
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a postprint version of the following published document:

Stavrinides, G.L., Rodrigo Duro, F., Karatza, H., 
García Blas, J., Carretero, J. (2017). Different aspects 
of workflow scheduling in large-scale
distributed systems. Simulation Modelling Practice 
and Theory, 70, pp. 120-134.

DOI: 10.1016/j.simpat.2016.10.009

© Elsevier, 2017

https://doi.org/10.1016/j.simpat.2016.10.009
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Different Aspects of Workflow Scheduling in
Large-Scale Distributed Systems

Georgios L. Stavrinidesa,∗, Francisco Rodrigo Durob, Helen D. Karatzaa,
Javier Garcia Blasb, Jesus Carreterob

aDepartment of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki,
Greece

bComputer Architecture and Communication Area, University Carlos III, Avda.
Universidad, 30, 28911 Madrid, Spain

Abstract

As large-scale distributed systems gain momentum, the scheduling of workflow

applications with multiple requirements in such computing platforms has be-

come a crucial area of research. In this paper, we investigate the workflow

scheduling problem in large-scale distributed systems, from the Quality of Ser-

vice (QoS) and data locality perspectives. We present a scheduling approach,

considering two models of synchronization for the tasks in a workflow applica-

tion: (a) communication through the network and (b) communication through

temporary files. Specifically, we investigate via simulation the performance of

a heterogeneous distributed system, where multiple soft real-time workflow ap-

plications arrive dynamically. The applications are scheduled under various

tardiness bounds, taking into account the communication cost in the first case

study and the I/O cost and data locality in the second. The simulation results

provide useful insights into the impact of tardiness bound and data locality on

the system performance.

Keywords: Workflow scheduling, Large-scale distributed systems, Ultrascale

systems, Quality of Service, Data locality

∗Corresponding author. Tel.: +30 2310 997974.
Email addresses: gstavrin@csd.auth.gr (Georgios L. Stavrinides),

frodrigo@arcos.inf.uc3m.es (Francisco Rodrigo Duro), karatza@csd.auth.gr (Helen D.
Karatza), fjblas@inf.uc3m.es (Javier Garcia Blas), jcarrete@inf.uc3m.es (Jesus
Carretero)



1. Introduction

The constant progress in computing and communication technologies has

led to the emergence of ultrascale computing. Ultrascale computing systems are

envisioned as large-scale complex systems, joining parallel and distributed com-

puting resources that may be located at multiple sites. The applications in these5

environments usually concern complex problems and feature coarse-grained par-

allelism. That is, their component tasks do not require any communication with

each other during processing, but only before or after their execution, forming

a workflow. In order to determine the result of such complex applications, their

individual tasks are scheduled and executed coordinately at various nodes of the10

system, according to their precedence constraints [1].

1.1. Motivation

The scheduling of workflow applications with multiple requirements in such

computing platforms has become a crucial area of research. Workflow applica-

tions usually have soft deadlines, which may be missed by a bounded amount of15

time (i.e. the applications are real-time). Thus, the Quality of Service (QoS) of

the system often concerns parameters like the completion rate, the timeliness,

the makespan and the tardiness of the applications.

Furthermore, workflow applications often require specific data in order to

start execution, which may be available at different nodes of the system. Current20

systems from both high performance computing (HPC) and cloud domains do

not efficiently support data-intensive workflows. On the one hand, typical HPC

systems use monolithic parallel file systems for data sharing, such as GPFS [2]

and Lustre [3]. On the other hand, in order to provide portability and scalable

I/O, one of the alternatives for mass data storage in cloud platforms is the use of25

remote shared storage systems. Usually, the aim of this approach is to provide

a unified interface and a scalable storage solution for cloud-based applications

through storage services, such as Amazon S3.

2



Consequently, QoS and data locality are two important aspects of workflow

scheduling in ultrascale systems, that should be taken into account in order to30

achieve good performance [4, 5].

1.2. Contribution

In this paper, we investigate the workflow scheduling problem in large-scale

distributed systems, from the QoS and data locality perspectives. We present a

scheduling approach, considering two models of synchronization for the tasks in35

a workflow application: (a) communication through the network and (b) com-

munication through temporary files. Specifically, we investigate via simulation

the performance of a heterogeneous distributed system, where multiple soft real-

time workflow applications arrive dynamically. The applications are scheduled

under various tardiness bounds, taking into account the communication cost in40

the first case study and the I/O cost and data locality in the second.

The remainder of the paper is organized as follows: Section 2 gives an

overview of related literature. Section 3 describes the QoS objectives during

workflow scheduling in ultrascale systems and presents a relevant case study.

Section 4 presents an alternative case study, from the data locality perspective,45

where data awareness is incorporated into the scheduling algorithm. Section 5

presents the performance evaluation of the system from the QoS and data lo-

cality perspectives and discusses the insights obtained by the simulation exper-

iments in each case study. Finally, Section 6 summarizes and concludes the

paper.50

2. Related Work

As the scheduling and execution of complex applications in large-scale dis-

tributed systems continues to gather significant attention from the research

community, QoS, data locality and workflow-oriented storage systems are some

of the most crucial topics.55

3



2.1. Quality of Service

The scheduling problem of complex applications with various constraints and

requirements has been studied extensively in the literature [6, 7, 8, 9, 10, 11,

12, 13]. For workflow applications in particular, list scheduling heuristics are

the simplest, most practical, easiest to implement and often outperform other60

scheduling approaches [14]. According to this method, all the component tasks

of the applications are prioritized according to a particular common parameter

(e.g. deadline, computational cost etc.) and then arranged in a list, ordered

according to their priority. Subsequently, each task is allocated to the processor

that minimizes a specific cost parameter, such as the estimated start time of65

the task.

Genez et al. in [15], propose the Integer Linear Program (ILP) policy, in an

attempt to solve the problem of scheduling a workflow application in a Software

as as Service (SaaS) or Platform as a Service (PaaS) cloud with two levels of

service level agreements (SLAs). The first SLA level is between the end-user70

and the SaaS/ PaaS provider and concerns the deadline within which the user’s

workflow must be completed. The second SLA level is between the SaaS/ PaaS

provider and multiple Infrastructure as a Service (IaaS) providers, concern-

ing the characteristics and pricing of the virtual machines on which the user’s

workflow will be executed. The ultimate goal of the ILP strategy is to find a75

feasible mapping between the tasks of the workflow and the virtual machines

from multiple IaaS providers, so that the total monetary cost is minimized and

the makespan of the workflow is at most equal to the deadline required by the

user. It is shown that the proposed policy can provide low-cost solutions, while

meeting the deadline of the workflow. However, it only deals with the static80

scheduling of a single workflow, without utilizing any schedule gaps.

In modern large-scale distributed computing platforms, executing simulta-

neously multiple workflow applications of different users, sharing the same un-

derlying resources, is an inevitable requirement. Multiple workflow applications

have been used in service-oriented and cloud computing environments. For85

example, the Amazon Simple Workflow Service (SWF) can be used for the cre-

4



ation and deployment of multiple workflow applications in the Amazon EC2

cloud [16]. Recent research showed that utilizing gaps in the schedule of the

compute nodes, formed by the inter-task dependencies and data communication

costs, is a promising approach for efficient multiple workflow scheduling [17, 18].90

Towards this direction, Jiang et al. in [19] present the Path Clustering Heuris-

tic with Distributed Gap Search (PCH-DGS), for the scheduling of multiple

workflow applications in a heterogeneous cloud. According to their proposed

strategy, the tasks of a workflow are first partitioned into groups, in an attempt

to minimize the communication cost between them. Subsequently, each group95

of tasks is inserted into the first available time gap in a processor’s schedule.

In case the gap cannot accommodate all of the tasks of a group, the rest of the

group’s tasks are inserted into the next available gap in the schedule of the same

or other processor of the cloud, in a recursive manner.

In [20], Tsai et al. propose an Adaptive Dual-Criteria task group allocation100

approach, featuring two mechanisms: (a) an adjustable schedule gap selection

and (b) an adaptive task group rearrangement mechanism. First, the tasks in

each workflow are clustered into several groups in order to minimize inter-task

communication costs. Subsequently, the task groups are prioritized and then

allocated onto an appropriate resource, using the proposed allocation approach.105

Specifically, according to the adjustable schedule gap selection mechanism, a

score is calculated for each schedule gap, taking into account the earliest finish

time of the task group, the size of the gap and an adjustable parameter, for

adjusting the relative weights of the two aforementioned attributes. The gap

with the lowest score is considered for selection. Furthermore, according to110

the adaptive task group rearrangement mechanism, in case a task group does

not fit into the gap under consideration, it is split into several subgroups that

are allocated during the subsequent allocation steps, taking into account the

communication cost between the subgroups. The main disadvantages of the

approaches mentioned above, PCH-DGS and Adaptive Dual-Criteria, are: (a)115

they are static and (b) they are not suitable for workflows with time constraints,

a typical requirement of workloads in ultrascale platforms.

5



2.2. Data Locality

On the one hand, HPC is mostly based on the data processed and gener-

ated by scientific applications. Data are typically stored in high-performance120

parallel file systems, such as Lustre [3] and GPFS [2], for future processing and

verification (checkpointing). On the other hand, the analysis of large datasets

mainly depends on infrastructures where storage and computation resources

are not completely decoupled, as in the case of Hadoop Distributed File System

(HDFS) [21].125

Data locality is a major factor for reducing data movement and thus execu-

tion time, increasing the possibility to meet deadlines. To achieve this objec-

tive, several solutions have been proposed. Hadoop [22], uses the MapReduce

paradigm [23] to provide a data-aware programming model that facilitates the

exploitation of data locality and achieves better scalability. Processes or virtual130

machines are offloaded over nodes where data have been spread on HDFS to

avoid the data transfer required before and after computation. CloneCloud [24]

and MAUI [25] are examples of compute offloading in distant fixed clouds. More

recent solutions, such as Spark [26] and Tachyon [27], have shown two funda-

mental issues: first, the importance of in-memory storage and data locality for135

improving performance in data-intensive applications, and second, the necessity

of taking advantage of the new high-speed network technologies in I/O opera-

tions.

In any case, Xu and Mao [28] pointed out that the transmission of large

data items should occur within a tight user-machine interaction loop. In [29],140

Wang et al. propose a model called Bottleneck-Aware Allocation (BAA) that

provides a new definition of fairness for allocation of multiple resources. BAA

is complementary to our solution, given that traffic bottlenecks are not covered

in this work.

Finally, another solution that addresses QoS in storage systems is QoSC [30].145

The authors propose a data placement policy based on the QoS of the HDFS’s

DataNodes. A DataNode with high QoS has a heavier weight than one with

low QoS, when the DataNode selection policy is enforced. In our proposal, QoS

6



of a storage node is determined by both cache capacity and access hit ratio.

2.3. Workflow-Oriented Storage Systems150

Workflow engines, such as the Data Mining Cloud Framework (DMCF) [31],

Swift [32], Pegasus [33], and OmpSs [34], are software systems for designing

and executing data analysis workflows. The majority of the workflow engines

rely on the default shared storage (parallel file system in HPC infrastructures

or the storage service offered by the public cloud provider) for any I/O-related155

operation. This implies that the I/O performance of tasks is limited by the per-

formance of the default storage and can be greatly hit by contention. Locality-

aware techniques are becoming more and more important, in order to avoid these

problems. The locality-aware policies presented in our work could be beneficial

for workflow engines.160

Related with locality-aware storage specifically designed for workflow en-

gines, Costa et al. [35] propose the utilization of the file attributes of MosaStore,

in order to provide communication between the workflow engine and the file sys-

tem, by using hints. The workflow engine can provide these hints directly to

the file system or the file system can infer patterns by analyzing data accesses.165

The MosaStore approach is based on a centralized metadata server that could

become a bottleneck in large-scale systems.

The Any-scale Many-task computing File System (AMFS) framework pre-

sented in [36], offers programmers a simple scripting language for the execution

of parallel applications in memory. We share with AMFS the approach of fully170

distributing metadata. However, AMFS requires explicit specification of which

data are stored in memory and which data will be persistent, while our goal is

to be able to transparently provide persistence mechanisms to the programmer.

3. QoS-Driven Workflow Scheduling

As mentioned earlier, one of the major challenges of workflow scheduling175

in large-scale distributed systems is to meet certain QoS criteria. These may

7



include the completion rate, the timeliness, the makespan, and the tardiness

of the applications. In the following subsections, a particular case study is

presented. We investigate via simulation the performance of a heterogeneous

distributed system, where multiple soft real-time workflow applications arrive180

dynamically and are scheduled under various tardiness bounds. The system

performance is evaluated in terms of specific QoS metrics.

3.1. Problem Formulation

3.1.1. System Model

In this case study, the target distributed system is considered to consist of a185

set P of q heterogeneous processors, that are fully connected by a heterogeneous

network. Each processor pi serves its own local queue of tasks and has an

execution rate µi. The transfer rate between two processors pi and pj is denoted

by νij . The workflow applications arrive at a central scheduler, where their

unscheduled tasks wait in a global queue until they get ready to be scheduled.190

A task becomes ready to be scheduled when it has no predecessors or when all

of its parent tasks have finished execution.

The heterogeneity degree HD of the system denotes the relative difference

in the processing speed of the processors, as well as in the transfer rate of the

communication links. The execution rate of each processor is uniformly dis-195

tributed in the range [µ · (1−HD/2) , µ · (1 +HD/2)], where µ is the mean

execution rate of the processors. The data transfer rate of each communica-

tion link is uniformly distributed in the range [ν · (1−HD/2) , ν · (1 +HD/2)],

where ν is the mean data transfer rate of the communication links. The same

heterogeneity degree is used for the calculation of both the execution rate and200

data transfer rate of each processor and communication link respectively, since

most modern distributed systems rely on virtualized resources and thus feature

a similar (moderate) degree of heterogeneity regarding their computational and

communication resources. The target system is illustrated in Figure 1.

8



arrival rate 

global queue

local queue

processor 1

workflow 

applications

1

central scheduler

local queue

processor 2

2

local queue

processor q

q

Figure 1: The model of the distributed system under study.

3.1.2. Workload Model205

It is assumed that multiple real-time workflow applications arrive dynami-

cally at the system, in a Poisson stream with rate λ [37, 38]. Each application

is represented by a directed acyclic graph (DAG) G = (V,E), where V is the

set of the nodes of the graph and E is the set of the directed edges between the

nodes. Each node represents a component task ni of the application, whereas a210

directed edge eij between two tasks ni and nj represents the data that must be

transmitted from the first task to the other.

A workflow application may have one or more entry tasks and one or more

exit tasks. It is assumed that the entry tasks of the application do not require

any input data in order to begin and therefore can be processed on any processor.215

Intermediate tasks, however, require that all of their input data (produced by

their parent tasks) are available on their assigned processor, in order to be able

to start execution. It is assumed that the component tasks of an application

are not preemptible, as preemption of real-time tasks may ultimately lead to

performance degradation [39].220

9



Each task ni in a workflow application has a weight wi, which denotes its

computational volume (i.e. the amount of computational operations needed to

be executed). The computational cost of the task ni on a processor pj is defined

as:

Comp(ni, pj) = wi/µj (1)

where µj is the execution rate of processor pj .

Each edge eij between two tasks ni and nj has a weight cij which represents

its communication volume (i.e. the amount of data needed to be transmitted

between the two tasks). The communication cost of the edge eij is incurred

when data are transmitted from task ni (scheduled on processor pm) to task nj

(scheduled on processor vmn) and is given by:

Comm ((ni, pm), (nj , pn)) = cij/νmn (2)

where νmn is the data transfer rate of the communication link between the

processors pm and pn. In case both tasks ni and nj are scheduled on the same

processor, the communication cost of the edge eij is considered negligible. The

length of a path in the graph is the sum of the computational and communication225

costs of all of the tasks and edges, respectively, on the path. The critical path

length CPL is the length of the longest path in the graph.

Each workflow application has a soft end-to-end deadline D, which can be

missed by an amount of time T , called tardiness [40]. Tardiness is given by:

T =

AFT −D if AFT > D

0 if AFT ≤ D
(3)

where AFT is the actual finish time of the application. The tardiness of an

application may be unbounded or bounded. The tardiness bound TB of an

application is defined as:

TB = TF · CPL (4)

where TF is a constant, called the tardiness factor of the application.

10



The makespan (i.e. schedule length) M of a workflow application is given

by:

M = AFT −AST (5)

where AST is the actual start time of the application.

The communication to computation ratio CCR of a workflow application is

the ratio of its average communication cost to its average computational cost

on the target system and is defined as:

CCR =

∑
eij∈E Comm(eij)∑
ni∈V Comp(ni)

(6)

where V and E are respectively the sets of the tasks and the edges of the230

application. Comm(eij) is the average communication cost of the edge eij over

all of the communication links in the system, whereas Comp(ni) is the average

computational cost of the task ni over all of the processors in the system.

It is assumed that the computational volume of a task in a workflow is

exponential with mean w, whereas the communication volume of an edge is235

exponential with mean c. The mean communication volume c is calculated from

(6), for a given CCR and w. An example of a workflow application represented

as a directed acyclic graph is shown in Figure 2.

3.2. Scheduling Approach

In order to schedule the ready tasks in the global queue of the system,240

a list scheduling heuristic is employed, which consists of two phases: (a) a

task selection phase and (b) a processor selection phase. Specifically, we use

our proposed algorithm Earliest Deadline First with Best Fit (EDF BF), as

described in [4, 17, 41, 42], since it exhibits promising performance. The key

feature of our proposed policy is the incorporation of the Best Fit bin packing245

technique [43, 44] into the processor selection phase, in order to improve the

performance of the system, by utilizing possible idle time gaps that may form

in the schedule of a processor. The proposed approach could be employed for

the scheduling of web services and applications in web and cloud environments,

11



3 6 8

2 5 3 4

6 4 8

1 7

6

n1 n2 n3

n4 n5 n6 n7

n8 n9 n10

n11 n12

n13

5 2 7

7

2 31

43

2

5

7

8

7

8

2

5

3

Figure 2: A workflow application represented as a directed acyclic graph with three entry

tasks, four exit tasks and six intermediate tasks. The number in each node denotes the

average computational cost of the represented task. The number on each edge denotes the

average communication cost between the two tasks that it connects. The critical path of the

graph is depicted with thick arrows.

where scheduling efficiency and performance are extremely important factors.250

The EDF BF scheduling strategy is described below.

3.2.1. Task Selection Phase

The task with the highest priority for scheduling is the one that its applica-

tion has the earliest end-to-end deadline. That is, the prioritization of the tasks

is based on the Earliest Deadline First (EDF) policy.255

3.2.2. Processor Selection Phase

Subsequently, the scheduler assigns the selected task from the previous step

to the processor that can provide it with the earliest estimated start time EST ,

12



with any ties broken randomly. The EST of a ready task ni on a processor pn

is defined as:

EST (ni, pn) = max {tdata(ni, pn), tidle(ni, pn)} (7)

where tdata(ni, pn) is the time at which all input data of task ni will be

available on processor pn, whereas tidle(ni, pn) is the time at which pn will be

able to execute task ni.

In order to calculate the term tidle(ni, pn), we first find the potential position260

of the ready task ni on processor pn. This is the position at which the ready

task ni would be placed in the local queue of processor pn, if it was actually

assigned to that particular processor. The potential position of a ready task in a

processor’s local queue is determined by taking into account the task’s priority

and by utilizing possible gaps in the processor’s schedule, as follows:265

1. We first find the initial potential position at which the ready task ni would

be placed in the processor’s queue, according to its priority and so that it

does not precede the task that is placed after the last utilized gap in the

schedule of processor pn. Otherwise, some utilized schedule gaps may be

canceled out. The scheduled tasks placed in the area between the head270

of the queue and the initial potential position of the ready task, form the

searchable area of the queue.

2. Subsequently, the tasks in the searchable area of the queue are examined

whether they can give schedule gaps, starting from the task at the head

of the queue. A gap is candidate to be utilized by the ready task ni only

when it can accommodate its computational cost. Moreover, the ready

task ni must not delay the succeeding task nj in the processor’s queue.

That is, the following condition must hold:

Comp(ni, pn) ≤ tdata(nj , pn)− EST (ni, pn) (8)

In order to place the ready task ni into a schedule gap, the Best Fit (BF)

bin packing technique is employed. According to this heuristic, the task

13



is inserted into the gap where its computational cost fits and where it275

leaves the minimum unused time possible. The position of a ready task

that is inserted into a gap in the processor’s schedule is called the final

potential position of the task. In case a ready task cannot be inserted

into a schedule gap, its final potential position is the same as its initial

potential position in the processor’s queue.280

4. Data Locality-Driven Workflow Scheduling

In the previous case study, we considered that the synchronization of the

component tasks of a workflow application is achieved through communication

via the network. However, as mentioned in the previous sections, the data flow

between the intermediate tasks of a workflow application may be based on the285

exchange of files. In this case study, we extend the former model, assuming

that files are used in the input, output and intermediate stages of the workflow,

in order to evaluate the impact of using data location information on the per-

formance of workflow scheduling in ultrascale systems. We investigate whether

data locality exploitation can reduce the communication times and consequently290

minimize the average makespan of the workflow applications.

4.1. Utilization of Hercules Distributed In-Memory Storage Solution

In order to exploit data locality, we incorporated into our model the Her-

cules distributed in-memory storage solution, as presented in our previous work

in [5]. Hercules provides the following advantages: scalability, ease of deploy-295

ment, flexibility and performance [45, 46]. Furthermore, it has been proven

that Hercules can benefit workflow engines in HPC and cloud environments,

by facilitating the exploitation of data locality, independently of the underlying

infrastructure [47, 48]. Hercules consists of two levels: a client-side user-level li-

brary (Hercules front-end) on top of server-side I/O nodes (Hercules back-end).300

The applications use the information provided by the Hercules user-level client

library, in order to access data on the server-side I/O nodes.

14



Hercules I/O servers can be deployed using either dedicated or shared re-

sources. In the dedicated resources case, Hercules I/O servers are deployed on

dedicated nodes, with the sole objective of providing an alternative I/O solution305

to the shared file system. In the shared resources case, Hercules I/O servers are

deployed onto the compute nodes. Specifically, a Hercules server is deployed

on each available compute node, providing better I/O scalability than typical

shared file systems, where the number of I/O nodes is statically configured.

Moreover, the co-location of the application, Hercules client and Hercules I/O310

server on the same compute node, enables the possibility of local in-memory

data access. This feature, combined with locality-aware schedulers, exposes and

exploits data locality.

In this case study, we assume that Hercules is utilized according to the shared

resources approach, where a Hercules I/O server is deployed on each compute315

node. When a task of a workflow application is scheduled for execution on a

compute node of the distributed system, it may access its required data through

the Hercules client on the local Hercules I/O server, in case they are locally

available. Otherwise, it may access the data through the Hercules client on a

remote Hercules I/O server (residing on another compute node), where they320

are available. Alternatively, in case the data are not available in the Hercules

storage system, the task can access them from the shared parallel file system

(GPFS). This is depicted in Figure 3.

In order to show how Hercules interacts with the workflow engine, we have

adapted the workflow application model so that the communication between the325

tasks is achieved through temporary files. Specifically, for the example applica-

tion shown in Figure 2, we consider that the three entry tasks read one file each,

the four exit tasks write one resulting file each and the communication to/from

the intermediary tasks is performed by write/read operations over intermediate

files. The six intermediary tasks must wait to read a file created by their par-330

ent tasks. After their execution, they must write a file for communicating the

results to their child tasks. This is depicted in Figure 4. As in the previous

model, the number in each node denotes the average computational cost of the

15



workflow application

High Speed Network

Hercules front-end

Hercules back-end

Shared Parallel File System (GPFS)

compute node 1 compute node 2 compute node 3 compute node q

Hercules 

local data 

access

Hercules 

remote data 

access

file system 

data access

Figure 3: The model of the Hercules distributed in-memory storage solution.

represented task. However, the number on each edge now denotes the average

I/O cost between the tasks that it connects, depending on the file size.335

In this model, the communication link in the system is replaced by tempo-

rary files, which could be stored in Hercules local back-ends, Hercules remote

back-ends and the underlying parallel file system (i.e. OrangeFS, Lustre or

GPFS). The communication cost of the edge eij between two tasks ni and nj

is substituted by the I/O cost of creating/accessing the temporary files, which

highly depends on where the data are stored. Given the single path and single

copy characteristics of Hercules, data can only be stored in one level of the file

system. Hij represents the probability of finding a file generated by task ni

16



and required by the child task nj , in the Hercules subsystem. Every file not

stored in Hercules will be transferred to/from GPFS, with an inverse probabil-

ity of 1−Hij . Assuming a file system with three levels (local Hercules, remote

Hercules and shared file system), each level will expose a different hit ratio,

depending on the effectiveness of each server at providing data locality services.

This cost is denoted by:

IO ((ni, pm), (nj , pn)) = Hij · (IOlocal + IOremote) + (1−Hij) · IOshared (9)

Based on this general equation, we can further describe each of the previous

I/O-related costs. Hercules costs will be especially related to the hit ratio of

the local level and the remote level, which are represented by hlij and hrij ,

respectively. The costs related with Hercules communications can be modeled

as:

IOlocal = hlij · (fij/bmmn) (10)

IOremote = hrij · (fij/bnmn) (11)

where hlij is the local hit ratio, reflecting the probability of finding a file gener-

ated by task ni, which was executed on processor pm, on the processor pn that

the subsequent task nj is going to be executed. hrij is the remote hit ratio,

representing the probability of finding the file on any other processor. bmmn is

the bandwidth of the local accesses to the in-memory storage system, whereas

bnmn is the bandwidth of the remote accesses to the in-memory storage system,

performed through the fully-connected network. fij is the file size, representing

the amount of data transferred from processor pm to processor pn. Additionally,

as stated before, based on the single path and single copy characteristics of the

Hercules subsystem, each data item can only be stored in one of the hierarchy

levels, which implies that:

hrij = 1− hlij (12)

Finally, the cost of accessing file data in the shared file system can be de-

17



scribed as:

IOshared = fij/ρmn (13)

where ρmn corresponds to the throughput provided by the shared file system.

It is directly affected by the contention problem, depending on the number N

of tasks concurrently accessing the storage subsystem:

ρmn = MAXρmn/(1−Hij) ·N (14)

where MAXρmn is the maximum theoretical throughput offered by the shared

file system in perfect conditions. It is degraded by the file system contention.

Based on the modification of the communication concept into file access

operations, instead of the CCR parameter of a workflow application, in this

case study we employ the notion of the I/O to computation ratio IOCR of a

workflow application, which is the ratio of its average storage cost to its average

computational cost on the target system. It is defined as:

IOCR =

∑
eij∈E IO(eij)∑

ni∈V Comp(ni)
(15)

where IO(eij) is the average I/O cost between tasks ni and nj , whereas Comp(ni)

represents the average computational cost of the task ni over all of the processors

in the system.340

As shown in Figure 4, the workflow application previously depicted in Fig-

ure 2, is modified so that the data dependencies between the tasks are now

represented as file accesses. In the Figure, the communication costs are now

replaced by the corresponding I/O costs.

4.2. Incorporation of Data-Awareness into the Scheduling Algorithm345

In order to schedule the ready tasks in the global queue of the system, as in

the previous case study, a list scheduling heuristic is employed, which consists

of two phases: (a) a task selection phase and (b) a processor selection phase.

Again, the EDF BF algorithm is utilized. However, in this case study, data-

locality criteria are incorporated into the processor selection phase, in order to350

18



3 6 8

5 3

n1 n2 n3

n4 n5 n6 n7

n8 n9 n10

n11 n12

n13

9 3

4

3

2

5

6

15

6

7

4

14

8

7

1

7

7

11

Figure 4: The application DAG including file dependencies. Files can be stored in a traditional

shared file system, a Hercules I/O solution deployment or a combination of both.

avoid data movement between processors, as well as between a processor and

the global file system.

4.2.1. Task Selection Phase

As previously stated, the task with the highest priority for scheduling is

the one that its application has the earliest end-to-end deadline. Thus, the355

prioritization of the tasks is based on the EDF policy.

4.2.2. Processor Selection Phase

As in the previous case study, the execution of a data-dependent task whose

data are not available, is delayed until all of the data dependencies are fulfilled.

In this model, the scheduler works in combination with Hercules in order to360

select the resources for each task. Specifically, the scheduler takes into account

the data location information in order to assign the selected task to a proces-

19



sor. The data are made available locally or remotely by Hercules. Whenever

Hercules retrieves the data from a parent task, it moves them to the child task

(if necessary) and notifies it about the availability. A task can be placed on the365

data node or as near as possible to the data dependency. This mechanism can

be used for various processor allocation policies, which move the task execution

where the data are available, provided that Hercules returns the information

about data placement.

The EST of a ready task ni on a processor pn is defined again as:

EST (ni, pn) = max {tdata(ni, pn), tidle(ni, pn)} (16)

where tdata(ni, pn) is the time at which all data input files of task ni will be avail-370

able on processor pn, whereas tidle(ni, pn) is the time at which pn will be able

to execute task ni. As in the previous case study, the term tidle(ni, pn) is calcu-

lated by utilizing schedule gaps with the BF policy. However, now tdata(ni, pn)

changes depending on the service model for the data files: Hercules local data

access, Hercules remote data access and shared global file system, as shown in375

Figure 3.

5. Performance Evaluation

The system performance was evaluated via simulation, using specific met-

rics. First, the framework under study was evaluated from the QoS perspective.

Subsequently, the data-locality features were incorporated into the framework380

and the system performance was evaluated from the data locality perspective.

5.1. Evaluation Metrics

The performance of the system was evaluated in terms of the following QoS

metrics:

• Application completion ratio (ACR), which is given by:

ACR =
TNCA

TNAA
(17)

20



where TNCA is the total number of completed applications, i.e. the total385

number of workflow applications that completed execution either within or

beyond their deadline. TNAA is the total number of application arrivals

at the system, during the observed time period.

• Application guarantee ratio (AGR), which defined as:

AGR =
TNGA

TNAA
(18)

where TNGA is the total number of guaranteed applications, i.e. the total

number of workflow applications that completed execution within their390

deadline, without exhibiting any tardiness.

• Average makespan (M), which is the average makespan of all of the com-

pleted workflow applications.

• Average tardiness (T ), which is the average tardiness of all of the com-

pleted workflow applications.395

5.2. Experimental Setup

The performance of the framework under study was evaluated via simulation.

Due to the complexity of the system and the workload models, we implemented

our own discrete-event simulation program in C++, tailored to the require-

ments and specifications of the particular framework. Furthermore, in order to400

obtain unbiased simulation results, no specific workload traces were used, but

synthetic workload was used instead. Specifically, we used our own random

DAG generator, as described in [49].

We conducted a series of simulation runs, using the independent replica-

tions method. Specifically, we ran 30 replications of the simulation program405

for each set of input parameters, with different seeds of random numbers. The

termination condition of each replication was the completion of 106 workflow

applications. For every mean value, a 95% confidence interval was evaluated.

21



Table 1: Simulation Input Parameters.

Parameter Value

Number of completed DAGs 106

Number of processors q = 64

Scheduling method EDF BF

Mean processor execution rate µ = 1

Mean link transfer rate ν = 1

Mean file system throughput rate (data locality case) ρ = 1

System heterogeneity degree HD = 0.5

Max number of tasks per DAG X = 64

Number of tasks per DAG a ∼ U [1, X]

DAG arrival rate λ = {1, 1.25, 1.5, 1.75}

DAG relative deadline RD ∼ U [CPL, 2CPL]

Communication to computation ratio CCR = 1

I/O to computation ratio (data locality case) IOCR = {0.25, 0.5, 0.75, 1}

Mean task computational volume w = 1

DAG tardiness factor TF = 0.2

DAG tardiness bound TB = {0, 0.2CPL, unbounded}

The half-widths of all of the confidence intervals are less than 5% of their re-

spective mean values. The simulation input parameters used in our experiments410

are shown in Table 1.

The performance of the system, with respect to the arrival rate λ of the

workflow applications, was evaluated under different bounds of tardiness. Specif-

ically, we investigated the effects of the following tardiness bounds TB on the

performance parameters: (a) the case where no tardiness is allowed for each415

workflow application (i.e. TB = 0), which is essentially equivalent to the case

of hard deadlines, (b) the case where the allowed tardiness for each workflow

application is bounded by a value proportional to its critical path length (i.e.

TB = TF · CPL) and (c) the case where the maximum allowed tardiness is

unbounded. The simulation results are analyzed in the following subsection.420

The features of the storage system are characterized by the mean file system

throughput rate (ρ) and the I/O to computation ratio (IOCR) parameters. We

considered different scenarios, in order to investigate the effect of data locality

22



using Hercules. For example, in the case of lack of data locality, IOCR is equal

to 1, which means that all files are forwarded to the infrastructure file system.425

A IOCR = 0.25 corresponds to a scenario where maximum data locality is

achieved.

5.3. QoS Simulation Results Analysis

The performance of the system in terms of the application completion ratio

ACR metric, is shown in Figure 5. It can be observed that in the case where the430

maximum allowed tardiness of the applications is unbounded, the ACR is always

almost equal to 1, for all workload conditions. This is because, without any

tardiness bound, all of the applications are allowed to complete their execution,

without any time constraints. On the other hand, when the tardiness bound

is TB = 0, which essentially means that the applications have to finish their435

execution within their deadline, because otherwise they are lost, the ACR is low.

When the tardiness is bounded by a specific amount of time (TB = 0.2CPL),

the ACR has a value between the two extreme cases.

Figure 6 shows the QoS level of the system in terms of the application

guarantee ratio AGR metric. It can be observed that the AGR decreases as440

the tardiness bound increases. Since the computational and communication

volumes of each application are exponentially distributed, they more often have

small values and sometimes very large values. That is, a large percentage of

the applications that arrive at the system exhibit moderate computational and

communication requirements, whereas there is a small percentage of them that445

are computationally and communication intensive. Therefore, as the tardiness

bound increases, a larger number of the few computationally and communication

intensive applications is allowed to complete its execution, delaying the other

applications in the system, leading to more deadline misses.

For the same reason, the average makespan M and the average tardiness T450

of the completed applications increase as the tardiness bound increases. This

can be observed in Figures 7 and 8, respectively. It can also be observed that

with the increase of the arrival rate λ of the applications, all of the QoS metrics

23



Figure 5: The application completion ratio (ACR) vs. the arrival rate λ, for tardiness bound

TB = 0, TB = 0.2CPL and for unbounded tardiness.

Figure 6: The application guarantee ratio (AGR) vs. the arrival rate λ, for tardiness bound

TB = 0, TB = 0.2CPL and for unbounded tardiness.

exhibit poorer performance. This is due to the heavier workload, which has a

negative impact on the system performance.455

24



Figure 7: The average makespan (M) of the completed applications vs. the arrival rate λ, for

tardiness bound TB = 0, TB = 0.2CPL and for unbounded tardiness.

Figure 8: The average tardiness (T ) of the completed applications vs. the arrival rate λ, for

tardiness bound TB = 0.2CPL and for unbounded tardiness.

5.4. Data Locality Simulation Results Analysis

In order to investigate how data locality affects the performance of the sys-

tem, we simulated different scenarios with workflows featuring various data

locality characteristics. As a starting point, Figure 9 shows how the quantity

25



Table 2: IOCR-Data Locality Relationship Input Parameters.

Parameter Value

Memory bandwidth 3500 MB/s

Average Hercules remote throughput 100 MB/s

Average file data volume 100 MB

Max. shared file system throughput 2000 MB/s

Average number of concurrent tasks 100

Figure 9: The dependence of I/O to computation ratio (IOCR) on the data locality behavior

of the tasks and the percentage of data available in the Hercules subsystem.

of data available in Hercules (H) and the data locality behavior of the work-460

flow (hit ratio of Hercules local accesses, hl) affects the I/O to computation

ratio (IOCR), based on the parameters of Table 2. As can be seen in Figure 9,

for an increasing ratio of available data in the Hercules subsystem, the shared

file system contention is greatly reduced, significantly reducing IOCR. Local

data access benefits the I/O performance of the system, reducing the I/O cost,465

especially when more data are available in the Hercules file system.

Figure 10 shows the performance of the system in terms of the average

makespan M for arrival rate λ = 1.75 and unbounded tardiness, for workflow

applications where the dependencies of their tasks are solved using files, as shown

in Figure 4. We simulated scenarios with different IOCR values, in order to show470

26



Figure 10: The average makespan (M) of the completed applications vs. the I/O to compu-

tation ratio (IOCR), for arrival rate λ = 1.75 and unbounded tardiness.

how different data locality behaviors affect the makespan of the workflows. We

chose the maximum arrival rate used in previous simulations, as well as an

unbounded tardiness, in order to stress the file system, as a high arrival rate

and an unbounded tardiness mean that more files are created and thus there is

more contention in the file system. As shown in Figure 10, even for the same475

arrival rate, the average makespan M changes, depending on the data locality of

the temporary files created to facilitate the communication between the tasks.

In case only the shared file system is used (IOCR = 1), all files must be created,

written, and read from it, increasing both metadata and data operations in the

storage devices. Thus, the makespan metric exhibits poorer performance. To480

evaluate the effect of Hercules, we have simulated three scenarios, providing: (a)

low data locality (IOCR = 0.75), (b) moderate data locality (IOCR = 0.5) and

(c) high data locality (IOCR = 0.25) . As we increase data locality, the cost

of data movement operations is lower, since more data are copied using local or

remote memory from Hercules servers. The average makespan is decreased by485

an average of 48% between the two data locality extreme cases (IOCR = 1 and

IOCR = 0.25).

27



6. Conclusions

In this paper, we investigated the workflow scheduling problem in large-scale

distributed systems, from both the QoS and data locality perspectives. We con-490

sidered two case studies, where the communication between the component tasks

of a workflow is achieved through the network in the first and through tempo-

rary files in the second, utilizing the Hercules distributed in-memory storage

solution. A system and workload model have been formulated, characterizing

the major properties under consideration. Specifically, we investigated by sim-495

ulation the performance of a heterogeneous distributed system, where multiple

soft real-time workflow applications arrive dynamically. The applications were

scheduled taking into account the communication cost in the first case study

and the I/O cost and data locality in the second. The system performance was

evaluated in terms of specific metrics.500

In the first case study, the simulation results show that the value of the

tardiness bound has a different impact on the various performance parameters.

Specifically, the application completion ratio (ACR) improves as the tardiness

bound increases, whereas the application guarantee ratio (AGR) and the av-

erage makespan (M) deteriorate. In the second case study, the results of the505

simulation experiments show that the data locality behavior of the tasks con-

siderably affects the system performance. Specifically, the average makespan

(M) of the completed applications improves as the I/O to computation ratio

(IOCR) decreases. That is, the utilization of Hercules is beneficial to the system

performance, due to the data locality techniques provided by our solution.510

Acknowledgments

The work presented in this paper has been partially supported by EU, under

the COST program Action IC1305, “Network for Sustainable Ultrascale Com-

puting (NESUS)”, and by the the Ministerio de Economı́a y Competitividad,

Spain, under the project TIN2013-41350-P, “Scalable Data Management Tech-515

niques for High-End Computing Systems”.

28



[1] G. L. Stavrinides, H. D. Karatza, The impact of input error on the schedul-

ing of task graphs with imprecise computations in heterogeneous dis-

tributed real-time systems, in: Proceedings of the 18th International Con-

ference on Analytical and Stochastic Modelling Techniques and Applica-520

tions (ASMTA’11), 2011, pp. 273–287. doi:10.1007/978-3-642-21713-5_

20.

[2] F. B. Schmuck, R. L. Haskin, Gpfs: A shared-disk file system for large

computing clusters, in: Proceedings of the Conference on File and Storage

Technologies (FAST’02), 2002, pp. 231–244.525

[3] P. J. Braam, The Lustre storage architecture, Cluster File Systems, Inc.,

2004. URL: http://www.lustre.org/documentation.html.

[4] G. L. Stavrinides, H. D. Karatza, Scheduling real-time jobs in distributed

systems - simulation and performance analysis, in: Proceedings of the

1st International Workshop on Sustainable Ultrascale Computing Systems530

(NESUS’14), 2014, pp. 13–18.

[5] F. R. Duro, J. G. Blas, F. Isaila, J. M. Wozniak, J. Carretero, R. Ross,

Flexible data-aware scheduling for workflows over an in-memory object

store, in: Proceedings of the 16th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGrid’16), 2016, pp. 321–324.535

doi:10.1109/CCGrid.2016.40.

[6] G. L. Stavrinides, H. D. Karatza, Performance evaluation of gang schedul-

ing in distributed real - time systems with possible software faults, in:

Proceedings of the 2008 International Symposium on Performance Evalu-

ation of Computer and Telecommunication Systems (SPECTS’08), 2008,540

pp. 1–7.

[7] G. L. Stavrinides, H. D. Karatza, Fault-tolerant gang scheduling in dis-

tributed real-time systems utilizing imprecise computations, Simulation:

Transactions of the Society for Modeling and Simulation International 85

(2009) 525–536.545

29

http://dx.doi.org/10.1007/978-3-642-21713-5_20
http://dx.doi.org/10.1007/978-3-642-21713-5_20
http://dx.doi.org/10.1007/978-3-642-21713-5_20
http://www.lustre.org/documentation.html
http://dx.doi.org/10.1109/CCGrid.2016.40


[8] H. Yu, Y. Ha, B. Veeravalli, Quality-driven dynamic scheduling for real-

time adaptive applications on multiprocessor systems, IEEE Transactions

on Computers 62 (2013) 2026–2040.

[9] H. Arabnejad, J. G. Barbosa, List scheduling algorithm for heterogeneous

systems by an optimistic cost table, IEEE Transactions on Parallel and550

Distributed Systems 25 (2014) 682–694.

[10] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Algorithms for cost- and

deadline-constrained provisioning for scientific workflow ensembles in iaas

clouds, Future Generation Computer Systems 48 (2015) 1–18.

[11] G. L. Stavrinides, H. D. Karatza, Scheduling different types of applications555

in a saas cloud, in: Proceedings of the 6th International Symposium on

Business Modeling and Software Design (BMSD’16), 2016, pp. 144–151.

[12] G. L. Stavrinides, H. D. Karatza, Scheduling real-time parallel applications

in saas clouds in the presence of transient software failures, in: Proceed-

ings of the 2016 International Symposium on Performance Evaluation of560

Computer and Telecommunication Systems (SPECTS’16), 2016, pp. 1–8.

doi:10.1109/SPECTS.2016.7570524.

[13] L. Liu, M. Zhang, R. Buyya, Q. Fan, Deadline-constrained coevolutionary

genetic algorithm for scientific workflow scheduling in cloud computing,

Concurrency and Computation: Practice and Experience (2016) in press.565

[14] H. Topcuoglu, S. Hariri, M. Y. Wu, Performance-effective and low-

complexity task scheduling for heterogeneous computing, IEEE Trans-

actions on Parallel and Distributed Systems 13 (2002) 260–274.

[15] T. A. L. Genez, L. F. Bittencourt, E. R. M. Madeira, Workflow scheduling

for saas/ paas cloud providers considering two sla levels, in: Proceed-570

ings of the 2012 IEEE Network Operations and Management Symposium

(NOMS’12), 2012, pp. 906–912. doi:10.1109/NOMS.2012.6212007.

30

http://dx.doi.org/10.1109/SPECTS.2016.7570524
http://dx.doi.org/10.1109/NOMS.2012.6212007


[16] Y. Chen, W. T. Tsai, Service-Oriented Computing and Web Software Inte-

gration: From Principles to Development, 5th ed., Kendall Hunt Publish-

ing, 2015.575

[17] G. L. Stavrinides, H. D. Karatza, The impact of resource heterogene-

ity on the timeliness of hard real-time complex jobs, in: Proceedings

of the 7th International Conference on PErvasive Technologies Related

to Assistive Environments (PETRA’14), Workshop on Distributed Sen-

sor Systems for Assistive Environments (Di-Sensa), 2014, pp. 65:1–65:8.580

doi:10.1145/2674396.2674469.

[18] G. L. Stavrinides, H. D. Karatza, A cost-effective and qos-aware approach

to scheduling real-time workflow applications in paas and saas clouds, in:

Proceedings of the 3rd International Conference on Future Internet of

Things and Cloud (FiCloud’15), 2015, pp. 231–239. doi:10.1109/FiCloud.585

2015.93.

[19] H. J. Jiang, K. C. Huang, H. Y. Chang, D. S. Gu, P. J. Shih, Schedul-

ing concurrent workflows in hpc cloud through exploiting schedule gaps,

in: Proceedings of the 11th International Conference on Algorithms and

Architectures for Parallel Processing (ICA3PP’11), 2011, pp. 282–293.590

doi:10.1007/978-3-642-24650-0_24.

[20] Y. L. Tsai, H. C. Liu, K. C. Huang, Adaptive dual-criteria task group

allocation for clustering-based multi-workflow scheduling on parallel com-

puting platform, The Journal of Supercomputing 71 (2015) 3811–3831.

[21] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed595

file system, in: Proceedings of the 26th IEEE Symposium on Mass Storage

Systems and Technologies (MSST’10), 2010, pp. 1–10. doi:10.1109/MSST.

2010.5496972.

[22] T. White, Hadoop: The Definitive Guide, 3rd ed., O’Reilly Media, 2012.

31

http://dx.doi.org/10.1145/2674396.2674469
http://dx.doi.org/10.1109/FiCloud.2015.93
http://dx.doi.org/10.1109/FiCloud.2015.93
http://dx.doi.org/10.1109/FiCloud.2015.93
http://dx.doi.org/10.1007/978-3-642-24650-0_24
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972


[23] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large600

clusters, Communications of the ACM 51 (2008) 107–113.

[24] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic

execution between mobile device and cloud, in: Proceedings of the Sixth

Conference on Computer Systems (EuroSys’11), 2011, pp. 301–314. doi:10.

1145/1966445.1966473.605

[25] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chan-

dra, P. Bahl, Maui: making smartphones last longer with code of-

fload, in: Proceedings of the 8th International Conference on Mo-

bile Systems, Applications, and Services (MobiSys’10), 2010, pp. 49–62.

doi:10.1145/1814433.1814441.610

[26] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: a fault-

tolerant abstraction for in-memory cluster computing, in: Proceedings of

the 9th USENIX Conference on Networked Systems Design and Implemen-

tation (NSDI’12), 2012, pp. 2–2.615

[27] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, I. Stoica, Reliable, memory

speed storage for cluster computing frameworks, in: Proceedings of the

2014 ACM Symposium on Cloud Computing (SOCC’14), 2014, pp. 6:1–

6:15. doi:10.1145/2670979.2670985.

[28] Y. Xu, S. Mao, A survey of mobile cloud computing for rich media appli-620

cations, IEEE Wireless Communications 20 (2013) 46–53.

[29] H. Wang, Resource Allocation Models for Multi-Tiered Storage: Balancing

System Efficiency and QoS, Ph.D. thesis, Rice University, Houston, TX,

2015. URL: https://scholarship.rice.edu/handle/1911/88385.

[30] B. Yang, G. Song, Y. Chen, Y. Zheng, Y. Wu, Qos-aware indiscriminate625

volume storage cloud, Concurrency and Computation: Practice and Expe-

rience (2016).

32

http://dx.doi.org/10.1145/1966445.1966473
http://dx.doi.org/10.1145/1966445.1966473
http://dx.doi.org/10.1145/1966445.1966473
http://dx.doi.org/10.1145/1814433.1814441
http://dx.doi.org/10.1145/2670979.2670985
https://scholarship.rice.edu/handle/1911/88385


[31] F. Marozzo, D. Talia, P. Trunfio, Js4cloud: script-based workflow pro-

gramming for scalable data analysis on cloud platforms, Concurrency and

Computation: Practice and Experience 27 (2015) 5214–5237.630

[32] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, I. Foster,

Swift: A language for distributed parallel scripting, Parallel Computing 37

(2011) 633–652.

[33] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,

R. Mayani, W. Chen, R. F. Da Silva, M. Livny, K. Wenger, Pegasus, a635

workflow management system for science automation, Future Generation

Computer Systems 46 (2015) 17–35.

[34] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M. Badia,

E. Ayguade, J. Labarta, Productive cluster programming with ompss, in:

Proceedings of the 17th International European Conference on Parallel and640

Distributed Computing, (Euro-Par’11), 2011, pp. 555–566. doi:10.1007/

978-3-642-23400-2_52.

[35] L. B. Costa, H. Yang, E. Vairavanathan, A. Barros, K. Maheshwari,

G. Fedak, D. Katz, M. Wilde, M. Ripeanu, S. Al-Kiswany, The case for

workflow-aware storage: an opportunity study, Journal of Grid Computing645

13 (2015) 95–113.

[36] Z. Zhang, D. S. Katz, T. G. Armstrong, J. M. Wozniak, I. Foster, Par-

allelizing the execution of sequential scripts, in: Proceedings of the 2013

International Conference on High Performance Computing, Networking,

Storage and Analysis (SC’13), 2013, pp. 31:1–31:12. doi:10.1145/2503210.650

2503222.

[37] H. D. Karatza, Performance of gang scheduling strategies in a parallel

system, Simulation Modelling Practice and Theory 17 (2009) 430–441.

[38] H. K. Tang, P. Ramanathan, K. Morrow, Inserting placeholder slack to

improve run-time scheduling of non-preemptible real-time tasks in hetero-655

33

http://dx.doi.org/10.1007/978-3-642-23400-2_52
http://dx.doi.org/10.1007/978-3-642-23400-2_52
http://dx.doi.org/10.1007/978-3-642-23400-2_52
http://dx.doi.org/10.1145/2503210.2503222
http://dx.doi.org/10.1145/2503210.2503222
http://dx.doi.org/10.1145/2503210.2503222


geneous systems, in: Proceedings of the 27th International Conference

on VLSI Design and 13th International Conference on Embedded Systems

2014, 2014, pp. 168–173. doi:10.1109/VLSID.2014.36.

[39] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-

ing Algorithms and Applications, 3rd ed., Springer, 2011. doi:10.1007/660

978-1-4614-0676-1.

[40] J. A. Stankovic, M. Spuri, K. Ramamritham, G. C. Buttazzo, Deadline

scheduling for real-time systems: EDF and related algorithms, Springer

Science & Business Media, 1998. doi:10.1007/978-1-4615-5535-3.

[41] G. L. Stavrinides, H. D. Karatza, Scheduling multiple task graphs in hetero-665

geneous distributed real-time systems by exploiting schedule holes with bin

packing techniques, Simulation Modelling Practice and Theory 19 (2011)

540–552.

[42] G. L. Stavrinides, H. D. Karatza, Scheduling real-time dags in heteroge-

neous clusters by combining imprecise computations and bin packing tech-670

niques for the exploitation of schedule holes, Future Generation Computer

Systems 28 (2012) 977–988.

[43] E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, D. Vigo, Bin pack-

ing approximation algorithms: survey and classification, Springer, 2013,

pp. 455–531. doi:10.1007/978-1-4419-7997-1_35.675

[44] R. Lewis, X. Song, K. Dowsland, J. Thompson, An investigation into two

bin packing problems with ordering and orientation implications, European

Journal of Operational Research 213 (2011) 52–65.

[45] B. Fitzpatrick, Distributed caching with memcached, Linux Journal 2004

(2004) 5–.680

[46] J. L. Carlson, Redis in Action, Manning Publications Co., 2013.

34

http://dx.doi.org/10.1109/VLSID.2014.36
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4615-5535-3
http://dx.doi.org/10.1007/978-1-4419-7997-1_35


[47] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, I. T. Fos-

ter, Swift/t: Large-scale application composition via distributed-memory

dataflow processing, in: Proceedings of the 13th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid’13), 2013,685

pp. 95–102. doi:10.1109/CCGrid.2013.99.

[48] F. R. Duro, F. Marozzo, J. G. Blas, J. Carretero, D. Talia, P. Trunfio,

Evaluating data caching techniques in dmcf workflows using hercules, in:

Proceedings of the 2nd International Workshop on Sustainable Ultrascale

Computing Systems (NESUS’15), 2015, pp. 95–106.690

[49] G. L. Stavrinides, H. D. Karatza, Scheduling multiple task graphs with

end-to-end deadlines in distributed real-time systems utilizing imprecise

computations, Journal of Systems and Software 83 (2010) 1004–1014.

35

http://dx.doi.org/10.1109/CCGrid.2013.99

	Introduction
	Motivation
	Contribution

	Related Work
	Quality of Service
	Data Locality
	Workflow-Oriented Storage Systems

	QoS-Driven Workflow Scheduling
	Problem Formulation
	System Model
	Workload Model

	Scheduling Approach
	Task Selection Phase
	Processor Selection Phase


	Data Locality-Driven Workflow Scheduling
	Utilization of Hercules Distributed In-Memory Storage Solution
	Incorporation of Data-Awareness into the Scheduling Algorithm
	Task Selection Phase
	Processor Selection Phase


	Performance Evaluation
	Evaluation Metrics
	Experimental Setup
	QoS Simulation Results Analysis
	Data Locality Simulation Results Analysis

	Conclusions



