
that the hypervisor incurs to switch between the host and guest while managing VMs. It
also includes context switching between user mode and kernel mode of the corresponding
operating systems.

This overhead increases with the number of VMs being administered as well as with
how often they switch context. Dynamic scaling, which entails starting up and shutting
down VMs, exacerbates the latter. The combination of these factors affects SQLR’s
Case 2 greatly, as it incurs higher penalties for blocking than resource usage. This is
because the policies of SQLR’s Case 2 implicitly employ more VMs. Therefore, SQLR’s
Case 2 closely follows the static over-provisioned case with 10 VMs, that incurs high
administrative overhead throughout.

However, the over-provisioned scenario still provides the ideal case with the lowest-
variance (highly predictable) service times. Both configurations of our scheme closely
approach this ideal case with about 96% of the requests being served within 5 µs per job,
compared to 95.5% for the over-provisioned case, 86.5% for the EKF case and 87.7% for
RLPAS.

Moreover, for SQLR’s Case 2 (θ = 10, β = 0.001), the improvement in the proportion
of responses within the cutoff service time of 5 µs is only marginal, compared to the more
cost-focused Case 1 (θ = 1, β = 0.01). This is despite the extra amount of resources
deployed in Case 2, and is primarily due to the additional administrative overheads
incurred.

In order to compare the scaling schemes without the biasing effect of the administrative
overhead, we carry out a process akin to noise filtering in communication systems. We
do this by first obtaining the average service times over two-minute intervals, and then
applying a moving average filter having a window of 30 samples. Since context switching
happens in the order of clock cycles, these two operations over intervals that are orders of
magnitude longer than a clock cycle spread the cost of switching overhead over time and
smooth the curves. When we apply the operations stated above to the service time per job,
we obtain the results depicted in Figure 4.24. Both SQLR configurations closely follow
the over-provisioned policy with the ideal response times. At low workload (hours 0-7
and 17-24), the administrative overhead to maintain a large number of VMs outweighs
the gain of better service times resulting from the use of extra resources. Over these
intervals, our scheme performs slightly better than the 10-VM case by provisioning fewer
VMs. Conversely, the EKF-based scaler still under-performs: the single VM it provisions
over these intervals is not sufficient to meet the demand within the cut-off service time.
The RLPAS scaler, owing to its abrupt scaling behavior, exhibits response times that

58 Provisioning without application knowledge

1 2 3 4 5 6 7 8 9

<10

<20

<30

<40

<50

<60

<70

<80

<90

Number of VMs

O
ff

er
ed

L
oa

d
(R

eq
./

m
in

)

0

0.08

0.16

0.24

0.32

0.40

B
lo

ck
in

g
P

ro
b

ab
il

it
y

(a) Frequency

1 2 3 4 5 6 7 8 9

<10

<20

<30

<40

<50

<60

<70

<80

<90

Number of VMs

O
ff

er
ed

L
oa

d
(R

eq
./

m
in

)

0

2

4

6

8

10

T
im

e
ex

ce
ed

in
g

5µ
s

(µ
s)

(b) Severity

Figure 4.25: Soft Blocking Probability for the EKF scaler

.
1 2 3 4 5 6 7 8 9

<10

<20

<30

<40

<50

<60

<70

<80

<90

Number of VMs

O
ff

er
ed

L
oa

d
(R

eq
./

m
in

)

0

0.08

0.16

0.24

0.32

0.40

B
lo

ck
in

g
P

ro
b

ab
il

it
y

(a) Frequency

1 2 3 4 5 6 7 8 9

<10

<20

<30

<40

<50

<60

<70

<80

<90

Number of VMs

O
ff

er
ed

L
oa

d
(R

eq
./

m
in

)

0

2

4

6

8

10

T
im

e
ex

ce
ed

in
g

5µ
s

(µ
s)

(b) Severity

Figure 4.26: Soft Blocking Probability for the RLPAS Scaler

1 2 3 4 5 6 7 8 9

<10

<20

<30

<40

<50

<60

<70

<80

<90

Number of VMs

O
ff

er
ed

L
oa

d
(R

eq
./

m
in

)

0

0.08

0.16

0.24

0.32

0.40

B
lo

ck
in

g
P

ro
b

ab
il

it
y

(a) Frequency

1 2 3 4 5 6 7 8 9

<10

<20

<30

<40

<50

<60

<70

<80

<90

Number of VMs

O
ff

er
ed

L
oa

d
(R

eq
./

m
in

)

0

2

4

6

8

10
T

im
e

ex
ce

ed
in

g
5µ

s
(µ

s)

(b) Severity

Figure 4.27: Soft Blocking Probability for SQLR’s Case 1 (θ = 1, β = 0.01)

1 2 3 4 5 6 7 8 9

<10

<20

<30

<40

<50

<60

<70

<80

<90

Number of VMs

O
ff

er
ed

L
oa

d
(R

eq
./

m
in

)

0

0.08

0.16

0.24

0.32

0.40

B
lo

ck
in

g
P

ro
b

a
b

il
it

y

(a) Frequency

1 2 3 4 5 6 7 8 9

<10

<20

<30

<40

<50

<60

<70

<80

<90

Number of VMs

O
ff

er
ed

L
oa

d
(R

eq
./

m
in

)

0

2

4

6

8

10

T
im

e
ex

ce
ed

in
g

5µ
s

(µ
s)

(b) Severity

Figure 4.28: Soft Blocking Probability for SQLR’s Case 2 (θ = 10, β = 0.001)

4.4 Results 59

0 6 12 18 24
0

20

40

Time [h]

A
ve
ra
ge

%
C
P
U

U
ti
li
za
ti
on

Static 2 VMs SQLR (Case 1)

Static 10 VMs SQLR (Case 2)
EKF RLPAS

Figure 4.29: Moving averages of CPU utilization (taken over a window of 10 samples
to smooth out switching overheads). Two SQLR configurations are shown: Case 1 (θ =
1, β = 0.01) and Case 2 (θ = 10, β = 0.001).

oscillate about those of the more stable EKF scaler.
This marked difference in response times, owing to differences in the scaling

mechanisms, is clearly depicted in Figures 4.25 to 4.28, where we compare the soft
blocking performance (the proportion of admitted requests whose service times extend
beyond our cut-off of 5 µs per job). In these heatmaps, we consider only regions with
statistical significance (30 or more responses). Moreover, the white region indicates
resource allocation choices that remain unexplored for the considered input load. For the
severity heatmaps of Figures 4.25b, 4.26b, 4.27b, and 4.28b, the white region indicates
those allocations leading to service times within the limit of 5 µs. The offered load values
on the y-axis indicate the upper bound with the value immediately below indicating the
lower bound, e.g., “<20” indicates the interval [10,20) requests per minute. Therefore,
in panels (a) of Figures 4.25–4.28, the best behavior is shown as yellow hues, as opposed
to unwanted behavior (blue hues). Moreover, a larger number of yellow-colored cells
denotes greater scaling agility through appropriate system states. Conversely, panels (b)
of Figures 4.25–4.28 convey best scaling behavior both through yellow hues and through
the presence of a greater number of white cells.

As depicted in Figure 4.25, the EKF scaler employed by [25] is prone to overruns even
under light loads, given that it is very conservative in allocating extra VMs. As a result,
this increases the strain on the few active ones. Figure 4.26 shows that RLPAS, instead,
is prone to more widespread overruns across all loads. This is because it prematurely
scales in, even at high loads, after transients in workload measurements. In our scheme,
whose responses are shown in Figures 4.27 and 4.28, a significantly smaller proportion of

60 Provisioning without application knowledge

service times exceed the cut-off time (particularly at moderate to high offered loads). In
fact, our scheme is more sensitive to abrupt workload changes, and assigns resources in
a more agile fashion compared to the EKF-based scheme. The effect of the EKF is to
quench scaling decisions, especially in the presence of short-lived workload bursts.

Further, comparing the two configurations of our scheme shown in Figures 4.27 and
4.28, the provisioning policies of Case 2 result in fewer instances of soft blocking than
Case 1. This is because Case 2 provisions more VMs on average, which increases the
likelihood of operating them at lower CPU loads. This allows more task admissions and
lower service times. High severity (particularly in Case 2) comes from exploratory actions
at high demand, whereby our scaler momentarily scales in. However, by evaluating the
sub-optimality of these actions, our weighted fair guided exploration quickly scales out,
as is evident around hours 10 and 12 in Figure 4.20c.

4.4.5. CPU utilization

The average CPU utilization over the duration of the experiments is shown in
Figure 4.29. As before, we apply a moving average filter with a window of 10 samples
to each curve. SQLR Case 1, SQLR Case 2, and the over-provisioned case with 10 VMs
result in average utilization levels below 20%. The EKF scaler and the under-provisioned
case result in utilization levels above 25% during the peak period. The RLPAS scaler
results in a few excursions into utilization levels above 25%. Note that no curve passes
45% utilization in Figure 4.29, as the AC learned not to admit tasks beyond this limit
regardless of the employed scaling scheme.

The utilization trends closely follow the service times shown in Figure 4.24,
emphasizing the high correlation between these metrics. This confirms the suitability
of CPU utilization as a metric to define the state of both the AC and the scaling RL.4

4.4.6. Summary of results

We summarize a comparison of the performance of the scaling schemes in Table 4.2.
Here, we take the static over-provisioned case (with 10 VMs) as a reference benchmark
with 0% blocking. We measure resources in terms of VM-hours. The tradeoff between
resource use and service availability is apparent: schemes that procure lower blocking
rates use up more resources to do so. Both configurations of our scheme achieve service
times comparable to the over-provisioned benchmark with 10 VMs.

With particular regard to Case 2, our experiments show that we can reduce the amount
of provisioned resources by about 20% with less than 1% overall service unavailability (due
to blocking), while delivering similar response times close to those of an over-provisioned

4Conversely, system memory allocation is not an expressive metric: in all of our experiments, all
scaling agents allocate about 360 MBytes of memory, with negligible oscillations around this value.

4.5 Discussion 61

Table 4.2: Summary of Results

Scheme Resources
saved

Requests served with
<5% blocking

Requests served with
<5µs per job

Static 10 VMs 0.00% 100% 95.47%
Static 2 VMs 80.00% 64.86% 84.89%
SQLR Case 1 55.13% 91.50% 95.60%
SQLR Case 2 20.54% 99.17% 96.17%
EKF [25] 80.15% 65.83% 86.47%
RLPAS [22] 67.30% 71.53% 87.69%

system. SQLR therefore achieves the delicate balance between saving resources and
maintaning high performance.

4.5. Discussion

In this chapter, we have presented an agile horizontal scaling system, SQLR, that
learns the most appropriate horizontal scaling decision to make under highly dynamic
workloads, and without any fore-knowledge of the underlying system configuration. We
show that our modified Q-learning scheme enables our system to learn multiple policies
and re-use any applicable knowledge to new workload profiles exhibiting previously
encountered characteristics.

SQLR progressively optimizes its policy by tuning the tradeoff between resource cost
and service availability. These constraints come from the CSP after proper determination
from their business processes. Such high-level objectives make SQLR easily configurable
and adaptable to any cloud application, as no domain-specific knowledge is required. We
compare our proposed scheme to different state-of-the-art scaling systems, and show that
our scheme achieves better performance, similar to that of an over-provisioned system.

As with most machine learning-based schemes, our scheme is subject to a training
overhead. However, because of its capacity for contextual knowledge re-use, it can be
trained offline with representative workloads. Also, given our weighted fair exploration
mechanism, any subsequent residual learning can be done in production workloads with
a much reduced risk of poor decisions in the process. We show that even prior to
full convergence, our scheme performs practically as well as the unconstrained resource
benchmark (static over-provisioning).

In the following chapter, we extend SQLR container provisioning and discuss the
adaptations that need to made to achieve acsla objectives.

5 Container based provisioning

The adoption of containers is growing at a rapid pace. This is mainly due to their
comparatively simpler management with respect to VMs, and to the efficient resource
utilization they enable. Moreover, the performance of containers is comparable to that
of native computing platforms in terms of throughput and CPU utilization whereas
VMs typically impose non-negligible overhead [59, 60]. Characteristics such as quick
deployment, short boot time [60], easy network management and the use of layered,
small-sized container images have encouraged container adoption in global systems like
the Google Cloud Platform (GCP) and Amazon Web Services (AWS) [61].

The features mentioned above make it possible to achieve rapid elasticity (the ability
to quickly scale the amount of allocated resources according to workload intensity) using
containers. Managing container deployments in cloud environments is still an open issue
that mainly involves provisioning and scaling strategies.

The performance of a container depends not only on how many CPU threads it uses but
also on which core of the CPU these threads are executed. It is also contingent on the level
of contention by other applications on the same CPU. In order to make the cost calculation
transparent to the user, such inter-dependencies must be avoided and the relationship
between the quality of service delivered and the amount of used resources needs to be
clarified. Existing container provisioning platforms delegate the CPU scheduling to the
operating system. Given that current operating systems are not hyper-threading aware,
interference among running containers cannot be completely avoided, and load is typically
distributed sub-optimally across CPU threads. This results in unpredictable service times.

Containers are currently managed using software platforms such as HPA by
Kubernetes or Docker Swarm, which offer reliability by default [15]. However, some
limitations exist regarding performance guarantees and adaptability to rapid changes
in the operating environment. For instance, currently adopted solutions favor over-
provisioning policies over rapid elasticity involving system adaptation. Capacity
allocations are statically sized to serve peak loads, so resources remain underutilized
most of the time. We however argue that over-provisioning is neither efficient nor strictly

63

64 Container based provisioning

needed. We show that automatic scaling is a better option provided that containers can
be mapped onto hardware resources to avoid resource access conflicts.

To this end, we implement core pinning to ensure that a CPU core is reserved for
a container, thereby forestalling contention side-effects due to hyper-threading. This
approach also simplifies pricing models by making the cost of a container proportional to
that of a CPU core. With regard to provisioning, we show that scaling the number of
containers allotted to an application yields better performance than scaling the amount
of resources allotted to a single container. Scaling the number of containers makes service
time predictable, and thus provides the technical basis for, e.g., the stipulation of SLAs
between service providers and customers.

Moreover, we implement an automatic scaling system that predicts the required
amount of resources and proactively makes scaling decisions in order to maximize the
application workload processing throughput and minimize the infrastructure allocation
costs. Our automatic scaling subsystem is a Q-Learning agent. Since it is based
on a model-free reinforcement learning technique, this agent can learn the operating
environment autonomously and adapt its scaling policies without manual intervention.

The rest of this chapter is structured as follows. In Section 5.1, we discuss the
challenges involved in container provisioning and propose our self-scaling provisioning
solution in Section 5.2. We describe our experimental testbed in Section 5.3. We present
and analyze our experimental results in Section 5.4. In Section 5.5 we discuss the main
contributions of this chapter.

5.1. Container provisioning

In this section we explain how to avoid interference (i.e., contention in accessing shared
computing resources) among running containers and explain how we operate to make
service time predictable.

A Linux container is a group of isolated processes running on the host machine without
any resource virtualization. A container can be granted an arbitrary amount of resources
on the host machine: the amount of actually available resources depends both on the host
capacity and on the resources allotted to other containers. For this reason, containers
running on the same host will interfere with each other.

The use of hyper-threaded CPUs results in additional interference. Each CPU
comprises multiple cores, each of which can run two threads. These threads share the
hardware for the execution phase. Hyper-threading leads to a performance improvement
for each core since it minimizes the impact of cache-miss interruptions. Unfortunately,
such an architecture may also yield unpredictable performance, depending on which
thread is used to run a process [62, 63]. In fact, as different threads in the same core
share part of the architecture [64], execution performance is affected by other processes

5.1 Container provisioning 65

0.5 1 1.5 2
6

8

10

Time (h)

It
er
a
ti
o
n
T
im

e
(µ
s)

1 Container (2 Cores)

2 Containers (1 Core each)

Figure 5.1: Vertical vs. horizontal scaling: two containers running on distinct cores provide
more predictable performance than one container running on two cores.

in the same core.
The solution to these problems is the use of resource limitation in conjunction with

core pinning, as demonstrated in [65]. Concretely, this means that we dedicate one or
more (entire) cores of a CPU to a given container for its exclusive use. This configuration
curtails any interference with other processes and eliminates the interference related to L1
caching mechanisms since each process stably runs on the same core. CPU core pinning
also leads to efficient resource isolation [66], improved throughput and improved power
utilization [67].

In Linux, both resource limitation and core pinning can be achieved by leveraging the
cgroup feature. Using this feature requires the specification of the threads to be used
for each container. To avoid disparity in hyper-threaded architectures, we select threads
belonging to the same core. For the Linux distribution we use in our test-bed, this involves
consulting the cpuinfo file.

Core pinning also clearly delineates the number of resources used as containers are
mapped onto a known number of allocated cores. Therefore, following [68], the cost of
running a container over k time intervals can be computed as:

Cost(k) = α
k∑

n=1
Cn,n−1 · (tn − tn−1), (5.1)

where Cn,n−1 is the number of cores dedicated to the container during the interval
[tn−1, tn], and α is a configurable cost scaling parameter chosen by the Cloud provider.
As regards scaling, two strategies are possible: vertical scaling and horizontal scaling.

66 Container based provisioning

Network

Load Balancer

Admission Controller

. . .Containeri Containerj

Add/Remove

Auto-Scaler

Figure 5.2: Proposed container auto-scaling architecture.

The former entails the addition or removal of cores from a running container while
the latter involves instantiating new containers or decommissioning active ones without
adjusting their resource allocations. If vertical scaling is used such that multiple cores are
assigned to a container, even with CPU core pinning on hyper-threaded cores, Linux’s
Completely Fair Scheduler (CFS) might assign all processes to some cores leaving the rest
in an idle state. This is because these schedulers are hyper-threading unaware and may
introduce interference among competing processes on the same container. Horizontal
scaling, instead, allows fine-grained resource management and prevents intra-container
interference. This effect is exemplified in Figure 5.1 where the time per iteration of the
double 256-bit bitcoin hash computation is shown for multiple such requests over a time
period. The response times exhibited by two containers running on independent cores is
markedly predictable compared to one container with two cores. In the next section we
employ core pinning to spawn containers using different cores. In particular we allocate
one core for each container.

5.2 Automatic provisioning system 67

5.2. Automatic provisioning system

Here we exploit the container-provisioning approach to build a system capable of
optimizing resource utilization. Our system scales the number of allocated containers to
align with the varying demand in order to minimize costs while maintaining a high level of
service. As a result of employing core pinning as explained in Section 5.1, scaling decisions
do not affect response time. A schematic diagram of our system is shown in Figure 5.2. It
comprises three components: LB, AC and Auto-Scaler (AS). As suggested in [52], the LB
component directs an admitted request to the active container reporting the most recent
and lowest utilization rate. The AC component leverages CPU utilization statistics from
the cgroup file-system to decide whether an incoming request should be handled. The
AS spawns new containers or removes active ones as appropriate, depending on demand.

We now delve into our design of the AC and AS components. Our LB implementation
is inherited from [52].

5.2.1. Admission controller

Considering the iterative double 256-bit bitcoin hashing algorithm as an exemplary
cloud application, the behaviour of a container (with a dedicated CPU core) is shown in
Figure 5.3. Each request triggers a different number of iterations. The response time,
normalized by the number of iterations, is shown to be independent of the particular
request’s characteristics.

The plot in Figure 5.3 also shows that the relationship between the amount of allotted
resources and SLA terms of service (such as the minimum response time) is not necessarily
linear. In particular, there exists a discrepancy between CPU utilization (as reported
by the operating system) and the actual occupied capacity of the core due to the use
of hyper-threading [62]. This disparity is because the operating system considers two
threads of the same core as two independent cores. Bearing this in mind and using
the operating system metrics, a container exhibits a tri-stable CPU behavior: 0% CPU
resource utilization when idle, 50% while continuously busy on a single core, 100%
when continuously hyper-threading on the same physical core. The latter case points
to saturation and unpredictable service times. The service time remains predictable only
when a single thread (50% of a hyper-threaded core) is busy, as shown in Figure 5.3. The
above suggests that new requests should be admitted only when the container is not busy
(0% utilization).

We finally remark that transients have a non-negligible impact on the correctness of
admission decisions. Specifically, an admission error may occur in two cases: (i) a request
was just assigned to the container, but the reported CPU usage value is still close to
0%, triggering the admission of an (otherwise undesirable) additional request; and (ii)
the container just finished serving a request, but the reported CPU usage value is still

68 Container based provisioning

0 50 100 150 200
0

20

40

60

80

100

Time (s)

C
P
U

u
sa
ge

(%
)

0

2

4

6

8

10

It
er
a
ti
o
n
T
im

e
(µ
s)

Figure 5.3: Relationship between CPU utilization and service time. When the reported
utilization is 6 50%, the iteration time is predictable.

close to 50%, triggering the rejection of a request that should have been admitted. These
transients in reported CPU utilization are typically short-lived such that the inter-arrival
time of requests, even at peak time, is much longer in comparison. However, in order to
further reduce the likelihood of the first event, a new request is admitted if the reported
value is 6 25%. In practice, this solution also reduces the likelihood of the second case.

5.2.2. Auto-scaler

The purpose of the AS is to allocate the minimum number of containers that is
commensurate to the demand while still minimizing the number of dropped requests
as reported by the empirical blocking probability. The scaling mechanism we employ is
similar to the Q-Learning paradigm presented in Chapter 4 as shown in Figure 5.4.

We designate the permissible scaling actions as: −n (remove n containers), +n (add
n containers) and 0 (maintain the existing number of containers). For n = 1, we can
therefore describe the action space as follows:

A =


[−1; 0; +1] if 1 < Nt < M ;

[0; +1] if Nt = 1;

[−1; 0] if Nt = M ;

(5.2)

where Nt is the current number of active containers and M is the maximum number of
containers that can be allocated.

The state space is described by the triplet set of the number of containers, and the
utilization in the previous and current epoch. We quantize the latter two components
of the state space into nine levels, from 0% to 45% in steps of 5%. The last level
encompasses the range from 45% to 100% utilization. The latter detail is required because
the admission control function ensures that utilization never exceeds 50%. Fine-grained

5.2 Automatic provisioning system 69

+1
0
-1

+1
0
-1

Reward Update

a

{N} {N + 1}

s(t+1)s(t)

Figure 5.4: Short-Term Memory Q-Learning mechanism used for the auto-scaler, cf.
Chapter 4. This schematic shows a scale out operation where in the epoch given by
the interval [t, t + 1), action a increases the number of containers from N to N + 1 and
the state transitions from s(t) to s(t+1).

quantization of the state space is unnecessary as the action space is restricted to 3 discrete
actions as presented in Equation (5.2). Higher levels of quantization would increase the
training time (owing to the curse of dimensionality) with little benefit to the quality of
scaling policies learned. The reward function (Rsqlr) consists of a penalty for blocking
(Rblk) and another based on the number of containers provisioned (Rres):

Rsqlr = Rblk +Rres

Rblk =

Rmin, if P 6 Papt

θ (Papt − P) , if P > Papt,

Rres = β(1−Nt)

(5.3)

where P is the actual blocking rate, Papt the acceptable level of outage as per the SLA,
Rmin is a small positive reward assigned to the agent when it keeps within the acceptable
limits of service outage due to blocking, θ is the weight given to outage exceeding the
acceptable level and β is the weighted cost incurred by the provider in deploying containers
to handle client requests.

Compared to this approach given in Chapter 4, we simplify the mechanism in order
to expedite learning. In particular, we set θ = 1 so that only β is adjusted. The ratio of
the two influences the policies learned.

70 Container based provisioning

0 6 12 18 24

20

40

60

Time (h)

R
eq
u
es
ts
/m

in

Figure 5.5: Traffic profile observed during the Docker experiments. Traffic rates are taken
over two-minute windows. The red line is the moving average over 30 samples.

0 6 12 18 24
1

2

3

4

5

6

7

8

9

Time (h)

N
u
m
b
er

of
co
re
s

Figure 5.6: Scaling decisions taken by Auto-Scaler algorithm during the Docker
experiment (using β = 0.02).

5.3. Experiment setup

We implement our provisioning scheme using Docker containers on a Dell T640 server
with 20 hyper-threaded cores running Ubuntu 18.04. In order to expedite learning,
we choose n = 1 (see Section 5.2.2) which effectively reduces the size of the action
space. We implement CPU pinning and limit the maximum number of containers (M
in Section 5.2.2) that can be provisioned to 9. This ensures that server capacity is never
exceeded and that the host processes run on an independent core. The AC and LB
functions are implemented as python applications and run on the host core.

The server is connected to client PCs in an isolated LAN via a high-speed switch.
Bash scripts on the client PCs spawn requests to the server with varying frequency at
different hours of the day to mimic peak and off-peak periods of typical real-world traffic
profiles.

5.4 Results 71

A 24-hour cycle is split into hourly periods as shown in Figure 5.5. Each period has
inter-arrival times following a discrete distribution λv U(0, λmax). By varying λmax we
create a suitable peak/off-peak profile. The use of a uniform distribution ensures high
entropy in order to evaluate the robustness of the schemes in challenging conditions. As
mentioned in Section 5.2.1, we deploy the double 256-bit bitcoin hashing algorithm as our
cloud application. Each admitted request triggers a different number of iterations, which
makes it possible to mimic the diverse complexity of cloud applications.

5.4. Results

We compare our provisioning scheme with the Google Horizontal Pod Autoscaler
(HPA) for Kubernetes, a widely used container management tool. We also benchmark our
scheme with static over-provisioning and under-provisioning. As comparative measures,
we consider the following metrics:

1. Saved cost: cf. Equation (5.1), the difference in cost between employing the
maximum amount of resources throughout and using an auto-scaling algorithm to
provision variable amounts of resources,

2. Service time: the time taken to process a request normalized by the number of
iterations triggered by it, measured at the server side in order to exclude network
effects,

3. Blocking rate: a measure of service availability defined as the percentage of dropped
requests with respect to those received by the server.

5.4.1. Docker experiments

We initially test our scheme in a Docker environment. With reference to the offered
load presented in Figure 5.5, our scheme generates the scaling profile shown in Figure 5.6.
With the parameters we have adopted (θ = 1 and β = 0.02), the system learns to act
quite aggressively with respect to blocking and encourages the provisioning of additional
containers even with modest rises in the traffic profile. A higher setting of β would result
in a stiffer reaction of the scaler, and would likely result in higher blocking rates. With
this setting, our solution achieves 51% saved cost.

The performance in terms of blocking rate is shown in Figure 5.7. Our scaler
achieves blocking rates that are comparable to the over-provisioned case with 9 containers
throughout the 24 hours. It considerably outperforms the under-provisioned case in which
only 4 containers are statically deployed and no adaptation is enforced over time. The
saved cost for the under-provisioned case stands at 55% which is only marginally higher
than that of our auto-scaler but with much poorer service availability, especially at peak

72 Container based provisioning

0 6 12 18 24
0

0.05

0.1

Time (h)

B
lo
ck

ra
te

(m
ov
.
av
e.

1h
)

Q-Learning
9 Containers
4 Containers

Figure 5.7: The blocking rate observed over the time during Docker experiments in terms
of rejected requests per second.

4.8 5 5.2 5.4 5.6
0

0.2

0.4

0.6

0.8

1

Iteration Time (µs)

E
C
D
F

Q-Learning
9 Containers
4 Containers

Figure 5.8: Empirical CDF of the service time for Docker experiments.

traffic. From Figure 5.8, it is clear that the number of containers deployed has an effect
on the service time. This is due to the fact that container processes share the L2 and
L3 cache memory. The greater the number of active containers the more pronounced
the impact. For this reason, the over-provisioned case with 9 containers exhibits slightly
higher service times, whereas the under-provisioned case with 4 containers yields the
lowest service time. Our scaling solution suffers a small deviation from the low service
times for about half of the cases owing to the instances when it provisions more than the
benchmark 4 containers at peak traffic. However for all cases considered, the maximum
difference in service times is small with respect to the minimum values observed, i.e., the
difference is less than 0.1 µs, for more than 93% of the cases. This is because admission
control ensures that the system only rarely reaches saturation.

5.4 Results 73

0 6 12 18 24

10

20

30

40

Time (h)

R
eq
u
es
ts
/m

in

Figure 5.9: Traffic profile observed during the Kubernetes experiments. Traffic rates are
taken over two-minute windows. The red line is the moving average over 30 samples.

0 6 12 18 24
1

2

3

4

5

6

Time (h)

N
u
m
b
er

of
co
re
s

Q-Learning HPA

Figure 5.10: Scaling decisions taken by the AS algorithm during the Kubernetes
experiment (with θ = 1.0 and β = 0.02).

5.4.2. Kubernetes experiments

We now compare the performance of our scaler against the commercial HPA for
Kubernetes. We re-run the experiments with the traffic profile shown in Figure 5.9
using two computers with different specifications. Our scaler autonomously learns the
appropriate operating conditions for each computer to trigger the addition or removal
of containers. HPA however requires that the threshold be set as an external input.
Such a setting is often a trial and error process and is both application and configuration
dependent. To obtain comparable results to our scaler, we set this threshold as 28%. The
comparison between the decisions of our scaler and the ones made by HPA are shown in
Figure 5.10. Two different servers are used in these experiments to guarantee different
service times. Even in this scenario, our provisioning scheme achieves predictable service
times, albeit different given the difference in compute power. In this case the less powerful

74 Container based provisioning

3.6 3.7 3.8 3.9 4

0.2

0.4

0.6

0.8

1

Iteration Time (µs)

E
C
D
F

Q-Learning
HPA

(a) Master node

4 4.5 5 5.5

0.2

0.4

0.6

0.8

1

Iteration Time (µs)

E
C
D
F

Q-Learning
HPA

(b) Slave node

Figure 5.11: CDF of the service time for the Kubernetes experiments.

compute engine (slave node) determines the service time benchmark.
While the two schemes save about the same costs and achieve similar results in terms of

service time, as depicted in Figure 5.11, their blocking performance differs. Our approach
based on CPU core pinning and Q-Learning largely outperforms HPA in terms of blocking
rate, as shown in Figure 5.12.

5.5. Discussion

In this chapter, we have demonstrated the consistent performance achieved by
implementing CPU core pinning and horizontal scaling when compared to vertical scaling
with hyper-threaded cores. We show that CPU core pinning simplifies the pricing models
for cloud providers by facilitating an easy mapping between actual resources used and

5.5 Discussion 75

0 6 12 18 24
0

0.005

0.01

0.015

0.02

Time (h)

B
lo
ck

ra
te

(m
ov
.
av
e.

1
h
)

Q-Learning
HPA

Figure 5.12: Blocking rate observed over time during Kubernetes experiments in terms
of rejected requests per second.

container resources assigned to tenants. Although our scheme curtails the application
of hyper-threading and its advantages, the benefits of predictable and consistent high
performance outweighs this disadvantage by far.

We have also demonstrated the superior performance of the SQLR scaling scheme
when compared to the HPA for Kubernetes which is widely adopted in container
provisioning platforms. Our Q-Learning scheme attains predictable response times in
the face of highly dynamic traffic without the need for manual threshold setting. It
is able to learn the appropriate scaling triggers without prior knowledge of the system
configuration or the cloud application.

In the second part of the thesis, we consider a special case of provisioning with regard
to a high mobility low latency application. In this instance, where the resources are
located on the network also becomes a significant consideration. We choose platooning as
the quintessential application given that it exhibits both high mobility and has stringent
latency requirements.

Part II

Multi-access Edge Computing (MEC)
Provisioning for Low Latency

Applications

77

6 Background and Related Work

Intelligent Transportation Systems (ITS) of the future aim to increase road
throughput, improve safety and reduce emissions from vehicles [69, 70]. A key proposal
of ITS is platooning, the coordinated driving of vehicles with short spacing between
them. To realize platooning, legacy schemes have relied so far on Vehicular Ad hoc
NETworks (VANETs). These networks are however susceptible to high packet losses,
as they rely on contention based media access control [71]. Given the latency sensitive
nature of platooning [72], VANETs cannot therefore safely support large platoons.

Moreover, to maintain speed-independent spacing between vehicles in such platoons,
not only is it necessary that the vehicles receive status beacons from their predecessors,
but all vehicles also need to receive communications from the platoon leader [73]. For long
platoons, keeping all vehicles connected to the platoon leader may be challenging, owing to
turns or obstacles along the road, which may prevent line-of-sight communications [71].
This exacerbates losses and hinders the information transfer required to maintain the
platoon.

With the advent of MEC, each vehicle in the platoon can potentially have a low-
latency connection to a controller hosted at the network edge. The use of scheduling
and robust forward error correction in 5G means that, unlike contention-based protocols
used in VANETs, packet losses are not as pronounced. However, delivery delays remain a
key challenge [74]. There have been some recent efforts [75–77] to explore how the MEC
architecture can be leveraged for Vehicle-To-Infrastructure (V2I) platooning. However,
some key challenges have not been adequately addressed, including: (i) the development
of robust controllers that can tolerate high delays; (ii) how to deal with out-of-order
reports from platoon members; and (iii) how to intelligently migrate the controller across
edge nodes to minimize latency as the platoon moves [78].

In this work, we address these challenges by modifying the platoon controller to handle
V2I communication issues and develop a context-aware Q-learning migration scheme
that deploys the controller in the most suitable location. Q-learning is a model free
reinforcement learning technique in which an agent learns the action-value of a state by

79

80 Background and Related Work

trial and error initially before settling on the most rewarding action in the long run [50].
We thereby substitute a controller in each platoon member with a centralised one, which
can be migrated from one MEC host to another according to the policies learned as the
platoon moves.

Concretely, the contributions included in this chapter are: (i) we design a migration
agent for the centralized control of a platoon from the MEC, based on a Q-learning
algorithm that, unlike previous approaches, incorporates context-awareness; (ii) we
modify CACC to estimate and compensate for network latency and messages delivered
out of order, which is generally not required for direct vehicle-to-vehicle (V2V)
communications; (iii) we define and study how multiple Q-learning agents can cooperate
for rapid policy convergence with zero synchronization overhead; (iv) we enhance and
combine existing vehicular and network simulation frameworks, through which (v) we
evaluate the performance of intelligent controller migrations for MEC-assisted platooning,
in the presence of single or multiple Q-learning agents. Moreover, (vi) we introduce
Slow down And spLiT (SALT), a safety overlay to the working of the MEC controller
as a key additional contribution to our work presented in [3]. This novel technique
progressively increases the gap between vehicles and reduces the overall speed as network
and/or computing conditions deteriorate persistently. When the spacing is sufficiently
safe, Automated Cruise Control is triggered to keep the vehicles moving in a convoy.
When the vehicles move into an area where network and compute delays are sufficiently
low, the platoon is reformed and progressively moves at the desired speed and spacing.

In the following section, Section 6.1 we consider the state of the art in platooning and
application migration.

6.1. Related work

Platooning per se and the possibility to control vehicles from the MEC have already
been addressed in the literature [72, 76]. Our interest focuses on making the controller
aware of communication issues that can occur, and how to take advantage of the fluid
architecture of cellular edge networks, which offer multiple options where to run and
possibly migrate the platoon controller.

6.1.1. Controllers

Work on controllers to achieve cooperative driving dates back to the PATH project [79].
Though robust, this controller fits a peer-to-peer ad hoc network with short delays and
good discipline in the order of communications among vehicles. The controller proposed
in [80] only requires communications between proximate members of the platoon. While
relaxing the stringent requirement of the platoon leader communicating with all members,
it imposes a speed-dependent spacing between vehicles.

6.1 Related work 81

Other works such as [81] have made controllers more delay tolerant and robust to
packet errors, by taking into account the topology of the platoon and by employing speed-
dependent spacing as well as communication between the platoon leader and all members.
This approach is markedly string-stable, but remains limited to small platoons, and may
not scale well in a MEC-driven scenario.

We enhance the well-known controller presented in [79] to account for varying
communication delays and disorderly reporting from platoon members. These adaptations
make the controller better suited for use in V2I MEC-enabled platooning.

6.1.2. Service migration

Many state-of-the-art service migration schemes exist for MEC deployments [82].
However, only a subset of these fit latency-critical applications. The authors of [83]
propose a random start placement on the available nodes which is then refined by
prediction based on collected performance metrics. In [84], the authors propose a cognitive
edge computing architecture supporting a service migration scheme. The scheme relies
on repeated evaluations of the quality of experience of the users as they move in a
network. Owing to its focus on human users, this work does not address the strict latency
requirements of platooning.

The authors of [74] design a service placement algorithm leveraging Lyapunov
optimization to decompose the problem. Each subproblem is then solved by Markov
approximation. The resulting scheme tracks user mobility and locates the service at
the MEC host that minimizes the delay and cost. Although this approach considerably
improves latency, it does not tackle the typically time-varying computing capability of
the MEC hosts. This is particularly important given the myriad services that a MEC
node may host, which thereby affect the experienced latency.

This limitation is however considered by the authors of [85] who create an Adaptive
User-managed Service Placement (AUSP) algorithm taking into consideration the
compute delay, the communication delay and the switching cost to a given candidate
MEC host. They then use a multi-armed bandit approach which estimates the total delay
distribution of each MEC host. At each time step, the MEC host with the lowest estimated
total cost is chosen. This approach is however susceptible to unnecessary migrations.

Our proposed scheme takes all these delay elements into account and also minimizes
the number of migrations. In so doing, it also cuts down the migration costs. In the
following chapter we discuss in detail the working principles of our proposed scheme and
compare its performance to state of the art algorithms.

7 V2I platooning

In legacy ad hoc platooning systems, the platoon leader communicates its speed and
acceleration to each platoon member [86]. Each member also receives the speed and
inter-vehicle spacing of its predecessor, typically from a radar system. With these data,
the controller in each member calculates and applies the appropriate acceleration. In
the V2I-assisted platooning case, the vehicles only need to communicate their own speed,
acceleration and distance from the preceding vehicle to the controller resident in the MEC
host as depicted in Figure 7.1. From the figure, it is also clear that not all vehicles of the
platoon may be served by the same cell tower, and hence packets will experience varying
delays. Indeed, network latency and the variation thereof over time strongly impact this
process.

As discussed in [87], the architecture of the network greatly influences the latency of
a service. Given the proliferation of small cells and network densification expected in 5G,
handover delays will be of particular importance in determining the performance of 5G
services. Handover latency values in the order of a few milliseconds can be tolerated.

Further, owing to the fact that uplink transmission opportunities are subject to
channel-dependent scheduling, there exists a non-trivial delay between the moment a
packet is available for transmission at the on-board unit of a platoon member and the
time it reaches the MEC controller. Therefore, the data in this packet will be slightly stale,
particularly in regard to speed and inter-vehicle spacing. Instead, we can safely assume
that acceleration values will remain coherent within a transmission window as suggested
by the performance of automatic control in real world platooning experiments [88].
Current efforts to achieve sub-millisecond delays in next generation networks are still
in their infancy [89] and as such we do not make this assumption in our work.

83

84 V2I platooning

Figure 7.1: V2I Platooning on the network edge

7.1. Controller adaptations for V2I platooning

7.1.1. Controller operation adaptations

When porting CACC to the V2I context, we modify it to improve controller operation
and cope with two key issues. Depending on when the cellular network grants a transmit
opportunity to a platoon member, either or both of the following may occur:

1. consecutive packets from the same vehicle reach the controller in quick succession,
owing to a delay that spans the interval of more than one periodic update;

2. a packet generated at an earlier time by a leading vehicle reaches the controller later
than that of a following vehicle.

In the case 1, we implement a filter that keeps only the latest packet from a given vehicle,
as it represents the most updated information. In case 2, as depicted in Figure 7.2,
we implement a data collection window to receive the packets from all members of the
platoon. The controller then uses these data to compute the acceleration directive for
each vehicle.

7.1 Controller adaptations for V2I platooning 85

ti

Vi(t)

Vi+1(t)

dδ

ti+1 tctrl

Vi
Vi+1

di,i+1

ai+1ai

Car i Car i+ 1

t

V (t)

Figure 7.2: Controller delay compensation. At time ti, car i generates the report packet
with its own speed, acceleration and distance from vehicle i− 1, and sends it to the MEC
controller. Car i+ 1 does likewise at time ti+1. At tctrl, the controller collates the data.

7.1.2. Latency compensation in the control law

The MEC controller has to account for the discussed latency values before computing
the acceleration directives. Thus, we design the controller so as to update the speed
assuming the previously assigned acceleration for the vehicle and update the spacing by
estimating the distance travelled by the vehicle and by its corresponding predecessor.
Given that such lags are in the order of up to several tens of milliseconds, these updates
can be approximated as piece-wise linear functions as depicted in Figure 7.2. In particular,
the speeds of vehicles i and its follower i+ 1 at control epoch tctrl can be computed based
on speed and acceleration values sent with their freshest updates, at times ti and ti+1,
respectively:

Vi(tctrl) ≈ ai(ti) · (tctrl − ti) + Vi(ti) (7.1)

Vi+1(tctrl) ≈ ai+1(ti+1) · (tctrl − ti+1) + Vi+1(ti+1) . (7.2)

86 V2I platooning

With the update generated at time ti+1, the distance d̂i,i+1 between the two vehicles is
then estimated as:

d̂i,i+1 = di,i+1 +
(∫ tctrl

ti+1
Vi(t) dt−

∫ tctrl

ti+1
Vi+1(t) dt

)
. (7.3)

7.1.3. Slow down And spLiT (SALT)

In some situations, the delay experienced by vehicle update messages may be too
high to be satisfactorily compensated for as described in Section 7.1.2. In these cases,
the MEC controller becomes an unreliable arbiter of the platoon, and it becomes safer
to switch control back to the vehicles. In order to gracefully carry out this transition,
the speed and spacing of the platoon need to be progressively adjusted as long as the
untenable delay conditions persist. We do this by implementing a SALT overlay module
inside the MEC controller. SALT leverages the total delay experienced as the trigger
for its operation which consists in (i) adjusting the target distance used in Cooperative
Adaptive Cruise Control (CACC) and (ii) switching between CACC and Adaptive Cruise
Control (ACC) as needed. When under ACC, the spacing between the vehicles is typically
larger given that it requires a fail-safe distance determined by a time headway greater
than 1 s. Under such conditions, vehicles cannot leverage the slip-stream of the preceding
vehicles to improve fuel efficiency. It is thus preferable to have the vehicles operating
under CACC for as long as is feasible to do so.

As network and computing conditions vary, the interval between when a vehicle
transmits a packet to the controller to when it receives a packet from the controller
also varies. Simply capturing the upstream delay at the controller may not account for
the computing and downstream delay. In order to get a complete picture of the delay, we
include the creation timestamp of the vehicle report to which the controller is responding
as part of the control packet. When the vehicle receives the control directive, it computes
the difference between the current time and the creation timestamp, and sends it to the
controller as part of the next report.

Given that these delay values are quite noisy, we first pass them through a low pass
filter before using them as an input to our variable spacing function. If m is the number
of average delays collected over an observation window1 and x[m] is the mth sample, at
the nth observation window, the filtered delay y[n] is given by

y[n] =
(1

2

)m+1
y[n− 1] +

m∑
i=1

(1
2

)i
x[m− i+ 1]. (7.4)

We use this filtered delay to determine how to adjust the vehicle spacing. We choose
1We choose this to be 200 ms (twice the vehicular reporting interval), averages are collected over short

intervals of 30 ms each corresponding to the data collection window. For a relatively large platoon, these
values ensure that m is statistically significant.

7.2 Q-learning agents for controller migration 87

Tmax as reference upper bound on delay and 0 < Ψ < 1 as the trigger point for when to
adjust the spacing. The modified spacing d[n] is obtained as follows

∆ = 1
10

⌈
10× tanh

(
y[n]− Tmax

Tmax

)⌉
, (7.5)

d[n] =

dλ, if ∆ 6 Ψ

dλ(1 + ∆), otherwise,
(7.6)

where dλ is the platooning target for the inter-vehicular spacing. Should delays exceed
Tmax, the chances of successive packets with stale data arriving at the controller increases
considerably. We choose the hyperbolic tangent since it has a smoothing effect on noisy
inputs and its output is bounded in the interval [-1.0,1.0]. We use a simple geometric
function with a ratio, r < 1.0, to adjust the speed at each observation window.

We choose r ≈ 1.0 to avoid shocks that can cause string instability. The filtered delay
is similarly used as the trigger. The speed at the at the nth observation window V [n] is
given by

V [n] =



Vptn, if d[n] = dλ

V [n− 1]
r

, if V [n− 1] < Vptn|∆ 6 Ψ

Vacc, if d[n] > 1.2 s× Vacc|∆ > Ψ

V [n− 1]× r, otherwise.

(7.7)

When V [n] = Vacc, vehicles in the platoon switch to a standard ACC that relies only
on on-board sensors such as the radar. In Equation (7.7), 1.2 s is the time-headway we
consider for ACC.

7.2. Q-learning agents for controller migration

As a platoon moves, the distance between the vehicles and the controller will change.
Even if we resort to network slicing and assign dedicated resources to the platoon
controller, at some point such controller may have to be migrated closer to the platoon
in order to guarantee responsiveness. For this, we design a migration agent and assume
that its actions are either to move the controller to a candidate MEC node or to leave
it in its current location. With high probability, the chosen action will influence changes
in communication delays impacting the delivery of acceleration directives to the platoon
members. Consequently, the speed and the spacing between platoon members will be
impacted. By defining the state as a combination of the processing capacity of a MEC
host and of the platoon topology (relative spacing between platoon members), we can
approximate the system as a state machine. In the following, we refer to the system as
the “environment,” in order to align with common reinforcement learning jargon [8]. The

88 V2I platooning

dλ

d∆

d11 d12 d1(n−1)

d2(n−1)

dM(n−1)

d21 d22

dM1 dM2

PM1

PM1

PM1 PM2

PM2

PM2 PM3

PM3

PM3 PMn−1

PMn−1

PMn−1 PMn

PMn

PMn

Measurement 1

Measurement 2

Measurement M

Figure 7.3: Platoon metrics as reported to the MEC Host. “PM” denotes a platoon
member; dλ is the required vehicle spacing; d∆ is the spacing tolerance.

action of the migration agent will cause a state transition with some probability. We can
therefore formulate the migration problem as a Markov Decision Process (MDP).2

7.2.1. Data for state context definition

A schematic showing the measurements received at the MEC is illustrated in
Figure 7.3. The controller communicates at regular intervals to the vehicles to issue
directives for braking and acceleration. The directive to migrate the controller from
one MEC host to another takes place less frequently, hence several measurements of the
platoon are received between two such directives. These measurements are used by the
mobile edge application orchestrator (MEAO) to obtain platoon-specific state variables
(or “context”) for the migration agent. We derive the platoon topology context {Γ(−),Γ(+)}
from the measurements depicted in Figure 7.3, with M measurements and n cars, as:

γ(−) = 1
M(n− 1)

M∑
i=1

n−1∑
j=1

⌊
dλ − dij
d∆

⌋
for dij 6 dλ (7.8)

Γ(−) = γ(−)

1 + γ(−) (7.9)

2We remark that other causes of delay may exist which are independent of migration. In this sense,
our MDP is partially observable.

7.2 Q-learning agents for controller migration 89

γ(+) = 1
M(n− 1)

M∑
i=1

n−1∑
j=1

⌊
dij − dλ
d∆

⌋
for dij > dλ (7.10)

Γ(+) = γ(+)

1 + γ(+) . (7.11)

Here, dij is the inter-vehicular spacing between vehicles i and j, and d∆ is the spacing
tolerance. The quantities γ(−) and γ(+) measure average deviations from the target,
relative to tolerance, and group negative and positive deviations, respectively. Finally
Γ(−) and Γ(+) are normalized versions of average relative deviations, which guarantee
values in the range between 0 and 1, 0 being the ideal target. In particular, Γ(−) tells
how well (or how bad) the controller is maintaining a safe distance, whereas Γ(+) signals
whether the controller is accruing or losing the benefits of platoon compactness.

Besides, in order to make informed migration decisions, we need to obtain the
network specific aspect of the context, so we estimate the delay in V2I communications.
Specifically, there are two delay components due to data delivery and migration overhead.
The estimated data delivery time, Tddt is calculated as:

Tddt = Tnet + Tproc , (7.12)

where Tnet is the estimated time for data to traverse the network and Tproc is the estimated
time taken by the platoon controller to calculate the driving directives for the platoon
members. Tproc depends on the capabilities of the MEC host and can be more reliably
measured than Tnet. In fact multiple factors influence Tnet, including the capacity of the
wireless channel, the number of hops through routers in the wired network, and congestion
on the switched links therein.

The overhead, Tovh, includes the time it takes to migrate the VNF from one host to
another, Tmigration, and the time Tsignaling it takes to signal the platoon members about
the new location to communicate with:

Tovh = Tsignaling + Tmigration. (7.13)

In case no migration takes place, Tovh = 0.
Given a maximum delay budget, Tbudget, the resulting reference time ratio, TR is

calculated as:

TR = Tddt + Tovh
Tbudget

. (7.14)

Any candidate MEC positions yielding estimates such that TR > 1 are not considered for
migration.

Further, given that the response times of a given MEC host will vary depending on

90 V2I platooning

how busy it is over a given period, the change in processing time in successive epochs,
T∆, is a crucial decision variable.

T∆ = 2T
(t)
proc − T (t−1)

proc

T
(t)
proc + T

(t−1)
proc

, (7.15)

where (t) represents the current epoch defined as the interval [t−1, t) and (t−1) represents
the previous epoch defined as the interval [t−2, t−1). We set the duration of each epoch
as 20 s. This design value is a trade-off between timely migration and adequate time to
collect decision data.

Each candidate MEC with TR < 1 presents a migration option characterised by a
given relative migration delay

θ =
T candidate

migration
Tbudget

, (7.16)

and relative processing capability

β =
T candidate

proc
T current

proc
. (7.17)

The tuple of θ and β serves to contextualize the migration option along with the change
in processing time T∆. We quantize θ, β and T∆ into discrete steps.

The state of the environment is therefore fully specified by the values of {Γ(−),Γ(+)}
computed from the last measurement set, and the values of θ, β and T∆ for all MEC
hosts in the environment. Possible actions for the migration agent are restricted to keep
the controller in the current MEC host or migrate it to any MEC host with TR < 1.

7.2.2. Problem Formulation

We consider that there exist N possible locations on which the controller can be hosted
over the epoch given by (t+ 1). The selection options over epoch (t+ 1) can be expressed
in vector form as η(t+1) = [η(t+1)

1 , η
(t+1)
2 , ..., η

(t+1)
N].

The compute node, k, chosen to host the controller has unknown background traffic
(ρk) and its location impacts the network latency (τk) that is experienced. Consequently,
these two elements affect the spacing errors of the platoon. The placement problem can
be thus be formalised as:

min
M∑
i=1

n−1∑
j=1

∣∣∣∣∣dλ −
N∑
k=1

dij(ρk, τk)η
(t+1)
k

∣∣∣∣∣ (7.18a)

s.t.:
N∑
k=1

η
(t+1)
k = 1 , (7.18b)

η
(t+1)
k ∈ {0, 1} . (7.18c)

7.2 Q-learning agents for controller migration 91

Given the stochastic nature of both the background traffic and network latency from
each platoon member to each of the N locations over the entire epoch, a reliable model
to solve this problem is unfeasible. We therefore use model free reinforcement learning.

7.2.3. Q-learning

We briefly discuss key aspects of Q-learning which are crucial to understanding the
remainder of the text. In Chapter 4, we illustrated how we adapt this technique to elicit
provisioning policies driven by the time series context of cloud application workloads. For
clarity, we restate some of these aspects here and proceed to describe how we adapt our
technique to evoke controller migration policies driven by the cyber-physical context of
platooning on the network edge.

When the environment is in state S, the agent takes action a, obtains the reward R
and the environment transitions to state S′ [8]. Therefore, we have

Q(S,A)← Q(S,A) + α
(
R+ γmaxaQ(S′, a)−Q(S,A)

)
, (7.19)

where γ ∈ [0, 1] is a discounting factor that weighs the contribution future rewards will
have when starting in state S′, and α ∈ (0, 1] is the learning rate, and makes it possible to
tune the pace at which the policy converges towards the expected action-value Q(S,A).
If all states are visited with equal probability, α can be chosen as a fixed parameter.
However, given that the agent will realistically observe only a subset of the states, we
keep track of the number of times k that the agent was in state S and took action
A, and define α = 1

k
, k > 0. As will become clear later, this choice also facilitates the

weighing of the Q-values when multiple agents share their experiences in the asynchronous
shared learning we use to expedite policy convergence. Actions are decided after a time
window termed an epoch. The set of epochs from the beginning to when the environment
encounters a terminal state, where no further actions can be taken, constitute an episode.

We also employ ε-greedy action selection, whereby an action is chosen randomly with
probability ε. We initially set ε = 1 for each state, and reduce this value progressively
(down to εmin = 0.01) as more visits are made to the state. This encourages exploration
in the initial phases to discover the most rewarding actions and exploitation in the latter
stages to make use of the policies learnt. At convergence, action selection is largely on
policy and the algorithm chooses the action procuring the highest reward.

Leveraging some aspects of our work presented in Chapter 4, we design a migration
agent that exploits context-awareness. A procedural depiction of this process is presented
in Algorithm 2. The agent retrieves the platoon spacing data, line 10. The agent also
obtains the processing statistics of the MEC hosts in order to estimate their capacity
with reference to the current host, line 11. These are retrieved to derive the context,
line 12, as specified in Equation (7.9) and Equation (7.11). It then retrieves a listing

92 V2I platooning

Algorithm 2: Contextual Q-learning migration
Result: Migrate Controller, update Q-Tables for nth agent

1 Q(n) ← ReadSharedPolicyFile();
2 γ ← 0.8;
3 i← 0;
4 RunCounter ← 0;
5 Tmec ← DefaultMEC;
6 InitCtx← getInitialContext();
7 while True do
8 Q(S,A)← ReadQ(Q(n), InitCtx);
9 wait_migration_interval;

10 xlog ← getPlatoonStats();
11 Clog ← getGetMecOpStats(Tmec)
12 Ctx← getContext(xlog, Clog);
13 if RunCounter > 0 then
14 ArrMEC ← getAvailableMEC();
15 Tmec ←MoveCtrl(Ctx,Q(n), ArrMEC);
16 end
17 //Update Reward
18 R← getImmediateReward(xlog);
19 Q(S′, a)← ReadQ(Q(n), Ctx);
20 R′ ← R+ γQ(S′, a) ;
21 k ← ReadStateVisits(Q(n), InitCtx);
22 k ← k + 1;

23 RΣ ←
1
k

(R′ −Q(S,A)) + k − 1
k

(Q(S,A));
24 Q(n) ← UpdateQ(Q(n), InitCtx,R′);
25 //Store visited state for experience sharing
26 ArrShared[i] = {R′, InitCtx};
27 i← i+ 1;
28 if i == 5 then
29 SharedXP_Thread(ArrShared);
30 i← 0;
31 end
32 InitCtx← Ctx;
33 RunCounter ← RunCounter + 1;
34 end

of the available MEC hosts and estimates the migration time to the new host, line 14,
either based on any previous logs of a similar migration, or based on a default value if no
recent migration targeted that host. With these data it calculates the quantized levels
of θ, β and T∆ for each MEC host. The latter parameters identify the Q-values of the
migration options in the decision structure shown in Figure 7.4. Comparing these options,
according to Equation (7.19), the agent makes an ε-greedy decision as to which MEC host

7.2 Q-learning agents for controller migration 93

∗State Space

A ction Space

↑↓ ·

{Γ(−)∗ ,Γ(+)∗ }

∗ T∆

θ , β

Figure 7.4: Migrator State and Action Spaces. The relative migration delay and relative
candidate MEC power tuple {θ, β}, the change in processing time between successive
epochs, T∆ and the platoon topology given by the tuple {Γ(−),Γ(+)} constitute the state
space. The actions “Remain in the current MEC host” and “Migrate to any MEC host
characterized by TR < 1” form the action space. The table (·) indicates migration options
to MEC hosts with the same power as the current host; (↑) to more powerful MEC hosts;
and (↓) to less powerful hosts than the current one.

to migrate to , line 15, as shown in Figure 7.5. Once the migration has been carried out,
the agent updates the reward, lines 18-24. We also note that this migration experience
is stored to be shared with other parallel agents, lines 26-31. The details of this shared
learning will be presented in Section 7.2.5. We now discuss what comprises the reward.

7.2.4. Reward functions

A key element in an MDP is the reward function which serves as a feedback to the
agent to evaluate how suitable or unsuitable a decision was. The reward function we
design and implement, given the cyber-physical nature of platooning, consists of two
components: the network-related reward and the vehicular positioning reward. These
rewards are calculated at every epoch. Furthermore the network component takes into
account the delivery intervals of control packets and a small penalty, ζ, for controller
migration. The latter is to dissuade unnecessary migrations, which may perturb the
platoon owing to the resulting delays.

We now consider the network component of the reward as regards packet delivery
intervals. Our controller deems a packet urgent and therefore require expedited delivery
if all of the following conditions are fulfilled: (i) its current estimate of the spacing
between the recipient vehicle and its immediate predecessor is smaller than the inter-
vehicle gap dλ; (ii) the current speed of the recipient is higher than the speed of its
immediate predecessor; (iii) the previous estimate of the spacing between the recipient
vehicle and its immediate predecessor was smaller than the platoon gap; and (iv) the
previous speed of the recipient vehicle was higher than that of its immediate predecessor.
If the latter conditions are not fulfilled then the packet is deemed normal. If Xurgent and
Xnormal are the number of packets deemed urgent and normal over an epoch, respectively,
the resulting network reward component is

Rnet = Xnormal
Xurgent +Xnormal

− ζ . (7.20)

To evaluate the second component, which accounts for platoon spacing rewards, we
define the following sets and quantities in analogy to what we did for the topology context

94 V2I platooning

{Γ(−)
1 ,Γ

(+)
1 }

{Γ(−)
2 ,Γ

(+)
2 }

S

A
ct
io
n
a
:M

ig
ra
te

to
ca
n
d
id
a
te

M
E
C

S′

Update red cell Q-value based on

that of green cell

Figure 7.5: TheQ-learning update process of the migration agent. The gray cell represents
the Q-value of the MEC currently hosting the controller. The red cell represents Q(S,A),
the Q-value of the MEC host chosen to host the controller from the context of the
current host and platoon topology specified by {Γ(−)

1 ,Γ(+)
1 }. The green cell represents

Q(S′, a): the Q-value of the chosen MEC in the eventual context specified by the platoon
topology {Γ(−)

1 ,Γ(+)
1 }. The blue cells represent Q-values of the other alternative MEC

hosts not chosen for the migration.

with {γ(−), γ(+)} and {Γ(−),Γ(+)}:

D := {dij}i=M,j=n−1
i=1,j=1

Dε := {d ∈ D : d < dλ − d∆}

DΩ := {d ∈ D : d > dλ + d∆}

D0 := {d ∈ D : |d− dλ| 6 d∆}

7.2 Q-learning agents for controller migration 95

rε = 1
|Dε|

∑
dij∈Dε

∣∣∣∣dλ − dijd∆

∣∣∣∣ (7.21)

Rε = rε
1 + rε

(7.22)

rΩ = 1
|DΩ|

∑
dij∈DΩ

∣∣∣∣dλ − dijd∆

∣∣∣∣ (7.23)

RΩ = rΩ
1 + rΩ

(7.24)

r0 = 1
|D0|

∑
dij∈D0

∣∣∣∣dλ − dijd∆

∣∣∣∣ (7.25)

R0 = 0.5− r0
1 + r0

(7.26)

Here, we have tri-partitioned inter-vehicular distances into the sets of distances within a
given target interval dλ ± d∆, or below that interval, or above. In addition, we define a
safety indicator that tells whether the spacing between two cars is dangerously below the
target, i.e., below dsafe � dλ:

Rsafe =

0 if dij > dsafe ∀dij ∈ D

1 otherwise
(7.27)

With the above definitions, we can then compute the vehicular positioning component
of the reward as:

Rλ = |Dε|wεRε + |DΩ|wΩRΩ (7.28)

+|D0|w0R0 − |D|Rsafe, (7.29)

where wε, wΩ, w0 are weights assigned so as to prioritise either safety or spacing of the
platoon and dsafe is the minimum spacing below which a crash is likely to occur. We
finally compute the total reward R, accrued in one epoch as:

R = |D|Rnet +Rλ. (7.30)

A training episode is characterised by several consecutive epochs and terminates with the
platoon successfully completing a given road segment (e.g., a lap in a circuit).

7.2.5. Asynchronous shared learning

We now propose an extension to the above framework that enables shared learning
across different platoons. This extension makes it possible to leverage the state exploration
in different platoons and thus explore the state space more extensively in less time. We
assume that multiple platoons exist and visit the same road segments. Each platoon

96 V2I platooning

SUMOVehicle Mobility Road Network

VEINS OMNET++ SUMO Coordination

SimuLTE-MEC

OMNET++

LTE-A Simulation

MEC compute

Platoon Controller

Vehicle Controller

T
R
A
C
I

V
-I
N
E
T

Figure 7.6: Simulation frameworks

controller runs on an independent slice in the MEC host. As such, each platoon could
be transparent to the others. However, we further assume that the migration agent of
each platoon can read and write a common migration policy file, from where it fetches
its own policy. The agent can also update the policy by annotating what it learns. Each
migration agent can only access this shared file every so often, so that we can neglect the
overhead associated with sharing the experience learned by other platoons.

In this scheme, agents do not need to be synchronized, and rather could access the
migration policy at any time. Between two consecutive accesses to the shared policy file,
each agent keeps its own version of the file, with updates to Q-values of the visited states
that will only later be reflected in the shared policy.

The scheme described above can model the behaviour of a distributed learning process,
in which a central entity asynchronously collates updates from all agents, e.g., when they
connect to a given eNodeB, or when they migrate to a specific MEC host. The scheme
can also be extended to become virtually overhead-free and distributed, if we assume that
each MEC host maintains a migration policy file, and that platoon controllers migrating
to a MEC host bring in all their past learned policy values. This way, the policy built at
a MEC host can be spread to the other MEC hosts by simply being transferred jointly
with controllers during migrations. We argue that this asynchronous scheme is potentially
effective to speed up the convergence of learned migration policies.

7.3 Performance evaluation 97

Table 7.1: Simulation Parameters

Parameter Value

Path loss model ITU Rural macro cell
eNodeB antenna gain 18 dB
eNodeB height 25 m
eNodeB transmit range 500 m
eNodeB transmit power 43 dBm
Size of uplink and downlink packet 39 Bytes
Block error rate 1%
Handover latency (per vehicle) X ∼ U(0 ms, 10 ms)
Core routing delay (per packet) X ∼ Exp(1 ms)
X2 hop delay (per packet) 50 µs
Migration delay (per vehicle) X ∼ U(1 ms, 3 ms)
Migration epoch interval 20 s
Vehicular reporting interval 100 ms
Platoon speed Vptn (Average) 25 m/s
Platoon speed (Oscillation) 20% Vptn

Platoon speed (Frequency) 0.1 Hz
Number of cars (n) 30
Platoon spacing (dλ) 10 m
Migration penalty (ζ) 0.05
dsafe 1 m
d∆ 0.5 m
wε -0.5
wΩ -0.1
w0 0.25

7.3. Performance evaluation

7.3.1. Method

Our simulation testbed comprises three main components as shown in Figure 7.6.
The first is the robust vehicular simulator Simulation of Urban MObility (SUMO) from
the German Aerospace Agency DLR [90]. It is widely used in research given its highly
realistic depiction of vehicular mobility. The second component is the OMNeT++
Framework “Vehicles in Network Simulation (VeINS)” [91]. This framework provides
an API that facilitates the coordination of the vehicle simulation in SUMO with the
network simulation of corresponding UE in OMNeT++. The third component of the
simulator is SimuLTE-MEC [92], an OMNeT++ framework that realistically simulates
the LTE-Advanced network with mobile edge computing extensions.

In order to test the operation of SALT, we simulate the road and MEC network as
depicted in Figure 7.7. In this scenario, only one MEC host is available and migration is
not an option. Whereas eNodeB1 and eNodeB2 have a fast connection to the MEC host,

98 V2I platooning

Figure 7.7: Road and MEC Network for evaluating SALT. The scale corresponds to the
road network, eNodeBs and the MEC host are exaggerated to make them discernible.

eNodeB3 does not have a LAN connection and has to rely on slower routing through the
core network when it handles packets between the platoon members and the controller.
We vary the average exponential routing delay through the core network between 1 ms
and 10 ms. With respect to Equation (7.5), we choose Tmax = 50 ms which is half the
reporting interval for the vehicles. In addition, with reference to Equation (7.6) and
Equation (7.7), we set Ψ = 0.3, Vacc = 10 m s−1 and r = 0.9. The rest of the simulation
parameters are as specified in Table 7.1.

As regards the other scenario we consider with multiple MEC hosts, we implement
the migration scheme as a python script that monitors the logs generated by OMNeT++
as the platoon traverses its course. The script uses the logs as input to the Q-learning
migration scheme. It also monitors the simulation time and, at regular intervals, updates
a reference file with the selected MEC host. In the process of generating a vehicular
report to send to the MEC host, SimuLTE reads the reference file. If there is a change, it
triggers a migration from the current location to the selected MEC host. Table 7.1 lists the
key parameter choices we make in SimuLTE to better capture the envisaged 5G network
capabilities. In particular, we set the handover delay to random values below 10 ms. A
handover occurs when a vehicle receives 3 successive signals from a target eNodeB that
have a higher RSSI compared to the one that is currently serving it.

Table 7.1 also lists the parameters used to compute the reward function of platooning.
We choose the weights such that the negative reward (i.e., the penalty) of being 20% below
the target spacing or 50% above has comparable impact to a migration. The rationale
is that we have observed up to about 20% of variation in speed profiles with migrations,
which is comparable with driving 20% below the target for what concerns safety, and with
the platoon occupying about 20% more road space when driving at 15 m instead of 10 m,
although the exact value depends on the platoon size.

We curtail fading aspects of the channel given that network densification with small
cells will lead to higher probability of line-of-sight communications. We enhance the
computing infrastructure of the MEC hosts with FIFO queues, in order to simulate the
variability of processing delays due to competing third-party background processes. In
addition we introduce queuing delays on the switching elements to account for routing

7.3 Performance evaluation 99

Figure 7.8: Road and MEC Network. The scale corresponds to the road network, eNodeBs
and MEC hosts are exaggerated to make them discernible.

0 100 200 300 400
0

10

20

30

40

50

60

Simulation time [s]

%
A
v
er
a
ge

L
oa

d

MEC 1 MEC 2 MEC 3
MEC 4 MEC 5 MEC 6

Figure 7.9: MEC host load due to background traffic.

delays that occur when the MEC node hosting the controller is not directly connected to
the eNodeB serving a vehicle. Figure 7.8 depicts the road circuit that we use in SUMO
to delimit a training episode, along with the communication network in SimuLTE-MEC.
We remark that our scheme is independent of the placement of the MEC hosts within the
network (whether closer to the eNodeB or to the core), given that it distinguishes them

100 V2I platooning

Algorithm 3: Asynchronous Shared Learning
Result: Update Shared Policy File

1 Function SharedXP_Thread(xArr)
2 //Ensure this thread has sole access to shared file

LockSharedPolicyFile();
3 //Capture experiences of other parallel agents

Q(n) ← ReadSharedPolicyFile();
4 //Update the working policy with own experiences
5 foreach XP ∈ xArr do
6 Rn ← XP[0];
7 TmpCtx← XP[1];
8 kn ← ReadStateVisits(Q(n), TmpCtx);
9 kn ← kx + 1;

10 Q(S,A)← ReadQ(Q(n), TmpCtx);

11 Rx ←
1
kx

(Rn −Q(S,A)) + kx − 1
kx

(Q(S,A));

12 Q(n) ← UpdateQ(Q(n), TmpCtx,Rx);
13 end
14 //Publish updated policy for all agents WriteSharedPolicyFile(Q(n));
15 //Release file for use by other agents UnLockSharedPolicyFile();
16 return;
17 end

based on processing capacity and migration delay.
The simulation time at location A is 31 s, the subsequent intervals after that are 20 s

each. These are the epochs at which the migration agent makes its decisions. In order
to make the migration scenario challenging, each eNodeB has a MEC node attached to
it such that the controller may be hosted at those locations. The background traffic of
the MEC nodes, independent of the platooning load, is depicted in Figure 7.9. We chose
these patterns to represent realistic workload traces with different periodicity. We remark
that none of the patterns is in sync with the time the platoon needs in order to complete
a loop along the circuit of Figure 7.8.

7.3.2. Asynchronous shared learning extension

To test the potential of the asynchronous shared learning scheme described in
Section 7.2.5, we use parallel simulations of platoons of cars lapping through the same
circuit. We test the centralized version of our scheme, with each platoon accessing the
shared migration policy every 5 epochs.

At initialization, the parent platooning simulation directory is cloned into a number of
directories commensurate to the number of parallel agents chosen. However, the overall
policy file is placed in a directory accessible to all participating agents. After cloning, a

7.3 Performance evaluation 101

0 100 200 300 400

−6

−4

−2

0

2

Simulation Time [s]

S
p
ac
in
g
E
rr
o
rs

[m
]

2nd PM 3rd PM 9th PM

15th PM Last PM

Figure 7.10: Spacing errors of platoon members (negative means farther).

shell script triggers the start of the SUMO/OMNeT++ simulation as well as that of the
migration script in each directory.

Our shared learning procedure is as shown in Algorithm 3. When the migration agent
starts, it reads the overall policy file into a data structure and proceeds to update it as
it makes its decisions. The start time of the simulation is different in each directory, in
order to mirror the separation of the platoons in the real world. After about 100 s (which
corresponds to about five migration decisions), the migration agent locks the policy file
and reads the overall policy into its data structure, lines 2-3, so as to capture any updates
by the other participating agents. The agent then proceeds to update the data structure
with Q-values and immediate rewards of the states it visited, lines 4-12, as prescribed in
Eq. Equation (7.19). It then overwrites the policy file with the updated data structure,
line 13. Finally, it unlocks the policy file, line 14. Should an agent find the file locked
by another, it waits for a random time and then retries until the file is unlocked.

7.3.3. Evaluation results

In this section we examine the results from the modifications on the controller.
We then consider platoon performance resulting from the use of our migration scheme,
compared to that of the state of the art scheme proposed in [74].

7.3.3.1. Controller modifications

We first examine the platoon formation when the controller is hosted on the MEC.
In order to set the most challenging condition for the controller [81], we add a sinusoidal

102 V2I platooning

0.1 0.2 0.3 0.4
0

10

20

30

Value of Ψ

E
ff

ec
ti

ve
n

es
s

[m
/
s]

(a) Core routing delay X ∼ Exp(1 ms)

0.1 0.2 0.3 0.4
0

10

20

30

Value of Ψ

E
ff

ec
ti

ve
n

es
s

[m
/s

]

(b) Core routing delay X ∼ Exp(5 ms)

0.1 0.2 0.3 0.4
0

10

20

30

Value of Ψ

E
ff

ec
ti

ve
n

es
s

[m
/
s]

(c) Core routing delay X ∼ Exp(10 ms)

Figure 7.11: Platoon effectiveness (spacing fairness × average speed) for different SALT
triggers.

perturbation to the movement speed of the platoon leader. This sinusoidal driving
pattern also accounts for speed variations as the platoon may need to slow down or speed
up depending on driving conditions. The platoon speed oscillates between 21.5 m s−1

(77 km h−1) and ≈ 29 m s−1 (104 km h−1). The 30 vehicles of the platoon fully stabilize
in about 100 s, as shown in Figure 7.10. The spacing between the 2nd PM (i.e., the
first follower) and the platoon leader exhibits the highest variation, as expected. The
effect on the rest of the followers is progressively damped down towards the tail of
the platoon. From this result, we conclude that our modifications on the MEC-hosted
controller preserve string stability [93] and thereby ensure platoon safety.

7.3 Performance evaluation 103

0 100 200 300 400

0.2

0.4

0.6

0.8

1.0

1.2

Simulation Time [s]

R
eq
u
es
t
to

re
sp
on

se
d
el
ay

[s
] ∼ exp(1 ms) ∼ exp(5 ms) ∼ exp(10 ms)

Figure 7.12: Filtered overall delay (interval between a vehicle sending packet to receiving
a control directive from the controller) for the SALT scenario.

7.3.3.2. SALT

In order to compare platoon performance with regard to the safety trigger value Ψ,
we derive an Effectiveness metric by multiplying Jain’s fairness index [94] in spacing, x,
and the average speed, ẋ for all n platoon members over each observation window.

Effectiveness =

(∑n−1
j=1 xj

)2

(n− 1)
∑n−1
j=1 x

2
j

× 1
n

n∑
j=1

ẋj (7.31)

The distribution of this metric is depicted in Figure 7.11. A low value, Ψ = 0.1 or Ψ = 0.2,
makes the controller too sensitive such that the platoon devolves into Automated Cruise
Control even when the core routing delay is small as in Figure 7.11a. On the other hand a
higher value, Ψ = 0.4, does not trigger the safety measure quickly enough when the delay
values are substantially higher possibly resulting in low effectiveness overall as shown in
Figure 7.11c. A setting of Ψ = 0.3, however, provides a balance between these extremes.

The total delay, filtered using Equation (7.4), between when a vehicle sends a packet
to the controller to when it receives a packet from the controller is shown in Figure 7.12.
When the core routing delay is sufficiently low, with an average exponential distribution
of 1 ms, all responses from the controller arrive within the 100 ms interval between
consecutive vehicular reports. As the core routing delay increases, the periods in which
platooning can be safely carried out reduces.

We also evaluate the performance of SALT with increasing delay as shown in
Figure 7.13. When the delay is low, cf. Figure 7.13a, ACC is not triggered and CACC
platooning is maintained throughout. With a moderate increase in delay, as shown in

104 V2I platooning

0 100 200 300 400
0

10

20

30

Simulation Time [s]

S
p
ac
in
g
[m

]

2nd PM 15th PM Last PM

(a) Core routing delay X ∼ Exp(1) ms

0 100 200 300 400
0

10

20

30

Simulation Time [s]

S
p
ac
in
g
[m

]

(b) Core routing delay X ∼ Exp(5) ms

0 100 200 300 400
0

10

20

30

Simulation Time [s]

S
p
ac
in
g
[m

]

(c) Core routing delay X ∼ Exp(10) ms

Figure 7.13: SALT performance for varying degrees of delay with Ψ = 0.3

Figure 7.13b, there is a smooth transition between ACC and CACC. When the delay
is high (e.g., in the experiment time interval between 50 s and 150 s, see Figure 7.12),
the vehicles are controlled by ACC with larger spacing between them. When the delay
becomes tolerable (e.g., from 150 s to 190 s of simulated time, cf. Figure 7.12), the
platoon is reformed and the vehicle spacing reverts to the design value. These transitions

7.3 Performance evaluation 105

MEC 1
MEC 2
MEC 3
MEC 4
MEC 5
MEC 6

A B C D E F G H J K L M N O P R S T Ω
(a) Q-migration Policy A

MEC 1
MEC 2
MEC 3
MEC 4
MEC 5
MEC 6

A B C D E F G H J K L M N O P R S T Ω
(b) Q-migration Policy B

Figure 7.14: Sample Q-migration policies
MEC 1
MEC 2
MEC 3
MEC 4
MEC 5
MEC 6

A B C D E F G H J K L M N O P R S T Ω

Figure 7.15: Follow ME migration policy [74]

MEC 1
MEC 2
MEC 3
MEC 4
MEC 5
MEC 6

A B C D E F G H J K L M N O P R S T Ω

Figure 7.16: AUSP migration policy [85]

in spacing are more gradual. However, when the routing delay is substantially higher,
Figure 7.13c, the switch between ACC and CACC is more drastic especially towards the
tail of the platoon. There are also brief periods in which the vehicles at the tail end of
the platoon almost come to a stop as ACC control re-establishes safe spacing. Overall,
increasing delays lead to increasing ACC dominance over CACC and vice-versa.

In the following sections, we update the results of our previous experiments in [3]
incorporating SALT into the workings of the controller.

106 V2I platooning

7.3.3.3. Migration strategies

The proximity to an eNodeB and the load on a given MEC host may be contrasting
objectives for the migration agent to pursue. For example, the agent may run on the
MEC host connected to the eNodeB closest to the platoon (hence it perceives a low
air interface communication latency). However, if the load on this MEC host increases,
the agent may need to migrate to a different MEC host, and the resulting routing and
switching delays may nullify the advantage of being connected to a near eNodeB. Another
important consideration is that the migrations should be kept at a minimum given the
extra delays involved in switching from one MEC host to another.

A subset of the migration strategies obtained by our algorithm are depicted in
Figure 7.14. These sequences were the most recurrent in which the migration agent
attained full convergence for every visited state (i.e., ε = εmin). We omitted less frequently
observed sequences for brevity. By design, we initially position the controller at MEC 3
(towards the top-right section of the track). This avoids any biases that might give undue
advantage to one migration policy over the other.

Our algorithm learns policies that exploit both the proximity and the computing
capability of the MEC host. This reflects in the agent migration patterns, which initially
involve different MEC servers, but then prefer stabilizing the controller on the same server
despite the server load and the additional routing delays. Notably, different policies attain
the same conclusions, and elect a MEC server on which they remain until the end of our
simulations.

In contrast, the state-of-the-art Follow ME [74], that only considers proximity when
selecting the preferred MEC host, forces numerous migrations as shown in Figure 7.15.
Moreover, the other state-of-the-art scheme we consider in this chapter (AUSP [85]),
which also takes into account the processing delay, migration cost and communication
delay), results in even more migrations as it tries to minimize the total delay as depicted
in Figure 7.16. Yet, these migrations may prove inconvenient, as we discuss next.

7.3.3.4. Platoon stability

Considering the same sinusoidal driving pattern employed so far, Figure 7.17 shows
that using our Q-Migration scheme, the speed of the first follower adapts very well to that
of the platoon leader. This takes place despite the sinusoidal perturbations on the platoon
leader speed, and confirms that the learned migration policies show very good robustness.
Policy A which involves more migrations compared to Policy B exhibits instances in which
SALT is triggered but these are short-lived. In comparison, Follow ME [74] and AUSP [85]
exhibit much greater variability given that SALT is triggered over longer intervals. AUSP
which carries out a considerable number of migrations exhibits a higher number of speed
deviations as a consequence of the extra delays incurred. This points to the efficacy of

7.3 Performance evaluation 107

0 100 200 300 400

10

20

30

Simulation time [s]

S
p
ee
d
[m

/s
]

Policy A Policy B
Follow ME AUSP

Figure 7.17: Speed profiles of the first follower.

the minimal migrations that our algorithm decides to perform.
When compared to Follow ME and AUSP, our scheme exhibits better platoon

spacing discipline. This is shown in Figure 7.18, which employs box-plots to convey
the distribution of vehicle spacing across the platoon at different simulation times. Each
blue box extends from the 1st to the 3rd quartile of the distribution, the red bar denotes
the median, and whiskers cover the 10th-90th percentile range. Red “+” markers denote
the data along the tails of the distribution (primarily due to the spacing between the
first follower and the platoon leader). From Figure 7.18, we observe that our Q-migration
algorithm achieves smaller inter-quartile ranges (Figure 7.18a and Figure 7.18b) compared
to those of Follow ME (Figure 7.18c) and AUSP (Figure 7.18d). Follow ME exhibits small
dispersion when it maintains the controller on MEC 4 between simulation time 100 s to
200 s (cf. 7.15) since it does not incur migration costs. As it resumes more migrations after
200 s, dispersion becomes significant. AUSP attempts to even out the spacing resulting
in fewer outlying values from the first follower. It however also results in noticeable
dispersion throughout. The gains that AUSP achieves in migrating to the lowest utilized,
closest MEC host are curtailed by the large migration costs incurred in the process.

The narrow inter-quartile range achieved by our scheme implies higher string stability
and a generally better driving experience. In particular, the occurrences of long whiskers
are due to the the spacing between the first follower and the platoon leader, which varies
the most under the sinusoidal motion of the leader.

108 V2I platooning

50 100 150 200 250 300 350 400

4

8

12

16

20

24

28

Simulation time [s]

S
p
ac
in
g
[m

]

(a) Q-migration Policy A

50 100 150 200 250 300 350 400

4

8

12

16

20

24

28

Simulation time [s]

S
p
ac
in
g
[m

]

(b) Q-migration Policy B

50 100 150 200 250 300 350 400

4

8

12

16

20

24

28

Simulation time [s]

S
p
ac
in
g
[m

]

(c) Follow ME

50 100 150 200 250 300 350 400

4

8

12

16

20

24

28

Simulation time [s]

S
p
ac
in
g
[m

]

(d) AUSP

Figure 7.18: Distribution of spacing between platoon members. Each box plot represents
data taken over 20 s windows. The last box plot represents data in the last 10 s.

7.3.3.5. Asynchronous shared learning

The acceleration of convergence through the use of asynchronous shared learning is
apparent from Table 7.2. In this table, we consider each set of parallel episodes, and
examine the log of the states that each parallel agent visits. If ε = εmin at every epoch
for any one or more of the parallel agents, we consider that set of episodes as exhibiting
convergence given that the policy may be accessed by all agents. The nth time that this is
observed, for a set of parallel episodes, is termed the nth convergence. The results prove
that having more agents sharing their own experience with other agents greatly increases
the speed at which migration policies fully converge. However, after the initial significant
gain, the advantage of having more parallel agents decreases. This points to a diminishing
return in the value of parallel agents after the first convergence.

7.4. Summary and discussion

In this chapter, we have presented a context-aware Q-learning-based migration
algorithm for vehicle platoon controllers running on the network edge. The algorithm
learns the appropriate strategies to migrate the controller from one MEC host to another
in a cellular network context. Our approach reduces the number of migrations required for

7.4 Summary and discussion 109

Table 7.2: Parallel episodes until convergence

Agents 1st Conv. 2nd Conv. 3rd Conv. 4th Conv. 5th Conv.

10 73 75 76 77 78
5 304 311 315 321 348
1 867 1293 1306 1322 1340

the controller to keep pace with the platoon and maintain it in formation. In addition,
we have also presented our asynchronous shared learning algorithm that leverages the
presence of multiple platoons in order to learn migration policies faster. In particular,
compared to the state-of-the-art schemes, FollowME and AUSP, our approach achieves
better adherence to platoon speed and spacing presets. It therefore greatly reduces
statistical dispersion of spacing between platoon members.

We have also presented the customization needed to enable CACC operation from the
network edge. Furthermore, we have presented an overlay safety module that enables the
graceful switching of control between the MEC controller (CACC) and the vehicle (ACC)
in case of sustained high delays.

8 Conclusions

In this thesis, we have presented zero-touch provisioning systems that can dynamically
adapt the number of cloud network compute resources to fit demand and migrate MEC
enabled applications to the most suitable location on the network edge.

In part I, we have shown how the interaction between incident demand and compute
resource response can be leveraged to model the cloud environment as a MDP. We have
shown that if the cloud application is known, a robust dynamic provisioning system can
be obtained by leveraging the stationary transition probabilities of the underlying Markov
chains. In cases where it is either impractical or infeasible to model the cloud application
or where the resource configuration may not be known a-priori, we have presented a
contextual Q-Learning algorithm. Our algorithm can solve the underlying MDP and
thereby know when and by how much to adjust the commited compute resources in the
face of changing demand. We have shown that the algorithm is versatile enough to be
adapted to different Service Level Agreement (SLA) constraints and can also be applied
to provisioning in server-less cloud computing environments using containers.

In second part of the thesis, we have shown that by changing the time context of
the algorithm to compute capacity and location dependent contexts, we can create a
MEC provisioning system that can learn when and where to migrate a latency sensitive
application for users with high mobility. We have also presented a joint learning scheme
whereby multiple agents can cooperate to share their experiences of an environment and
in so doing greately speed up the convergence of a Q-Learning system by more than an
order of magnitude.

111

References

[1] C. Ayimba, P. Casari, and V. Mancuso, “Adaptive resource provisioning based on
application state,” in IEEE ICNC 2019 - International Conference on Computing,
Networking and Communications (ICNC), 2019, pp. 663–668.

[2] ——, “SQLR: Short-term memory Q-learning for elastic provisioning,” IEEE Trans.
Netw. Service Manag., vol. 18, no. 2, pp. 1850–1869, 2021.

[3] G. Somma, C. Ayimba, P. Casari, S. P. Romano, and V. Mancuso, “When less is more:
Core-restricted container provisioning for serverless computing,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2020, pp. 1153–1159.

[4] C. Ayimba, M. Segata, P. Casari, and V. Mancuso, “Closer than close:
Mec-assisted platooning with intelligent controller migration,” in Proceedings of
the 24th International ACM Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, ser. MSWiM ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 23â32. [Online]. Available:
https://doi.org/10.1145/3479239.3485681

[5] ——, “Driving Under Influence: MEC-Enabled Platooning,” Under revision in
Elsevier Computer Communications, 2022.

[6] J. Anselmi, D. Ardagna, J. C. S. Lui, A. Wierman, Y. Xu, and Z. Yang, “The
economics of the cloud,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 2,
no. 4, pp. 18:1–18:23, Aug. 2017.

[7] C. Wang, B. Urgaonkar, G. Kesidis, A. Gupta, L. Y. Chen, and R. Birke, “Effective
capacity modulation as an explicit control knob for public cloud profitability,” ACM
Trans. Auton. Adapt. Syst., vol. 13, no. 1, pp. 2:1–2:25, May 2018.

[8] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
2nd ed. Cambridge, MA, USA: MIT Press, 2020. [Online]. Available:
http://incompleteideas.net/book/RLbook2020.pdf

113

https://doi.org/10.1145/3479239.3485681
http://incompleteideas.net/book/RLbook2020.pdf

114 REFERENCES

[9] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated control in cloud
computing: Challenges and opportunities,” in Proceedings of the 1st Workshop on
Automated Control for Datacenters and Clouds, ser. ACDC ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 13â18. [Online]. Available:
https://doi.org/10.1145/1555271.1555275

[10] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck, “From data center
resource allocation to control theory and back,” in Proc. IEEE ICCC, Miami, FL,
July 2010.

[11] S. Farokhi, E. B. Lakew, C. Klein, I. Brandic, and E. Elmroth, “Coordinating CPU
and memory elasticity controllers to meet service response time constraints,” in
Proc. ICCAC, Boston, MA, Sep. 2015, pp. 69–80.

[12] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi, “Integrated
and autonomic cloud resource scaling,” in Proc. IEEE/IFIP NOMS, Maui, HI, Apr.
2012, pp. 1327–1334.

[13] P. Jamshidi, A. Ahmad, and C. Pahl, “Autonomic resource provisioning for cloud-
based software,” in Proc. SEAMS, Hyderabad, India, Jun. 2014, pp. 95–104.

[14] “Rightscale,” https://www.rightscale.com, accessed: 2020-12-23.

[15] K. Hightower, B. Burns, and J. Beda, Kubernetes: up and running: dive into the
future of infrastructure. O’Reilly Media, Inc., 2017.

[16] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource provisioning
for read intensive multi-tier applications in the cloud,” Elsevier FGCS, vol. 27, no. 6,
June 2011.

[17] J. Bi, H. Yuan, W. Tan, M. Zhou, Y. Fan, J. Zhang, and J. Li, “Application-aware
dynamic fine-grained resource provisioning in a virtualized cloud data center,” IEEE
TASE, vol. 14, no. 2, April 2017.

[18] S. K. Garg, A. N. Toosi, S. K. Gopalaiyengar, and R. Buyya, “SLA-based Virtual
Machine Management for Heterogeneous Workloads in a Cloud Datacenter,” Elsevier
JNCA, vol. 45, Oct 2014.

[19] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for adaptive
resource provisioning in the cloud,” Elsevier FGCS, vol. 28, no. 1, Jan 2012.

[20] D. A. Menasce, “TPC-W: a benchmark for e-commerce,” IEEE Internet Computing,
vol. 6, no. 3, May 2002.

https://doi.org/10.1145/1555271.1555275
https://www.rightscale.com

REFERENCES 115

[21] A. Alsarhan, A. Itradat, A. Y. Al-Dubai, A. Y. Zomaya, and G. Min, “Adaptive
resource allocation and provisioning in multi-service cloud environments,” IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 31–42, Jan. 2018.

[22] J. V. Bibal Benifa and D. Dejey, “RLPAS: Reinforcement learning-based proactive
auto-scaler for resource provisioning in cloud environment,” Springer Mobile Netw.
Appl., vol. 24, no. 4, pp. 1348–1363, Aug. 2019.

[23] J. Rao, X. Bu, C. Xu, and K. Wang, “A distributed self-learning approach for elastic
provisioning of virtualized cloud resources,” in Proc. IEEE MASCOTS, Singapore,
Jul. 2011, pp. 45–54.

[24] V. Ravi and H. S. Hamead, “Reinforcement learning based service provisioning for a
greener cloud,” in Proc. ICECCS, Mangalore, India, Dec. 2014, pp. 85–90.

[25] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, “Model-driven optimal
resource scaling in cloud,” Softw. Syst. Model., vol. 17, no. 2, pp. 509–526, May
2018.

[26] O. Ibidunmoye, M. H. Moghadam, E. B. Lakew, and E. Elmroth, “Adaptive service
performance control using cooperative fuzzy reinforcement learning in virtualized
environments,” in Proc. ACM UCC, Austin, Texas, USA, Dec. 2017, pp. 19–28.

[27] J. Liu, Y. Zhang, Y. Zhou, D. Zhang, and H. Liu, “Aggressive resource provisioning
for ensuring QoS in virtualized environments,” IEEE Trans. on Cloud Comput.,
vol. 3, no. 2, pp. 119–131, Apr. 2015.

[28] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling Web Applications in
Heterogeneous Cloud Infrastructures,” in Proc. IEEE IC2E, Boston, MA, Mar. 2014,
pp. 195–204.

[29] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar, “Cost-efficient and
application SLA-aware client side request scheduling in an Infrastructure-as-a-Service
cloud,” in Proc. IEEE CLOUD, Honolulu, HI, Jun. 2012, pp. 213–220.

[30] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini, “DejaVu:
Accelerating resource allocation in virtualized environments,” SIGARCH Comput.
Archit. News, vol. 40, no. 1, pp. 423–436, Mar. 2012.

[31] F. Xu, H. Zheng, H. Jiang, W. Shao, H. Liu, and Z. Zhou, “Cost-effective cloud
server provisioning for predictable performance of big data analytics,” IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 5, pp. 1036–1051, May 2019.

[32] M. L. Littman, “Algorithms for sequential decision making,” Ph.D. dissertation,
Brown University, Providence, RI, Mar 1996.

116 REFERENCES

[33] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting
in partially observable stochastic domains,” Elsevier Artificial Intelligence, vol.
101, no. 1, pp. 99–134, 1998. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S000437029800023X

[34] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “Kvm: the linux virtual
machine monitor,” in Proceedings of the Linux symposium, vol. 1, no. 8. Dttawa,
Dntorio, Canada, 2007, pp. 225–230.

[35] M. Bolte, M. Sievers, G. Birkenheuer, O. Niehörster, and A. Brinkmann, “Non-
intrusive Virtualization Management Using Libvirt,” in Proc. DATE, Leuven,
Belgium, Mar 2010, pp. 574–579.

[36] “Gstreamer open source multimedia framework,” https://gstreamer.freedesktop.org,
accessed: 2018-07-11.

[37] “Big Buck Bunny,” http://bbb3d.renderfarming.net/download.html, accessed: 2018-
07-11.

[38] N.-M. Nguyen, D.-H. Bui, N.-K. Dang, E. Beigne, S. Lesecq, P. Vivet, and X.-T.
Tran, “An Overview of H.264 Hardware Encoder Architectures Including Low-Power
Features,” JEC, vol. 4, June 2014.

[39] “FFmpeg,” https://www.ffmpeg.org, accessed: 2018-07-11.

[40] D. K. Krishnappa, M. Zink, and R. K. Sitaraman, “Optimizing the video transcoding
workflow in content delivery networks,” in Proc. ACM MMSys, Portland, Oregon,
Mar 2015.

[41] Y. O. Sharrab and N. J. Sarhan, “Detailed comparative analysis of vp8 and h.264,”
in Proc. 2012 IEEE ISM, Irvine, CA, Dec 2012.

[42] S. T. King and et al., “Operating system support for virtual machines,” in Proc.
USENIX ATC, San Antonio, TX, June 2003.

[43] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, C. Ziemlicki, and Z. Smoreda, “Not
all apps are created equal: Analysis of spatiotemporal heterogeneity in nationwide
mobile service usage,” in Proceedings of the 13th International Conference on
Emerging Networking EXperiments and Technologies, ser. CoNEXT ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p. 180â186. [Online].
Available: https://doi.org/10.1145/3143361.3143369

[44] P. Cong, L. Li, J. Zhou, K. Cao, T. Wei, M. Chen, and S. Hu, “Developing User
Perceived Value Based Pricing Models for Cloud Markets,” IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 12, pp. 2742–2756, Dec. 2018.

https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://gstreamer.freedesktop.org
http://bbb3d.renderfarming.net/download.html
https://www.ffmpeg.org
https://doi.org/10.1145/3143361.3143369

REFERENCES 117

[45] T. Chen, R. Bahsoon, and X. Yao, “A Survey and Taxonomy of Self-Aware and
Self-Adaptive Cloud Autoscaling Systems,” ACM Comput. Surv., vol. 51, no. 3, pp.
61:1–61:40, Jun. 2018.

[46] X.-L. Huang, X. Ma, and F. Hu, “Editorial: Machine Learning and Intelligent
Communications,” Mobile Networks and Applications, vol. 23, pp. 68–70, Feb. 2018.

[47] T. Young, “Deployment challenges in multi-access edge computing (MEC),” 2020,
accessed: 2020-12-21. [Online]. Available: https://www.a10networks.com/blog/
deployment-challenges-in-multi-access-edge-computing-mec/

[48] Fortinető, “Multi-access edge computing (MEC) and the edge cloud,” 2020,
accessed: 2020-12-21. [Online]. Available: https://www.fortinet.com/fr/solutions/
mobile-carrier/securing-5g-innovation/mobile-edge-computing

[49] L. Kleinrock, “Time-shared systems: A theoretical treatment,” Journal of the ACM,
vol. 14, no. 2, pp. 242–261, Apr. 1967.

[50] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s
College, Cambridge, UK, May 1989.

[51] G. Xu, J. Pang, and X. Fu, “A load balancing model based on cloud partitioning for
the public cloud,” Tsinghua Science and Technology, vol. 18, no. 1, pp. 34–39, 2013.

[52] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic load balancing on web-server
systems,” IEEE Internet Computing, vol. 3, no. 3, pp. 28–39, May 1999.

[53] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Dec. 2008, accessed:
2020-12-23. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[54] J. Li, J. Li, X. Chen, C. Jia, and W. Lou, “Identity-based encryption with outsourced
revocation in cloud computing,” IEEE Trans. Comput., vol. 64, no. 2, pp. 425–437,
Feb. 2015.

[55] X. Li, M. A. Salehi, Y. Joshi, M. K. Darwich, B. Landreneau, and M. Bayoumi,
“Performance analysis and modeling of video transcoding using heterogeneous cloud
services,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 4, pp. 910–922, Apr. 2019.

[56] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz, R. Kern,
H. Kumar, M. Zikos, H. Wu, and et al., “Ananta: Cloud scale load balancing,”
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, p. 207â218, Aug. 2013.

[57] H. Qian, F. Li, R. Ravindran, and D. Medhi, “Optimal resource provisioning and
the impact of energy-aware load aggregation for dynamic temporal workloads in data
centers,” IEEE Trans. Netw. Service Manag., vol. 11, no. 4, pp. 486–503, Dec. 2014.

https://www.a10networks.com/blog/deployment-challenges-in-multi-access-edge-computing-mec/
https://www.a10networks.com/blog/deployment-challenges-in-multi-access-edge-computing-mec/
https://www.fortinet.com/fr/solutions/mobile-carrier/securing-5g-innovation/mobile-edge-computing
https://www.fortinet.com/fr/solutions/mobile-carrier/securing-5g-innovation/mobile-edge-computing
https://bitcoin.org/bitcoin.pdf

118 REFERENCES

[58] S. Koenig and R. Simmons, “Complexity analysis of real-time reinforcement
learning.” in AAAI, Menlo-Park, CA, 1993, pp. 99–105.

[59] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance
comparison of virtual machines and linux containers,” in ISPASS. IEEE, 2015,
pp. 171–172.

[60] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim, “Performance
comparison analysis of linux container and virtual machine for building cloud,” Adv.
Sci. Tech. Lett., vol. 66, no. 105-111, p. 2, 2014.

[61] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE Cloud
Computing, vol. 1, no. 3, pp. 81–84, 2014.

[62] M. Tegtmeier, “CPU utilization of multi-threaded architectures
explained,” 2015. [Online]. Available: https://blogs.oracle.com/solaris/
cpu-utilization-of-multi-threaded-architectures-explained-v2

[63] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, and R. Rooholamini, “An empirical study
of hyper-threading in high performance computing clusters,” Linux HPC Revolution,
vol. 45, 2002.

[64] Y. Ding, E. D. Bolker, and A. Kumar, “Performance implications of hyper-
threading,” in Int. CMG Conference, 2003, pp. 21–29.

[65] C. D. Balaji Subramaniam. (2018) Future Highlight CPU Manager. [Online].
Available: https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/

[66] C. Prakash, P. Prashanth, U. Bellur, and P. Kulkarni, “Deterministic container
resource management in derivative clouds,” in IC2E. IEEE, 2018, pp. 79–89.

[67] A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tuma, “Analyzing the impact
of cpu pinning and partial cpu loads on performance and energy efficiency,” in
CCGrid. IEEE, 2015, pp. 1–10.

[68] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic vertical elasticity
of docker containers with elasticdocker,” in CLOUD. IEEE, 2017, pp. 472–479.

[69] M. Boban, A. Kousaridas, K. Manolakis, J. Eichinger, and W. Xu, “Connected
roads of the future: Use cases, requirements, and design considerations for vehicle-to-
everything communications,” IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 110–123,
2018.

[70] S. Barmpounakis, G. Tsiatsios, M. Papadakis, E. Mitsianis, N. Koursioumpas, and
N. Alonistioti, “Collision avoidance in 5G using MEC and NFV: The vulnerable road
user safety use case,” Computer Networks, vol. 172, p. 107150, 2020.

https://blogs.oracle.com/solaris/cpu-utilization-of-multi-threaded-architectures-explained-v2
https://blogs.oracle.com/solaris/cpu-utilization-of-multi-threaded-architectures-explained-v2
https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/

REFERENCES 119

[71] F. A. Teixeira, V. F. e Silva, J. L. Leoni, D. F. Macedo, and J. M. Nogueira,
“Vehicular networks using the IEEE 802.11p standard: An experimental analysis,”
Vehicular Commun., vol. 1, no. 2, pp. 91–96, 2014.

[72] S. ÃncÃ¼, J. Ploeg, N. van de Wouw, and H. Nijmeijer, “Cooperative adaptive cruise
control: Network-aware analysis of string stability,” IEEE Trans. Intell. Transp.
Syst., vol. 15, no. 4, pp. 1527–1537, 2014.

[73] F. Dressler, F. Klingler, M. Segata, and R. Lo Cigno, “Cooperative driving and the
tactile Internet,” Proc. IEEE, vol. 107, no. 2, pp. 436–446, 2019.

[74] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-aware dynamic
service placement for mobile edge computing,” IEEE J. Sel. Areas Commun., vol. 36,
no. 10, pp. 2333–2345, 2018.

[75] A. Virdis, G. Nardini, and G. Stea, “A framework for MEC-enabled platooning,” in
Proc. IEEE WCNCW, 2019, pp. 1–6.

[76] C. Quadri, V. Mancuso, M. Ajmone Marsan, and G. P. Rossi, “Platooning
on the edge,” in Proc. ACM MSWiM, 2020. [Online]. Available: https:
//doi.org/10.1145/3416010.3423220

[77] K. Serizawa, M. Mikami, K. Moto, and H. Yoshino, “Field trial activities on 5g nr
v2v direct communication towards application to truck platooning,” in 2019 IEEE
90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–5.

[78] L. Lv, Y. Shi, and W. Shen, “Mobility-as-a-service research trends of 5g-based vehicle
platooning,” pp. 1–3, 2021.

[79] R. Rajamani, Han-Shue Tan, Boon Kait Law, and Wei-Bin Zhang, “Demonstration
of integrated longitudinal and lateral control for the operation of automated vehicles
in platoons,” IEEE Trans. Control Syst. Technol., vol. 8, no. 4, pp. 695–708, 2000.

[80] J. Ploeg, B. Scheepers, E. van Nunen, N. van de Wouw, and H. Nijmeijer, “Design
and experimental evaluation of cooperative adaptive cruise control,” in Proc. IEEE
ITSC, 2011, pp. 260–265.

[81] S. Santini, A. Salvi, A. S. Valente, A. PescapÃ©, M. Segata, and R. Lo Cigno, “A
consensus-based approach for platooning with intervehicular communications and
its validation in realistic scenarios,” IEEE Trans. Veh. Technol., vol. 66, no. 3, pp.
1985–1999, 2017.

[82] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service placement problem
in fog and edge computing,” ACM Comput. Surv., vol. 53, no. 3, Jun. 2020. [Online].
Available: https://doi.org/10.1145/3391196

https://doi.org/10.1145/3416010.3423220
https://doi.org/10.1145/3416010.3423220
https://doi.org/10.1145/3391196

120 REFERENCES

[83] K. Velasquez, D. Abreu, M. Curado, and E. Monteiro, “Service placement for latency
reduction in the internet of things,” Proc. IEEE, vol. 72, no. 2, pp. 105–115, 2017.

[84] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar, “A dynamic service
migration mechanism in edge cognitive computing,” ACM Trans. Internet Technol.,
vol. 19, no. 2, Apr. 2019. [Online]. Available: https://doi.org/10.1145/3239565

[85] O. Tao, X. Chen, Z. Zhou, L. Li, and X. Tan, “Adaptive user-managed service
placement for mobile edge computing via contextual multi-armed bandit learning,”
IEEE Transactions on Mobile Computing, 2021.

[86] M. Segata, B. Bloessl, S. Joerer, C. Sommer, M. Gerla, R. Lo Cigno, and F. Dressler,
“Toward communication strategies for platooning: Simulative and experimental
evaluation,” IEEE Trans. Veh. Technol., vol. 64, no. 12, pp. 5411–5423, 2015.

[87] M. Lauridsen, L. C. Gimenez, I. Rodriguez, T. B. Sorensen, and P. Mogensen, “From
LTE to 5G for connected mobility,” IEEE Commun. Mag., vol. 55, no. 3, pp. 156–162,
2017.

[88] H.-S. Tan, R. Rajamani, and W.-B. Zhang, “Demonstration of an automated highway
platoon system,” in Proceedings of the 1998 American control conference. ACC (IEEE
Cat. No. 98CH36207), vol. 3. IEEE, 1998, pp. 1823–1827.

[89] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, and
H. ElBakoury, “Ultra-low latency (ull) networks: The ieee tsn and ietf detnet
standards and related 5g ull research,” IEEE Communications Surveys Tutorials,
vol. 21, no. 1, pp. 88–145, 2019.

[90] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, “SUMO (simulation of urban
mobility) - an open-source traffic simulation,” in 4th Middle East Symposium on
Simulation and Modelling, A. Al-Akaidi, Ed., 2002, pp. 183–187.

[91] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled network and road
traffic simulation for improved IVC analysis,” IEEE Trans. Mobile Comput., vol. 10,
no. 1, pp. 3–15, 2011.

[92] G. Nardini, A. Virdis, G. Stea, and A. Buono, “SimuLTE-MEC: extending SimuLTE
for multi-access edge computing,” in Proc. OMNeT++ summit, 2018.

[93] R. Rajamani, Vehicle Dynamics and Control, 2nd ed. Springer, 2012.

[94] R. K. Jain, D.-M. W. Chiu, W. R. Hawe et al., “A quantitative measure of fairness
and discrimination,” Eastern Research Laboratory, Digital Equipment Corporation,
Hudson, MA, 1984.

https://doi.org/10.1145/3239565

	Acknowledgements
	Published Content
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Enabling technologies in cloud provisioning
	Provisioning as a sequential decision process
	Design of Reinforcement Learning Agents
	Contributions
	Outline of the thesis

	I Cloud Provisioning
	Background and Related Work
	Threshold setting
	Reactive methods
	Proactive methods

	Provisioning for a delay tolerant application
	System response modelling
	System functions
	Large scale deployments

	Experimental results
	Testbed setup
	System calibration
	Evaluation

	Summary and discussion

	Provisioning without application knowledge
	RL modeling and modified Q-Learning approximation
	Key idea
	System model for decision making
	RL short-memory decision agents
	Decoupled learning of agents
	Modified Q-learning approximation
	Exploration/exploitation tradeoff mechanism

	SQLR design
	Key idea
	Problem formalization
	Load Balancer
	Admission Control
	Scaling agent

	Experiments
	Testbed
	Implementation on large scale

	Results
	Admission control policy convergence
	Scaling agent's policy convergence and complexity
	Scaling profiles
	Service times
	CPU utilization
	Summary of results

	Discussion

	Container based provisioning
	Container provisioning
	Automatic provisioning system
	Admission controller
	Auto-scaler

	Experiment setup
	Results
	Docker experiments
	Kubernetes experiments

	Discussion

	II MEC Provisioning
	Background and Related Work
	Related work
	Controllers
	Service migration

	V2I platooning
	Controller adaptations for V2I platooning
	Controller operation adaptations
	Latency compensation in the control law
	Slow down And spLiT (SALT)

	Q-learning agents for controller migration
	Data for state context definition
	Problem Formulation
	Q-learning
	Reward functions
	Asynchronous shared learning

	Performance evaluation
	Method
	Asynchronous shared learning extension
	Evaluation results

	Summary and discussion

	Conclusions
	References

