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Abstract This paper deals with spatial aspects of trends in life expectancy at 
birth in the French metropolitan départements over the 19th and 20th cen- 
turies. Data from the censuses conducted from 1833 to 1982 were used to 
calculate the life expectancy at birth for both sexes togheter, e0   . The over-      
all fertility index (If ), marital fertility index (Ig) and nuptiality index (Im)  
were also calculated for each five-year period within the same time span. The 
analysis has two facets: a first, descriptive part in which we establish clusters of  
départements  with  similar  or  different  patterns  of  evolution  over  the  pe- 
riod above mentioned; and a second part in which the effect of covariables in 
changes in e0 are examined. In addition their coefficients were interpreted in- 
cluding the direct and spatial spillover effects. Unlike earlier studies, in which   
a spatio-temporal analysis was performed, the time function showing changes  
in e0 is reduced to a single value which measures the distance or affinity be- 
tween  the  functions  of  time  in  each  département,  which  enables  us  to  carry 
out an exploratory spatial data analysis (ESDA) and apply spatial economet-   
ric models. 
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2 Jesús J. Sánchez-Barricarte et al. 

Keywords Life expectancy · Spatial autocorrelation · Exploratory spatial 
data analysis · Spatial regression 

1 Introduction 

The increase in life expectancy over the last two centuries has been shown to be 
a worldwide phenomenon, even though it is more striking in western countries. 
France is a classic example of this, but it is also a vast country with consid- 
erable geographical diversity, which is accompanied by major socio-economic 
differences between regions. Geographical differences in mortality in France 
have already been the object of major research studies although these publi- 
cations generally cover short periods of time, and do not apply modern statis- 
tical techniques including spatio-temporal analysis: Nizard and Prioux (1975): 
1961-1969; Bonneuil (1997): 1806-1906; Lincot and Lutinier (1998): 1975-1994; 
Gaimard (2005): 1946-1999;  Daguet (2005): 1954-1999;  Barbieri  (2013):    1976- 
2008. This research shows that levels of mortality vary substantially across 
the country; some of these differences have evened out in recent years among 
women, but there are still large differences for men. 

Barbieri (2013) founds that mortality is lower in Paris, the south-western 
départements of le-de-France, and Rhne-Alpes and Midi-Pyrnes and that geo- 
graphical variations in life expectancy at birth are closely linked to variations 
in mortality above age 30. Nizard and Prioux (1975) and Barbieri (2013) also 
analyzed the main causes of excess mortality (cancer, suicide, alcoholism, dis- 
eases related to the respiratory system, etc.). 

One of the aims of our study is to examine the differences in life expectancy 
at birth for the different départements over as long a period as possible (1833- 
1982) in order to gain a better historical perspective on the changes that took 
place, with the application of spatial analysis techniques for the first time. Our 
study is innovative  in that it is based on life expectancy data calculated for 
the 19th century by Bonneuil (1997) complemented by our  own calculations 
for  the  20th century. 

Geographical diversity is reflected in life expectancy at birth, which, as  
we shall see, varies considerably across the country. But differences in life 
expectancy overall are also compatible with the presence of similarities in the 
patterns observed in neighboring  areas;  this is the underlying idea in what  
is known as the First Law of Geography: “everything is related to everything 

else, but near things are more related than distant thing”, defined by Tobler in 
1970 (Tobler, 1970). 

In this article, we apply spatial exploratory analysis to a large database 
containing the life expectancy at birth, e0, both sexes together, in the French 
départements.  Our  aim  is  to  detect  the  patterns  of  spatial  clusters  and  the 
presence of spatial spillover effects in e0   and its relationships with the in-    
dices of overall fertility (If ), marital fertility (Ig) and nuptiality (Im) in the 
metropolitan French départements over the period 1833-1982. 
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Various spatial and spatio-temporal statistical methods have been applied 
to the study of life expectancy and mortality in different countries, although 
they have all been used in the context of very recent time period: for Poland, 
Malczewski (2010): 2001-2002; for Greece, Tsimbos et al. (2011, 2014): 1998- 
2005; for Hungary, Bálint (2012): 2005-2009; for the USA, Yang et al. (2015); 
Sparks and Sparks (2010); Brazil (2015): 1998-2009; for West Africa, Balk et 
al. (2004): 1997-2001. Windenberger et al. (2012) applied spatial analysis tech- 
niques to analyse  mortality in the French  cantons from 1997 to 2001. Padilla   
et al. (2013, 2016), working on the period 2002-2009, also applied this type of 
analytical technique to child and infant mortality.  In short, among these stud-  
ies there is a striking absence of analyses with a longer historical perspective 
even in those countries where it is easier to obtain historical demographic data. 
We consider that this article can make a major contribution to improving the 
state of the question in this field of   research. 

Historical demographers are still in disagreement over the role played by 
mortality in the historic decline in fertility. One of the Princeton European 
Fertility Proyect’s main conclusions was that we cannot deduce from the data 
gathered for the provinces in Europe that the declines in mortality led to the 
subsequent fall in fertility (Van de Walle (1986): 233). Many other researchers 
have reached the same conclusions (Watkins (1986): 436; Knodel (1974):   167- 
185; Lesthaeghe (1977): 171-176; Haines (1998)). In a study  on  the state  of 
the question concerning the transition and the theory of fertility, (Van de Kaa 
(1996): 409) concluded: “Notestein’s notion that a mortality reduction would 
automatically lead to a significant decline in fertility through a series of pre- 
existing social mechanisms is untenable”. More recent studies that use modern 
econometric techniques have also shed light on the negligible role of declining 
mortality in accounting for falling fertility (Doepke, 2005; Fernndez-Villaverde, 
2001; Murphy, 2009). Nonetheless, on the basis of aggregated and individual 
data, many authors have stressed the special role played by mortality in the 
fertility transition (Mason, 1997; Galloway et al., 1998; Cleland, 2001; Reher 
and Sanz-Gimeno, 2007; Dyson, 2010; Van Poppel et al., 2012; Schellekens and 
Van Poppel, 2012). Recently, Angeles (2010) and Angeles (2015), Herzer et al. 
(2012)), Murtin (2013) and ? (anonymized authors reference) (this is a paper 
already accepted to be published in Demographic Research), using panel data 
analyses covering long time periods, have shown that mortality rates are a 
statistically significant predictor of total fertility     rates. 

Angeles (2015) found that the effect of mortality on fertility was not 
homogeneous throughout the different phases of the transition. In the pre- 
transitional stage the relationship was clearly negative: when mortality was 
high, women needed to use all their fertile years to have children. As the tran- 
sition progressed and mortality rates underwent a certain improvement, the 
effect of mortality on fertility became less negative or even zero. As Angeles 
(2015):13 states that, “the effect may even become positive if some additional 
mechanism is in place, such as hoarding or the quantity-quality tradeoff, which 
would make net fertility directly a function of mortality rates”. 
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It is well known that from the earliest data available, dating from the 19th 
century, up to the 1980s, there was an upward trend in the intensity of nup- 
tiality (Im) in western Europe, especially after 1930 (Hanal, 1965; Watkins, 
1986)1. One question that should concern us now is whether nuptiality var-     
ied as a result of changes in mortality. It would be logical to assume that the  
French  départements  with  the  highest  death  rates  would  compensate  for this 
by allowing a larger percentage of women to get married, so that there would be 
a positive correlation between the two variables. Some authors have described 
this as the social effect: societies have their own customs and mech- anisms for 
ensuring a balance between mortality and fertility. In demographic situations 
with high mortality, societies have to develop ways of allowing early access to 
marriage in order to ensure that the population does not decline. Wrigley (1978) 
tells us that an unconscious rationality probably operated to guarantee the well-
being of the group. The relationship between nuptiality and mortality could 
have  constituted an adaptation  mechanism that the societies    of the past used 
to regulate population     growth. 

It is logical to think that in the pre-transitional phase (with high mortality), 
départements with the highest death rates would have higher nuptiality. The 
maintenance of the population was somehow ensured by making sure that 
young people had access to marriage (and therefore reproduction) in places 
where mortality was high. Once the transition was over and mortality no longer 
played a leading role, we may expect that access to marriage were conditioned 
by other indicators such as, for example, the availability of employment which 
would enable young people to set up home. 

Despite the huge volume of academic publications on this issue, our paper  
is of special interest for two reasons: on one hand, because of the considerable 
historical scope of our data, since the data cover a long period of time, and on 
the other hand, because we have introduced a distance for each of the original 
variables which summarizes the joint evolution over time of a département and 
its neighbors with respect to this    variable. 

The article is organized as follows: in Sections 2 and 3 the source of data 
and the methodology used for our analysis are described; Section 4 reports the 
results when these techniques are applied to our data, while Section 5 presents  
a discussion of these results and some  conclusions. 

 
 

2 Data and methods 
 

The values for life expectancy at birth in the 19th century for the French 
départements were taken from Bonneuil (1997). He obtained the values of e0 
(taking both sexes together) for all the five-year periods from 1806-10 up to 
1901-05 (both included). We built the life tables for each sex and for the differ- 
ent départements for the following periods: 1910-12, 1920-22, 1930-32, 1945-47, 
1953-55, 1966-69 and 1981-83. To do so, we used census data and the mean 

1 Only in the cases of Italy and, especially, Spain, was this general increase in the nuptiality 
indicators interrupted at the end of the 20th century by several years of   contraction. 
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number of deaths for the three years around the different census years2 We 
have 22 cross-sectional observations from an unevenly spaced time series. Fif- 
teen of these observations are from the period 1833-1903 and 7 from 1911-1982. 
The observations become particularly sparse after 1946. To test the reliabil- 
ity of our calculations, we compared our results for the whole of France with 
those from the Human Mortality Database, 2014 (http://www.mortality.org/). 
The differences turned out to be very small, and so we are confident that our 
estimated values for e0  in the different départements are correct3. 

For the analyzed period (1833-1982) we also have complementary informa- 
tion  from  the  different  départements  concerning  other  demographic  data.  In 
concrete, we obtained the values for what are known as the Princeton fertility 
indices - overall fertility (If ), marital fertility (Ig ) and nuptiality (Im). They  
were obtained from Coale and Watkins (1986) for the years 1831, 1836,    1841, 
1846, 1851, 1856, 1861, 1866, 1871, 1876, 1881, 1886, 1891, 1896, 1901, 1911, 
1921, 1931 and 1961 (data available from the University of Princeton Web-  
site: http://opr.princeton.edu/archive/pefp/). We calculated these indices for 
1946, 1968 and 1982. 

This set consisting of three indices (If , Ig and Im) was devised especially  
for the Princeton European Fertility  Project to provide measures that could     
be easily calculated for most populations given the paucity of data needed to 
calculate more precise fertility and nuptiality measures. Ansley Coale (Coale 
and Watkins, 1986) was the intellectual architect of this project, which exam- 
ined the historical decline in marital  fertility over  more than a hundred years   
in the 700 provinces of Europe. If is the index of the rate of childbearing by all 
women regardless of their marital status; it is the ratio of the actual number      
of births to the hypothetical number if women were subject to the married 
Hutterite fertility schedule (the Hutterites are a Protestant sect, Anabaptists, 
founded in the sixteenth century. To escape persecution for their beliefs, they 
emigrated to the northern mid-west of the USA in the nineteenth century. 
Hutterite women have high fertility because contraception and abortion are 
forbidden and mothers only breastfeed for a few months). Ig (index of marital 
fertility) is the ratio of the number of births occurring to married women to the 
number that would occur if married women were subject to maximum fertility 
(married Hutterite women). Im  (nuptiality index) is an index of the propor-    
tion of potentially fertile women who are currently married; it is the ratio of   
the number of births currently married women would experience if subject to 
Hutterite fertility to the number of births all women would experience if sub- 
ject to Hutterite fertility. This index is not a measure of fertility but rather an 
index of nuptiality. It is a fertility-weighted aggregate index of marriage that 

 
2  We  took into account the mean number of deaths found around the census year in 

order to avoid the problem of possible random variations associated with sparsely populated 
départements. 

3  For  example, the life expectancy at birth for men in France  as a whole in the year  
1931 calculated by the Human Mortality Database at Berkeley University is 54.52 years. 
Our calculations give the figure 54.64 years. That is, the difference between the two is only 
0.22%. Similar results were obtained for other years and both sexes. 

http://www.mortality.org/)
http://www.mortality.org/)
http://opr.princeton.edu/archive/pefp/)
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gives more weight to the proportions married at the prolific ages (less   than 
30) than at the less prolific ages. The values of Im go from zero (no married 
woman) to one (all married women aged 15 to 49). See Coale and Watkins 
(1986):153-162 for information on how the Princeton indices are    calculated. 

The Princeton indices are widely used in historical demography. We thought 
that it would be interesting to find out the spatio-temporal connections be- 
tween the fertility and nuptiality rates and the life expectancy at birth over 
the whole of our period of analysis. These indices are easily accessible from the 
webpage of Princeton University, mentioned above, and cover a large period 
of time and a vast number of provinces. One of the reasons why we confined 
our time period to the years 1833-1982 was that it is not advisable to calculate 
the Princeton indices when the percentage of births outside marriage becomes 
very high (in France, it was 14% in 1982 and 54% in 2010). For similar reasons, 
there is no point in calculating the index of nuptiality Im when a large per- 
centage of couples live together without being married (if cohabiting couples 
are registered on the census as single, the value of index Im will be seriously 
affected) 

 
 

2.1 Data interpolation 
 

As we have pointed out, the 20th century is less represented than the 19th 
century. While for the latter we have data from 15 equidistant years  over  
periods of 5 years (here we include the year 1903), for the 20th century we  
only have 7 years without any periodicity. To extend the five-year periods to 
the latter, we have interpolated the data from each département  by cubic 
splines and evaluated the resulting functions every five years from 1908 to 
1978. We thus have 30 five-year data-sets between 1833 and 1978. We have 
added the data available for 1982, even though it does not meet the criteria       
of the five-year period. In short, we have 31 annual observations for each 
département. 

 
 

2.2 Measuring spatial autocorrelation 
 

To carry out an exploratory spatial data analysis, we need a neirghborhood 
structure over the départements of metropolitan France. We consider a queen 
neirghborhood structure with a row standardized connectivity matrix W whose 
elements are, wij = 1/ni, if j is a neighbour of i and where ni is is the total 
number of neighbours of i. In this neirghborhood structure no département is 
neighbor of itself and consequently wii = 0. The details can be found in Cliff 
and  Ord (1973). 

In order to determine whether our data show spatial autocorrelation we use 
the global Moran index I (Moran, 1950a,b). This index can be interpreted as 
the regression coefficient between the observed value in a département and the 
mean of the observed values in its own neighborhood. Under the hypothesis 
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− − 

=  ∑ 
(x  − x̄)2/n 

∑ 

∑ 

i 

 

of randomness of the spatial distribution of the observed values plus asymp- 
totic normality, we can obtain its expected value, E(I) =    1/(n    1), and     
its variance. This enables us to built a test to check the existence of spatial 
autocorrelation. Nonetheless, there is an alternative Montecarlo test based on 
random permutations which makes it possible to circumvent the problem of 
asymptotic normality. Both tests were implemented in the spdep package in 
R Bivand et al. (2012). If there is no spatial autocorrelation the mean of the 
values in the neighborhood of a département will not vary systematically with 
the value on it. However, if there is a positive association, high or low values 
in a département will be surrounded by similar values. In the notation which 
has become usual in this context, if L and H denote, respectively, values that 
are Lower (L) or Higher (H) than the mean, the four combinations HH, HL, 
LL and LH are possible, in which the first letter refers to the value in a 
département and the second, the mean of the values in its neighborhood. 

In 1995 Anselin (Anselin, 1995) introduces the concept of Local Indicators  

of Spatial Association (LISA) to decompose the Moran I into its local compo- 
nents, which makes it  possible  to  identify  relevant  observations  and  outliers.  
For  a location i, it defines Ii  using the following formula: 

 

I (xi − x̄) 
i i 

 
wij 

j 

 
(xj − x̄). (1) 

 

The values for Ii represent the components of I because the following rela- 
tionship is easily established, i Ii = nI, where n is the total number of 
départements. The use of Ii  to compare the presence of significant local asso- 
ciations runs into difficulties because we  do not know its exact distribution,  
and because there is a correlation among them due to the overlap between the 
neighbors of different locations, which means that we need to apply corrections 
such as the Bonferroni correction, False Discovery Rates (fdr ) or such like. As 
in the case of I, there is a Montecarlo test provided in the spdep package  for    
R Bivand et al. (2012). In practical terms, the significant values for Ii can be 
interpreted as follows: 

 
- Ii > 0 cluster with similar values in the location and its neighbors (H-H, 

L-L). 
- Ii < 0 outlier with different values in the location and its neighbors (H-L, 

L-H) 
 
 

2.3 Data transformation 
 

Our data can be analyzed from a spatio-temporal perspective. However, our 
present aim is not to conduct such an analysis, but to detect clusters of 
départements which have experienced similar or opposite time evolution. How 
can we use the data to this end? Our procedure is the following, 
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[∑ 

k=1 

× 

∑ 

 

1. We obtain, for each one of the four variables, the matrix of distances be- 
tween the départements i and j, i = 1, . . . , n,   j = 1, . . . , n. As we use Eu- 

clidean and Manhattan distances, two distance matrices will be obtained 
for each variable. If x is any of our four variables, we must recall that 

 

Euclidean dij 

 
 

31 
k=1 

 

(xik 

 

1 
 

− xjk)2 

Manhattan dij  = 
∑31     |xik − xjk|. 

2. Once the matrix of distances D have been obtained, the vector d = diag(D 
W t) provide us with the mean distance of each département  to its neigh- 
bors. W t  stands for the transpose of    W . 

When we apply  the calculation  of these distances to e0, If ,  Ig and  Im,  
the resulting mean distances de0 , dIf , dIg and dIm measure the similarity of  
temporal  behavior  between  one  département  and  its  neighbors.  By  using 
this procedure, we can reduce the 31 time values of each variable associated 
with  each  département  to  a  single  value.  We  have  a  dependent  variable  de0 , 
on which we perform only one spatial analysis, given that, by means of the 
transformation we have carried out, the time factor is no longer present, and 
three independent variables, dIf , dIg and dIm whose influence will be ana- 
lyzed subsequently. It is important to interpret these distances appropriately 
when evaluating future results: they indicate if the temporal evolution of a 
département has been similar to that of its neighbors with respect to the vari- 
able associated with the distance. Finally,  it must be pointed out that, as in      
all summaries, there is some information loss. This will be discussed in our 
conclusions. 

 
 

3 Spatial regression 
 

The multiple linear regression model (OLS) has the    form 
 

p 

y = β0 + βkxk + ε (2) 
k=1 

 

where y is the variable for response, xk, k = 1, . . . , p the independent variables 
used to model the behavior of y, and ε represents the error, a random vari- 
able which accounts for the discrepancies between the observed values of y 
and those obtained with the fitted model. We may observe that the model (2) 
ignores the spatial structure of the data, in particular the relations of neigh- 
borhood between the components of the spatial structure where the data were 
obtained. If, through the exploratory analysis described above, the existence 
of spatial dependency between observations is detected, it will be necessary to 
introduce it into (2) in the form of a spatial autoregression term which affects 
the dependent variable or the error. 

] 
= 2 
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∑ 

∑ 

 

3.1 Spatial lag model 
 

The first model takes the form, 
 

p 

y = β0 + βkxk + ρWy + ε. (3) 
k=1 

 

This is different from model (2) because it includes the term Wy which repre- 
sents the mean of the values of y observed in its neighborhood, W being the 
matrix of neighborhood. This model is intended to reflect the influence on an 
observation of what happens in its neighbors. A positive value of ρ indicates  
that y increases due to this influence, always assuming that ρ is significantly 
different from 0. 

The model is also known as spatial autoregressive model by analogy to the 
AR models in time series in which the temporal autocorrelation is modeled by 
including time lags, yt−k, in the model for the dependent variable. 

 
3.2 Spatial  error model 

 
The second model is expressed  as 

 
p 

y = β0 + βkxk + λWε + ϵ. (4) 
k=1 

 

This model assumes that the errors in model (2) are spatially autocorrelated. 
Both spatial models might seem similar at first sight, since both suggest    

the existence of spatial dependence between observations. However, models (3) 
and (4) have very different implications. The spatial autoregressive model is a 
simultaneous model with feedback between observations: the influence of yi on 
its neighbors in turn influences yi through the mean of all these values, Wy. On 
the other hand, in the spatial error model, dependency appears only through    
the terms of error, which can be interpreted as the influence of non-observed 
variables which, for some unknown reason, are spatially    correlated. 

 
 

4 Results 
 

The division of metropolitan France into départements is shown in Figure 1. 
The units in the axes correspond to UTM coordinates. This structure do not 
correspond to the current one, but to the situation prior to 1968, because 
that year the départements Seine and Seine-et-Oise, both in the le de France 
region, were subdivided to give rise to the current administrative structure. As 
the data from before 1968 reflect the earlier départements, we have used that 
structure and made the necessary corrections to the data from the post-1968 
period. Also, the département  of Moselle has been omitted from the analysis 
due to the lack of data for the lengthy period in which it belonged to Germany. 
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Also Corsica has been eliminated because it is an island and therefore has no 
neighbors in the sense defined for this study. We have worked with a total of 88 
départements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

200000 400000 600000 800000 1000000 

 
Fig.  1  Division of metropolitan France into départements. 

 
 

Table 1 shows the means, standard deviation and the variation coefficient  
for each year for the four variables, e0, If , Ig and Im, obtained for all the 
French départements. The improvement in life expectancy at birth referred to 
in the Introduction is quite patent. The time evolution of the corresponding 
standard deviation, sd, is striking, as it falls drastically over these two hundred 
years. Both fertility indices show a similar decreasing behaviour but their 
standard deviation do not fall so drastically. The marriage rate has a constant 
increasing trend throughout the 19th century, which is maintained in the 20th 
century but with sudden changes that intersperse decreasing periods which  
seem to consolidate in last times. All these aspects  can  be observed  more 
easily in Figure 2, in which the semiamplitude of the error bars is the standard 
deviation for the corresponding year. The dotted line in the graphs stands for  
the year 1900. 

 

4.1 Exploratory spatial analysis 
 

Figure 3 shows the spatial distribution of de0   in the French départements for 
the two types of distance. The Moran indices associated with these two spatial 
distributions are shown in Table 2, and both confirm the existence of spacial 
autocorrelation. 
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Table  1  Time evolution for the four variables 

fertility index 
expected life at birth overall marital nuptiallity index 

year mean sd cv mean sd cv mean sd cv mean sd cv 

1833 37.05 6.539 0.177 0.302 0.038 0.125 0.560 0.106 0.189 0.518 0.066 0.128 
1838 39.44 7.384 0.187 0.291 0.036 0.125 0.535 0.104 0.194 0.522 0.065 0.125 
1843 41.00 6.218 0.152 0.287 0.037 0.129 0.523 0.102 0.196 0.527 0.065 0.124 
1848 38.84 6.035 0.155 0.280 0.037 0.133 0.507 0.100 0.198 0.533 0.066 0.124 
1853 38.55 6.157 0.160 0.276 0.038 0.137 0.495 0.106 0.215 0.535 0.070 0.131 
1858 38.05 9.550 0.251 0.273 0.037 0.134 0.487 0.107 0.219 0.540 0.072 0.134 
1863 40.16 8.065 0.201 0.278 0.039 0.142 0.495 0.119 0.241 0.541 0.074 0.137 
1868 40.58 4.787 0.118 0.276 0.039 0.142 0.494 0.123 0.249 0.541 0.075 0.138 
1873 38.10 5.235 0.137 0.276 0.040 0.145 0.492 0.124 0.252 0.543 0.074 0.136 
1878 42.86 5.622 0.131 0.276 0.042 0.153 0.490 0.130 0.265 0.548 0.073 0.134 
1883 42.84 5.962 0.139 0.273 0.043 0.158 0.479 0.129 0.269 0.552 0.074 0.134 
1888 44.36 4.828 0.109 0.262 0.043 0.162 0.456 0.125 0.274 0.556 0.072 0.130 
1893 44.84 4.413 0.098 0.249 0.040 0.161 0.430 0.116 0.269 0.556 0.069 0.125 
1898 47.65 3.820 0.080 0.240 0.038 0.158 0.414 0.111 0.268 0.555 0.068 0.123 
1903 48.19 3.570 0.074 0.233 0.036 0.154 0.398 0.105 0.263 0.561 0.065 0.116 
1908 50.95 3.356 0.066 0.220 0.035 0.157 0.353 0.086 0.244 0.596 0.059 0.099 
1913 53.40 3.274 0.061 0.208 0.032 0.153 0.326 0.071 0.218 0.599 0.054 0.090 
1918 53.74 2.675 0.050 0.200 0.027 0.136 0.336 0.066 0.197 0.556 0.049 0.089 
1923 54.69 2.269 0.041 0.195 0.026 0.133 0.332 0.064 0.192 0.549 0.050 0.091 
1928 56.98 2.148 0.038 0.191 0.028 0.146 0.304 0.059 0.195 0.594 0.052 0.088 
1933 58.43 2.101 0.036 0.196 0.027 0.136 0.296 0.051 0.172 0.623 0.046 0.073 
1938 58.54 1.849 0.032 0.209 0.026 0.122 0.321 0.048 0.149 0.609 0.036 0.059 
1943 59.22 1.597 0.027 0.222 0.028 0.128 0.351 0.054 0.155 0.588 0.039 0.067 
1948 62.47 1.386 0.022 0.228 0.024 0.106 0.355 0.045 0.127 0.600 0.032 0.053 
1953 67.53 1.381 0.020 0.226 0.024 0.108 0.334 0.036 0.108 0.641 0.028 0.044 
1958 70.57 1.422 0.020 0.221 0.029 0.131 0.320 0.041 0.129 0.659 0.035 0.053 
1963 71.40 1.294 0.018 0.215 0.026 0.120 0.316 0.037 0.119 0.649 0.030 0.046 
1968 71.58 1.154 0.016 0.205 0.021 0.102 0.309 0.031 0.100 0.628 0.023 0.037 
1973 72.33 1.069 0.015 0.191 0.018 0.094 0.289 0.026 0.091 0.612 0.021 0.034 
1978 73.67 1.018 0.014 0.173 0.016 0.093 0.259 0.022 0.086 0.602 0.022 0.036 
1982 74.93 1.015 0.014 0.158 0.016 0.101 0.231 0.021 0.090 0.595 0.026 0.043 

 

Table  2  Moran indices for the spatial distribution of the distances associated with   e0 

distance Moran I p-value 
 

Euclidean 0.3066 9.466×10−7
 

Manhattan 0.2858 3.972×10−6
 

 

 
 

4.1.1 LISA and cluster map for de0 

 

The local decomposition of Moran indices in Table 2 into the corresponding 
LISA was obtained using the function localmoran in the spdep package. Pos- 
itive LISA values, which yield a significant p-value, enable us to detect the 
clusters  of  départements  shown  in  Figure  4,  with  the  maps  corresponding  to 
the two measures. The groupings for H-H and L-L are color-coded, with the 
centers of the clusters shown in darker colors. As can be seen, there are hardly 
any differences between the clusters obtained using the    two  distances. 
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Fig. 2  Time evolution of mean and standard deviation for the four   variables. 
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Fig.  3  Spatial distribution of distances associated with e0  in the French départements. 
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Fig.  4  Clusters of départements for the distances associated with e0. 
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Tables 12 to 15 in Appendix 1 provide a summary of the information about 
the clusters. For  each type of cluster, H-H or L-L, the tables show the center    
of the cluster, its neighbors, the value for the distance in the center of the 
cluster (de0 ) and the mean distance in its neighbors (d̄e0 ). It should be noted 
that since the clusters are made up of neighboring départements, the centers 
and neighbors can easily be confused, resulting in a macrocluster with several 
centers. 

The H-H cluster in Figure 4 is located in the west-center of the country and, 
if we recall how the distances were obtained,  means that these départements 
followed very different evolution over time. The L-L cluster, situated in the 
north  of  the  country,  consists  of  départements  with  a  similar  evolution  over 
time. Figure 5 shows the different behavior of e0  in the départements forming 
these two  large clusters. 

 
 
 

1833       1853 1878 1903 1928 1953 1982 1833       1853 1878 1903 1928 1953 1982 

 
 

1833       1853 1878 1903 1928 1953 1982 1833       1853 1878 1903 1928 1953 1982 

 
Fig. 5 Evolution of e0 in the high (H-H) and low (L-L) clusters obtained using Euclidean 
(upper) and Manhattan (lower)  distances. 

 
 

In these graphs we can observe that, as was the case in Figure 2, the start    
of the 20th century marked a change in the behavior of e0 and consequently of 
de0 . The reason for this change is perhaps to be found in the epidemiological 
transition theory proposed by Omran (1998). In the period of receding pan- 
demics of the 19th century, one might expect a different spatial clustering of 
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the longevity revolution. Thus, we have subdivided our data-series into two 
subseries, until 1903 and after 1903, which we have analyzed separately in 
order to detect clusters, just as we have done with the full data  set. 
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Fig.  6  Clusters of départements for the distances associated with e0  for the periods 1833- 
1903 (upper) and 1908-1982  (lower). 

 
 
 
 
 

The result can be observed in Figure 6. We can see that the clusters for the 
period 1833-1903 are very similar to those in Figure 4, which would confirm 
that it is the greater variability of e0 during this period that predominates in 
the formation of clusters. In the 20th century period there are no clusters of 
the L-L type, and only H-H clusters appear, which are very different from all 
the earlier ones. If we observe the values of de0 in the centers and the means in 
the neighbors of these clusters, d̄e0 , shown in Tables 16 and 17 in Appendix 1, 
we will see that they are much lower than those of the clusters H-H obtained 
using all the data (Tables 12 and 13). This striking difference explains why 
the clusters from the 20th century are eclipsed when all the data are analyzed 
together, and again brings out the lower variability of e0  during this period. 
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4.2 Spatial regression 
 

Table 3 shows a summary of the regression of distance associated with e0, de0 , 
with respect to the distances associated with the other three variables, dIf , 
dIg and dIm, for the OLS model. Following Elhorst (2014), we take the OLS 
model as point of departure and we test whether the spatial lag model or the 
spatial error model is more appropriate to describe the data using the classic 
Lagrange Multiplier (LM) test (Anselin, 1988; Florax and Yoon, 1996). Table 
4 contains the results of the LM tests for both distances. These results support 
the use of spatial models (3) and (4) as the LM tests are significant. 

 
 

Table  3  Result for the OLS model 
 

 
variable 

Euclidean distance 
β p-value 

Manhattan distance 
β p-value 

constant 8.399 0.0103 27.928 0.0189 
dIf 78.455 0.0002 76.353 2.36E-05 
dIg -19.984 0.0156 -19.898 0.0058 
dIm 27.428 0.0098 25.791 0.0021 
log-lik -283.159  -400.125  

 
 
 
 

Table  4  Lagrange Multiplier test for the OLS  model 

Euclidean distance Manhattan distance 
test statistics p-value df statistics p-value df 

lag 19.6903 9.11E-06 1 16.0449 6.19E-05 1 
error 26.6879 2.39E-07 1 25.0383 5.62E-07 1 

 
 

Table 5 shows a summary of the spatial regression of de0 , over the three 
distances associated with the variables,  dIf ,  dIg  and  dIm. There  is  hardly 
any difference between the coefficients of the independent variables in the   
same model for both distances, and the most notable difference is that of the 
constants, which can be explained by the different size of the two distances. In 
any case, the constants of the models with spatial effects are not significantly 
different from zero. The distance dIg has a negative effect on de0 in all the 
models, which can be explained if we look at the graphs in Figure 2, which 
clearly show how e0 and Ig go in opposite direction over time. The same holds 
for e0 and If but less markedly, this is perhaps the reason why its effect on e0 is 
positive. We would like to emphasize the impact of neighboring départements, 
having both, ρ and λ, values of around 0.6 in all four models, it means that the  
value  of  de0   or  ε,  in  one  département,  increases  around  increases  around 
60% of the mean of the values in its surrounding areas. Finally, if we consider 
the value of the loglikelihood, the models based on the Euclidean distance 
perform better, and between them the spatial error model is slightly better. 



16 Jesús J. Sánchez-Barricarte et al. 
 

 

Table  5  Result for spatial models 

Euclidean distance Manhattan distance 
model variable β p-value β p-value 

spatial constant -2.578 0.3677 -11.468 0.2889 
lag dIf 65.644 0.0002 63.714 2.45E-05 

 dIg -16.914 0.0132 -17.795 0.0032 
 dIm 25.501 0.0040 24.537 0.0005 
 ρ 0.590 8.02E-06 0.561 3.49E-05 
 log-lik -273.156  -391.560  

spatial constant 4.488 0.2205 13.243 0.3280 
error dIf 86.122 9.52E-05 80.652 7.84E-06 

 dIg -18.567 0.0258 -18.373 0.0093 
 dIm 35.798 0.0005 33.652 1.87E-05 
 λ 0.655 3.66E-07 0.664 4.30E-07 
 log-lik -270.189  -387.347  

 
 

Table 6 enables us to perceive the extent to which the inclusion of the 
spatial covariable in the OLS model is effective. The table shows the values of 
the Moran index obtained from the residuals of the two spatial models. Both 
models eliminate spatial self-correction to a level of α = 0.001, although the 
spatial error model shows better performances, as can be deduced from its 
Moran index and log-likelihood. This holds for the models obtained with both 
distances. 

 

Table 6  Moran index for residuals of spatial  models 

Euclidean distance Manhattan distance 
model I de Moran p-value I de Moran p-value 

lag 0.1173 0.0274 0.1437 0.0101 
error 0.0462 0.1956 0.0584 0.1484 

 
 
 
 
 

4.3 Model diagnostics 
 

Given their definition, it is to be expected that the three indices we used are 
correlated, which will affect the distances derived from them and might give 
rise to problems of multicollinearity in the OLS model. These correlations are 
rdIf ,dIg    =  0.6303,  rdIf ,dIm    =  0.2748,  and  rdIg ,dIm    =  0.6406.  To  test  for  the 
presence of multicollinearity in the model, we obtained the variance inflation 
factor (VIF) for each variable. The values are shown in Table 7. 

The interpretation of the size  of  these  VIF’s,  that  is,  whether  or  not  they 
are large, is the subject of a specific  commentary  on  page  376  of  the  classic 
book by Draper and Smith (1998). These authors write: “Obviously, how large  

a VIF value has to be to be large enough comes back to the question of when 
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Table 7  VIF values for the variables in OLS  model 
 

distance dIf dIg dIm 

Euclidean 1.3193 1.6521 1.3340 
Manhattan 1.3594 1.7229 1.3636 

 
 
 

an R2 is large enough and perhaps should be thought on in that manner. In 

some writings, specific numerical guidelines for VIF values are seen, but they 

are essentially arbitrary. Each person must decide for himself or herself”. 

Nonetheless, there is a certain consensus when 10 is  established  as  the  max- 
imum threshold (O’brien, 2007) and about the need to eliminate correlated  
variables from the model (O’brien, 2016). As a result, and given the values in   
Table 7, we can accept that  our  model  does  not  display  multicollinearity  in  
spite of the  correlations  that  we  have  mentioned.  It  is  therefore  not  necessary 
to  eliminate  any  of  the variables. 

The Breusch-Pagan (B-P) test of heteroscedasticity and the Kolmogorov- 
Smirnov (K-S) test for normality applied to the residuals of the three models 
are shown in Table 8. Normality is accepted in the spatial models but not in 
the OLS for the Manhattan distance. The residuals of the three models present 
heteroscedasticity. 

 
 

Table  8  Heteroscedasticity and normality test for the three  models 
 

 
model 

Euclidean distance 
statistic p-value 

 
df 

Manhattan distance 
statistic p-value 

 
df 

B-P test OLS 14.447 0.002 3 10.810 0.013 3 
lag 16.704 0.001 3 15.505 0.001 3 
error 18.384 0.000 3 20.519 0.000 3 

K-S test OLS 0.088 0.091 0.121 0.003 
 lag 0.090 0.074 0.101 0.027 
 error 0.085 0.122 0.088 0.093 

 
 
 

The Q-Q plots of the residuals of the three models for both distances are 
shown in Figure 7 and help us to understand the heteroscedasticity of the 
models. In all these, the residual in the top right-hand corner is a striking 
feature: this corresponds to the département  of Seine, the capital of which is 
Paris. 

The anomalous behavior of the département of Seine is explained if we look 
at Figure 8, which shows the different behavior over time of its e0 with respect  
to its neighbors, especially until the end of the 19th century.  As a result of    
this, it has the largest values of de0 , while the values for the distances based    
on the three indices do not occupy extreme positions. All of these values are 
shown in Table  9. 
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Fig. 7 Q-Q plot for the residuals of the three models for Euclidean (upper) and Manhattan 
(lower) distances 
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Fig.  8  Evolution of e0  in Seine département and its neighborhood 
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Table  9  Distances for Seine département 

 

 Euclidean distance   Manhattan distance  
de0 dIf dIg dIm de0 dIf dIg dIm 

Seine 50.6765 0.1657 0.2820 0.4568 206.8207 0.6947 1.2247 2.1905 
 

 
 

4.4 Direct and indirect impacts for the spatial autoregressive model 
 

The parameters of the ordinary least square and the spatial error models in 
Tables 3 and 5 offer a straightforward, direct interpretation. Each of them 
represents the variation in the variable response if the independent variable 
associated with the parameter increases by one unit when the others stay the 
same. 

LeSage and Pace (2009) propose an alternative matrix expression for the 
spatial lag model of equation   (3), 

 
y = (In − ρW )−1(β0ιn + Xβ + ε), (5) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 
 

  
 

 
 

 
 
 
 

 
 

   
 

 
 

  
 
  

  
  

 
     

 
    

 
 

 
 

 
 

 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

 
  

 

 
 

 
  

 
 
  

 
 

    
   

  
      

  
 

 
 

 
 

  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

 

 
 

 
 
 

 
  

    
 

 
   

    
   

 
 
 

 
   

 
 

 
  

  
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
  

 
 

          
   

 
 

    
 

 

 
S

a
m

p
le

 Q
u

a
n

til
es

 
 

S
a

m
p

le
 Q

u
a

n
til

es
 

 
0

 
1

0
 

2
0

 
lif

e 
ex

pe
ct

an
cy

 a
t b

irt
h 

 
−

5
0 

 
0

 
 

5
0

 
 

−
1

0 

0 
20

 
40

 
60

 
80

 

 
S

a
m

p
le

 Q
u

a
n

til
es

 
 

0
   

   
   

   
   

   
   

   
   

   
   

   
 2

0
 

 
S

a
m

p
le

 Q
u

a
n

til
es

 
 

5
   

   
   

   
   

   
   

   
   

   
   

   
 1

0
   

   
   

   
   

   
   

   
   

   
   

   1
5

   
   

   
   

   
   

   
   

   
   

   
   

2
0

 

 
−

4
0

   
   

   
   

   
   

   
   

   
   

   
−

2
0

 
 

4
0

 
 

6
0

   
   

   
   

   
   

   
   

   
   

   
   

8
0

 
 

−
1

0 
 

−
5 

 
0

 

 
S

a
m

p
le

 Q
u

a
n

til
es

 
 

−
4

0
   

   
   

   
   

   
   

   
   

   
 −

2
0

   
   

   
   

   
   

   
   

   
   

   
 0

   
   

   
   

   
   

   
   

   
   

   
   2

0
   

   
   

   
   

   
   

   
   

   
   

 4
0

 

 
S

a
m

p
le

 Q
u

a
n

til
es

 
 

5
   

   
   

   
   

   
   

   
   

   
   

   
1

0
   

   
   

   
   

   
   

   
   

   
   

 1
5

   
   

   
   

   
   

   
   

   
   

   
 2

0
 

 
6

0
   

   
   

   
   

   
   

   
   

   
   

 8
0

 
 

−
1

0 
 

−
5 

 
0

 



Evolution of life expectancy in France   1833-1982 19 
 

 

where y represents the n observations of the dependent variable, In the unit 
matrix of dimension n, ιn the unit vector of dimension n, X the matrix of the n 
observations of each of the p independent variables, β the vector of parameters, 
ρ the spatial coefficient and W the matrix of neighborhood (LeSage and Pace, 
2009). This expression shows that any variation in an independent variable in 
one of the départements directly affects the effect of the dependent variable on 
that département, but also indirectly affects its neighbors and their neighbors, 
and in a kind of boomerang effect, ends up by affecting the original département 
itself. The size of the direct and indirect impacts depends, in accord with 
equation (5), on the matrix of  neighborhood  W ,  the  spatial  coefficient,  ρ, 
and the coefficient β of the variable in the model. This means that the same 
variation of one variable in different départements has different effects. For this 
reason, the authors  cited above propose measures that represent the mean of  
the effects produced by one variable when it varies the same way in all the 
départements. The details are to be found in the above cited text (LeSage and 
Pace, 2009). 

These mean effects, for the spatial lag model in Table 5, are shown in Table 
10, which also shows the p-valor for testing that these impacts are null. All of 
these are significant at α = 0.05 except the indirect effects of dIg and dIm for 
the Euclidean distance and dIg for the Manhattan distance. The significance 
of the coefficients mainly confirms the direct and indirect impact between the 
similarity of behavior over time of the life expectancy at birth and the overall 
fertility index. However, for the other two measures, only the direct impact is 
confirmed in both distances. 

We can observe that the direct effects do not differ much from the β as- 
sociated with each variable in the spatial lag model. This should not surprise  
us, as the direct effects are nothing other than the corrections of the former 
owing to the spatial effect introduced in the model. The  differences  that we  
can observe are due to the feedback of the indirect effects suffered by the other 
départements. This is a kind of round-trip phenomenon which eventually comes 
into equilibrium. 

 
 

Table  10  Mean impacts for the spatial lag  model 
 

 direct p-value indirect p-value total p-value 

Euclidean dIf 72.6594 0.0001 87.2591 0.0442 159.9185 0.0039 
 dIg -18.7211 0.0122 -22.4828 0.1276 -41.2038 0.0462 
 dIm 28.2265 0.0035 33.8982 0.0780 62.1247 0.0193 

Manhattan dIf 69.6740 0.0000 75.4971 0.0322 145.1711 0.0015 
 dIg -19.4599 0.0035 -21.0863 0.0725 -40.5461 0.0169 
  dIm       26.8325       0.0005        29.0751       0.0408        55.9076        0.0047      

 
 

It is sometimes interesting to study the effect of the changes in one variable 
in a particular area on the response variable in the region itself, and in the other 
regions. As an example, let us consider what happened when the départements 
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of Seine and Haute-Vienne had an increase of 0.1 in the variable dIf for the 
Manhattan distance. Table 11 shows the direct and indirect effects of both 
increases and confirms the comment made above about how these effects vary 
from one département to another. Figure 9 allows us to see how the effects are 
cushioned as we move further away from the origin of the change. 

 
 

Table  11  Impacts for Seine et Haut-Vienne 

Direct Indirect 
 

Seine 6.7338 2.5086 
Haute-Vienne 6.8547 7.9359 

 

 
 
 
 

Fig.  9  Indirect impacts due to an increment of 0.1 in dIf  at Seine (left) and Haut-Vienne 
(right) départements. 
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5 Conclusions 
 

The definition of new variables based on the life expectancy at birth  and 
fertility index has enabled us to summarize the evolution over time of the 
geographical differences in demographic behavior. These new variables mea- 
sure similarities in the way trends evolved between the départements and their 
neighbors. 

Changes in life expectancy at birth in the French départements, measured 
using the associated distance, show a clear spatial autocorrelation, as we can 
see from the maps in Figure 3 and the Moran indices shown in Table 2. The 
LISA values reveal two significant clusters with different signs, with scarcely 
any differences between the two distances (see Figure 4). One of these, the H-H 
cluster, is located in the west-central of the country and, if we recall how the 
distances were obtained, means that these départements followed very different 
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evolution over time. The L-L cluster, situated in the north of the country,  
consists of départements with a similar evolution over time. We also indicate 
that when the data postdating 1903 are analyzed separately, this gives rise to 
new H-H clusters which differ from those that occurred before (see Figure 6 
and Tables 16 and 17), characterized by smaller distances between the nucleus 
and the neighbors than those found in the earlier clusters. Both types of cluster 
were predictable on the basis of Figure 3 with the spatial distribution de0 in the 
French départements. This clearly shows two reas in the north and mid-west 
of the country that correspond to these two clusters. 

Our exploratory analysis enabled us to identify two significant clusters 
which point to two sets of départements, and our regression models confirmed 
the relations between the new variables. The first cluster is represented by 
départements  that are  very different from each other,  with  major differences 
in life expectancy at birth alongside large differences in their overall fertility 
index and nuptiality index but only small differences in their marital fertility 
index. This area therefore reflects French départements which differ in terms 
of life expectancy, fertility and nuptiality but which are similar in terms of 
fertility within marriage. These are very heterogeneous groups of départements 

situated in the Eastern area, with the Dordogne in the center, and including 
some neighboring départements. 

The  second  cluster  consists  of  French  départements  which  are  similar  to 
each other, with minor differences in life expectancy at birth and small differ- 
ences in the overall fertility index and nuptiality index but large differences in 
the marital fertility index. Unlike the other group of départements, in this 
category we find the French départements which have similar life expectancy, 
fertility and marriage rates, but which differ in terms of fertility within mar- 
riage.  This  is  a  highly  homogeneous  group  of  départements  situated  in  the 
north, with Pas-de-Calais in the    center. 

Both clusters are formed through a contagion effect resulting from his- 
torical factors and other variables related to geographical and socio-economic 
conditions which affect the inhabitants of these areas who share the same 
lifestyle and surroundings. According to Barbieri (2013), who analyzes the ge- 
ographical variability within mortality in France over the period 1976-2008, 
cardiovascular diseases make the largest contribution and account for one-third 
of the variability between départements for all ages, even though cancer is the 
main  cause  of  death  for  France  as  a  whole.  Moreover,  the  départements  in 
the north are characterized by a lower life expectancy than the others, whose 
relative mortality for advanced ages is high (60-79 years). None the less, the de- 
partements in the mid-west generally have a higher life expectancy and higher 
relative mortality among people aged under 30. Although levels of poverty and 
income inequality are indeed high in northern France, the relationship between 
the economic situation and mortality in French départements is a complex one 
(Barbieri, 2013) which needs further   investigation. 

Use of spatial regression models is justified by the auto-correlation that 
exists between the residuals in the OLS model, confirmed by the LM tests. The 
coefficients of the three covariables are significant. The positive coefficients of 
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dIf  and dIm  in both models mean that when one département becomes more 
distant from its neighbors in the trends in If and Im, its e0 also follows suit.  
The negative value  of the coefficient associated with dIg  means that this has   
the  opposite effect. 

One further issue of particular interest warrants discussion here, which is the 
question of the spatial model to be used. In our case, the choice would seem to 

be doubtful, because although the best model, if we look at the significance and 
log likelihood, is that of spatial error, the nature of the phenomenon itself 

should be taken into account as a criterion to choose the model. This is no a 
trivial issue, and has been a matter of concern for experts in the field such as 
LeSage and Pace (2009) and Ward and Gleditsch (2008). An interesting dis- 

cussion about which of the two spatial models is most appropriate to describe 
the spatial dependence of a variable can be found in Sparks and Sparks  (2010). 

Returning to our discussion in Section 4.1 about information loss resulting 
from summarizing the time series using one of the distances defined in that 
section for each variable, it must be pointed out that the results obtained are 
interesting, but the dynamics of the process is lost. It suffices to glance again 
at the graphs in Figure 5 to see that relevant information about this dynamic 
cannot be reflected accurately in a spatial study such as this. These graphs 
show a process of increasing uniformity of e0 that starts at the beginning of the 
20th century, with much greater variability in the 19th century. Our research 
focus could be widened to include the study of the variable time, either through 
spatial panel models which enable us to incorporate the action of covariables, 
or through a study similar to the present article with distances weighted by a 
kernel centered on year t0, whose weights would mitigate the effect of values 
that are distant in time, in which t0 could be varied over the time frame of  
the study. 
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Appendix 1 
 

Summary of H-H clusters 
 
 
 

Table  12  H-H clusters and neighbors for Euclidean distance 

center Corrze Dordogne Haute-Vienne 
 

neighbors Cantal Charente Charente 
Creuse Charente-Maritime Corrze 
Dordogne Corrze Creuse 
Lot Gironde Dordogne 
Puy-de-Dme Lot Indre 
Haute-Vienne Lot-et-Garonne Vienne 

Haute-Vienne 

de0  center 38.66 28.46 36.11 
d̄e0  neighbors 26.91 28.45  26.28 

 

 
 
 
 
 
 

Table  13  H-H clusters and neighbors for Manhattan  distance 

center Corrze Haute-Vienne 
 

neighbors Cantal Charente 
Creuse Corrze 
Dordogne Creuse 
Lot Dordogne 
Puy-de-Dme Indre 
Haute-Vienne Vienne 

de0  center 147.89 141.30 
d̄e0  neighbors 106.33  101.80 
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Summary of L-L clusters 
 
 
 

Table  14  L-L clusters and neighbors for Euclidean distance 

center Aisne Nord Pas-de-Calais Somme 
 

neighbors Ardennes Aisne Nord Aisne 
Marne Pas-de-Calais Somme Nord 
Nord Somme Oise 
Oise Pas-de-Calais 
Seine-et-Marne Seine-Maritime 
Somme 

de0  center 11.23 11.42 9.40 11.58 
d̄e0  neighbors 14.22 10.70 11.51  14.40 

 

 
 
 
 
 
 

Table  15  L-L clusters and neighbors for Manhattan  distance 

center Aisne Marne Nord Pas-de-Calais 
 

neighbors Ardennes Aisne Aisne Nord 
Marne Ardennes Pas-de-Calais Somme 
Nord Aube Somme 
Oise Haute-Marne 
Seine-et-Marne Meuse 
Somme Seine-et-Marne 

de0  center 46.20 52.89 50.70 42.64 
d̄e0  neighbors 59.12 61.01 47.1  51.08 
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Summary of H-H clusters for data   subsets 
 
 
 

Table 16  H-H clusters and neighbors for the period 1908-1982 for Euclidean  distance 

center Ille-et-Vilaine Loire-Atlantique Maine-et-Loire Seine 
 

neighbors Ctes-d’Armor Ille-et-Vilaine Ille-et-Vilaine Seine-et-Marne 
Loire-Atlantique Maine-et-Loire Indre-et-Loire Seine-et-Oise 
Maine-et-Loire Morbihan Loire-Atlantique 
Manche Vende Mayenne 
Mayenne Sarthe 
Morbihan Deux-Svres 

Vende 
Vienne 

de0  center 9.00 9.75 8.74 10.13 
d̄e0  neighbors 6.81 7.59 7.14  7.53 

 

 
 
 
 
 
 

Table 17  H-H clusters and neighbors for the period 1908-1982 for Manhattan   distance 

center Ille-et-Vilaine Loire-Atlantique Maine-et-Loire Morbihan 
 

neighbors Ctes-d’Armor Ille-et-Vilaine Ille-et-Vilaine Ctes-d’Armor 
Loire-Atlantique Maine-et-Loire Indre-et-Loire Finistre 
Maine-et-Loire Morbihan Loire-Atlantique Ille-et-Vilaine 
Manche Vende Mayenne Loire-Atlantique 
Mayenne  Sarthe 
Morbihan Deux-Svres 

Vende 
Vienne 

de0  center 31.50 35.49 30.71 23.82 
d̄e0  neighbors 23.58 26.74 24.39  26.73 

 




