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A Deep Neural Network Approach for Online
Topology Identification in State Estimation

Davide Gotti , Student Member, IEEE, Hortensia Amaris , Senior Member, IEEE, and Pablo Ledesma

Abstract—This paper introduces a network topology identi-
fication (TI) method based on deep neural networks (DNNs)
for online applications. The proposed TI DNN utilizes the set
of measurements used for state estimation to predict the actual
network topology and offers low computational times along with
high accuracy under a wide variety of testing scenarios. The
training process of the TI DNN is duly discussed, and several deep
learning heuristics that may be useful for similar implementations
are provided. Simulations on the IEEE 14-bus and IEEE 39-bus
test systems are reported to demonstrate the effectiveness and
the small computational cost of the proposed methodology.

Index Terms—Topology identification, deep neural network,
state estimation, bad data detection and identification.

I. INTRODUCTION

POWER system dynamics are becoming increasingly com-
plex due to the integration of nonsynchronous generation,

energy storage devices and demand response technologies. As
a result, new techniques of dynamic state estimation (DSE)
are being developed to monitor the dynamics of electrical
variables and improve the control and protection of power
systems [1] and [2].

Deployment of phasor measurement units have enabled
the development of fast DSE methods that require equally
fast complementary tools such as topology identification (TI)
algorithms. Significant efforts to properly identify topology
changes in power systems have been made over the last
several decades. Power system state estimation relies on the
perfect a priori knowledge of the network topology provided
by the network topology processor (NTP), which analyzes the
status of the switching devices and provides the corresponding
bus/branch model to the state estimator. However, in many
cases, the NTP can be affected by the errors related to the
status of the switching devices, which can result in the use of
a wrong admittance matrix by the state estimator. Topology
errors tend to have a stronger influence than network parameter
errors and can cause the state estimation process to be strongly
biased.

The residual analysis method reported in [3] assumes that
the first state estimation iteration converges successfully so
that the residual vector can be computed and used to identify
the branch outage. This assumption is not always true because
the state estimation convergence is not guaranteed due to the
dramatic impact that the topology errors tend to have on the
measurement residuals.
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The state vector augmentation method, which is also de-
scribed in [3], includes the branch status in the state vector
and requires several state estimation iterations to adjust the
state vector, to add the model constraints and, eventually, to
augment the state vector. The iterations required to detect the
changes in the topology can be a limiting factor for DSE
applications because the computational times of the algorithm
increase.

In [4], a fuzzy c-means clustering method is proposed for TI
and bad data processing. Using this method, the fuzzy pattern
vector expands with the size of the network, and the number
of possible topologies to be considered increases, causing a
loss of resolution that affects the accuracy of the TI and the
state estimation.

An event-triggered topology identification is proposed
in [5], where a recursive Bayesian approach is used when
a network topology change is suspected. This approach is
precise and reliable if the topology configurations to be
estimated are limited, and it is sensitive to high measurement
noise levels. However, the reported computational times are
too long for DSE applications.

A generalized state estimation algorithm for topology esti-
mation that includes the switching devices status in the state
vector is reported in [6]. This approach requires the incorpo-
ration of three additional state variables for each switching
device, which will significantly increase the computational
burden of the algorithm for large electric networks.

The authors of [7] present a method for topology identifi-
cation in the generalized state estimation framework. In the
first stage, a bad data analysis is used to identify the region of
the electric network affected by the error. Second, a network
reduction is conducted to restrict the analysis to the suspected
area. Finally, the Lagrange multiplier of the state estimation
constraints are used to select the type of the anomaly. The
reported results indicate that the methodology is accurate, but
the CPU times are well above one second, making it unsuitable
for DSE applications.

In [8], a measurement-based approach to directly estimate
the electric network bus admittance matrix is proposed. This
methodology requires the monitoring of each bus voltage
phasor through a phasor measurement unit (PMU) or a modern
relay capable of providing the voltage phasor measurement.
This condition is currently not fulfilled in many power sys-
tems.

For the usage of neural networks in TI applications, pio-
neering work has been conducted in [9] and [10]. In [9] a
counter propagation network (CPN) for topology processing
is proposed. The results show a certain feasibility for online
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applications, as reported outcomes exhibit computational times
lower than 100 ms. However, the CPN needs accurate infor-
mation of the switching devices status along with power flow
and injection measurements. In this paper, the proposed TI
algorithm relies only on the measurement set used for the state
estimation and does not need the information of the circuit
breakers status, making the algorithm more reliable in case of
wrong information from the NTP.

In [10], an artificial neural network (ANN) approach is used
for TI. The algorithm can distinguish between topological and
gross measurement errors by means of normalized innovations,
which are obtained adding a previous state forecasting step
to the state estimation algorithm. This methodology implies
the implementation of four ANNs for each electrical network
branch, which in the case of large-scale systems entails the
implementation of a massive number of ANNs, leading to a
cumbersome training process. With the approach proposed in
this work, the topology determination relies only on one deep
neural network (DNN) and does not need any pre-estimation
step that implies an increase in the computational cost.

As previously mentioned, the TI must be reliable and fast to
enable the DSE to operate in a short time frame. In this regard,
the abovementioned algorithms are not suitable for DSE
applications due to their high CPU times. The methodology
proposed in this work aims to bridge this gap.

The contribution of this work is a TI algorithm that over-
comes the limitations previously mentioned. Deployment of
DNNs and modern deep learning techniques, that are duly
discussed in the next sections, accurately extract the relations
between the set of measurements and the topology information
without the necessity to receive the switching device status
from the NTP or to implement several ANNs for each branch
of the electrical network.

The methodology proposed in this work introduces a signif-
icant reduction of the computational time required to perform
the topology identification. The proposed algorithm is suitable
for DSE applications and provides a fast identification of the
network topology using the measurements collected for state
estimation. The proposed TI algorithm is based on a deep
neural network and relies on a set of measurements free of
gross errors. To demonstrate the TI algorithm, a bad data
detection and identification algorithm, and a state estimator
are coupled with the proposed method. For this purpose, a
modified version of the algorithm introduced in [11] is used as
a bad data detection and identification algorithm even though
others methods can be used, e.g., [12] and [13]. Once the
measurement set has been checked and possibly modified,
the topology configuration is estimated, and subsequently, a
network state estimation is performed using an unscented
Kalman filter (UKF). However, it is important to note that
other state estimation algorithms are compatible with the
proposed TI DNN.

The main advantages of the proposed method are:

• It uses only the measurements required for the state
estimation and it requires a single DNN.

• It is suitable for DSE applications as it significantly
reduces the computational time required to perform the

topology identification in comparison with current meth-
ods.

The rest of the paper is organized as follows. Section II
presents a brief explanation of both the DNNs and the UKF
state estimator used in this work. In Section III the proposed
methodology is described. Section IV provides the case study
description, with a particular focus on the DNN training and
testing process. Section V shows how the proposed TI DNN
integrates with the state estimator and relative results on the
IEEE 14-bus and the 39-bus test networks are reported. Finally,
Section VI concludes the paper.

II. DESCRIPTION OF THE ALGORITHMS

A. Deep Neural Network

DNNs are defined as ANNs with multiple hidden layers
between the input and output layers. The presence of multiple
hidden layers allows the network to learn complex tasks by
extracting significant features that enable input-output value
mapping.

During the training of a feed-forward neural network, the
input signal is propagated forward, and then, the obtained
output is compared with the desired output values, and an
error signal is computed. This error is then backpropagated
using the so-called backpropagation algorithm, which allows
the network to adjust its parameters to minimize the cost
function determined by the error signal. During the training
phase, the process is repeated until a desired accuracy on the
training set is achieved. As described in [14], the training can
be executed in sequential mode (one training example at a time
is introduced) or in batch mode (all the training examples are
introduced simultaneously).

Feed-forward propagation: During the forward computa-
tion, the input patterns propagate forward through the network
and appear at the output end as an output signal. The input
signal propagates from one neuron to the next layer of neurons
passing through the synaptic weights. The signal is processed
as follows:

zi = Wi,i−1ai−1 + bi, (1)

where ai−1 is a vector representing the previous layer outputs,
Wi,i−1 represents the synaptic weights matrix of (n,m)
dimensions (with n and m corresponding to the number of
neurons in the ith and i−1th layer, respectively), bi represents
the vector of the neuron bias values and zi represents the ith
layer input vector.

Subsequently, each neuron performs the computation of the
activation function, usually expressed as a nonlinear function
of the input signal:

ai = fi(zi), (2)

where fi is the neuron activation function and ai is the ith
layer output vector.

The choice of the activation function can radically modify
how changes in the weights and bias during the training phase
affect the variations in the output values. Once the input vector
is propagated through the network, an error signal is computed:

ej = ζ(yj ,oj), (3)
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Fig. 1. A deep neural network with 3 hidden layers applying dropout (crossed
units represent dropped neurons)

where ej represents the error vector of the jth output neuron,
and ζ is a generic function that relates the output error with
the obtained output vector y and the desired output vector o
known from the training set.

A variety of activation functions and error signals formula-
tions and their characteristics are thoroughly described in [15].

Backpropagation: The backpropagation algorithm applies
a correction to the synaptic weights and neuron bias that
is proportional to the partial derivative of the error signal
with respect to the synaptic weights and bias. These partial
derivatives represent a sensitivity factor, which allows the
determination of the change in the weights and bias hyperspace
that minimize the cost function, i.e., the error signal. In the
case of the output layer, the partial derivative can be directly
computed because there exists a direct relationship between
the error signal and the neurons belonging to this layer:

∂e

∂Wk,k−1
=

∂e

∂yk

∂yk
∂zk

∂zk
∂Wk,k−1

, (4)

where k represents the output layer index. In the case of the
hidden layers neurons, the chain rule is adopted to express this
gradient:

∂ξi
∂Wi,i−1

=
∂ξi
∂ei

∂ei
∂ai

∂ai

∂zi

∂zi
∂Wi,i−1

, (5)

where ξ represents the error signal propagated through the
neural network up to the considered ith hidden layer. Once
the partial derivative for a layer is computed, the weights are
updated:

Wi,i−1 = Wi,i−1 − lr
∂ξi

∂Wi,i−1
, (6)

where lr is the learning rate that permits the adjustment of the
trajectory rate of change in the weight and bias space.

The same procedure is executed for bias actualization.
Dropout: When the training data are limited, DNNs may

experience overfitting problems; i.e., a good performance is
achieved during the training process, but poor results are
obtained for the test set. This issue is caused by the fact that
the derivative received by each unit gives an indication of
how the synaptic weights and neurons bias should change to
reduce the cost function considering how all other components
are acting. Thus, units may vary to fix the errors generated by
other units, leading to complex co-adaptation phenomena.

The dropout technique introduced in [16] gives a solution to
this problem. This approach consists of stochastically dropping
neurons and their synaptic weights at each training iteration.
Thus, co-adaptations are prevented since the compensating
effect of other units is not certain. In fact, under these random
changes, every unit must perform well under a wide variety of
structural configurations. Fig. 1 shows the structure of a DNN
after applying the dropout technique.

B. Unscented Kalman Filter

The UKF is a nonlinear version of the well-established
Kalman filter, described in [17]. It belongs to the wider class of
sigma-point Kalman filters that make use of the statistical lin-
earization technique known as unscented transformation [18].

The following nonlinear system is considered with a set of
states to be estimated and an observation model with additional
noises:

xk = f(xk−1) +wk−1 (7)

zk = h(xk) + vk, (8)

where x represents the state vector, f(x) is the state estimation
function, and h(x) is the observation function that relates
the measurement set zk with the state vector xk at instant k.
Variables w and v are the process and measurement noises,
respectively. Similar to the other classic Kalman filter versions,
the UKF algorithm executes two main steps: the estimation
step and the update step.

Estimation step: Once the sigma points and their weights
are calculated as indicated in [18], they are propagated through
the nonlinear estimation function, and the predicted states are
computed as follows:

x̂k,k−1 =
2n∑
i=0

Wiχi,k,k−1, (9)

where χi and Wi represent the ith sigma point value and
weight, respectively. Then, the estimate covariance matrix is
calculated as:

Pxxk,k−1 =
2n∑
i=0

Wi[χi,k,k−1 − x̂k,k−1][χi,k,k−1 − x̂k,k−1]T

(10)

Propagating the sigma points through the observation function,
the same procedure is applied to compute the observation
mean ẑk,k−1 and the covariance matrix Pzzk,k−1. Then,
following a similar approach, the cross-covariance matrix
Pxzk,k−1 is determined.

Update step: Once a new measurement set becomes avail-
able, the update step is applied:

Kk = Pxzk,k−1Pzz
−1
k,k−1 (11)

Pxxk,k = Pxxk,k−1 −KkPzzk,k−1K
−1
k (12)

xk,k = xk,k−1 +Kk[zk − ẑk,k−1] (13)

A full description of UKF development can be found in [19].
This state estimator has been chosen for this work because,
as reported in [20], it shows better performance in terms of
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accuracy than other state estimation algorithms such as the
weighted least square or the extended Kalman filter. However,
as pointed out previously, other state estimation algorithms are
compatible with the proposed TI methodology.

III. METHOD DESCRIPTION

The main contribution of this work is to provide a fast and
reliable TI algorithm. The methodology is based on DNNs
and the TI is performed using the same set of measurements
used by the state estimator. Fig. 2 illustrates how the proposed
TI DNN method is integrated into a general state estimation
problem.

The proposed TI method uses a feed-forward DNN as de-
scribed in Section II and is formulated to solve a classification
problem. The DNN input is the measurement set, consisting of
a number of active power, reactive power, voltage magnitude
and voltage angle measurements. Before the inputs are fed to
the DNN, they are normalized with the following procedure:

zinormalized
=

zi − zmin

zmax − zmin
, (14)

where zi is the ith measurement to be normalized, and
zmax and zmin are the maximum and the minimum values,
respectively, in the normalizing range. Thus, the normalized
zi assumes a value between 0 and 1. The normalization
is applied separately for power flow/injection measurements,
voltage magnitude measurements and voltage angle measure-
ments. This procedure has proved to be very effective for
avoiding the generalization problems and accelerating the
training process [15]. The output neurons of the DNN have a
binary formulation, in which each possible set of output values
is associated with a topology configuration. The topology
configurations considered for both test systems of Section IV
represent the loss of every single branch, according to the N-1
outage criterion. They are reported in [21].

The TI DNN contains several layers, whose number and
size depends on the specific power system. For both the test
systems presented in Section IV, hidden and output layer
neurons use the following sigmoid activation function:

ai =
1

1 + e−zi
(15)

The error signal used during the training phase is expressed
as follows:

ei = (yi − oi)
2 (16)

The proposed TI DNN allows an accurate mapping of
the relations between the measurements and the topology
configuration. Once properly trained, the TI DNN is able to
accurately predict the network topology even under network
operation scenarios for which the TI DNN has not been
previously trained.

In order to demonstrate the proposed methodology, the TI
DNN is combined with a bad data detection and identifi-
cation algorithm that ensures that the set of measurements
is free of gross errors. Once the TI has been carried out,
the corresponding admittance matrix is loaded into the state
estimator observation function and the power system states are
calculated.

Yes

Topology
information

Bad data detection
and identification

algorithm

Measurement
set

Proposed topology
identification algorithm

No

State
estimator

Bad
measurements
replacement

Bad data 
detected?

Power system
states

Measurement
set

Original/modified
measurement set

Fig. 2. Flowchart of the proposed methodology

IV. CASE STUDY

The algorithms described in the previous sections are tested
on the IEEE 14-bus and IEEE 39-bus test systems. In this
section, the structure of the DNN used for the TI, the bad
data detection and identification and the calibration of the UKF
state estimator for both test networks are reported. Particular
attention is directed at the election of the structure of the TI
DNN and the creation of the training set, which are extremely
important to properly estimate the electric network topology.

The set of 50 and 127 measurements used for the IEEE
14-bus system and the IEEE 39-bus system are listed in [21]
and are also shown in Figs. 3 a) and 3 b), respectively. In the
case of the IEEE 14-bus system, to prove how the proposed
TI DNN performs with different set of measurements, two
distinct set of 40 measurements are also used to compare
the testing accuracy and relevant considerations are made
in this section. All the measurements used for TI, bad data
detection and identification, and state estimation are generated
using the software PowerFactory. The standard PowerFactory
synchronous machine model 2.2 is employed, and voltage-
and frequency-dependent loads are considered. A normally
distributed random error with zero mean and a 3σ standard
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deviation, corresponding to the measurement accuracy, is
added to the measurements. The accuracy values used in this
work are described in [22].

All the algorithms presented in this work have been coded
in MATLAB. The computer used in this work is an Intel(R)
Core(TM) i7-3770 CPU@3.40 GHz 3.40 GHz processor, with
6 GB RAM memory.

A. DNN for Topology Identification

Different DNN structures for both test systems have been
attempted, and the final DNN structure for the two test systems
is reported below.

• IEEE 14-bus System
The TI DNN in the case of the IEEE 14-bus system is
structured with three hidden layers, with 40, 20 and 10
neurons, separately. There are 50 input neurons corre-
sponding to the number of measurements used for the
state estimation, and there are 5 output neurons because
the number of the considered topology configurations is
21 and thus can be expressed as a 5-digit binary number.
The learning rate used during the training phase is lr =
10−6. No dropout procedure was necessary to correctly
identify the topology changes during the testing phase.

TABLE I
ACCURACY OF DIFFERENT DNN STRUCTURES - IEEE 39-BUS SYSTEM

DNN DNN DNN DNN DNN
90-60-30 75-25-10 75-25-10 90-30-10 90-30-10

no no dropout dropout dropout
dropout dropout 1-0.9-0.95-1 1-0.9-0.95-1 1-0.7-0.9-1

Training 98.3% 99.9% 99.3% 98.7% 99.7%
accuracy
Testing 84.58% 87.95% 89.57% 95.36% 99.92%

accuracy

The training time of this DNN is approximately 12.5
hours, which is consistent with other computational times
indicated in [23].

• IEEE 39-bus system
In the case of the IEEE 39-bus system, the DNN has
also three hidden layers with 90, 30 and 10 neurons, sep-
arately. There are 127 input neurons and 6 output neurons,
as the number of possible topology configurations is 47.
The learning rate adopted in this case is lr = 2 · 10−6.
In the present case, an inverted dropout algorithm is
applied since the DNN trained without dropout shows co-
adaptation phenomena that compromise the test perfor-
mance. The keeping probabilities used for the input layer,
the first, the second and the third hidden layers are 1, 0.7,
0.9 and 1 respectively. Lower keeping probabilities lead
to no-convergence problems during the training phase,
and the adoption of higher keeping probabilities is not
effective against co-adaptation, as shown in Table I.
Useful heuristics for effective dropout application can be
found in [24]. The training phase of this DNN was carried
out for approximately 94 hours. This value is consistent
with other training times reported in [23].

In both test systems, the sigmoid activation function is used,
as shown in (15), and the error signal has the same formulation
of (16). Other activation functions such as the rectified linear
unit and the hyperbolic tangent have also been tested, but
the performance obtained during the testing phase with the
sigmoid function was significantly superior, and the training
time was shorter.

Some of the attempts realized to calibrate the TI DNN for
the IEEE 39-bus test system are reported in Table I, where
the first three numbers represent the number of neurons of
the hidden layers and the last numbers represent the keeping
probability used during the dropout procedure. Although with
all the represented structures, a good estimation on the training
set is achieved, the test accuracy is strongly influenced by the
DNN structure and the use of the dropout procedure, as can be
easily observed from Table I. In fact, it is found that the DNN
with the chosen structure offers better accuracy during the
testing. In particular, the proposed DNN was able to correctly
detect all of the considered topology configurations reported
in [21] in almost every topology estimation. DNNs with a
lower number of hidden layers have been tested, but their
structure proved to be insufficient for mapping the relations
between the upcoming measurements and the actual network
topology.

Extensive simulations on both test systems show that in
order to correctly extract the relationship between the mea-

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3076671

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



6

surements values and the actual topology configuration, a
wide variation of the input values during the DNN training
process is essential. Hence, for the 14-bus system and the 39-
bus system, different generation and load profiles variations
were simulated so that during the training process, the bus
voltage magnitude fluctuates from approximately 0.75 p.u. to
1.25 p.u. and the current flows from 0 to 130% of the line
rated capacity. These variations have proved to be of pivotal
importance to effectively extract the input-output mapping.
In this manner, the DNN is trained so that its estimations
remain reliable even outside the training set. This training
process is generated by modeling the previously mentioned
generation and loading events for each topology configuration,
i.e., for each branch placed out of service. For every topology
configuration, approximately 350 training examples are used
on both test systems to train the DNN using batch mode [14].
Overall, the DNN for the 14-bus test system employs 7470
training samples, and the DNN for the 39-bus system is trained
with 16590 samples. In both test systems, the DNN synaptic
weights and bias are initialized using independent normalized
Gaussian random variables with zero mean and unit variance.

To observe how the proposed method performs with lower
global measurement redundancy and to analyse its dependence
from the type of measurements, two TI DNNs are implemented
for the IEEE 14-bus system, both with a measurement set
composed of 40 elements. In both cases, 10 measurements are
withdrawn from the set of 50 measurements reported in [21].
In the first set of measurements, namely type 1 in Table II,
10 active and reactive power injection measurements (relative
to bus 5, 6, 10, 12 and 13) are removed from the set of 50
element. In the second set, namely type 2 in Table II, 10 active
and reactive power flow measurements are withdrawn from the
set of 50 measurements (relative to branch 1-2, branch 2-4,
branch 6-11, branch 10-11 and branch 12-13). In this manner,
it is possible to observe how the accuracy achieved during
the testing phase depends on the measurement type. Results
reported in Table II indicate that the accuracy obtained during
the training phase with the two reduced sets of measurements
is comparable with the training accuracy achieved with the
set of 50 elements. Nevertheless, the testing accuracy varies
significantly. As can be observed in Table II, in the case of
the type 1 set of measurements the testing accuracy decreases
only to 95.26%, whereas in the case of the type 2 the accuracy
strongly decreases to 86.69%. This result indicates that power
flow measurements tend to carry more relevant information
than power injection measurements for the topology identifica-
tion process. In fact, this is quite intuitive, as the former type of
measurements are more related to the topology configuration
of the network. Nevertheless, the TI DNN trained with 50
measurements is the one which shows better accuracy, because
power injection measurements also provide information for
the topology identification process. In conclusion, these results
suggest that both the number of measurements and their type
have an impact on the effectiveness of the proposed method.

For both the IEEE 14-bus and 39-bus systems, the testing
phase is conducted considering the sudden outage of a branch,
and the simulation is repeated for all the network branches.
The simulation lasts 5 s, a short-circuit is simulated at t=1 s

TABLE II
ACCURACY WITH DIFFERENT SET OF MEASUREMENTS - IEEE 14-BUS

SYSTEM

Set of 50 Set of 40 Set of 40
measurements measurements - measurements -

type 1 type 2
Training accuracy 99.32% 99.24% 99.17%
Testing accuracy 99.59% 95.26% 86.69%

and the affected branch is placed out of service after 100 ms.
The simulation time step used is 33 ms, and thus, the TI DNN
is called to estimate the network topology 150 times for each
simulation. The procedure is repeated for all of the considered
topology configurations.

B. Bad data detection, identification and replacement

To correctly estimate the actual network topology and
successively execute the state estimation, gross errors in the
measurement set must be detected, identified and replaced.
Thus, a bad data detection and identification algorithm is
needed. In this work, the methodology proposed in [11] is
modified and implemented, although other algorithms can be
used. This algorithm is based on an ANN and has been imple-
mented for the IEEE 39-bus system to prove its compatibility
with the proposed TI identification algorithm. However, it must
be noted that instead of using 1 hidden layer, as detailed
in [11], the neural network used in this work is structured
with 2 hidden layers because it shows better performance
during testing. Since the measurement set for the IEEE 39-bus
system has 127 elements, the neural network is provided with
127 input neurons and 127 output neurons, while both hidden
layers are equipped with 80 neurons. With this structure,
the neural network shows good performance during the test
phase. Similar to the DNN for TI, the input set is normalized
using (14) and the training set includes wide variations in
the input measurements. The activation function used for the
hidden layers and output layer neurons is:

ai =
1 − e−zi

1 + e−zi
(17)

Similar to the TI algorithm, the synaptic weights and
neurons bias are initialized with Gaussian random values
with zero mean and unit variance. No dropout procedure is
implemented. The identification rule used in this work has the
same formulation proposed in [11] and is expressed as follows:

(zi − θi)
2 > ri

2, (18)

where zi and θi are the ith measurement and its estimated
value, respectively, and ri is the desired threshold that flags the
bad measurement input. The identification threshold applied
in this work is ri = 10 · σi, where σi is the ith measurement
standard deviation.

C. State estimation algorithm based on UKF

The diagonal initial estimate covariance matrix P 0,0 of the
UKF is composed by the initial state variances of 0.052 and
0.012, corresponding to the voltage magnitudes and voltage
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angles,respectively.Thediagonalprocessnoisecovariance
matrix Q isformedbythetermsof0.0052 and0.052,
correspondingtothevoltage magnitudeandangleprocess
variances,respectively.Inaccordancewiththemeasurements
variancesdescribedabove,thediagonalmeasurementuncer-
taintymatrixRisdetermined.Theinitialstatevectorx0,0is
derivedfromaflatstarthypothesis;i.e.,thevoltagemagnitude
andvoltageanglestatesareinitializedwithonesandzeros,
respectively.Allofthepreviousassumptionsaremadeforthe
stateestimatorsimplementedinboththeIEEE14-busand39-
bustestsystems.
Theindexusedtoevaluatetheaccuracyofthestateestima-

toristherootmeansquare(RMS)oftheresidualsΨ,whichis
calculatedseparatelyforthevoltagemagnitudesandanglesas
shownin[20].Theobservationfunctionh(x)isdetermined
usingthesameproceduredescribedin[20].

V.TESTRESULTS

Asdescribedintheprevioussection,totesttheeffectiveness
oftheproposedTIalgorithm,allofthetopologyconfigura-
tionsreportedin[21]havebeensimulatedandsuccessfully
detectedduringthetestingphase.Inthissection,somestudy
casesarereportedtoshowhowtheintegrationoftheproposed
TIDNNcanbenefitthestateestimationprocessandtoshow
itsDSEapplicabilityduetoitssmallcomputationalcost.
Allofthecasesreportedinthissectionareimplemented
withthesetofmeasurementsdescribedin[21].Theglobal
measurementredundancyusedfortheIEEE14-bussystem
andtheIEEE39-bussystemis1.79and1.63,respectively.
Inallofthesimulationscases,thetimestepis20msanda
randomGaussiannoiseasdescribedinSectionIVisapplied
tothemeasurementset.

A.Case1:TopologychangeintheIEEE14-bussystem
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-0.14
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-0.08
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-0.04

2 
(r
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d)

Real 2

Estimated 2 with TI

Estimated 2 without TI

Inthiscase,atopologychangeintheIEEE14-bustestsys-
temisstudied.Specifically,athree-phaseshort-circuitcurrent
withzerofaultimpedanceissimulatedatthemiddleofline2-4
att=0.5s,andthefaultiscleared100mslaterbyopeningthe
line.Thesimulationiscarriedoutfor10s.Oncethefaulted
branchopens,atopologyvariationoccurs.Consequently,some
elementsinthenetworkadmittancematrixthatareusedinthe
observationfunctionequationsvary.Ifthetopologychangeis
notdetectedandtheadmittancematrixvaluesarenotupdated
accordingly,abiasedestimationoccurs.Usually,the most
affectedstatesfromthiserrorarethevoltagemagnitudesand
anglesofthebusconnectedtotheaffectedbranch.Forthis
reason,thevoltageanglesatthebuses2and4arereportedin
Fig.4andFig.5.Anexaminationofthefiguresshowsthatthe
TIDNNcandetectthecorrecttopologyafterthedisconnection
ofline2-4andavoidabiasedestimation.Itisobservedthat
thealgorithmimprovesnotonlythesteady-stateestimation
butalsotheestimationofthetransientbehavior.
TableIIIshowstheRMSresidualsofthestateestimation.

Itisobservedthattheestimationofthevoltageangleshas
improvedsignificantlywiththecorrecttopologyinformation,
whiletheimprovementinthevoltagemagnituderesidualsis
marginal.Thisresultcanbeexplainedbasedonobservationof

Fig.4. Case1-δ
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Fig.5. Case1-δ4estimationwithandwithoutTI

TABLEIII
CASESTUDY1

Comparison Estimationwith Estimationwithout
index topologyidentification topologyidentification
Ψδ(rad) 5.929·10 3 2.640·10 2

ΨV (-) 1.120·10 2 1.325·10 2

themeasurementsetreportedin[21].Infact,thebus2voltage
magnitudeismeasuredanddoesnotneedtobeestimated
throughaload-flowformulationintheobservationfunction
thatreliesonthetopologyinformation.Whilethebus4voltage
magnitudeisnotmeasured,theadjacentbus2,3,and5voltage
magnitudesare monitored,leadingtoalowerdependence
fromthetopologyconfigurationinformation.Theseresultsare
consistentwiththeconsiderationsmadein[8],inwhichthe
advantagesofusingameasurement-basedapproachinstate
estimatorsarehighlighted.
Inadditiontoexcellentprecisionoverawiderangeof
testingsimulations,thealgorithmproposedinthis work
showedacomputationaltimeofapproximately1.3·10−4s
foreachtopologyestimationonthis14-bustestsystem,thus
demonstratingitsfeasibilityforDSEapplications,incontrast
totheotheralgorithmsmentionedaboveinSectionI.
Forthiscasestudy,acomparisonintermsofcomputational
timewiththeresidualanalysis[3]isreported.Theresidual
analysis methodexhibitscomputationaltimesofapproxi-
mately0.98s,whereastheproposedapproachprocessesthe
topologyidentificationin1.3·10−4s.Thisclearlyindicates
thattheproposedmethodissignificantlyfasterandsuitablefor
DSEapplications.Itisworthnoticingthat,duetothereasons
mentionedinSectionI,alsootherTIalgorithmsperform
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Fig.6. Case2-V5EstimationwithandwithoutTI

TABLEIV
CASESTUDY2

Comparison Estimationwith Estimationwithout
index topologyidentification topologyidentification
Ψδ(rad) 6.351·10 3 4.011·10 2

ΨV (-) 1.173·10 2 1.232·10 1

withworseCPUtimescomparedwiththeproposedTIDNN
method,astheircomputationalburdenissensiblyhigher.

B.Case2:TopologychangeintheIEEE39-bussystem

Inthiscase,athree-phaseshort-circuitcurrentatthemiddle
ofline5-8isconsidered.Thefaultoccursatt=0.5s,and
thelinecircuitbreakeropens100mslater.Thesimulationis
carriedoutfor10s.Inthiscaseaswell,themostaffected
statesfromthetopologychangearethoseadjacenttothe
faultedbranch,i.e.,bus5and8states. Whilethepresence
ofthevoltagemeasurementdeviceatbus8permitstheUKF
toestimatewithagoodaccuracyevenwithoutacorrectTI,
theabsenceofameasurementdeviceplacedatthebus5leads
thestateestimatortolosetrackonthisstate,ascanbereadily
observedfromFig.6.Similartothepreviousstudycase,
withtheproposedTIDNN,thestatesareestimatedcorrectly,
andabiasedestimationisavoided.TableIVshowstheRMS
residualsofthiscase.ItisobservedthatthepresenceoftheTI
DNNalgorithmreducestheRMSresidualsbyapproximately
oneorderof magnitudesinceitpreventsthe UKFstate
estimatorfromlosingtrackofseveralstates,specificallythose
thatarenotmeasured.

Inthiscase,theTIDNNrequiresacomputationaltimeof
approximately1.4·10−4s.Itisobservedthatalthoughadenser
DNNstructurewithrespecttothepreviousstudycaseisused,
thecomputationaltimeforthetopologyestimationremains
almostequalandisperfectlysuitableforDSEapplications.
TheUKFstateestimatorrequiresapproximately16.9·10−3

stoperformanestimationonthistestnetwork;thus,the
integrationwiththeTIalgorithmdoesnotsignificantlyin-
creaseitscomputationalburden,anditsonlineapplicability
isnotaffected.TheCPUtimecomparisonofboththestate
estimatorsandtheTIDNNsimplementedforthetwotest
systemsispresentedinTableV.

TABLEV
CPUTIMECOMPARISONOFTHESTUDYCASES

TIDNN State
estimationtime(s) estimationtime(s)

IEEE14-bustestsystem 1.3·10 4 3.3·10 3

IEEE39-bustestsystem 1.4·10 4 16.9·10 3

TABLEVI
CASESTUDY3-GROSSMEASUREMENTREPLACEMENTS

Measurement WrongValue EstimatedValue Truevalue
(p.u.) (p.u.) (p.u.)

P9 39 −0.40 −0.18 −0.20
Q9 39 −0.82 −0.62 −0.69
P23 24 3.13 3.53 3.53
Q23 24 0.20 0.38 0.50
P16 19 −5.82 −5.12 −5.02
Q16 19 −0.88 −0.46 −0.48

C.Case3:GrosserrorsinthemeasurementsetontheIEEE-
39bussystem

Inthiscase,theimportanceofcouplingabaddatadetection
andidentificationalgorithmwiththeDNNTIalgorithmis
demonstrated.Thissimulationiscarriedoutfor1sandfrom
t=0,1suntiltheendofthetest,6ofthe127measurements
aresupposedtobeaffectedbyagrosserror,asindicatedin
TableVI.Thesegrosserrorsarecorrectlydetected,identified
andreplacedbythebaddatadetectionandidentification
algorithm.AnexaminationofthedatapresentedinTableVI
showsthatthereplaced measurementsarenotperfectbut
arestillrelativelyclosetotheirtruevalues. Usingthese
values,theTIDNNcancorrectlycontinueprocessingthe
topologyconfiguration.Aspointedoutin[11],undersome
circumstances,thesemeasurementestimationsmaynotbevery
accurate.Apossiblesolutiontosolvethisproblemistoreplace
theidentifiedbaddatawithpseudo-measurements,usingthe
methodologyproposedin[25].
Ifthebaddatadetectionalgorithmisnotconsidered,the
baddatameasurementsfedtotheDNNcanprovokeafalse
topologyconfigurationdetection.Inthisparticularcase,the
TIDNN,insteadofclassifyingthetopologywiththebinary
outputof”000000”(i.e.,allthebranchesareconnected[21]),
detectsa”011000”topology,wronglyassumingthatline23-
24openedandconsequentlyleadingtoabiasedestimation
ofthevoltageangleatbus24,asobservedinFig.7.Inthis
case,theestimationerrorisrelativelysmall,butasshownin
thepreviousstudycase,awrongtopologyprocessingcanlead
toastrongbiasedestimationofsomestates.
Thiscaseillustratesthatafastbaddatadetectionand
identificationalgorithmthatreplaceswrongmeasurementsis
acomplementaryelementtotheproposedTIDNNalgorithm.
TheCPUcostofthebaddatadetectionandidentification
algorithmisapproximately3·10−4s,showingexecutiontime
compatibilitywiththeproposedTIDNN.

VI.CONCLUSION

ThispaperproposesafastTIalgorithmsuitableforDSE
applicationsbasedonDNNs.Forthepurposeofdemonstra-
tion,thealgorithmisappliedtotheIEEE14-busand39-bus
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Fig. 7. Case 3-δ24 Estimation with TI and with and without the bad data
detection and identification algorithm (BDDI)

test systems while considering the disconnection of any single
branch in the system; however, the same formulation can be
applied to areas of larger power systems or to other changes
in the topology.

The algorithm shows good performance both in terms of
reliability and computational time. Regarding the reliability,
the results on the IEEE 39-bus system show an accuracy higher
than 99% during the testing phase for a testing set of 7050
samples. With respect to the speed, the computational times
of the proposed methodology are quite low (approximately
10−4 s), making the TI DNN suitable for power systems DSE
applications in the area of control and protection. To the best
of our knowledge, no other published work has demonstrated a
topology processing method with such a small computational
cost. In fact, all of the algorithms briefly introduced in Section
I present CPU times from 10−1 s up to few seconds, limiting
their DSE applications.

It is worth noticing that in case a new branch is added
in the system, the TI DNN should be re-trained accordingly
to take into account new possible topology configurations.
However, transmission power systems experience network
extensions only occasionally, and these changes are usually
planned in advance. Thus, the re-training process does not
represent a limiting factor for the application of the proposed
methodology.

Finally, the importance of using a set of measurements free
of gross errors has been demonstrated. Hence, the proposed
algorithm is coupled with a fast bad data detection and
identification algorithm that substitutes wrong measurements
with estimated values.
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