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The MalSource Dataset: Quantifying Complexity
and Code Reuse in Malware Development

Alejandro Calleja, Juan Tapiador, and Juan Caballero

Abstract—During the last decades, the problem of malicious
and unwanted software (malware) has surged in numbers and
sophistication. Malware plays a key role in most of today’s cyber
attacks and has consolidated as a commodity in the underground
economy. In this work, we analyze the evolution of malware
from 1975 to date from a software engineering perspective. We
analyze the source code of 456 samples from 428 unique families
and obtain measures of their size, code quality, and estimates of
the development costs (effort, time, and number of people). Our
results suggest an exponential increment of nearly one order of
magnitude per decade in aspects such as size and estimated effort,
with code quality metrics similar to those of benign software.
We also study the extent to which code reuse is present in our
dataset. We detect a significant number of code clones across
malware families and report which features and functionalities
are more commonly shared. Overall, our results support claims
about the increasing complexity of malware and its production
progressively becoming an industry.

I. INTRODUCTION

The malware industry seems to be in better shape than ever.
In their 2015 Internet Security Threat Report [1], Symantec
reports that the total number of known malware in 2014
amounted to 1.7 billion, with 317 million (26%) new samples
discovered just in the preceding year. This translates into
nearly 1 million new samples created every day. A recent
statement by Panda Security [2] provides a proportionally
similar aggregate: out of the 304 million malware samples
detected by their engines throughout 2015, 84 million (27%)
were new. These impressive figures can be partially explained
by the adoption of reuse-oriented development methodologies
that make it exceedingly easy for malware writers to produce
new samples, and also by the increasing use of packers with
polymorphic capabilities. Another key reason is the fact that
over the last decade malware has become a profitable industry,
thereby acquiring the status of a commodity [3], [4] in the
flourishing underground economy of cyber crime [5], [6].
From a purely technical point of view, malware has experi-
enced a remarkable evolutionary process since the 1980s, mov-
ing from simple file-infection viruses to stand-alone programs
with network propagation capabilities, support for distributed
architectures based on rich command and control protocols,
and a variety of modules to execute malicious actions in the
victim. Malware writers have also rapidly adapted to new
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platforms as soon as these acquired a substantial user base,
such as the recent case of smartphones [7].

The surge in number, sophistication, and repercussion of
malware attacks has gone hand in hand with much research,
both industrial and academic, on defense and analysis tech-
niques. The majority of such investigations have focused on
binary analysis, since most malware samples distribute in
this form. Only very rarely researchers have access to the
source code and can report insights gained from its inspection.
(Notable exceptions include the analysis of the source code of
4 IRC bots by Barford and Yegneswaran [8] and the work of
Kotov and Massacci on 30 exploit kits [9]). One consequence
of the lack of wide availability of malware source code is a
poor understanding of the malware development process, its
properties as a software artifact, and how these properties have
changed in the last decades.

In this paper, we present a study of malware evolution from
a software engineering perspective. Our analysis is based on a
dataset collected by the authors over two years and composed
of the source code of 456 malware samples ranging from 1975
to 2016. Our dataset includes, among others, early viruses,
worms, botnets, exploit kits, and remote access trojans (RATs).
This is the largest dataset of malware source code presented in
the literature. We perform two separate analysis on this dataset.
First, we provide quantitative measurements on the evolution
of malware over the last four decades. Second, we study
the prevalence of source code reuse among these malware
samples.

To measure the evolution of malware complexity over time
we use several metrics proposed in the software engineer-
ing community. Such metrics are grouped into three main
categories: (i) measures of size: number of source lines of
code (SLOC), number of source files, number of different
programming languages used, and number of function points
(FP); (ii) estimates of the development cost: effort (man-
months), required time, and number of programmers; and (iii)
measures of code quality: comment-to-code ratio, complexity
of the control flow logic, and maintainability of the code.
We use these metrics to compare malware source code to a
selection of benign programs.

We also study the prevalence of source code reuse in
our dataset. Code reuse–or code clone–detection is an im-
portant problem to detect plagiarism, copyright violations,
and to preserve the cleanness and simplicity of big software
projects [10]. Several authors have suggested that code cloning
is a fairly common practice in large code bases, even if it also



leads to bug propagation and poorly maintainable code [11].
Given the high amount of malware discovered on a daily basis,
it is a common belief that most malware is not developed
from scratch, but using previously written code that is slightly
modified according to the attacker’s needs [12]. Detecting
clones in malware source code enables a better understanding
of the mechanisms used by malware, their evolution over time,
and may reveal relations among malware families.

This paper builds on our previous work that studied malware
evolution using software metrics on a dataset of 151 malware
samples covering 30 years [13]. In this work, we present our
updated dataset, which triples the number of original samples
and extends the covered time frame to four decades. We redo
the analysis on malware evolution to cover the new samples,
and also provide a new analysis on malware source code reuse.

The main findings of our work include:

1) We observe an exponential increase of roughly one order
of magnitude per decade in the number of source code
files and SLOC and FP counts per sample. Malware
samples from the 1980s and 1990s contain just one or
a few source code files, are generally programmed in
one language and have SLOC counts of a few thousands
at most. Contrarily, samples from the late 2000s and
later often contain hundreds of source code files spanning
various languages, with an overall SLOC count of tens,
and even hundreds of thousands.

2) In terms of development costs, our estimates evidence
that malware writing has evolved from small projects of
just one developer working no more than 1-2 months full
time, to larger programming teams investing up to 6-8
months and, in some cases, possibly more.

3) A comparison with selected benign software projects
reveals that the largest malware samples in our dataset
present software metrics akin to those of products such
as Snort or Bash, but are still quite far from larger
software solutions.

4) The code quality metrics analyzed do not suggest signif-
icant differences between malware and benign software.
Malware has slightly higher values of code complexity
and also better maintainability, though the differences are
not remarkable.

5) We find quite a large number of code reuse instances in
our dataset, specifically in C/C++ and Assembly code,
that range from a few lines to several thousands lines of
code in length. An analysis of such clones reveals that
commonly shared functionality belongs to one of four
groups:

a) Anti-analysis capabilities such as unpacking routines,
polymorphic engines, and code to kill antivirus (AV)
processes.

b) Core malware artifacts, including shellcodes for initial
infection, spreading routines, and code for various
actions on the victim.

c) Data clones such as arrays of passwords, process
names, and IP addresses.

d) Data structures and associated functions, such as those

needed to interact with PE or ELF files, popular com-
munication protocols, or the operating system kernel
through documented and undocumented APIs.

The remaining of this paper is organized as follows. In
Section II we describe our dataset of malware source code.
Section III presents our quantitative measurements on the
evolution of malware development. In Section IV we detail our
code clone detection approach and results. Section V discusses
the suitability of our approach, its limitations, and additional
conclusions. Finally, Section VII concludes the paper.

II. DATASET

Our work is based on a dataset of malware source code col-
lected by the authors over two years (2015–2016). Collecting
malware source code is a challenging endeavor because mal-
ware is typically released in binary form. Only occasionally
its source code is released or leaked, with its availability being
strongly biased towards classical viruses and early specimens.
When leaked, the source code may be difficult to access in
underground forums. These challenges make it impossible to
try to be complete. While we try to collect as many samples
as possible, the goal is to acquire representative examples of
the malware ecosystem during the last 40+ years, constrained
to the limited availability.

Samples were obtained from a variety of sources, includ-
ing virus collection sites such as VX Heaven [14], code
repositories such as GitHub, classical e-zines published by
historically prominent malware writing groups such as 29A,
malware exchange forums, and through various P2P networks.
We expanded our list of sources by using a snowballing
methodology, exploring previously unknown sources that were
referenced in sites under examination.

A sample in our dataset corresponds to a specific version
of a malware project, where a malware project is most often
referred to as a malware family. A sample may comprise of one
or multiple source code files typically bundled as an archive
(e.g., a ZIP file). Those files may be set in an arbitrarily
complex directory structure and may be written in one or
multiple programming languages (see Section III). Most often
only one version of a family has been leaked, but occasionally
we collect multiple, e.g., Cairuh.A and Cairuh.B. For the
vast majority of samples we do not know the author(s).

Our initial collection contained 516 samples. Each sample
was first quickly verified through manual inspection and
then compiled, executed and, whenever possible, functionally
tested. At this point, 11.6% of the obtained samples were
discarded, either because testing them was unfeasible (e.g., due
to nontrivial compilation errors or unavailability of a proper
testing environment), or simply because they turned out to be
fake.

The 456 successfully tested samples that comprise our final
dataset have been tagged with a year and a loose category.
The year corresponds to their development when stated by the
source, otherwise with the year they were first spotted in the
wild. They are also tagged with a coarse-grained malware type:
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Fig. 1: Distribution of malware source code samples in the dataset.

Virus (V), Worm (W), Macro virus (M), Trojan (T), Botnet
(B), RAT (R), Exploit kit (E), or Rootkit (K). We are aware
that this classification is rather imprecise. For instance, nearly
all Botnets and RATs can be easily considered as Trojans,
and, in some cases, show Worm features too. We chose not
to use a more fine-grained malware type because it is not
essential to our study and, furthermore, such classifications are
problematic for many modern malware examples that feature
multiple capabilities.

Figure 1 shows the distribution by year of the final dataset
of 456 samples. Approximately 61% of the samples (281)
correspond to the period 1995-2005. The second biggest set of
samples (139) correspond to the period 2006-2016. Finally, the
rest of samples (36) corresponds to the period ranging from
1975 to 1994.

The largest category is Virus (318 samples), followed by
Worm (58), Botnet (26), Trojan (26), RAT (12), Exploit kit
(11), Macro virus (4), and Rootkit (1).

III. MALWARE EVOLUTION ANALYSIS

This section describes our analysis of the evolution of
malware source code using software metrics. It first quantifies
the evolution in code size (Section III-A), then it estimates
development cost (Section III-B), next it measures code quality
(Section III-C), and finally compares malware to benign code
(Section III-D). In each section, we briefly introduce the
software metrics used, and refer the reader to our original
paper for more details [13].

A. Code Size

We use 3 different metrics to measure code size: number
of files, number of source code lines, and function point
estimates. We also measure the use of different programming
languages in malware development.

Number of files. Figure 2a shows the distribution over time
of the number of files comprising the source code of each
sample in the dataset. Except for a few exceptions, until the

mid 1990s there is a prevalence of malicious code consisting
of just one file. Nearly all such samples are viruses written in
assembly that, as discussed later, rarely span more than 1,000
lines of code. This follows a relatively common practice of
the 1980s and 1990s when writing short assembly programs.

From the late 1990s to date there is an exponential growth
in the number of files per malware sample. The code of
viruses and worms developed in the early 2000s is generally
distributed across a reduced (<10) number of files, while some
Botnets and RATs from 2005 on comprise substantially more.
For instance, Back Orifice 2000, GhostRAT, and Zeus, all from
2007, contain 206, 201, and 249 source code files, respectively.
After 2010, no sample comprises a single file. Examples of
this time period include KINS (2011), SpyNet (2014), and
the RIG exploit kit (2014) with 267, 324, and 838 files,
respectively. This increase reveals a more modular design,
which also correlates with the use of higher-level programming
languages discussed later, and the inclusion of more complex
malicious functionalities (e.g., network communications and
support for small databases).

Simple least squares linear regression over the data points
shown in Figure 2a yields a regression coefficient (slope)
of 1.14. (Note that the y-axis is in logarithmic scale and,
therefore, such linear regression actually corresponds to an
exponential fit.) This means that the number of files has grown
at an approximate yearly ratio of 14%, i.e., it has doubled
every 5 years.

Number of lines. Traditionally, the number of lines in the
source code of a program, excluding comment and blank lines
(SLOCs), has been employed as the most common metric for
measuring its size. In our analysis we use cloc [15], an open-
source tool that counts SLOCs, blank lines, and comment
lines, and reports them broken down by programming lan-
guage. Figure 2b shows the SLOCs for each sample, obtained
by simply aggregating the SLOCs of all source code files of
the sample, irrespective of the programming language in which
they were written.

Again, the growth over the last 40 years is clearly expo-
nential. Up to the mid 1990s viruses and early worms rarely
exceeded 1,000 SLOCs. Between 1997 and 2005 most samples
contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Simile (10,917 SLOCs) or Troodon (14,729
SLOCs). The increase in SLOCs during this period correlates
positively with the number of source code files and the number
of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOCs in the
range of tens of thousands. For instance, GhostRAT (33,170),
Zeus (61,752), KINS (89,460), Pony2 (89,758), or SpyNet
(179,682). Most of such samples correspond to moderately
complex malware comprising of more than just one executable.
Typical examples include Botnets or RATs featuring a web-
based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-
of-Sale (POS) trojans such as Dexter (2012) and Alina (2013)
show relatively low SLOCs (2,701 and 3,143, respectively).

In this case the linear regression coefficient over the data
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Fig. 2: Number of files (a) and SLOC (b) for each sample in our dataset. Note that the y-axis is in logarithmic scale.
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Fig. 3: Function point counts for each sample in the dataset. Note
that the y-axis is in logarithmic scale.

points is 1.11, i.e., the SLOCs per malware have increased
approximately 11% per year; or, equivalently, the SLOC count
doubles every 6.5 years, resulting in an increase of nearly an
order of magnitude each decade.

Function points estimates. Although SLOCs is the most
popular metric for measuring project size, it has a number of
shortcomings [16]. Most notably, when comparing the sizes
of projects developed using different programming languages,
SLOCs may lead to misleading conclusions since this metric
does not take into account the programming language ex-
pressiveness. To address this issue, we leverage the function-
point count [17], [18] (FPC) metric, which aims to capture
the overall functionality of the software. The function-point
count is measured using four program features: external inputs
and outputs, user interactions, external interfaces, and files
used. The expected size in SLOCs of a software project can

be estimated (before it is coded) from function-point counts
through a process known as backfiring [19]. This process uses
programming languages empirical tables (PLTs) that provide
the average SLOCs per function point for different program-
ming languages. In our analysis, we use a reversed backfiring
process that uses PLT v8.2 [20] to obtain function-point
counts from SLOCs. We use those function-point counts as
a normalized size for malware written in different languages.

Figure 3 shows, as expected, a clear correlation between
FPC and SLOCs and the conclusions in terms of sustained
growth are similar. Starting in 1990, there is roughly an
increase of one order of magnitude per decade. Thus, in
the 1990s most early viruses and worms contain just a few
(< 10) function points. From 2000 to 2010 the FPC concen-
trate between 10 and 100, with Trojans, Botnets, and RATs
accounting for the higher counts. Since 2007, many samples
exhibit FPC of 1,000 and higher; examples include Pony2
(2013), with 1,240, SpyNet (2014), with 2,028, and the RIG
exploit kit (2014), with 4,762. Linear regression over the data
points yields a coefficient of 1.13, i.e., FPCs per malware
have suffered an approximate growth of 13% per year; or,
equivalently, FPCs double every 5.5 years.

Programming languages. Figure 4a shows the distribution
over time of the number of different languages used to develop
each malware sample. This includes not only compiled and
interpreted languages such as assembly, C/C++, Java, Pascal,
PHP, Python, or Javascript, but also others used to construct
resources that are part of the final software project (e.g.,
HTML, XML, CSS) and scripts used to build it (e.g., BAT
or Make files).

Figure 4b shows the usage of different programming lan-
guages to code malware over time in our dataset. The pattern
reveals the prevalent use of assembly until the late 2000s.
From 2000 on, C/C++ become increasingly popular, as well as
other “visual” development environments such as Visual Basic
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and Delphi (Pascal). Botnets and RATs from 2005 on also
make extensive use of web interfaces and include numerous
HTML/CSS elements, pieces of Javascript, and also server-
side functionality developed in PHP or Python. Since 2012 the
distribution of languages is approximately uniform, revealing
the heterogeneity of technologies used to develop modern
malware.

B. Development Cost

An important problem in software engineering is to make an
accurate estimate of the cost required to develop a software
system [21]. A prominent approach to this problem are al-
gorithmic cost modeling methods, which provide cost figures
using as input various project properties such as code size
and organizational practices. Probably the best known of these
methods is the Constructive Cost Model (COCOMO) [22].
COCOMO is an empirical model derived from analyzing data
collected from a large number of software projects. COCOMO
provides the following equations for estimating three metrics
related to the cost of a project: effort (in man-months),
development time (in months), and number of people required.

E = ab(KLOC)bb (1)

D = cbE
db (2)

P =
E

D
(3)

In the equations above, KLOC represent the estimated
SLOCs in thousands and ab, bb, cb, db are empirically obtained
regression coefficients provided by the model. The value of
these coefficients depends on the nature of the project. CO-
COMO considers three different types of projects: (i) Organic
projects (small programming team, good experience, and flex-
ible software requirements); Semi-detached projects (medium-
sized teams, mixed experience, and a combination of rigid and
flexible requirements); and (iii) Embedded projects (organic or
semi-detached projects developed with tight constraints). For
our analysis, we decided to consider all samples as organic
for two reasons. First, it is reasonable to assume that, with the
exception of a few cases, malware development has been led so
far by small teams of experienced programmers. Additionally,
we favor a conservative estimate of development cost, which is
achieved using the lowest COCOMO coefficients (i.e., those
of organic projects). Thus, our estimates can be seen as a
(estimated) lower bound of development cost.

Figure 5 shows the COCOMO estimates for the effort,
time, and team size required to develop the malware samples
in our dataset. Figure 5a shows the COCOMO estimation
of effort in man-months. The evolution over time is clearly
exponential, with values roughly growing one order of magni-
tude each decade. While in the 1990s most samples required
approximately one man-month, this value rapidly escalates
up to 10–20 man-months in the mid 2000s, and to 100s for

a few samples in the last years. Linear regression confirms
this, yielding a regression coefficient of 1.11; i.e., the effort
growth ratio per year is approximately 11%; or, equivalently,
it doubles every 6.5 years.

The estimated time to develop the malware samples (Fig-
ure 5b) experiences a linear increase up to 2010, rising from
2-3 months in the 1990s to 7-10 months in the late 2000s.
The linear regression coefficient in this case is 0.255, which
translates into an additional month every 4 years. Note that a
few samples from the last 10 years report a considerable higher
number of months, such as Zeus (2007) or SpyNet (2014) with
18.1 and 27.7 months, respectively.

The amount of people required to develop each sample
(Figure 5c) grows similarly. Most early viruses and worms
require less than one person (full time). From 2000 on, the
figure increases to 3-4 persons for some samples. Since 2010,
a few samples report substantially higher estimates. For these
data, the linear regression coefficient is 0.143, which roughly
translates into an additional team member every 7 years.

Finally, the table in Figure 5d provides some numerical
examples for a selected subset of samples.

C. Code Quality

We measure 2 aspects of code quality: source code com-
plexity and software maintainability.

Complexity. To measure software complexity we use Mc-
Cabe’s cyclomatic complexity [23], one of the earliest—and
still most widely used—software complexity metrics.

Despite having been introduced more than 40 years ago,
it is still regarded as a useful metric to predict how defect-
prone a software piece is [24], hence its use in many software
measurement studies. For instance Warren et al. [25] character-
ized the evolution of modern websites by measuring different
parameters, including the complexity of their source code.
More recently, Hecht et al. included McCabe’s complexity
in their analysis of the complexity evolution of Android
applications [26].

The cyclomatic complexity (CC) of a piece of source code
is computed from its control flow graph (CFG) and measures
the number of linearly independent paths within the CFG.
Mathematically, the cyclomatic complexity is given by:

CC = E −N + 2P (4)

where E is the number of edges in the CFG, N the number
of nodes, and P the number of connected components. There
are many available tools for measuring this metric [27]–[29],
but most of them only support a small subset of programming
languages. To compute the cyclomatic complexity we use the
Universal Code Count (UCC) [30]. UCC works over C/C++,
C#, Java, SQL, Ada, Perl, ASP.NET, JSP, CSS, HTML, XML,
JavaScript, VB, PHP, VBScript, Bash, C Shell Script, Fortran,
Pascal, Ruby, and Python. Since our dataset contains source
code written in different languages, UCC best suits our analy-
sis. Still, it limited our experiments since it is not compatible
with assembly source code, which appears in many projects in
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Fig. 4: (a) Number of programming languages per malware sample in the dataset. Darker circles represent overlapping data points. (b) Use
of programming languages in malware samples. The chart shows the number of samples using a particular language each year, with darker
colors representing higher number of samples.

our dataset (see Figure 4b). Filtering out samples that contain
at least one source file in assembly left 144 samples for this
analysis, i.e., 32% of the dataset.

Figure 7a shows the distribution of the average cyclomatic
complexity per function for each analyzed sample. Most
of the samples have functions with complexities between
3 and 8, with values in the interval [5, 6] being the most
common. Overall, this can be seen as a supporting evidence
of a generally modular design with a good break down into
fairly simple functions and class methods. There are, however,
some counterexamples. We observed a number of functions
with complexity higher than 10, which exceeds McCabe’s
recommended complexity threshold.

Maintainability. A concept often linked to software quality
is source code maintainability. Maintainability is connected
to complexity, since high complexity translates into poor
maintainability [31]. Maintaining a software product generally
involves fixing bugs and adding new features. The documen-
tation found in the source code as code comments can have a
great impact in facilitating this process. Thus, the comments-
to-code ratio (or simply “comments ratio”) has traditionally
been the metric used to measure documentation quality [32],
[33].

Figure 6 shows the comments-to-code ratio for each sample,
computed as the number of comment lines divided by the
SLOCs. There is no clear pattern in the data, which exhibits an
average of 17.2%, a standard deviation of 21.5%, and a median
value of 10.7%. There are a few notable outliers, though. For
example, W2KInstaller (2000) and OmegaRAT (2014) show
ratios of 99.6% and 139.1%, respectively. Conversely, some
samples have an unusually low comments ratio. We ignore
if they were originally developed in this way or, perhaps,
comments were cut off before leaking/releasing the code.

A more direct metric for measuring the maintainability of a
software project is the maintainability index (MI) [32]. This
metric is a quantitative estimator of how easy is to understand,
support, and modify the source code of a project. A popular
definition of MI is:

MI = 100
171− 5.2 ln (V )− 0.23M − 16.2 ln (SLOC)

171
(5)

where V is Halsteads average volume per module (another
classic complexity metric; see [34] for details), M is the
average cyclomatic complexity per module, and SLOC is the
average number of source code lines per module. MI has been
included in Visual Studio since 2007 [35]. Visual Studio flags
modules with MI < 20 as difficult to maintain.

We use Equation (5) for computing an MI upper bound
for each sample in our dataset. Note that we cannot estimate
MI exactly since we do not have the average Halstead’s
volume for each sample. Since this is a negative factor in
Equation (5), the actual MI value would be lower than our
estimate. Nevertheless, note that such factor contributes the
lowest, so we expect our estimate to provide a fair comparison
among samples.

Figure 7b shows the distribution of MI values grouped
in quartiles. Most samples have an MI in the third quartile,
and only 15 samples fall short of the recommended threshold
of MI < 20, mainly because of a higher-than-expected
cyclomatic complexity.

D. Comparison with Regular Software

In order to better appreciate the significance of the figures
presented so far, we next discuss how they compare to those
of a selected number of open source projects. We selected 9
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Sample Year E D P
Anthrax 1990 0.9 2.40 0.38
Batvir 1994 0.40 1.76 0.23
AIDS 1999 0.23 1.43 0.16
IISWorm 1999 0.41 1.78 0.23
ILOVEYOU 2000 0.44 1.83 0.24
Blaster 2003 1.48 2.90 0.51
Sasser 2004 2.27 3.41 0.67
Mydoom 2004 8.35 5.60 1.49
GhostRAT 2007 94.84 14.10 6.73
Zeus 2007 182.14 18.07 10.08
KINS 2011 358.39 23.37 15.34
Dexter 2012 9.08 5.78 1.57
Dendroid 2014 37.65 9.93 3.79
Tinba 2014 39.84 10.14 3.93
Mirai 2016 24.48 8.43 2.9
Mazar 2016 57.16 11.63 4.91

(d)

Fig. 5: COCOMO cost estimators for the malware samples in the dataset. (a) Effort (man-months). (b) Development time (months). (c)
Team size (number of people). (d) Selected examples with effort (E), development time (D), and number of people (P). Note that in (a) and
(b) the y-axis is shown in logarithmic scale.

software projects: 3 security products (the IPTables fire-
wall, the Snort IDS, and the ClamAV antivirus); a compiler
(gcc); a web server (Apache); a version control tool (Git);
a numerical computation suite (Octave); a graphic engine
(Cocos2d-x); and a Unix shell (Bash). The source code
was downloaded from the web page of each project. For each
project we then computed the metrics discussed above for
malware. As in the case of malware, we use the COCOMO
coefficients for organic projects. The results are shown in
Table I in increasing order of SLOC count.

The first natural comparison refers to the size of the source
code. Various malware samples from 2007 on (e.g. Zeus,
KINS, Pony2, or SpyNet) have SLOC counts larger than those

of Snort and Bash. This automatically translates, according
to the COCOMO model, into similar or greater development
costs. The comparison of function point counts is alike, with
cases such as Rovnix and KINS having an FPC greater than
1000, or SpyNet, with an FPC comparable to that of Bash.
In general, only complex malware projects are comparable in
size and effort to these two software projects, and they are
still far away from the remaining ones.

In terms of comments-to-code ratio, the figures are very
similar and there is no noticeable difference. This seems to
be the case for the cyclomatic complexity, too. To further
investigate this point, we computed the cyclomatic complexi-
ties at the function level; i.e., for all functions of all samples
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Software Version Year SLOC E D P FP CC CR MI
Snort 2.9.8.2 2016 46,526 135.30 16.14 8.38 494.24 5.99 10.32 81.26
Bash 4.4 rc-1 2016 160,890 497.81 26.47 18.81 2,265.35 12.6 17.08 35.61
Apache 2.4.19 2016 280,051 890.86 33.03 26.97 4,520.10 5.45 23.42 62.58
IPtables 1.6.0 2015 319,173 1,021.97 34.80 29.37 3,322.05 4.35 27.33 49.98
Git 2.8 2016 378,246 1,221.45 37.24 32.80 4,996.44 5.21 12.15 60.78
Octave 4.0.1 2016 604,398 1,998.02 44.89 44.51 11,365.09 5.73 27.69 41.60
ClamAV 0.99.1 2016 714,085 2,380.39 47.98 49.61 10,669.97 6.36 33.57 63.01
Cocos2d-x 3.10 2016 851,350 2,863.02 51.47 55.63 16,566.78 3.47 17.55 68.18
gcc 5.3 2015 6,378,290 2,3721.97 114.95 206.37 90,278.41 3.56 31.24 64.08

TABLE I: Software metrics for various open source projects. E: COCOMO effort; D: COCOMO development time; P: COCOMO team
size; FP: function points; CC: cyclomatic complexity; CR: comment-to-code ratio; MI: maintainability index.
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Fig. 6: Comments-to-code ratio for each sample in the dataset.

in both datasets. The histograms of the obtained values are
shown in Figure 8. Both distributions are very similar, with
a clear positive skewness. A Chi-squared and two-sample
Kolgomorov-Smirnov tests corroborate their similarity for a
significance level of α = 0.05.

Regarding the maintainability index, no malware sample
in our dataset shows an MI value higher than the highest
for regular software–Snort, with MI = 81.26. However,
Figure 7b shows that most MI values for malware source code
fall within the second and third quartiles, which also holds for
traditional software. Two notable exceptions are Cairuh and
the Fragus exploit kit, which exhibit surprisingly low values
(29.99 and 14.1, respectively).

IV. SOURCE CODE REUSE

This section presents the analysis of malware source code
reuse in our dataset. Section IV-A first introduces the two
techniques we use for clone detection. We present the clone
detection results in Section IV-B. Finally, Section IV-C ana-
lyzes some of the clones found.

A. Detecting Code Clones

One challenge to detect code clones in our dataset is the
diversity of programming languages used by the samples
(Figure 4). Since samples written in C/C++ and Assembly

constitute 92% of our dataset (115 projects contain at least one
file fully written in C/C++ and 304 projects contain at least
one file fully written in Assembly), we need clone detection
techniques that can at least cover these two languages. To
achieve this goal, we use two code detection techniques
detailed next.

Deckard. Our first clone detection technique uses
Deckard [36], a tool for detecting source code clones
that was specifically designed to scale to large code bases
such as the Java JDK and the Linux kernel, which comprise
thousands of files. Deckard computes an Abstract Syntax
Tree (AST) for each input source file. For each AST tree it
produces a set of vectors of fixed length, each representing the
structure of the AST subtree rooted at a specific node. These
vectors are then clustered and each output cluster comprises
of a set of similar ASTs, each a clone of the others. One
advantage of AST-based clone detection techniques is that
they can detect code clones with the same structure, despite
some code changes such as variable renaming or different
values assigned to a variable. Figure 9 shows an example
of a code clone detected by Deckard despite changes in the
names of the function, function parameters, and function
variables. On the other hand, they can have high false
positives since code snippets with the same AST structure
may not necessarily be clones.

To limit the false positives, Deckard allows to specify
the minimum clone size (as a number of AST tokens). This
enables to remove short code sequences that appear in multiple
samples simply because they are commonly used, but may not
imply that the code was copied from one project into another.
For example, sequences of C/C++ #include directives and
loop statements, e.g., for (i=0; i<n; i++), are not real
clones. Deckard allows the user to set two additional param-
eters, the stride that controls the size of the sliding windows
used during the serialization of ASTs, and the clone similarity
used to determine if two code fragments are clones. In our
experiments we tried different settings for these parameters.
We obtained best results using minimum clone size of 100,
stride of 2, and 1.0 similarity.

By default, Deckard offers support for the following lan-
guages: C/C++, Java, PHP, and dot. It can also support other
languages if a grammar is available. Since our dataset contains
a diversity of Assembly instruction sets (PPC, x86) and syntax
specifications (Intel, AT&T), we would need to generate a
grammar for each instruction set and syntax. That would
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Fig. 7: Distributions of cyclomatic complexity (a) and maintainability
index (b) for malware samples in the dataset.

require a significant effort to support Assembly samples (in
some cases with a low return given the small number of
samples for some combinations). Thus, we only use Deckard
for finding clones among samples developed using C/C++. We
apply Deckard on all projects of the same language (C/C++ or
Assembly) simultaneously, which leverages Deckard’s design
for efficiency.

Pairwise comparison. Our second clone detection technique
compares two source code files using the Ratcliff-Obershelp
algorithm for string similarity [37]. This technique measures
how similar two sequences of characters are by computing the
ratio between the matching characters and the total number
of characters in the two sequences. The algorithm outputs
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Fig. 8: Histograms of the cyclomatic complexity values computed at
the function level for both malware and regular software samples.

i n t I n f e c t E x e s ( void ){
WIN32 FIND DATA d32 ;
char MyFile [ 2 5 6 ] ;
GetFi leName ( MyFile , s i z e o f ( MyFile ) ) ;

i n t I n f e c t F i l e s ( void ){
WIN32 FIND DATA w32 ;
char FileName [ 2 5 6 ] ;
GetFi leName ( FileName , s i z e o f ( FileName ) ) ;

Fig. 9: Two cloned code fragments sharing identical syntactic struc-
ture but with different names for method and variables.

matching blocks of characters containing the longest common
subsequence (LCS) and characters neighboring the LCS that
are similar in both strings. We consider a code clone every
matching block satisfying a minimum length. We experi-
mented with different minimum length values, achieving best
results with a minimum length of 10 SLOC for Assembly and
5 SLOC for C/C++. The higher threshold for Assembly is due
to its lower abstraction compared to C/C++.

Since this technique operates on two input files, for each
pair of samples we compare every pair of source code files,
one file from each sample. To avoid missing clones because
of simple changes to the copied code we preprocess the files
using these rules: remove blank spaces, tabs, and newline
characters; convert to lower case; and translate the character
set to UTF-8.

The main advantages of this technique are its simplicity,
that it can handle any text-based language, and very low
false positives. The main disadvantages are potentially high
false negatives and low efficiency. False negatives can happen
because this technique only detects reuse of identical code
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fragments; it will not detect a clone if the code is modified
(e.g., variable renaming). Low efficiency is due to the quadratic
number of comparisons needed.

B. Clone Detection Results

This section presents the clone detection results using
Deckard and the pairwise comparison technique. We manually
examine the clones detected by both techniques to determine
whether they are true positives or false positives. During our
initial manual analysis we found that a large number of clones
were different instances of the same cases. To speed up the
manual analysis of the more than 10K detected clones, we use
a clustering approach based on regular expressions and fuzzy
hashing [38] to automatically group nearly identical clones.
The analyst then labels each cluster, which considerable speeds
up the manual analysis since the number of clusters is nearly
two orders of magnitude smaller than the number of clones.

Table II summarizes the code clone detection results. For
each language and detection technique, it shows the number
of detected clones, the split of those clones into true and false
positives, the total and per-pair runtime, and statistics on the
SLOC size of the detected clones.

The C/C++ results show that Deckard detects 7,655 clones
compared to 959–1,040 using the pairwise comparison tech-
nique. However, of the 7,655 Deckard clones, 87% are
false positives, compared to 6.4% (raw) and 5.7% (nor-
malized) using pairwise comparison. The very high false
positive rate of Deckard is due to its AST representa-
tion, which ignores type information and constant values.
For example, an array definition like static unsigned
long SP1[64] = { 0x01010400L, . . . } is consid-
ered by Deckard a clone of static unsigned char
PADDING[64] = {0x80, . . . }, even if both arrays
are of different type and are initialized with differ-
ent values. As another example, the function invoca-
tion CopyFile(wormpath, "gratis.mp3.exe", 0)
is considered a clone of add_entry(TABLE_KILLER_FD,
"\x0D\x44\x46\x22", 4).

Clone lengths. The average clone size using Deckard is 112.3
SLOC, 52.7 using normalized pairwise comparison, and 25.9
using raw pairwise comparison. Thus, while the number of
TPs is similar using Deckard and raw pairwise comparison,
Deckard is able to find longer (i.e., higher quality) clones.
Surprisingly, the number of TPs found by the raw pairwise
comparison is higher than those found by the normalized
pairwise comparison. This happens because the raw pairwise
comparison breaks longer clones into multiple smaller clones,
which increases the number of detected clones, but produces
shorter (i.e., lower quality) clones. Thus, normalization helps
to find larger clones. For example, in the C/C++ code, nor-
malization allowed us to discover a large true clone consisting
of 22K SLOC (detailed in Section IV-C).

Figure 10 shows the distributions of length values for raw
and normalized clones in both languages. In both distributions
the number of clones becomes smaller as the size grows, which

translates into positively skewed distributions. Noteworthy
exceptions of this trend are clones in the range of 50-99 and
100-199 lines in Assembly code, and also clones larger than
100 lines in C/C++. These peaks are related to the nature of
the detected clones, discussed in Section IV-C.

Small clones (i.e., shorter than 20 lines) are fairly common
in both C/C++ and Assembly. Manual inspection revealed dif-
ferent explanations for each language. In the case of Assembly,
such small cloned fragments are usually related to control flow
structures such as loops, which employ the same sequence of
instructions regardless of the actual data values. In addition, we
also observed reuse of the names used to label Assembly code
segments. In the case of C/C++ projects, we found that small
clones are generally associated with preprocessor directives
such as #typedef, #define, and #include. These short
clones also include sequences of instructions to initialize data
structures (e.g., arrays), and generic sequences often found
at the end of functions that release allocated variables before
returning a value. These clones are often exact copies of each
other and are common in malware samples from the same
family.

On the other hand, clones larger than 20 lines represent
less than 50% of the detected clones in both languages. In
particular, 350 assembly clones are larger than 20 lines. The
number of Assembly clones is also notably smaller than the
total number of Assembly source code files in our dataset,
which is close to 800. Comparing the average lengths of
Assembly source code files and large clones provides similar
results. Large Assembly clones are 102.87 SLOC on average,
while Assembly source files in the dataset are 498.18 SLOC.
In the case of C/C++ clones, the figures are comparable. We
identified 450 C/C++ clones out of 984 that are larger than
20 lines. The total number of C/C++ files in the dataset is
2,981, which almost doubles the total number of clones found.
The average length of large C/C++ clones depends greatly
on the normalization process: it is just 102.01 SLOC without
normalization and 231.28 SLOC after normalization.

We analyzed the size of clones found in samples belonging
to the same family or developed by the same author. To
do so, we selected 4 pairs of projects developed in C/C++
and Assembly for which we had ground truth, i.e., they are
known to share authorship or are variants of the same family.
Specifically, we selected two banking trojans (Zeus & Kins)
and two worms (Cairuh.A & Hunatch.a) for the C/C++ case;
and two pairs of viruses written in Assembly: (methaphor.1.d
& Simile) and (EfishNC & JunkMail). The average clone sizes
for the C/C++ couples are 57.40 lines (37 clones) for the
banking trojans and 13.86 lines (60 clones) for the worms. In
the case of the Assembly samples, the average clone lengths
are 179.72 lines for methaphor.1.d & Simile (54 clones) and
47.06 lines for EfishNC & JunkMail (30 clones).

Clone file distribution. Figure 11 shows the distribution of
the number of files in which a clone appears. As it can be
seen, in approximately 80% of the cases clones are found in
just two files. The number of clones appearing in 3 or more
files decreases considerably for both languages. In the case
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Language Detection technique Clones TPs FPs Runtime Clone size (SLOC)
All (h) Pair (s) Average Std. Dev. Median Min. Max.

C/C++ Deckard 7,655 984 6,671 1.4 0.8 112.3 1,441.2 17 7 22,658
C/C++ Pairwise (raw) 1,040 973 67 197.7 107.5 25.9 69.4 7 5 1,157
C/C++ Pairwise (with normalization) 959 904 55 209.3 115.0 52.7 762.9 7 5 22,709

Assembly Pairwise (raw) 974 972 2 97.8 7.6 50.1 100.1 19 10 1,084
Assembly Pairwise (with normalization) 704 703 1 101.0 7.9 58.6 102.8 21 10 1,084

TABLE II: Clone detection results for C/C++ and Assembly projects using the two detection techniques. It first shows the number of code
clones detected and their split into true positives and false positives. Next, it shows the total runtime in hours and the average runtime for
each pair of projects in seconds. Finally, it shows clone size statistics.
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Fig. 10: Distribution of code clone sizes for Assembly and C/C++ languages
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Fig. 11: Distribution of clones in 2 or more files.

of C/C++, the fraction of clones appearing in 3, 4, 5, and
more than 5 files is 0.11, 0.04, 0.008, and 0.005 respectively.
The pattern for Assembly clones is similar, though clones are
slightly more widespread as they appear in more than 3 files
more often than C/C++ clones.

Runtime. Deckard is almost two orders of magnitude faster
than the pairwise comparison technique, finding clones across

all 115 C/C++ samples in 1.4 hours, compared to 8 days for
the pairwise comparison. Such efficiency difference is due to
Deckard parsing each file only once and to its clustering.
We observe that the pairwise comparison on Assembly run
much faster than on C/C++. This is due to the C/C++ projects
containing more, and longer, files.

To conclude, our clone detection results show a significant
amount of code reuse despite the relatively small number of
samples, e.g., 984 clones of 112 SLOC on average across
115 C/C++ projects. We detail the type of clones found
in Section IV-C. This constitutes an evidence that malware
authors copy functionalities useful to their goals that may
appear in leaked malware source code (or malware they have
purchased). Of the two techniques evaluated, Deckard runs
very fast and finds more and longer clones, but produces very
high false positives. On the other hand, the pairwise compari-
son technique produces much lower (but a non-negligible 6%)
false positives, but runs two orders of magnitude slower.

C. Clone Analysis

We next discuss the purpose of the reused code fragments
we found. Through manual analysis, we classified clones
into four main groups according to the functionality they
provide. For additional details, Tables IV and V summarize
the main features of a selection of representative clones of
these categories we found for both C/C++ and Assembly.

Operational data structures and functions. One large group
of code clones consists of libraries of data structures and
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Assembly C/C++ Avg. length (SLOC)
Assembly C/C++

Type A 22 42 364.86 193.83
Type B 55 41 238.94 151.70
Type C 15 8 101.6 121.62
Type D 8 9 613.62 2587.33

TABLE III: Clone types frequencies for Assembly and C/C++ by
types. Type A: Operational data structures and functions, Type B:
Core malware artifacts, Type C: Data clones, Type D: Anti-analysis
capabilities.

the associated functions to manipulate system and networking
artifacts, such as executable file formats (PE and ELF) and
communication protocols (TCP, HTTP) and services (SMTP,
DNS). We also observe a number of clones consisting of
headers for several API functions needed to interact with the
Windows kernel, such as the 3,054 lines long clone shared by
W32.Remhead and W32.Rovnix.

Core malware artifacts. The second category of clones con-
sists of code that implements properly malicious capabilities,
such as infection, spreading, or actions on the victim. For
instance, the W32.Dopebot botnet contains shellcode to exploit
the CVE-2003-0533 vulnerability, and the same shellcode is
found in the W32.Sasser worm. Another good example of this
practice is the network sniffer shared by W32.NullBot and
W32.LoexBot.

Data clones. Some of the clones are not code, but rather
data structures that appear in multiple samples. An example
is the array of frequent passwords present in both W32.Rbot
and W32.LoexBot. Another example is the list of strings
found in W32.Hunatchab and W32.Branko, containing the pro-
cess names associated to different commercial AV (antivirus)
software, which both bots try to disable. Furthermore, some
samples also share strings containing IP addresses, for example
the Sasser worm and the Dopebot botnet.

Anti-analysis capabilities. One of the most noticeable ex-
amples of this is the packer included in the W32.Cairuh
worm, which is shared by the W32.Hexbot botnet. Its size
is 22,709 lines and it is the biggest clone we found in our
dataset. Another remarkable example is the metamorphic en-
gine shared by the Simile and Metaphor.1d viruses, consisting
of more than 10,900 lines of assembly code. Other examples
of reused anti-analysis modules can be found in W32.Antares
and W32.Vampiro, which share the same polymorphic engine,
and also in W95.Babyloni, and W32.Ramlide, which share
the same packing engine. Finally, we also found a number of
reused instances of code to kill running AV processes, such
as the clone found in Hunatchab.c and Branko.c

In order to estimate the number of clones for each category,
we randomly sampled the set of found clones and selected
100 for each language. The 200 clones were then manually
labeled according to the four semantic categories described
above. Table III shows the distribution of clones together with
their average length. As it can be seen, most of the cases
belong to types A (operational data structures and functions)
and B (core malware artifacts). In the case of Assembly, both
categories amount for 84% of all clones, while in the case

of C/C++ core malware artefacts alone constitute 55% of the
clones. In both cases, data clones and anti-analysis capabilities
are considerably less frequent.

With respect to their lengths, Type D assembly clones
are noticeably larger than clones in other categories. This
is due to the presence of polymorphic and packing engines
in this category, which are relatively complex code samples.
Contrarily, data clones (Type C) are generally shorter, which
is reasonably given their nature. In general, Assembly clones
are bigger than their C/C++ counterpart, which is in line with
the general results described above.

The data in Table III suggests that clone size highly depends
on the nature of shared features. This is especially evident for
those clones labeled as type C. In addition, the results reveal
that the inclusion of evasion and anti-analysis capabilities has
a noticeable impact in the size of malicious codebases.

Last but not least, we observed that in most cases code
reuse usually takes place in short time spans, i.e., the samples
sharing a particular fragment of code have been developed
within 1-4 years of each other. This could evidence that
the same author has participated in the development of such
samples, or else that collaborating groups share previously
developed artifacts that can be easily reused.

D. Code Sharing with Benign Source Code

We also explored if code cloning between malicious and
benign source happens to the same extent as it does among
malware samples. For this purpose, we analyzed the set of
major open source projects used in Section III-D and extended
this set adding the Bitcoin cryptocurrency and Linux kernel
source code master branches.

We followed a similar approach as for the main cloning ex-
periment. However we decided to lean exclusively on Deckard
since it is faster, especially when dealing with large codebases.
We ran Deckard ten times, one time per project, combining
the open source project with the whole malicious source code
dataset each time. Then, we processed the output as outlined
in Section IV-A. Despite the high FP ratios obtained, in the
experiment we found code cloning cases in 4 out of 10 source
code projects. Snort, Iptables, Bash, Apache, Cocos2d and the
Bitcoin projects do not share any source code snippet with any
of the samples included in our dataset. We did find up to 210
relevant code clones (larger than 5 lines) in gcc, the Linux
kernel, Git, and clamAV. Surprisingly, all the cloned source
clones found in gcc, clamAV, and the Linux kernel are part
of the Zlib compression library. In particular, the cloned
fragments appear in a C header (defutil.h) and 3 C source
files (infbak.h, inflate64.c, and inflate.c) in the
open source project. In the malicious source code dataset,
the same fragments are contained in the files deflate.h,
infback.c, inflate.c, and inftrees.c included in
the server source code of the XtremeRAT botnet. Git shares
a set of data structures with the samples w32.Rovnix and
w32.Carberp. The content of these data structures is used
as padding in the implementation of the SHA1 and MD5
hashing algorithms. The shared code is located in the files
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Length Samples Description Category

22709
W32.Cairuh.A (Worm, 2009)

W32.Simile (Worm, 2009)
W32.HexBot2 (Bot, 2009)

Array containing a raw dump of an executable packing tool used
after the compilation of the main binary Anti-analysis capabilities

3054
W32.Remhead (Trojan,2004)

W32.Rovnix (Virus,2014)
W32.Carberp (Virus,2013)

Define several data structures used for interacting with the
NT Kernel through its Native API.

Operational data structures
and functions

2546 W32.MyDoom (Worm, 2004)
W32.HellBot (Bot, 2005) Share the code for deploying a SMTP relay and a fake DNS server. Core malware artifacts

1323 W32.NullBot (Bot, 2006)
W32.LoexBot (Bot, 2008) Includes hardcoded IRC commands used to send instruction to infected clients Data clones

328
W32.Dopebot.A (Bot, 2004)
W32.Dopebot.B (Bot, 2004)
W32.Sasser (Worm, 2004)

Shellcode employed for exploiting, the CVE-2003-0533 vulnerability [39] Core malware artifacts

TABLE IV: Examples of code clones found in C/C++.

Length Samples Description Category

10917 W32.Metaph0r.1d (Virus, 2002)
W32.Simile (Virus, 2002)

These samples contain a complete metamorphic engine
coded in pure x86 assembly. Anti-analysis capabilities

1283 W32.EfishNC (Virus,2002)
W32.Junkmail (Virus,2003)

Both declare the same structs and function headers for
infection and spreading through email Core malware artifacts

233 Lin32.Tahorg (Virus, 2003)
Lin32.GripB (Virus, 2005)

Share structures and routines for reading and modifying ELF files.
Includes a list of offsets for the different sections in the EFL header.

Operational data structures
and functions.

1009
W32.Relock (Virus,2007)
W32.Mimix (Virus,2008)
W32.Impute (Virus, 2013)

These samples share an assembly implementation of Marsenne Twister PRNG.
W32.Relock was the first malware piece using the virtual code

obfuscation technique [40] which is based in memory reallocation.
Anti-analysis capabilities

100
Gemini (Virus,2003)
EfisNC (Virus,2008)

JunkMail (Virus,2013)

Contains offsets pointing to several functions within a MZ
(DOS Executable files) manipulation library Data clones

TABLE V: Examples of code clones found in Assembly.

sha1.c in the git source code tree and also in the files md5.c
and md5.cpp included in the code of Rovnix and Carberp,
respectively. The average size of the cloned fragments is 102
lines.

V. DISCUSSION

We next discuss some aspects of the suitability of our
approach, the potential limitations of our results, and draw
some general conclusions.

Suitability of our approach. Software metrics have a long-
standing tradition in software engineering and have been an
important part of the discipline since its early days. Still, they
have been subject to much debate, largely because of frequent
misinterpretations (e.g., as performance indicators) and misuse
(e.g., to drive management) [21]. In this work, our use of
certain software metrics pursues a different goal, namely to
quantify how different properties of malware as a software
artifact have evolved over time. Thus, our focus here is not
on the accuracy of the absolute values (e.g., effort estimates
given by COCOMO), but rather on the relative comparison
of values between malware samples, as well as with benign
programs, and the trends that the analysis suggests.

The use of comments as an efficient documentation method
has been questioned by several experts. Among the stated
reasons, it has been argued that often comments add redundant
description of code functionality instead of clarifying design
decisions and the underliying algorithmic workflow. However
others authors defend that good quality comments are still
valuable and necessary, specially in large collaborative projects
[41]. The validity of the comments-to-code ratio nowadays

could also be criticized, given the trend to develop source
code using automatically generated documentation frame-
works. This trend may have reduced over time the reliability
of comments-to-code ratio as a maintainability metric. Nev-
ertheless, during our analysis we did not find any samples,
using such approaches, as the only delivered documentation
with the (recent) samples, are the comments written by the
authors. Thus, comments seem to still play an important role
in the development of malware.

As for the case of detecting code reuse, the techniques we
used represent standard approaches to the problem. By using
two different approaches, we obtain complementary and more
robust results. For example, we can use the pairwise compar-
ison technique to analyze assembly samples not supported by
Deckard, while Deckard’s AST-based approach resists certain
classes of evasion attacks, e.g, variable and function renaming,
which affect the pairwise comparison technique.

Limitations. Our analysis may suffer from several limitations.
Perhaps the most salient is the reduced number of samples
in our dataset. However, as discussed in Section II, obtaining
source code of malware is hard. Still, we analyze 456 samples,
which to the best of our knowledge is the largest dataset of
malware source code analyzed in the literature. While the exact
coverage of our dataset cannot be known, we believe it is
fairly representative in terms of different types of malware.
It should also be noted that in our study, the sample concept
refers to a malware family. Thus, we are not only covering
456 binary samples but a wider set of potential variants. The
wide gap between the number of binary samples found in the
wild and the number of malware families has been previously
discussed in the community. A recent study [42] examined
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23.9M samples and classified them into 17.7K families (i.e.,
three orders of magnitude smaller). While this phenomenon
is due to different reasons, the most prominent one is the
use of polymorphism and other advanced obfuscation methods
employed by malware authors. We note that 428 out of 17.7K
is a respectable 2.4% coverage.

In particular, we believe the coverage of our dataset is
enough to quantify and analyze the trends in malware evo-
lution (size, development cost, complexity), but we do not
attempt to analyze the evolution of malware code reuse. Since
we only have one (or a few) versions for each malware
family and a limited number of families, our dataset may miss
important instances of malware code reuse. Thus, we have
focused on analyzing what type of code we observe being
reused in our dataset. As we collect more samples, we should
be able to obtain a more representative picture of the code
sharing phenomenon in malware creation, going beyond the
findings we have reported.

Another limitation is selection bias. Collection is partic-
ularly difficult for newest samples and more sophisticated
samples (e.g., those used in targeted attacks) have not become
publicly available. We believe those samples would emphasize
the increasing complexity trends that we observe.

Finally, even if the employed pairwise comparison code
clone detection technique is very simple and has poor scalabil-
ity, it has performed remarkably well in terms of false positives
compared with Deckard, a more sophisticated tool based on
comparing syntactic structures. The large amount of false
positives obtained with Deckard can be partially explained
because of the way in which malware writers reuse code.
As discussed in section IV, cloned code fragments are often
core artifacts such as shellcodes or obfuscation engines. Given
the nature of these artifacts, malware authors are forced to
reuse them in a copy and paste fashion rather than rewriting
some of their content. This makes very uncommon to find
partial clones, consisting on slightly modified code fragments.
For this reason, and despite the great variety of code-clone
detection techniques available in the literature [43], [44], it
is unclear whether employing more sophisticated approaches
might lead to finding significantly more clones when dealing
with plain malware source code.

In addition, clone detection tools based on syntactic struc-
tures depend greatly on the set of selected features. In the
case of Deckard, leaving out data types and literals definitely
contributes to achieving poorly accurate results, especially in
our use case which differs from standard use cases for this
kind of tools.

Deckard could be improved in many ways in order to obtain
more precise results. Two natural ideas would be combining
syntactic and semantic features, and introducing a similarity
metric after the clustering step. However, in this paper we just
aimed at comparing the performance of a naive approach (diff-
based clone detection) against an already proposed tool, and
therefore we decided to use Deckard out of the box, leaving
out any improvement.

Main conclusions and open questions. In the last 40 years

the complexity of malware, considered as a software product,
has increased considerably. We observe increments of nearly
one order of magnitude per decade in aspects such as the
number of source code files, source code lines, and function
point counts. This growth in size can be attributed to various
interconnected reasons. On the one hand, malicious code
has progressively adapted to the increasing complexity of
the victim platforms they target. Thus, as Operating Systems
evolved to offer richer application programming interfaces
(API), malware authors rapidly leveraged them to achieve their
purposes. This translated into larger and more complex sam-
ples with a variety of computing and networking capabilities.
On the other hand, malware authors have clearly benefited
from newer and richer integrated development environments
(IDEs), frameworks, and libraries. This explains the increasing
modularity seen in the most recent samples–and, especially,
the rise of complex, multi-language malware projects that
would be otherwise unmanageable.

One interesting question is whether this trend will hold in
time. If so, we could soon see malware specimens with more
than 1 million SLOC. To translate these numbers into real-
world examples, in the near future we could witness malware
samples exceeding three times in size open source projects like
Git or the Apache web server (see Table I). However, evolving
into large pieces of software will surely involve a higher
amount of vulnerabilities and defects. This has been already
observed (and exploited), e.g., in [45] and [46]. In addition,
such evolution requires larger efforts and thus possibly larger
development teams. While we observe the trend we have
not examined in detail those development teams. For this,
we could apply authorship attribution techniques for source
code [47], [48]. More generally, the results shown in this paper
provide quantified evidence of how malware development has
been progressively transforming into a fully fledged industry.

VI. RELATED WORK

While malware typically propagates as binary code, some
malware families have distributed themselves as source code.
Arce and Levy performed an analysis of the Slapper worm
source code [49], which upon compromising a host would
upload its source code, compile it using gcc, and run the
compiled executable. In 2005, Holz [50] performed an anal-
ysis of the botnet landscape that describes how the source
code availability of the Agobot and SDBot families lead to
numerous variants of those families being created.

Barford and Yegneswaran [8] argue that we should develop
a foundational understanding of the mechanisms used by
malware and that this can be achieved by analyzing malware
source code available on the Internet. They analyze the source
code of 4 IRC botnets (Agobot, SDBot, SpyBot, and GTBot)
along 7 dimensions: botnet control mechanisms, host control
mechanisms, propagation, exploits, delivery mechanisms, ob-
fuscation, and deception mechanisms.

Other works have explored the source code of exploit kits
collected from underground forums and markets. Exploit kits
are software packages installed on Web servers (called exploit
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servers) that try to compromise their visitors by exploiting
vulnerabilities in Web browsers and their plugins. Different
from client malware, exploit kits are distributed as (possibly
obfuscated) source code. Kotov and Massacci [9] analyzed
the source code of 30 exploit kits collected from underground
markets finding that they make use of a limited number of
vulnerabilities. They evaluated characteristics such as evasion,
traffic statistics, and exploit management. Allodi et al. [51]
followed up on this research by building a malware lab to
experiment with the exploit kits. Eshete and Venkatakrishnan
describe WebWinnow [52] a detector for URLs hosting an
exploit kit, which uses features drawn from 40 exploit kits
they installed in their lab. Eshete et al. follow up this research
line with EKHunter [45] a tool that given an exploit kit
finds vulnerabilities it may contain, and tries to automatically
synthesize exploits for them. EKHunter finds 180 in 16 exploit
kits (out of 30 surveyed), and synthesizes exploits for 6
of them. Exploitation of malicious software was previously
demonstrated by Caballero et al. [46] directly on the binary
code of malware samples installed in client machines.

The problem of detecting duplicated or cloned code was
first approached using simple text-matching solutions. The
technique described in [53] consists in a pairwise comparison
among source code files looking for a coincidence. While
this allows to find exact copies of source code, it does not
scale well and may incur in performance issues. In any
case, note that text-matching approaches require a preliminary
normalization step such as the one used in this work. A second
group of techniques rely on data structures such as graphs or
trees to represent the syntactic structure of the programs [54],
[55], together with an appropriate similarity measure among
them. Other works have proposed solutions based on a lexical
analysis of source files. These techniques convert the source
code sentences into lists of tokens, which are then compared
to detect duplicated subsequences [11], [56].

In the case of code sharing in malware, most existing work
has focused on binary objects [57], [58]. Even though the
results reported are reasonable, one potential limitation of
such works is that modern compilers can perform different
optimization and cleaning tasks (e.g., loop unraveling, symbol
stripping, etc.) to generate optimal binary objects in terms of
size and memory consumption. This could end up altering the
structure of the original code and deleting many valuable and
meaningful artifacts [59]. Contrarily, working directly with the
original source code gives us more precise insights on the
functionality that is more frequently reused across samples.

VII. CONCLUSION

In this paper, we have presented a study on the evolution of
malware source code over the last four decades, as well as a
study of source code reuse among malware families. We have
gathered and analyzed a dataset of 456 samples, which to our
knowledge is the largest of this kind studied in the literature.
Our focus on software metrics is an attempt to quantify
properties both of the code itself and its development process.
The results discussed throughout the paper provide a numerical

evidence of the increase in complexity suffered by malicious
code in the last years and the unavoidable transformation into
an engineering discipline of the malware production process.
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