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1 Introduction

Difference-in-differences (DID) estimators are a standard econometric tool widely used

to evaluate the impact of a specific treatment on an outcome of interest (for a recent

review of the literature, see Imbens and Wooldridge, 2009). In its simplest implemen-

tation, only data from two periods and two groups (treated and controls) are available.

In the first period—the pre-treatment period—none of the groups is exposed to the

treatment. In the second period—the post-treatment period—the treated are exposed

to the treatment, whereas the controls are not. The appropriateness of the DID tech-

nique depends crucially on the non-testable Parallel Paths assumption. Parallel Paths

assumes that the average change in the outcome variable for the treated in the absence

of treatment is equal to the equivalent average change in the outcome variable for the

controls.

We focus on applications in which several pre-treatment periods are available. In this

context, most researchers apply an extension of the Parallel Paths assumption, usually

referred to as the common trends assumption.1 Under common trends, in the absence

of treatment the average outcome change from any pre-treatment period to any post-

treatment period for the treated is equal to the equivalent average outcome change for

the controls. Unlike Parallel Paths, common trends implies the testable condition that

treated and controls have the same average outcome growth in each pre-treatment pe-

riod (as argued by Angrist and Krueger, 1999). In practice, researchers who detect

pre-treatment trend differentials include linear or quadratic trend polynomials to ac-

count for these differentials (see, for example, Jacobson et al., 1993, Friedberg, 1998

and Wolfers, 2006). This strategy is routinely motivated either as a relaxation of the

common trends assumption or as a robustness check exercise. However, there is never
1For a clear presentation of this terminology see Blundell et al., 2004, p. 578.
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a strict characterization of the implicit assumptions that identify the effect for the new

specifications and whether they contain testable restrictions. This is a serious gap in the

DID literature whose importance goes beyond the interest of knowing which assumptions

we rely on to identify the effect. In practice, the presence of testable restrictions can be

exploited to minimize the risk of imposing invalid assumptions and, therefore, the risk

of using inconsistent estimators of the effects.

We fill this gap and characterize the set of assumptions that identify the treatment effect

for any econometric specification. To do so, we define a family of alternative Parallel

assumptions. We refer to them as Parallel-(q) with q ranging from 1 to the number of pre-

treatment periods. Intuitively, Parallel-(q) assumes that, in the absence of treatment,

the average q-th difference in the outcome variable after treatment is equal for controls

and treated. Each Parallel-(q) assumption is non-testable in isolation because it refers

to the behavior of the treated in a scenario that is not observable. Hence, for alternative

Parallel-(q) assumptions it is only possible to test if their identification of the treatment

effect is equivalent. We show that the Parallel-(q) assumptions are non-nested in the

sense that one does not imply any of the others. We also show that any of them is

sufficient to obtain identification of the treatment effect.

We further establish equivalence conditions for any two consecutive Parallel-(q) as-

sumptions. Using these results, we discuss the most usual econometric specifications

and show that they always impose the equivalence of several Parallel-(q) assumptions.

Thus, the most usual econometric specifications impose restrictions that result in over-

identification of the treatment effect. In addition, we propose a model with fully flexible

group–specific dynamics. In contrast to the most usual econometric specifications, this

model can be used to test multiple equivalence conditions.

The rest of the paper is structured as follows. We define the family of alternative Parallel-
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(q) assumptions in Section 2. We discuss several econometric specifications and present

the fully flexible model in Section 3. In Section 4, we analyze, by means of a Monte

Carlo simulation, the relative performance of four alternative models. In Section 5, we

review current practice and explore the practical relevance of our proposal. Section 6

concludes. Proofs are gathered in Appendix A and the details of the review of current

practice are available in Appendix B.

2 Alternative Parallel-(q) assumptions

In the simplest empirical DID application, we have two periods: one before and one

after the treatment. Generally, we have T ≥ 2 periods, treatment starts sometime after

the last pre-treatment period, t∗, and finishes before the first post-treatment period,

t∗ + 1. There are at least two periods before treatment and at least one period after

treatment. We first focus on the case when there is only one period after treatment and

later we extend the analysis to the general case of several post-treatment periods, i.e.

when T − t∗ > 1.

Following conventional notation we define Yit as the observed outcome variable for indi-

vidual i at period t. Let Y 0
it denote the outcome in period t when the individual receives

no treatment, and Y 1
it the outcome in period t when the individual receives treatment.

Before treatment (i.e., t ≤ t∗), Y 0
it = Yit , while for the post-treatment period (i.e., for

t = t∗ + 1) either Y 0
it or Y 1

it is observed. Let Di = 1 if the individual receives treat-

ment and Di = 0 otherwise. Potential and observed outcomes are related to Di by

Yit = Y 1
itDi + Y 0

it (1−Di) for t = t∗ + 1. Finally, for notational simplicity we do not

consider any covariates, but results are similar if the analysis is made conditional on a

vector of covariates.
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We study identification conditions for the average treatment effect on the treated,

α = E
[
Y 1
i,t∗+1 − Y 0

i,t∗+1 |Di = 1
]
. (1)

The estimation of α is problematic because Y 0
i,t∗+1 is not observable for the treated.

To estimate the average counterfactual, E
[
Y 0
i,t∗+1 |Di = 1

]
, one needs an assumption

regarding the trend behavior of the treated if untreated. For example, when T = 2 the

DID estimator stems from the so-called Parallel Paths assumption.

The Parallel Paths assumption

For illustration of the DID identification strategy, consider the simplest case with only

one period before and only one period after treatment: T = 2 and t∗ = 1. Let L be the

lag operator so that for any time series xt and integer p, Lpxt ≡ xt−p. Let ∆ denote

the first difference operator so that ∆ ≡ (1− L). The Parallel Paths assumption can be

expressed as follows.

Definition 1. Parallel Paths

E
[
∆Y 0

i2 |Di = 1
]

= E
[
∆Y 0

i2 |Di = 0
]
. (2)

Parallel Paths means that, in the absence of treatment, average changes in outcome

among treated are equal to the average changes among comparable controls.

Under Parallel Paths the counterfactual E [Y 0
i2 |Di = 1] is built by adding the observed
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average increase in the controls to the pre-treatment level of the treated:

E
[
Y 0
i2 |Di = 1

]
= E [Yi1 |Di = 1]

+ E [∆Yi2 |Di = 0] (3)

Using this counterfactual, the treatment effect, α, may be expressed as the difference

in observed outcome changes among treated and controls, usually referred to as the

difference-in-differences operator:

α = E [∆Yi2 |Di = 1]− E [∆Yi2 |Di = 0] (4)

Non-nested Parallel-(q) assumptions

Returning to the case when the number of pre-treatment periods can be larger than one,

we define Parallel-(q) as follows.

Definition 2. Parallel-(q)

For a given q such that q ∈ {1, ..., t∗},

E
[
∆qY 0

i,t∗+1 |Di = 1
]

= E
[
∆qY 0

i,t∗+1 |Di = 0
]

(5)

where ∆q ≡ (1− L)q.

For example, Parallel-(1) means that

E
[
∆Y 0

i,t∗+1 |Di = 1
]

= E
[
∆Y 0

i,t∗+1 |Di = 0
]
.
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Hence, in the absence of treatment, the treated experience from t∗ to t∗ + 1 the same

average outcome change as that of the controls. In the simplest case when T = 2,

Parallel-(1) is Parallel Paths.

Parallel-(2) implies that

E
[
∆2Y 0

i,t∗+1 |Di = 1
]

= E
[
∆2Y 0

i,t∗+1 |Di = 0
]
,

so that there is a shift from outcome changes to outcome accelerations. For higher q,

interpretation of the assumption is similar.

Using Parallel-(q) to build the counterfactual requires data with q pre-treatment peri-

ods. Therefore, in terms of information requirements Parallel-(1) is less demanding than

Parallel-(2), which is less demanding than Parallel-(3), and so on. Although data re-

quirements are nested, assumptions are not: one Parallel-(q) assumption does not imply

any of the others. In Table 1 we illustrate this fact with the simplest case of Parallel-

(1) vs. Parallel-(2) with two pre-treatment periods. For three different cases, we give

the expected outcomes in the absence of treatment for both treated and controls. In

Case (a) Parallel-(1) is satisfied because the expected outcomes of ∆Y 0
i,t∗+1 are invari-

ant to treatment, E
[
∆Y 0

i,t∗+1 |D
]

= 1. In contrast, E
[
∆2Y 0

i,t∗+1 |Di = 1
]

= 0 while

E
[
∆2Y 0

i,t∗+1 |Di = 0
]

= 1. Thus, Parallel-(2) is violated. This situation arises when

the comparability in changes between treated and controls is valid only from the last

pre-treatment period, but the dynamics of controls and treated are not comparable in

previous pre-treatment periods. In Case (b), Parallel-(1) is violated while Parallel-(2) is

satisfied. This situation arises when treated and controls changes are not comparable,

but the changes of the changes are. Case (a) and Case (b) show that Parallel-(1) and

Parallel-(2) are non-nested. Nonetheless, both assumptions can be simultaneously satis-
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fied, as Case (c) illustrates. Given that each higher order Parallel-(q) assumption shifts

the variable of interest by taking the first difference from the previous Parallel-(q) as-

sumption, the illustration in Table 1 in fact shows that any two Parallel-(q) assumptions

are non-nested.

Table 1: Non-nested Parallel-(q) assumptions. An illustration with Parallel-(1) and Parallel-
(2)

E
[
Y 0
t∗−1|D

]
E [Y 0

t∗|D] E
[
Y 0
t∗+1|D

]
E
[
∆Y 0

t∗+1|D
]

E
[
∆2Y 0

t∗+1|D
]

Case (a)
D = 1 1 2 3 1 0
D = 0 0 0 1 1 1

Case (b)
D = 1 1 2 4 2 1
D = 0 0 0 1 1 1

Case (c)
D = 1 1 2 4 2 1
D = 0 0 1 3 2 1

Note: Expected outcomes in the absence of treatment conditional on treatment. Case (a)
illustrates a situation whereby Parallel-(1) is satisfied while Parallel-(2) is violated. Case (b)
illustrates the opposite situation. In Case (c), both Parallel assumptions are satisfied.

Furthermore, there is not a general reason to favor a particular value for q. Consider

a recursive representation of the potential outcomes under no treatment. Denote ∆Y 0
it

as ε0it so that Y 0
it = Y 0

i0 +
∑t

j=1 ε
0
ij. The Parallel-(1) assumption implies that ε0i,t∗+1 is

mean independent of D. The Parallel-(2) assumption shifts this condition to ∆ε0i,t∗+1

being mean independent of D, and so on. Parallel-(1) holds but Parallel-(2) does not if

ε0i,t∗+1 is mean independent of D but ε0i,t∗ is not. This happens when shocks in potential

outcomes at the time of treatment are mean independent of D but previous shocks are

not. In contrast, shocks could fail to be mean independent of D at time of treatment

8



(and before), but the change in the shocks, ∆ε0i,t, could satisfy the condition for t = t∗+1.

In that case, Parallel-(2) would hold while Parallel-(1) would fail.

Identification under each Parallel-(q)

Define did (q) as the difference-in-q-differences operator one period ahead,

did (q) ≡ E [∆qYi,t∗+1 |Di = 1]− E [∆qYi,t∗+1 |Di = 0] .

Theorem 1. For any q = 1, ..., t∗ under Parallel-(q),

α = did (q) .

Proof. See Theorem A1 in Appendix A for the proof of the general case when there may

be more than one post-treatment period.

The treatment effect α is the difference-in-q-differences operator under Parallel-(q). Since

the difference-in-q-difference operator is observable, each Parallel-(q) assumption in iso-

lation is sufficient to identify the treatment effect.

Equivalence conditions

Summing up, Parallel-(q) assumptions are non-nested and any Parallel-(q) assumption

suffices to identify the treatment effect. By Theorem 1 we have established the connec-

tion between the did (q) operator and the treatment effect under Parallel-(q). We now

study under what conditions consecutive did (q) operators—and hence the identification

of the treatment effect under consecutive Parallel-(q) assumptions—are equivalent.
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Theorem 2. For any q = 2, ..., t∗,

did (q) = did (q − 1)

if and only if

E
[
∆q−1Yit∗ |Di = 1

]
= E

[
∆q−1Yit∗ |Di = 0

]
. (6)

Proof. See Theorem A2 in Appendix A for the proof for the general case when there

may be more than one post-treatment periods.

Because by Theorem 1 under Parallel-(q) α is identified by the difference-in-q-differences

operator, Theorem 2 sets pre-treatment trend conditions for which assumptions Parallel-

(q) and Parallel-(q − 1) are equivalent and gives a testable implication of assuming

Parallel-(q) and Parallel-(q − 1) jointly. For example, Parallel-(1) and Parallel-(2) are

not equivalent when E [∆Yit∗ |Di = 1] 6= E [∆Yit∗ |Di = 0], i.e. in the presence of group-

specific outcome changes in the last pre-treatment period. More specifically, in the

special case when T = 3 and t∗ = 2, Parallel-(1) is equivalent to Parallel-(2) if the

difference-in-difference operator at t = 2 is equal to zero, i.e. if E [∆Yi,2 |Di = 1] =

E [∆Yi,2 |Di = 0]. In the empirical literature, this condition is usually presented as the

null in a placebo test of the DID assumption.

Theorem 2 implies that controls and treated have common pre-treatment dynamics if

and only if all Parallel-(q) assumptions are equivalent. This result has two implications.

First, the comparison of pre-treatment trends for treated and controls frequently imple-

mented in empirical work may be regarded as an informal test for the equivalence of

all parallel assumptions between Parallel-(1) and Parallel-(t∗). Second, assuming that

common dynamics remain after treatment in the absence of treatment—the common
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trends assumption—is the same as assuming that ∆Y 0
it = ε0it is mean independent of

treatment at all pre-treatment periods.

The case with more than one post-treatment period

When there are more than one post-treatment period, the effect of the treatment can

be evaluated s periods after treatment, where 1 ≤ s ≤ T − t∗:

α (s) = E
[
Y 1
i,t∗+s − Y 0

i,t∗+s |Di = 1
]
. (7)

Identification of treatment after s periods relies on a general version of Parallel-(q) such

that for a given pair of positive integers (q, s) with 1 ≤ q ≤ t∗ and 1 ≤ s ≤ T − t∗,

E
[
∆s∆

q−1Y 0
i,t∗+s |Di = 1

]
= E

[
∆s∆

q−1Y 0
i,t∗+s |Di = 0

]
(8)

where ∆s = (1− Ls). In what follows we refer to Parallel-(q) as the assumption under

which equation (8) holds for all s ∈ {1, T − t∗}. Define did (q, s) as the difference-in-q-

differences operator s periods ahead,

did (q, s) ≡ E
[
∆s∆

q−1Yi,t∗+s |Di = 1
]
− E

[
∆s∆

q−1Yi,t∗+s |Di = 0
]
. (9)

In Theorem A1 in Appendix A we generalize Theorem 1 for the case with possibly several

post-treatment periods and show that for a given positive integer q ≤ t∗, and for any s,

1 ≤ s ≤ T − t∗, under Parallel-(q), the treatment effect α (s) is identified as the solution

of ∆q−1α (s) = did (q, s). Moreover, under Parallel-(q) there is an unique solution to this

equation such that α (s) = 0, denoted by αq (s) (see Corollary A1 in Appendix). Finally,
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the equivalence conditions for the identification of α (s) do not depend on s. To see this,

in Theorem A2 in Appendix A we generalize the result from Theorem 2 and show that

for any q such that 2 ≤ q ≤ t∗ and a given s such that 1 ≤ s ≤ T − t∗, αq (s) = αq−1 (s)

if and only if

E
[
∆q−1Yit∗ |Di = 1

]
= E

[
∆q−1Yit∗ |Di = 0

]
. (10)

3 Regression techniques

In empirical applications, there usually are several pre-treatment and several post-

treatment periods. In this section we review the usual empirical strategies focusing

the attention for simplicity on the case when there is only one post-treatment period.

We show how these strategies imply testable conditions related to the equivalence of

alternative Parallel-(q) assumptions.

The standard model

Treatment effects are frequently estimated using standard linear regression techniques.

In the simplest case with only two periods, the treatment effect estimate is obtained

from a regression that includes a constant, the treated indicator Di, a dummy variable

for the post-treatment period, Postt, and an interaction term, Postt × Di. In this set

up, the treatment effect is identified by the parameter associated with the interaction

term.

When several pre-treatment periods are available, the conditional expectation will in-

clude time dummies for all periods and an interaction between the treatment indicator

and the post-treatment time dummy (see, for example, Imbens and Wooldridge, 2009).
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Assume that the conditional mean function has the following form:

E [Yit |Di = D ] = δ +
T∑
τ=2

δτI
τ
t + γD + γT × ITt ×D (11)

where Iτt takes value one if t = τ and zero otherwise and D ∈ {0, 1}. Equation (11) im-

poses that pre-treatment dynamics—captured by time dummies—are identical between

the controls and treated. Identifying α with γT implies the common trends assumption

and the equivalence of all Parallel-(q) assumptions. Formally, by applying ∆q on both

sides of equation (11) and taking into account that ∆qγT = γT , we have that

did (q) = γT . (12)

By Theorem 1, α = γT under any parallel assumption. When there is more than one

post-treatment period, the usual practice is to interact the treatment variable with

a post-treatment dummy. In that case, the long-term effect of treatment is already

present at t∗ + 1. In some applications where the aim is to identify dynamic effects,

researchers include interactions between the treatment dummy and post-treatment time

dummies (see, for example, Furman and Stern, 2011). These specifications still impose

the common trends assumption if the treatment effects are identified as the interaction

parameters.

A polynomial trend for the differences in group dynamics

An essential aspect in the previous model is that pre-treatment dynamics are identical

for controls and treated. Researchers accommodate group-specific trends by adding in

equation (11) an interaction between the treatment indicator and a polynomial time
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trend of order R < t∗. Let us consider the leading case of a linear polynomial:

E [Yit |Di = D ] = δ +
T∑
τ=2

δτI
τ
t + γD + γT × ITt ×D + γp1 × t×D (13)

In equation (11) pre-treatment dynamics are identical for controls and treated. By

contrast, in equation (13) the term γp1 × t captures differences in group dynamics that

predate treatment and remain after treatment.

By Theorem 1 we have that under Parallel-(q) ,

α = γT + γp1∆q (t∗ + 1) . (14)

so that the treatment effect will generally not be identified as the interaction term γT .

Because ∆q (t∗ + 1) = 0 for all q > 1, α = γT if q > 1. Hence, the interaction term γT

identifies the treatment effect α if we assume all assumptions between Parallel-(2) and

Parallel-(t∗).

In some empirical applications, researchers include higher order polynomials:

E [Yit |Di = D ] = δ +
T∑
τ=2

δτI
τ
t + γD + γT × ITt ×D +

R∑
r=1

γpr × tr ×D. (15)

Now the term
∑R

r=1 γ
D
r × tr captures differences in group dynamics that predate treat-

ment and remain after treatment. Equation (14) now becomes

α = γT +
R∑
r=1

γpr∆
q (t∗ + 1)r

so that the treatment effect will generally not be identified as the interaction term γT .
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Because ∆q (t∗ + 1)r = 0 for all q > r, α = γT if q > R. For example, if we include

a quadratic polynomial interacted with treatment when there are more than two pre-

treatment periods, t∗ > 2, then α = γT if we assume all parallel assumptions between

Parallel-(3) and Parallel-(t∗). More generally, in a model with a polynomial of order R,

α = γT if we assume all parallel assumptions between Parallel-(R + 1) and Parallel-(t∗).2

To summarize our results, the inclusion of group-specific trends in the standard model

relaxes the common trends assumption by not imposing at least one Parallel assumption.

When a linear trend is introduced, Parallel-(1) is not imposed but the validity of all other

parallel assumptions is assumed. When a quadratic trend is included, then both Parallel-

(1) and Parallel-(2) are disregarded but all other parallel assumptions are still imposed.

In the presence of many pre-treatment periods, this strategy may still impose too many

equivalence conditions. In the next subsection, we present a model that allows for more

flexible identification strategies.

Fully flexible group–specific dynamics

All econometric specifications discussed so far identify the treatment effect imposing the

equivalence of several Parallel-(q) assumptions. We know from Theorem 1 that every

Parallel-(q) assumption can independently identify the treatment effect. Thus, all these

econometric models are imposing more restrictions than necessary to identify the effect.

We propose a model that allows separate identification of the treatment effect under

each Parallel-(q) assumption and testing of equivalence conditions.
2When there are more than one post-treatment period, the same result applies to the iden-

tification of α (s) with parameters γs associated to interactions of treatment with post-treatment
time dummies. By Theorem A1 in Appendix A we have that under Parallel-(q) , ∆q−1αq (s) =

∆q−1γs +
∑R
r=1 γ

p
r∆s∆

q−1 (t∗ + s)
r. The identification of the treatment effect s periods ahead is com-

plex to evaluate for q ≤ R because there is no closed-form solution for ∆s∆
q−1 (t∗ + s)

r. For q > R,
∆s∆

q−1 (t∗ + s)
r

= 0 for all r and αq (s) = γs. Thus, the identification of the treatment effect with γs
imposes the equivalence of all parallel assumptions between Parallel-(R+ 1) and Parallel-(t∗).
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Consider a general additive model with fully flexible groups–specific dynamics:3

E [Yit |Di = D ] = δ +
T∑
τ=2

δτI
τ
t + γD +

T∑
τ=2

γτ × Iτt ×D. (16)

The standard model in equation (11) is a particular case where γτ = 0 for all τ < T .

For brevity, we refer to equation (16) as the fully flexible model. Equation (16) does not

impose parametric assumptions on trends for treated or controls. This flexibility allows

identifying the treatment effect separately under each Parallel-(q) assumption:

Theorem 3. Under Parallel-(q) and equation (16):

α = ∆qγT (17)

Proof. See Theorem A3 in Appendix A for the proof in the general case when there may

be more than one post-treatment period.

Theorem 3 identifies the treatment effect as a linear combination of the original pa-

rameters of the model. The effect of treatment will generally differ under alternative

Parallel-(q) assumptions. For example, under Parallel-(1), α = γT − γT−1 while under

Parallel-(2), α = γT − 2γT−1 + γT−2.

From Theorems 2 and 3 we can also identify the restrictions on the model parameters that

imply the same Parallel-(q) assumptions. Consider the equivalence of two consecutive

parallel assumptions Parallel-(q) and Parallel-(q + 1). They are equivalent if ∆qγT =

∆q+1γT which—given that ∆q+1γT = ∆qγT − ∆qγT−1—implies that ∆qγT−1 = 0. In

the case of equivalence between Parallel-(1) and Parallel-(2), the null hypothesis is H0 :

3We are aware of only one empirical work—Reber, 2005—that proposes a flexible model by intro-
ducing interactions of treatment with time dummies for a limited number of periods before treatment
and several periods after treatment.
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γT−1 = γT−2. Following a similar argument, Parallel-(1) is equivalent to Parallel-(2) and

Parallel-(3) if and only if γT−1 = γT−2 = γT−3. More generally, all parallel assumptions

between Parallel-(1) and Parallel -(q) are equivalent if and only if γT−1 = γT−2 =

... = γT−q. Hence, a fully flexible model that imposes all Parallel assumptions between

Parallel-(1) and Parallel-(t∗) must satisfy that γτ = 0 for all τ ∈ {2, ..., t∗}. Thus,

only when pre-treatment dynamics are equal between treated and controls α = γT .

Therefore, the test of the null hypothesis of pre-treatment common trends (H0 : γτ =

0 for all τ ∈ {2, ..., t∗}) is a test for the simultaneous equivalence of all Parallel-(q)

assumptions. Given that the standard model is the fully flexible model with γτ = 0 for

all τ ∈ {2, ..., t∗}, we can interpret it as a fully flexible model that satisfies all Parallel

assumptions.

The following result states the restrictions on the parameters in the fully flexible model

that imply the same Parallel-(q) assumptions as introducing polynomial trends in a

standard model.

Theorem 4. For any value R ∈ {1, t∗ − 1}, a fully flexible model as in equation (16)

that satisfies equivalence of Parallel-(R + 1), Parallel-(R + 2), ...., and Parallel-(t∗) is

equivalent to a standard model with a polynomial of order R as in equation (15).

Proof. See Theorem A4 in Appendix A.

For example, using a linear trend in equation (13) and identifying the treatment ef-

fect with γT implies the equivalence of all Parallel-(q) assumptions from Parallel-(2)

until Parallel-(t∗). Using a quadratic polynomial implies the equivalence of all parallel

assumptions from Parallel-(3) until Parallel-(t∗).

If a researcher has appealing reasons to prefer one assumption over the rest, then the

sensible strategy is to impose it. One can also test whether the imposition of additional
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Parallel-(q) assumptions would lead to similar results. This is easy to implement using

an F statistic of the joint significance of the corresponding equivalence conditions.4

We saw in Table 1 that in Case (a) Parallel-(1) holds but Parallel-(2) does not. This

case highlights that the validity of Parallel-(1) does not depend on the dynamics before

treatment. Researchers already know that the usual placebo test on pre-treatment data

is never a test on Parallel-(1). We stress here that rejection of the equivalence between

Parallel-(1) and Parallel-(2) is not evidence in favor of any of the two. Similarly, non-

rejection is evidence that both Parallel-(q) assumptions yield similar results, but not

evidence in favor of the two. Ultimately, tests on pre-treatment periods do not test the

validity of identifying Parallel-(q) assumptions, that are fundamentally untestable.

Two final remarks relate to the modeling of dynamic effects and to the computation of the

standard errors in the fully flexible model. Consider an applied researcher who correctly

identifies the effect under Parallel-(q) but wrongly imposes no dynamic treatment effects.

The result is a consistent estimate of a weighted average of the effects in the post-

treatment period. On the other hand, if Parallel-(q) is false, the result will generally

not be related with any meaningful treatment effect parameter. Overall, failing to select

the correct identifying assumption is a potentially more serious issue than failing to

account for dynamic treatment effects.5 Regarding the computation of the standard

errors in the fully flexible model, as with any DID regression, in the fully flexible model

we regress outcomes at the individual level on controls that are variant at group level.

In this situation, cross-sectional correlation within groups as well as correlations over

time of the units in the different groups (in panel data applications) has been shown

to substantially affect the validity of traditional inference (Moulton, 1990, Bertrand
4See Mora and Reggio (2015) for an implementation of the fully flexible model and several equivalence

tests in Stata.
5We thank an anonymous referee for pointing this out.
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et al., 2004, Donald and Lang, 2007, Hansen, 2007a, and Hansen, 2007b). The model

in equation (16) is subject to the same potential pitfalls regarding the computation of

standard errors as any other DID regression method.

4 A Monte Carlo Example

Under the appropriate set of Parallel-(q) assumptions, standard regression techniques

provide consistent estimates of the treatment effects. The fully flexible model permits to

explore which identifying assumptions can be used together. In contrast, the models used

in applied research directly impose the equivalence of many Parallel-(q) assumptions. We

illustrate by means of a Monte Carlo simulation the potential relative performance of

four alternative models when the data generation process is a particular specification of

the fully flexible model in equation (16).

The data, with five periods before treatment and two periods after treatment, are gen-

erated from:

yit =
7∑

τ=2

δτI
τ
t + γDi +

7∑
τ=2

γτ × Iτt ×Di + uit (18)

where Pr (Di = 1) = 0.5 and uit ∼ N (0, 0.25). The sequence δτ is the Fibonacci sequence

{1, 1, 2, 3, 5, 8}, γ = 3, and the sequence γτ is {4, 4, 5, 6, 8, 9}. We consider four different

sample sizes (N × T = 250, 750, 2000, 5000) and conduct 10,000 replications.

In addition to the fully flexible model from equation (16), we consider the standard model

in equation (11) where we add an interaction between Di and the dummy variable for

the second post treatment period as well as a model with a linear trend polynomial as

in equation (13) and a model with a quadratic polynomial. For the fully flexible model,
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Table 2: Monte Carlo: H0 : α(1) = 1

N × T = 250 N × T = 750 N × T = 2000 N × T = 5000
Standard Model 1.000 1.000 1.000 1.000
Linear Model 0.827 1.000 1.000 1.000
Quadratic Model 0.410 0.878 1.000 1.000
Fully flexible, q = 1 0.973 1.000 1.000 1.000
Fully flexible, q = 2 0.050 0.054 0.051 0.052
Fully flexible, q = 3 0.053 0.050 0.050 0.049
Fully flexible, q = 4 0.108 0.208 0.471 0.850
Fully flexible, q = 5 0.683 0.991 1.000 1.000
Note: Monte Carlo results using 10,000 replications. Results show the proportion of rejections of
the null at 5% significance level. T is fixed at 7 and N slightly changes per period.

we report results considering separately Parallel-(1) to Parallel-(5).

The modeling of the conditional expectation as in equation (18) is not enough to identify

the treatment effect. We must make additional assumptions. Under Parallel-(1) and

Parallel-(4) α = 2, under Parallel-(2) and Parallel-(3) α = 1, and under Parallel-(5)

α = 8. Table 2 shows the proportion of rejections of the nullH0 : α = 1 versusH1 : α 6= 1

using the 5% significance level. For the fully flexible model both under Parallel-(2)

and under Parallel-(3), the null is rejected in approximately the same proportion as

the significance level. The standard, the linear, and the quadratic models identify the

treatment effect wrongly imposing the equivalence of alternative identifying assumptions

and over-reject the null for all sample sizes in the case that the null is true. When the

null is not true, the power of the flexible model is large, except when the true treatment

is identified with q = 4, a result arguably related to the fact that the true value is close

to the null and that we identify the effect using a high q.

The values of parameters γτ are such that Parallel-(2) and Parallel-(3) are equivalent

while no other equivalence condition is satisfied. In Table 3 we present the proportion

of rejections of several equivalence tests at 5% significance levels. We focus only on

the equivalence of sets of consecutive Parallel-(q) assumptions. The standard model
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imposes the common trends assumption (Parallel-(1) to Parallel-(5)). The Linear and

Quadratic models assume the equivalence of Parallel-(2) to Parallel-(5) and Parallel-(3)

to Parallel-(5), respectively. For even small samples, the procedure leads to rejection

of the equivalence conditions required for each of these models. The equivalence test

is rejected in 5% of cases in the test for equivalence of Parallel-(2) and Parallel-(3).

These results suggest that no other equivalence restriction should be imposed in the

identification of the treatment effect.

With this data generation process, what would be a typical approach to the identification

of the effect? The common trends assumption would be rejected (most of the time).

Instead, a linear (or quadratic) trend would be included without testing the validity of

the equivalence conditions imposed. In this illustration, this would imply the imposition

of invalid assumptions to identify the effect.

Equivalence tests do not indicate which Parallel-(q) assumption is the right one. Instead

they identify sets of assumptions that can be used together. Ultimately, researchers have

to use their own judgment to select the identifying assumption most likely to be true.

In this illustration, equivalence tests will normally indicate that the only admissible

identifying assumptions are jointly Parallel-(2) and Parallel-(3) or separately each one

of the others.

5 Practical relevance

In this section, we assess briefly the practical relevance of our analysis by discussing some

empirical contributions to the DID literature in ten major journals for the 2009− 2012

period. We do not attempt to review the main results of the papers, which in some cases

are not derived from the DID analysis, and instead focus on the DID implementations.
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Table 3: Monte Carlo: Equivalence tests

N × T = 250 N × T = 750 N × T = 2000 N × T = 5000
Parallel-1 to Parallel-5 1.000 1.000 1.000 1.000
Parallel-2 to Parallel-5 1.000 1.000 1.000 1.000
Parallel-3 to Parallel-5 1.000 1.000 1.000 1.000
Parallel-1 vs. Parallel-2 0.971 1.000 1.000 1.000
Parallel-2 vs. Parallel-3 0.054 0.048 0.051 0.049
Parallel-3 vs. Parallel-4 0.238 0.575 0.939 1.000
Parallel-4 vs. Parallel-5 0.976 1.000 1.000 1.000
Note: Monte Carlo results using 10,000 replications. Results show the proportion of rejections of the null
at 5% significance level. T is fixed at 7.

We find nine papers that include an application with several pre-treatment periods and

for which the data are publicly available.6 In three of them, the estimation strategy

involves exploiting panel data information by including individual-specific time trends.

As we cannot compare their results with those obtained using the fully flexible model

from Equation (16), we do not consider them in the review.

In the six remaining papers we can estimate the fully flexible model. In Table B2 of

Appendix B we present the list of 13 regressions that we revise from these six papers.

In all specifications the treatment effect is identified as the interaction term. Currie

and Walker (2011) use the standard model with a linear polynomial interacted with the

treatment variable as in equation (13). Furman and Stern (2011) estimate an extension

of the standard model in equation (11) which allows for dynamic treatment effects.

All other implementations use the standard model. When there is a discussion of the

common trends assumption, sometimes it involves plotting a graph of pre-treatment

dynamics while in other cases it involves applying the model on a placebo year or the

last pre-treatment period.7 The authors generally motivate the inclusion of trends as a
6The details on how we selected the papers and the list of papers can be found in Appendix B.
7Moser and Voena (2012) estimate pre-treatment differences in time dummies. They do not imple-

ment the joint test for common pre-treatment trends that we propose in Section (3) (i.e., H0 : γDτ = 0

for all τ ≤ t∗). Instead they plot each pair
(
δ̂t + γ̂Dt , δ̂t

)
and their confidence intervals and report that
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robustness check of the technique or as a relaxation of the common trends assumption.

Altogether the number of papers is small but we think that they reflect the usual practice

of DID in the empirical literature. In the remaining part of this section, we discuss how

the DID results from these papers are robust to the implementation of the fully flexible

model (see Table B2 of Appendix B for details).

We compare the original results with results using the fully flexible model under Parallel-

(1) and Parallel-(2). We provide two sets of estimates. For both Parallel-(1) and Parallel-

(2) we first report the effect using the model in Equation (16) restricted by imposing

that the effect does not depend on s—the columns labeled as “Restricted”. This effect

can be interpreted as an estimate of the average effect throughout the post-treatment

period. Second we report the effect at s = 1 in a fully flexible model that allows for

different effects at different s—the columns labeled as “Unrestricted”.8 We also test for

the equivalence of Parallel-(1) and Parallel-(2) and for the common trends and linear

trend assumptions.

In 11 out of 13 treatment effect estimates, the original papers report significant effects.

In the fully flexible model with unrestricted dynamics the estimated effects remain sig-

nificant and with the same sign at 10% in six out of the 11 cases under q = 1. Under

q = 2, only three estimates remain significant.9 We interpret these results as anecdotal

evidence that, in empirical work, the identification of the treatment effect usually relies

on restrictions involving parallel assumptions beyond Parallel-(1) and/or Parallel-(2).

These results are generally similar if we restrict the post-treatment dynamics in the

fully flexible model to the same dynamics as in the original papers. Hence, differences

“(the) test reveals no systematic differences in pre-trends across treated and untreated subclasses.”
8In Kotchen and Grant (2011) there is only one post-treatment period, so there is no difference

between the Restricted and Unrestricted models and the effects in the two columns are exactly the
same by definition.

9Generally, standard errors under q = 1 are larger than under the original model specification and
under q = 2 they are larger than under q = 1.
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between the results in the fully flexible model and the original estimates are not likely

to be due to the modeling of post-treatment dynamics.

In four out of the 13 cases, we reject at the 5% significance level that Parallel-(1) and

Parallel-(2) lead to equivalent results. These rejections are evidence of pre-treatment

trend differentials. Hence, either Parallel-(1) or Parallel-(2) or both are inappropriate.

The common trends assumption implies not only the equivalence of Parallel-(1) and

Parallel-(2), but also the equivalence of all Parallel assumptions. In nine out of the 10

cases from the four papers in which we can test the common trends assumption we reject

common trends, the assumption exploited in the original estimates. The usual practice

after rejection of the common trends assumption is to include a linear trend interacted

with the treatment dummy. This strategy is equivalent to assuming the equivalence of

all Parallel assumptions between Parallel-(2) and Parallel-(t∗). We provide the test for

this assumption, the linear trend test, in the last column of the Table. We reject the

linear trend assumption in the same nine cases. We interpret this result as anecdotal

evidence that in empirical work identification of the effects is usually based on a too

large set of parallel assumptions.

Finding different results after imposing different assumptions is not surprising. It is

also not surprising that more flexible models provide less accuracy than the standard

model. Our tests results suggest that both the common trends assumption and con-

trolling for a linear trend differential are too restrictive strategies in most applications.

However, in nine out of the 26 fully flexible effect estimates, we obtain results that

coincide in sign with the original results and are significant as in the original results.

These outcomes suggest that the models usually implemented in empirical studies can

be unduly restrictive. More generally, our results highlight that strategies that combine

alternative Parallel assumptions in the fully flexible model can lead to more accurate
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estimates without imposing too strong assumptions. In the next subsection we discuss

how to implement two alternative strategies with an illustration using two of the selected

papers.

A practical guidance to applied researchers

Researchers have to use their own judgment to select the identifying assumption most

likely to be true within the family of parallel assumptions. Estimation can be carried

out using the fully flexible model. Still, there might be gains in basing estimation on

a more parsimonious model. For clarity, we discuss the cases in which the researcher

takes either Parallel-(1) or Parallel-(t∗) as the most plausible identifying assumption and

considers adding consecutive assumptions.10 For example, consider the case with three

pre-treatment periods. Starting from Parallel-(1) relies on the comparability (at t∗ + 1)

under non-treatment between controls and treated average output changes. Starting

from Parallel-(3) relies on the comparability between controls and treated in changes in

output accelerations. If one suspects some type of pre-treatment dynamic differentials

so that growth comparisons are potentially inadequate, it looks safer to start assuming

Parallel-(3). If one suspects that comparability may hold only in the last pre-treatment

periods, then it looks safer to start with Parallel-(1).

If Parallel-(1) is chosen, Parallel-(2) can be added if the test for equivalence between

Parallel-(2) and Parallel-(1) , i.e. H0 : γT−1 = γT−2, is not rejected. The equivalence

of Parallel-(3) with Parallel-(2) and Parallel-(1) can be tested by testing H0 : γT−1 =

10There are no a priori grounds on which assumptions should be added to the preferred one, but it
seems reasonable to focus this discussion on identification strategies that involve the sequential equiva-
lence of alternative parallel assumptions. This implies, for example, that if Parallel-(1) and Parallel-(2)
are not equivalent, then Parallel-(1) and Parallel-(3) will also not be equivalent. In the general case, the
researcher chooses q∗ and considers either adding lower or higher Parallel-(q) assumptions. For clarity,
here we consider the two particular cases when q∗ = 1 and q∗ = t∗, but it is straightforward to apply
our discussion to the general case.

25



γT−2 = γT−3. Parallel-(3) would be added if the null is not rejected. One can proceed

adding higher parallel assumptions until the equivalence test is rejected. As an illustra-

tion, consider Moser and Voena (2012). Using annual data from 1875 until 1939, they

study the effect of the Trading with the Enemy Act (TWEA) in 1918 on the number of

patents by US inventors. We focus on the DID result reported in column 1 of Table 2 of

the original paper. Their reported 0.151 estimate can be interpreted as the average of

additional patents produced by domestic inventors per year after 1919 due to the TWEA.

To obtain this estimate, they use the standard model, therefore accepting the common

trends assumption, i.e. the equivalence of all parallel assumptions between Parallel-(1)

and Parallel-(43). We reject this assumption (see column “Common Trends” in our Table

B2 in Appendix B). Which parallel assumptions should we exploit to identify the effect?

If we assume that Parallel-(1) is the most credible assumption, since we do not reject

its equivalence with Parallel-(2) (see column “Equiv. Test”) we add Parallel-(2). The

equivalence of Parallel-(1), Parallel-(2), and Parallel-(3) is not rejected (p-value of 0.18)

while we strongly reject the equivalence of all parallel assumptions between Parallel-(1)

and Parallel-(4) (p-value of 0.0047). We would in this case advise to exploit Parallel-

(1), Parallel-(2), and Parallel-(3) only. This can be done by estimating equation (16)

imposing γT−1 = γT−2 = γT−3 = θ and estimating the treatment effect as α̂ = γ̂T − θ̂.

Assuming no dynamic effects, the estimated effect is 0.298, approximately doubling the

original estimate. The standard error is larger, 0.043 vs. 0.036, but the p-value is lower.

Hence, following this strategy, we find stronger evidence of a stronger effect using a more

robust identification strategy.

Suppose that Parallel-(t∗) is chosen. Given that Parallel-(t∗) uses the ∆t∗ operator to

identify the effect, in practice the estimator is likely to be less accurate than using

lower q assumptions. One simple strategy to circumvent this issue is to search for the
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largest set of parallel assumptions that are equivalent to Parallel-(t∗). We can do this

by imposing all parallel assumptions between Parallel-(1) and Parallel-(t∗) and then

sequentially dropping parallel assumptions starting from Parallel-(1). This can be done

by adding higher order polynomial trends. Hence, in the first iteration one would test

the equivalence of all parallel assumptions, that is, implementing the common trends

test, i.e. H0 : γτ = 0 for all τ ∈ {2, ..., t∗}. If the test is rejected, we test the equivalence

of all parallel assumptions between Parallel-(2) and Parallel-(t∗), H0 : ∆γτ = γ2 for all

τ ∈ {3, ..., t∗} (see Lemma A3 in Appendix A). In case of rejection, we then test the

equivalence of all parallel assumptions between Parallel-(3) and Parallel-(t∗). We stop

this testing sequence when the test is not rejected or when only Parallel-(t∗) remains.11

As an illustration, consider Abramitzky et al. (2011). The authors investigate the effect

of male scarcity due to military mortality during World War I on marriage market

outcomes in France. They use a sample with six pre-treatment periods. As output they

use three alternative definitions of a bad marriage outcome for men. We focus here

on the class of the bride minus the class of the groom (column 1 from their Table 3

and the second row in our Table B2 in Appendix B). They assume common trends, i.e.

the equivalence of all parallel assumptions between Parallel-(1) and Parallel-(6). Their

estimate is negative and significant at the 10% level suggesting that higher regional

mortality led to better marriage outcomes for men. We reject the equivalence of Parallel-

(1) and Parallel-(2) (see Table B2 in the Appendix). If we assume that Parallel-(6)

is the most credible assumption, we can implement the described strategy. First, we

reject common trends, finding evidence against the standard model. We also reject

the linear trend assumptions. However we cannot reject the equivalence of all parallel

assumptions between Parallel-(3) and Parallel-(6) (with a p-value of .583). The estimate
11The usual practice of starting with the standard model and adding a linear or quadratic polynomial

interaction is in the same spirit with this strategy.
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under Parallel-(3) to Parallel-(6) is −0.030, approximately 50% larger in absolute value

than the original estimate. As in the previous illustration, the standard error is slightly

larger, 0.013 vs. 0.010, and the resulting p-value is smaller, 0.029. Hence, in this case

we also find stronger evidence of a stronger effect using a more robust identification

strategy.

6 Conclusions

This paper studies identification of treatment effects using DID methods when sev-

eral pre-treatment periods are available. We define a family of non-nested, identifying

Parallel-(q) assumptions. Furthermore, we can determine for any econometric model

whether it imposes the equivalence of several of these assumptions for identification of

the treatment effect. Two models are, in practice, very important. The standard DID

model imposes the equivalence of all Parallel-(q) assumptions (usually referred to as

the common trends assumption). Including a linear trend differential for the dynamics

between treated and controls imposes the equivalence of all Parallel-(q) assumptions ex-

cept Parallel-(1) (i.e., the assumption that changes from the last pre-treatment period

are equal for treated and controls in the absence of treatment). Since each Parallel-(q)

assumption identifies the treatment effect, assuming common trends with or without

polynomials implies over-identification and testable restrictions. In current practice, in-

formal tests—such as graphical evidence—for common trends are sometimes presented.

When polynomials are included, the restrictions implied in the new specifications are

routinely not tested.

Failure to test the validity of equivalence conditions may lead to imposition of invalid

assumptions and inconsistent estimates of the effect. We propose a model—which we
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refer to as the fully flexible model—that does not impose equivalence restrictions of

alternative Parallel-(q) assumptions. Using the estimates of the fully flexible model,

the treatment effect can be estimated under any Parallel-(q) assumption. Because the

estimators of the treatment effects turn out to be linear combinations of the original

parameters of the model, tests for the equivalence of Parallel-(q) assumptions are easy

to implement.

Equivalence tests do not indicate which set of Parallel-(q) assumptions is the right one.

Instead they identify which assumptions can be used together. Ultimately, researchers

have to use their own judgment to select the identifying assumption most likely to be

true. We revise the results of several recent papers in which the DID technique has been

applied and reach two main conclusions. In most papers we find evidence against the

common trends assumption and, at the same time, the linear trend assumption, which

is the alternative to common trends usually advocated. In addition, we find evidence

that the models can be unduly restrictive in the sense that in about a third of the

specifications the empirical results would remain under one Parallel assumption without

imposing any equivalence condition. Finally, we provide two testing strategies to impose

equivalence conditions to improve the efficiency of the treatment effect estimates.
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Appendix A

In this Appendix, we present the proofs of the results presented in sections 2 and 3.

We consider the general case in which there may be several periods before and after

treatment and we estimate the effect of treatment s periods after treatment.

Theorem A1. For a given positive integer q ≤ t∗, and for any s, 1 ≤ s ≤ T − t∗,
under Parallel-(q), the treatment effect α (s) is identified as the solution of the following
equation:

∆q−1α (s) = did (q, s) .

Proof. By definition, α (s) ≡ E
[
Y 1
i,t∗+s|Di = 1

]
− E

[
Y 0
i,t∗+s|Di = 1

]
. Taking q differ-

ences,

∆qα (s) ≡ E
[
∆qY 1

i,t∗+s|Di = 1
]
− E

[
∆qY 0

i,t∗+s|Di = 1
]
.

Since, for any variable zt

∆qzt+s = ∆q−1zt+s −∆q−1zt+s−1

=
(
∆q−1zt+s −∆q−1zt

)
−
(
∆q−1zt+s−1 −∆q−1zt

)
=∆s∆

q−1zt+s −∆s−1∆q−1zt+s−1,

then

∆qY ρ
i,t∗+s = ∆s∆

q−1Y ρ
i,t∗+s −∆s−1∆q−1Y ρ

i,t∗+s−1

where ρ = 0, 1. Hence, under Parallel-(q)

∆qα (s) =
(
E
[
∆s∆

q−1Y 1
i,t∗+s|Di = 1

]
− E

[
∆s−1∆q−1Y 1

i,t∗+s−1|Di = 1
])

−
(
E
[
∆s∆

q−1Y 0
i,t∗+s|Di = 0

]
− E

[
∆s−1∆q−1Y 0

i,t∗+s−1|Di = 0
])
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and, by definition of did (q, s),

∆qα (s) = did (q, s)− did (q, s− 1) = ∆did (q, s) . (19)

The theorem is then proved if we show that this condition holds for all s if and only if

∆q−1α (s) = did (q, s) . (20)

The “if” part of the statement is straightforward. To prove the “only” part, we only

need to prove that ∆q−1α (s) = did (q, s) for some s, for instance s = 1. We know that

∆q−1α (1) = α (1), because—by definition—α (s) = 0 for all s ≤ 0. Hence, all is left

to show is that under Parallel-(q) α (1) = did (q, 1). Since Y 0
i,t∗+1 =

∑q
r=1 ∆r−1Y 0

it∗ +

∆qY 0
i,t∗+1, then

α (1) = E
[
Y 1
i,t∗+1|Di = 1

]
− E

[
q∑
r=1

∆r−1Y 0
it∗ + ∆qY 0

i,t∗+1|Di = 1

]

= E [Yi,t∗+1|Di = 1]− E

[
q∑
r=1

∆r−1Yit∗ + ∆qY 0
i,t∗+1|Di = 1

]

where in the second equality we have used the fact that Yi,t = Y 0
i,t = Y 1

i,t for any t ≤ t∗.

Therefore, under Parallel-(q),

α (1) = E

[
Yi,t∗+1 −

q∑
r=1

∆r−1Yit∗|Di = 1

]
− E [∆qYi,t∗+1|Di = 0]

= E [∆qYi,t∗+1|Di = 1]− E [∆qYi,t∗+1|Di = 0]

= did (q, 1)

and the theorem is proved.
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Corollary A1. For a given positive integer q ≤ t∗, and for any s, 1 ≤ s ≤ T − t∗, the

unique solution to equation (??) such that α (s) = 0 for all s ≤ 0 under Parallel-(q),

denoted by αq (s), is:

αq (s) =



did (q, s) if q = 1∑s
j=1 did (q, j) if q = 2∑s
j2=1

∑j2
j=1 did (q, j) if q = 3∑s

jq−1=1

∑jq−1

jq−2=1 . . .
∑j2

j=1 did (q, j) if q ≥ 4

Proof. The result for q = 1 follows directly from Theorem A1 as ∆0 = 1. For q = 2

by Theorem A1 we have that α (s) = α (s− 1) + did (2, s) for s > 1 and that α (1) =

did (2, 1) since α (0) = 0 by definition. Hence, α (s) =
∑s

j=1 did (2, j). For q ≥ 3, note

that taking a first difference on
∑s

jq−1=1 . . .
∑j2

j=1 did (q, j) gives
∑s

jq−2=1 . . .
∑j2

j=1 did (q, j).

More generally, if we apply the ∆d operator, we have
∑s

jq−(d+1)=1 . . .
∑j2

j=1 did (q, j) so

that
∑s

jq−1=1 . . .
∑j2

j=1 did (q, j) is the solution of ∆q−1α (s) = did (q, s).A.

Theorem A2. For any q = 2, ..., t∗ and a given s = 1, ..., T − t∗,

αq (s) = αq−1 (s)

if and only if
E
[
∆q−1Yi,t∗ |Di = 1

]
= E

[
∆q−1Yi,t∗ |Di = 0

]
.

Proof. We first prove the theorem for q = 2. For s = 1, α2 (1) = α1 (1) if and only
if did (2, 1) = did (1, 1) (by Theorem A1). By definition of the did (q, s) operator, this
condition is equivalent to

E
[
∆2Yi,t∗+1|Di = 1

]
− E

[
∆2Yi,t∗+1|Di = 0

]
= E [∆Yi,t∗+1|Di = 1]− E [∆Yi,t∗+1|Di = 0]

or, given that ∆2Yi,t∗+1 = ∆Yi,t∗+1 −∆Yit∗ ,

E [∆Yi,t∗|Di = 1] = E [∆Yit∗|Di = 0] .

35



For s > 1,

α2 (s) =
s∑
j=1

did (2, j)

=
s∑
j=1

{E [∆j∆Yi,t∗+j|Di = 1]− E [∆j∆Yi,t∗+j|Di = 0]}

=
s∑
j=1

{E [∆Yi,t∗+j −∆Yit∗ |Di = 1]− E [∆Yi,t∗+j −∆Yit∗|Di = 0]}

=
s∑
j=1

{E [∆Yi,t∗+j|Di = 1]− E [∆Yi,t∗+j|Di = 0]}

−s {E [∆Yit∗ |Di = 1]− E [∆Yit∗|Di = 0]} .

Taking into account that
∑s

j=1 E [∆Yi,t∗+j|D] = E [∆sYi,t∗+s|D] and the definition of
did (1, s), we have that

α2 (s) = α1 (s)

− s {E [∆Yit∗|Di = 1]− E [∆Yit∗ |Di = 0]} .

Thus, for s > 1, α2 (s) = α1 (s) if and only if E [∆Yit∗|Di = 1]− E [∆Yit∗|Di = 0].

To prove the theorem for q > 2, we use the following two lemmas.

Lemma A1. For any q = 2, ..., t∗ and a given s = 1, ..., T − t∗,

∆q−1αqY (s) = α∆q−1Y (s)

where
α∆q−1Y (s) ≡ E

[
∆q−1Y 1

i,t∗+s |Di = 1
]
− E

[
∆q−1Y 0

i,t∗+s |Di = 1
]
.

Proof. From the linear properties of the ∆s operator, it follows that

∆q−1αqY (s) = E
[
∆s∆

q−1Yi,t∗+s |Di = 1
]
− E

[
∆s∆

q−1Yi,t∗+s |Di = 0
]

=α∆q−1Y (s) .

Lemma A2. For any q = 2, ..., t∗ and a given s = 1, ..., T − t∗,

αqY (s) = αq−1
Y (s)
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if and only if
α∆q−1Y (s) = ∆α∆q−2Y (s) .

Proof. We first prove sufficiency. By applying the (q − 1)th difference, we have that if
αqY (s) = αq−1

Y (s) then ∆q−1αqY (s) = ∆q−1αq−1
Y (s). Therefore, by Lemma A1, α∆q−1Y (s) =

∆α∆q−2Y (s).

Now we prove necessity. By Lemma A1, if α∆q−1Y (s) = ∆α∆q−2Y (s) then

∆q−1αqY (s) = ∆q−1αq−1
Y (s)

for all s. Therefore, both αqY (s) and αq−1
Y (s) satisfy the same initial conditions and have

the same differential equations so they must be the same.

To prove the theorem for q > 2, define zt = ∆q−2Yit. By Lemma A2, the theorem is
proved if α∆z (s) = ∆αz (s) is true if and only if E [∆zt∗ |Di = 1] = E [∆zt∗ |Di = 0] .
By Lemma A1, we need to prove that ∆α2

z (s) = ∆αz (s) is true for all s if and only if
E [∆zt∗ |Di = 1] = E [∆zt∗ |Di = 0]. Given that ∆α2

z (s) = ∆αz (s) is true for all s if
and only if α2

z (s) = αz (s) for all s. We know this condition to be true because is the
theorem for q = 2, which we have already proved.

Theorem A3. Consider a general additive model with group-specific, fully-flexible pre-
and post-treatment trends:

E [Yit |Di = D ] = δ +
T∑
τ=2

δτIτ + γD +
T∑
τ=2

γτ × Iτt ×D.

Under Parallel-(q):
∆q−1α (s) = ∆s∆

q−1γt∗+s.

Proof. Given that

E
[
∆s∆

q−1Yi,t∗+s |Di = D
]

= ∆s∆
q−1δt∗+s + ∆s∆

q−1γt∗+s ×D,

from the definition of did (q, s), it follows that did (q, s) = ∆s∆
q−1γt∗+s. By Theorem

A1, the theorem is proved.
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Theorem A4. For any value R ∈ {1, t∗ − 1}, the fully flexible model

E [Yit |Di = D ] = δ +
T∑
τ=2

δτI
τ
t + γD +

T∑
τ=2

γτ × Iτt ×D

that satisfies equivalence of Parallel-(R + 1), Parallel-(R + 2), ...., and Parallel-(t∗) is

equivalent to the standard model with a polynomial of order R

E [Yit |Di = D ] = δ +
T∑
τ=2

δτI
τ
t + γD + γT × ITt ×D +

R∑
r=1

γpr × tr ×D.

Proof. We prove this result in two steps. In the first step we show that in the fully

flexible model, for any ql ∈ {1, ..., t∗ − 1}, all parallel assumptions between Parallel-(ql)

and Parallel-(t∗) are equivalent if and only if ∆ql−1γt∗ = ∆ql−1γt∗−1 = ... = ∆ql−1γql .

In the second step we show that given this condition, R values γ2,...,γR+1, and the

normalization γ1 = 0, the fully flexible model is equivalent to the standard model with

a polynomial of order R.

Lemma A3. In the fully flexible model, for any ql ∈ {1, ..., t∗ − 1}, all parallel as-
sumptions between Parallel-(ql) and Parallel-(t∗) are equivalent if and only if ∆ql−1γt∗ =
∆ql−1γt∗−1 = ... = ∆ql−1γql.

Proof. By Theorem A2, it is true for t∗ = ql + 1. Now we must prove that if it is
true for t∗ = τ , it must be true for t∗ = τ + 1. If it is true for t∗ = τ , then ∆ql−1γτ =
∆ql−1γτ−1 = ... = ∆ql−1γql . For t∗ = τ+1, the assumption is that all parallel assumptions
between Parallel-(ql) and Parallel-(τ + 1) are equivalent. This implies that Parallel-(τ)
is equivalent to Parallel-(τ + 1), that is, ∆τγτ+1 = 0 or, equivalently, that ∆τ−1γτ+1 =
∆τ−1γτ . Since the result is true for t∗ = τ and τ − 1 > ql − 1, ∆τ−1γτ = 0 so that
∆τ−2γτ+1 = ∆τ−2γτ . Again the result is true for t∗ = τ , so ∆τ−2γτ = 0 so that
∆τ−3γτ+1 = ∆τ−3γτ . Using this argument, we can set differences to zero until ql − 1
so that ∆ql−1γτ+1 = ∆ql−1γτ . This, together with the fact that ∆ql−1γτ = ∆ql−1γτ−1 =
... = ∆ql−1γql proves the first step.
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For the second step, we must show that the polynomial can be re-parameterized as the

restricted fully flexible model and vice versa. To see that the polynomial implies the

restricted fully flexible, we note first that without loss of generality the polynomial can

be re-parameterized as

E [Yit |Di ] = δ +
T∑
τ=2

δτI
τ
t + γDi + γT × ITt ×Di +

R∑
r=1

γpr × (t− 1)r ×Di.

Hence, for the first R + 1 periods we have

E [Yi1 |D ] = δ + γD

E [Yi2 |D ] = δ + δ2 + γD +
R∑
r=1

γpr ×D

...

E [Yi,R+1 |D ]δ + δR+1 + γD +
R∑
r=1

γpr ×Rr ×D.

Thus, defining

γ2 =
R∑
r=1

γpr

...

γR+1 =
R∑
r=1

γpr ×Rr

results in the restricted fully flexible for the first R+1 periods. Since by construction for

any t > R + 1 the polynomial satisfies ∆Rγt∗ = ∆Rγt∗−1 = ... = ∆Rγql , the polynomial

implies the restricted fully flexible model for any t.
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To show that the restricted fully flexible can be re-parameterized as the polynomial,

we consider the set of R + 1 points (t, γt) (with γ1 = 0,γ2,...,γR+1) where no two t are

the same and we look for a polynomial of degree R, pR (t), such that pR (t) = γt for

t ∈ {1, ..., R + 1}. The unisolvence theorem states that such a polynomial exists and is

unique. Since this polynomial is of degree R, it must also satisfy ∆Rγt∗ = ∆Rγt∗−1 =

... = ∆Rγql .

40



Appendix B

In this appendix, we describe the conditions that led to the selection of papers reviewed

in section 5, we list the papers, and we present the results of the implementation of the

flexible model. In the working paper version (Mora and Reggio 2012) we include a more

detailed analysis of each paper.

The papers are selected by imposing several conditions. The first condition is that the

paper must have been published in the period 2009 : 2012 in one of 10 Economics

journals: AEJ:AE, AER, JAppEcon, JEcon, JEEA, JLabEc, JPE, QJE, REStat, and

REStud. The journals chosen are characterized by being among the highest-ranked

economic journals on several criteria and also by allowing access to the data sets.

The paper must also include an application of DID. We search the terms “difference-in-

differences” or “diff-in-diff” in the paper (with the exception of the bibliography section).

For those papers that include these terms, we verify that a DID application exists.

Overall, 59 papers satisfy this condition.

The next condition is that the data for the DID application are publicly available online

by the publishing journal. There are 37 papers for which data are not available and one

paper for which access to the data was granted after we made a formal request. Thus,

out of the original 59 DID applications, only in 22 papers the data were available.

The final condition is that the data must include more than one pre-treatment period

because with only two periods the only implementable Parallel-(q) assumption is Parallel-

(1). There are 13 papers that do not satisfy this condition.

In total, nine papers, listed in Table B1, meet all requirements. In one of the nine papers

(Jayachandran et al. 2010), it is not possible to use the fully flexible model in equation
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Table B1: List of Selected Papers

Author Year Journal Title No. Pre No. Post
Aaronson and Mazumder 2011 JPE The impact of Rosenwald Schools on Black

achievement
2 2

Abramitzky et al. 2011 AEJ:AE Marrying Up: The Role of Sex Ratio in Assor-
tative Matching

6 11

Currie and Walker 2011 AEJ:AE Traffic Congestion and Infant Health: Evi-
dence from E-ZPass

300 168

De Jong et al. 2011 JEEA Screening disability insurance applications 2 1
Jayachandran et al. 2010 AEJ:AE Modern Medicine and the Twentieth Century

Decline in Mortality: Evidence on the Impact
of Sulfa Drugs

12 7

Furman and Stern 2011 AER Climbing atop the Shoulders of Giants: The
Impact of Institutions on Cumulative Research

14 18

Kotchen and Grant 2011 REStat Does Daylight Saving Time Save Energy? Ev-
idence from a Natural Experiment in Indiana

2 1

Moser and Voena 2012 AER Compulsory Licensing: Evidence from the
Trading with the Enemy Act

43 22

Redding et al. 2011 REStat History and industry location: Evidence from
German airports

12 40

Note: Papers are listed by the alphabetical order obtained from the author’s name. The papers selected satisfy the following conditions: (a) There
is an application of DID; (b) the sample includes more than one period before treatment; (c) data are publicly available; and (d) the paper is
published in the period 2009:2012 in one of the following 10 Economics journals: AEJ:AE, AER, JAppEcon, JEcon, JEEA, JLabEc, JPE, QJE,
REStat, and REStud. “No. Pre.” refers to the number of pre-treatment periods and “No. Post.” refers to the number of post-treatment periods.

(16) because there is only one treated agent and one control. In two other papers,

Redding et al. (2011) and De Jong et al. (2011), we cannot estimate a fully flexible

version because the authors include individual-specific linear trends. For these three

papers, we discuss in Mora and Reggio (2012) how alternative assumptions may yield

different results and find evidence that Parallel-(1) and Parallel-(2) are not equivalent

and that there are dynamic effects.

In each of the remaining six papers there is at least one application for which we can

estimate the fully flexible model from Equation (16). Specifically, in the case of Aaronson

and Mazumder (2011) we compare results from the fully flexible model with results

reported in column 4 in their Table 1. Regarding Abramitzky et al. (2011) we present

results for each of the three alternative definitions of outcome reported in the original

paper in columns 1 to 3 of Table 3. We also report the estimates for five specifications

whose original results are reported in Currie and Walker (2011) in columns 3 to 7 of

their Table 7. For Furman and Stern (2011) our estimates are to be compared with

those in the second column in their Table 3. Finally, in the case of Kotchen and Grant
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(2011) we report estimates comparable with those in columns d of Tables 4 and 5 in the

original paper.

In the first column of Table B2 we print the original estimates from the papers. In the

second column we report results assuming Parallel-(1) within the fully flexible model

from Equation (16). In the third column we allow for dynamic effects after treatment

and report the effects at s = 1. In Kotchen and Grant (2011) there is only one post-

treatment period, so there is no difference between the Restricted and Unrestricted

models and the effects in the two columns are exactly the same by definition.In columns

fourth and fifth we conduct the same analysis under Parallel(2). In the sixth column,

we report the equivalence test of Parallel-(1) and Parallel-(2). In the last two columns

we report the common trends test and the linear trend test for all cases in which there

are more than two pre-treatment periods. Standard errors are computed using the same

method as in the original papers.
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Table B2: Fully flexible model results and reported results from selected papers

Reported Fully Flexible Model
Estimated q = 1 q = 2 Equiv. Common Linear

Article Effect Restricted Unrestricted Restricted Unrestricted Test Trends Trend
Aaronson and
Mazumder

0.072*** 0.034*** 0.039*** 0.054*** 0.053*** 1.420
(0.007) (0.012) (0.012) (0.017) (0.017) [0.234]

Abramitzky et al. - 1 -0.020* 0.025 0.036 0.095 0.106 -0.069 13.41 13.287
(0.010) (0.024) (0.039) (0.064) (0.073) [0.118] [0.020] [0.010]

Abramitzky et al. - 2 -0.010*** -0.009 0.008 -0.006 0.010 -0.003 4.339 2.633
(0.004) (0.013) (0.016) (0.028) (0.030) [0.870] [0.502] [0.621]

Abramitzky et al. - 3 -0.017*** 0.0005 0.003 0.028 0.031 -0.028 11.27 10.76
(0.005) (0.009) (0.013) (0.021) (0.022) [0.042] [0.046] [0.029]

Currie and Walker - 1 -0.208*** -0.298* -0.506*** -0.178 -0.386 -0.121 652.85 323.79
(0.028) (0.175) (0.198) (0.376) (0.395) [0.600] [0.000] [0.000]

Currie and Walker - 2 -0.090*** -0.039 -0.582*** -0.528* -1.071*** 0.489 173.23 172.45
(0.024) (0.149) (0.198) (0.320) (0.353) [0.013] [0.000] [0.000]

Currie and Walker - 3 -0.065*** 0.117*** 0.029 0.224*** 0.136 -0.107 351.47 282.06
(0.017) (0.036) (0.101) (0.084) (0.128) [0.079] [0.000] [0.000]

Currie and Walker - 4 -0.181*** -0.238*** -0.191* -0.428*** -0.380* 0.189 581.98 316.51
(0.023) (0.089) (0.108) (0.190) (0.204) [0.100] [0.000] [0.000]

Currie and Walker - 5 0.018 -0.240 -0.421 -0.411 -0.592 0.171 268.15 246.61
(0.038) (0.294) (0.374) (0.681) (0.736) [0.714] [0.000] [0.000]

Furman and Stern 0.535*** 0.446*** 0.471*** 0.643 0.666 0.262 69.26 69.83
(0.142) (0.133) (0.123) (0.425) (0.417) [0.610] [0.000] [0.000]

Kotchen and Grant -1 0.009*** 0.006* 0.006* -0.002 -0.002 7.28
(0.003) (0.003) (0.003) (0.005) (0.005) [0.007]

Kotchen and Grant -2 -0.003 -0.006** -0.006** -0.013*** -0.013*** 3.97
(0.003) (0.003) (0.003) (0.005) (0.005) [0.0471]

Moser and Voena 0.151*** 0.272*** 0.075 0.204** 0.006 2.362 6.84 2.89
(0.036) (0.052) (0.046) (0.082) (0.081) [0.124] [0.000] [0.000]

Note: Reported Estimated Effect refers to the results originally published. Restricted reports the effect under q = 1 and q = 2 in the fully flexible
model in Equation (16). Unrestricted reports the effects at s = 1 allowing for dynamic effects after treatment. Standard errors in parenthesis are
computed using the same method as in the original paper. Equivalence tests for the equivalence of Parallel-(1) and Parallel-(2). Common Trends tests
for the equivalence of all Parallel assumptions, except in Currie and Walker (2011), where we test the equivalence of all Parallel for q ≤ 52. Linear
Trend tests for the equivalence of all Parallel assumptions except Parallel-(1), again with the exception of Currie and Walker (2011). For all tests,
p-values are shown in square brackets. Aaronson and Mazumder (2011) refers to estimates for Black rural using additional controls and county fixed
effects (column 4 in their Table 1). Abramitzky et al. (2011) -1,-2, and -3 correspond to the three alternative definitions of a bad marriage outcome
for the full sample of grooms (columns 1 to 3 in their Table 3). Each of Currie and Walker (2011) - 1 to -5 reports the estimates using as controls 1 of
5 randomly chosen monitors (columns 3 to 7 in their Table 7). Furman and Stern (2011) reports results comparable with those in the second column
in their Table 3. Kotchen and Grant (2011) -1 reports the effect during the DST period while Kotchen and Grant (2011) -2 reports the effect during
the non-DST period (column d in Tables 4 and 5 in the original paper). Moser and Voena (2012) refers to their results reported in their column 1 in
Table 2. Levels of significance: * p<0.10, ** p<0.05, *** p<0.01.
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