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Recent studies have shown the �uid of hard right triangles to possess fourfold and quasi-eightfold (octatic) orientational

symmetries. However, the standard density-functional theory for two-dimensional anisotropic �uids, based on two-

body correlations, and an extension to incorporate three-body correlations, fail to describe these symmetries. To explain

the origin of octatic symmetry we postulate strong particle clustering as a crucial ingredient. We use Scaled Particle

Theory to analyze four binary mixtures of hard right triangles and squares, three of them being extreme models for

a one-component �uid, where right triangles can exist as monomeric entities together with triangular dimers, square

dimers or square tetramers. Phase diagrams exhibit a rich phenomenology, with demixing and three-phase coexistences.

More important, under some circumstances the orientational distribution function of triangles has equally high peaks at

relative particle angles 0, p/2, and p , signalling fourfold, tetratic order, but also secondary peaks located at p/4 and

3p/4, a feature of eightfold, octatic order. Also, we extend the binary mixture model to a quaternary mixture consisting

of four types of clusters: monomers, triangular and square dimers, and square tetramers. This mixture is analyzed using

Scaled Particle Theory under the restriction of �xed cluster fractions. Apart from the obvious tetratic phase promoted

by tetramers, we found that, for certain cluster compositions, the total orientational distribution function of monomers

can exhibit quasi-eightfold (octatic) symmetry. The study gives evidence on the importance of clustering to explain the

peculiar orientational properties of liquid-crystal phases in some two dimensional �uids.

I. INTRODUCTION

The experimental and theoretical study of two-dimensional

(2D) �uids of hard anisotropic particles has enjoyed an up-

surge in recent years, mainly motivated by the development

of novel experimental techniques such as lithographic parti-

cle fabrication1–4. Using these techniques, micro-prisms of

any cross-sectional shape can be fabricated, and suspensions

of these particles can be adsorbed on surfaces, giving rise

to effectively two-dimensional �uids of diffusing Brownian

particles1–4. The �uid phase behavior can be explored by

varying particle volume fraction, and in many cases a plethora

of exotic liquid-crystal and crystalline phases results. These

phases possess symmetries that strongly depend on particle

shape. Some of these phases were predicted theoretically and

later con�rmed by Monte Carlo (MC) simulations, and dif-

ferent theoretical models have been developed to explain the

rich phase behavior of these 2D hard-core �uids and its parti-

cle shape dependence5–16.

Of particular interest are the triatic (TR) and tetratic (T)

phases found in �uids of hard equilateral triangles4,8,11 and

squares (and also in rectangles of small aspect ratios)10,14,

with particle axes pointing along six or four equivalent direc-

tors, respectively. The T phase can be viewed as a 2D analog

of the biaxial nematic phase, recently found to be stable in

colloidal suspensions of board-like particles17,18 and whose

stability can be enhanced by size polydispersity19–21.

Vertically vibrated granular monolayers are being studied

as experimental models of real 2D �uids in thermal equilib-

rium. Under speci�c experimental conditions, monolayers of

squares22 and cylinders23–25 exhibit the presence of T and also

smectic liquid-crystal textures in the steady-state con�gura-

tions. The excitation of topological defects in the orienta-

tional and positional director �elds of these �uidized granular

monolayers, when con�ned into circular cavities, have been

observed and studied25. These results point to the importance

of hard core entropic interactions in the stability of these dis-

sipative textures, which turn out to be very similar to those ob-

tained in equilibrium experiments on monolayers of colloidal

spherocylinders con�ned in cavities of different shapes26,27.

This connection opens up the possibility that vibrated granu-

lar monolayers may be considered as valid experimental mod-

els to probe the interplay between symmetry and order in 2D

�uids.

The most successful theoretical tool used in the study of

liquid-crystal phase behavior of hard-body �uids is Density

Functional Theory (DFT)28. The main advantage of DFT is

that it allows to obtain, via functional minimization, the equi-

librium angular distribution function h(f) of a 2D oriented

�uid, i.e. the probability density of particle axes to orient

at an angle f with respect to one of the equivalent direc-

tors. As shown in Ref. 11, the Scaled-Particle Theory (SPT)

version of DFT (which includes only two-body correlations)

predicts that the uniaxial nematic (N) phase is the only sta-

ble orientation phase of a �uid of hard right triangles, i.e. no
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exotic liquid-crystal phases do exist in this �uid. A bifurca-

tion analysis, corroborated by rigorous functional minimiza-

tion close to the bifurcation, con�rmed this result, and the in-

corporation of three-particle correlations did not modify this

scenario29. By contrast, MC simulations of the same �uid

showed the presence of the T phase (obtained by expanding

a perfect T-crystal), along with an additional exotic oriented

�uid phase with eightfold symmetry, the octatic (O) phase,

obtained by compressing the isotropic (I) �uid. Even though

all evidence suggests T to be the true stable phase, the �uid

is prone to developing strong O correlations as density is in-

creased from the I �uid. Note that the T and O phases are

highly-symmetric phases having fourfold and eightfold sym-

metries, i.e. their angular distribution functions have the prop-

erty h(f) = h(f + 2p/n), with n = 4 and 8, respectively8,29.

The failure of the standard Onsager theory and its variations,

all based on two-body correlations, to predict the phase be-

haviour of hard-particle models, at least at a qualitative level,

is quite unusual in the history of liquid crystals. In Ref.

29 we advanced a reason why the standard two-body theory,

and also the three-body-extended theory, cannot predict the

highly-symmetric T and O phases, namely the crucial contri-

bution of fourth-, and probably even higher-order, correlations

in this system.

Given the dif�culty of improving the standard theories by

incorporating such high-order correlations, in this work we

explore different ideas in an effort to understand the prob-

lem from different perspectives. On the one hand we focus

on a system that should promote orientational correlations

with O symmetry: a binary mixture of hard right triangles

and squares. The excluded area between these two particles

shows local minima at relative angles f = p/4 and 3p/4,

which could drive a stable O phase. As will be seen, within

the present model, this property of the excluded area is not

enough to promote bulk O ordering, and the N and T phases

are the only oriented phases that get stabilized in the phase di-

agrams for the four different mixtures analyzed. Despite this,

we found that the orientational distribution function of trian-

gles, for certain values of mixture composition, exhibits small

secondary peaks located at the relative angles above.

On the other hand, we study the effect of particle clustering

in the orientational properties of hard right triangles. Cluster-

ing is an extreme consequence of high-order particle correla-

tions and could be a complementary point of view to extract

useful information on the �uid behavior. We formulate a the-

ory for clustering with the help of a toy model for particle

self-assembling where monomers are just "free" right trian-

gles. These monomers are assumed to self-assemble into dif-

ferent triangular and square-shaped clusters, the latter coming

in two varieties: dimers and tetramers. An effectively quater-

nary mixture results from these considerations, which is an-

alyzed using the SPT version of DFT. We numerically mini-

mize the functional for particular compositions and, from the

equilibrium angular distribution functions of the four species,

a monomer distribution function hm(f) can be predicted. It

is then shown that, for certain cluster compositions, this func-

tion has quasi-eightfold symmetry, i.e. four peaks of similar

heights at f = kp/4 (k = 0, · · · ,3) in the interval [0,p ]. This

result demonstrates the relevance of clustering to explain the

presence of O orientational symmetry in a �uid of right trian-

gles.

Aside from the theoretical calculations, we have also per-

formed MC simulations of the real �uid of right triangles

to con�rm the presence of clustering. It has been pointed

out30 that entropic interactions between anisotropic particles

in dense �uids can in some sense be regarded as chemi-

cal bonds, that in turn may promote particle self-assembling.

In our simulations we de�ne a criterion to identify different

clusters: triangular, square and rhomboidal dimers, and also

square tetramers. Cluster fractions are analyzed as a function

of packing fraction in MC compression runs starting from the

I �uid, and also from expansion runs from the T crystalline

phase. We show that the T phase is enriched in square dimers

and tetramers, with a small proportion of the remaining clus-

ters. By contrast, all clusters have similar fractions in the O

phase.

Instead of the �xed cluster compositions assumed in our toy

model, a more sophisticated model to describe strong cluster-

ing effects in hard particle �uids should certainly predict clus-

ter compositions at equilibrium in a consistent fashion. Chem-

ical equilibrium between different clusters, a mass conserva-

tion law, and a larger variety of clusters (such as clusters with

rhomboidal shape), along with effective internal energies of

clusters are important ingredients that the new model should

take into account. This line of research we leave for future

developments.

The exotic symmetries described in the present work, to-

gether with the strong self-assembling effects typical of hard

particles with �at faces and space-�lling geometries, will cer-

tainly affect not only equilibrium, but also dynamical proper-

ties. For example, monolayers of sedimented colloidal sus-

pensions, and suspensions of quasi-two-dimensional, highly

con�ned colloidal particles, may be modi�ed by symmetry

and clustering, as shown by recent works on the effect of

particle shape and phase symmetry on the dynamics of three-

dimensional �uids31,32.

The article is organized as follows. In Sec. II we study four

different binary mixtures of hard squares and hard right trian-

gles and calculate their phase diagrams and the orientational

properties of the different species. The effect of clustering on

the stability of the liquid-crystal phase with eightfold symme-

try is analyzed in Sec. III. MC simulations and results for

cluster fractions are shown in Section IV. Finally some con-

clusions are drawn in Sec. V.

II. BINARY MIXTURES OF RIGHT TRIANGLES AND
SQUARES

In this section we study the phase behavior and orienta-

tional properties of binary mixtures of squares (species 1) and

right triangles (species 2). The motivation is that the cross

excluded area K
(2)

12 (f) (apart from being symmetric with re-

spect to f = p/2) exhibits four local minima in the interval

[0,p), located at relative angles f = kp/4 (k = 0, · · · ,3); see

Fig. 1 where the relative angle f is de�ned and the excluded
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FIG.1. (a)Sketchofsquare(species1)andright-angledtriangle
(species2)witharelativeangleφbetweentheirmainaxes. The
equally-sizedlengthsofparticlesl1andl2arerespectivelyshown.

(b)ThescaledexcludedareaA(φ)≡ K
(2)
ij(φ)−ai−aj/(ai+

aj)betweenasquareandarighttriangle(solidcurve),between
twosquares(dashedcurve),andbetweentworighttriangles(dotted
curve).Inthisexamplebothparticleshavethesameequally-sized
lengths,l1=l2,sothattheareaofasquareistwicethatofatriangle.

areashownfortheparticularcaseofsquaresandtrianglesof
thesame(equally-sized)lengths,l1=l2(solidcurveinthe
figure). Wecanseehoweverthatthegaininscaledexcluded
areafortheserelativeanglesisrathermodest.Forcomparison
thesamefigureshowstheexcludedareabetweenlikespecies.
Inthesecasesthegaininexcludedareaatthelocalminima
ismuchhigher.Despitethis,thepresenceoffourlocalmin-

imainK
(2)
12(φ)couldinturnpromotethestabilityoftheO

phaseinthebinarymixture.EventhoughthestandardDFT
doesnotpredictthestabilityoftheOphaseinone-component
fluids29,themixingofrighttriangleswithotherparticlessuch
thatthecrossexcludedareapresentseightlocalminimainthe
interval[0,2π)couldgenerateanOphase.Oneexampleof
suchaparticleisthesquare.Weremindthereaderthatsimu-
lations,DFTandexperimentalstudiesonvibratedmonolayer
ofhardsquares6,9,22haveshownthattheone-componentfluid
exhibitsI-TandT-crystalsecond-orderphasetransitions.

ToanalyzethismixtureweusedaDFTbasedontheSPT-
secondvirialtheory,generalizedtobinarymixtures.Thepro-
posedexpressionfortheexcessfree-energyperparticleinre-

ducedthermalunitsis

ϕexc[{hi}]=−log(1−η)+
ρ

2(1−η)

×∑
i,j

xixj K
(2)
ij,0−ai−aj+

1

2

N

∑
n≥1

K
(2)
ij,nh

(i)
nh
(j)
n . (1)

HereatruncatedFourierexpansionoftheorientationaldistri-
butionfunctions,

hi(φ)=
1

2π
1+

N

∑
n≥1

h
(i)
ncos(2nφ), (2)

isusedtocalculatethedoubleangularaveragewithrespectto

hi(φ)andhj(φ′)intheSPTexpression33K
(2)
ij(φ−φ

′)−ai−
aj,givingthetermbetweenparenthesisinEqn.(1).Thetotal
packingfractionisdefinedasη=ρa,i.e.theproductof
thetotalnumberdensityρandtheaverageareaa≡∑

i

xiai,

givenbyasumoverspeciesoftheproductsofmolarfractions
xiandparticleareasai=l

2
i/i(i=1,2).Hereliistheequally-

sizedside-lengthofspeciesi(seeFig.1).Thecoefficients

K
(2)
ij,ncanbecomputedanalyticallyfromtheexpressions

K
(2)
ij,n−(ai+aj)δn0

=−
4lilj1+δi2δj2+(−1)

n+(δi2+δj2)
√
2cosnπ

2

2δi2+δj2(4n2−1)π
.

(3)

Theidealpartofthefree-energyforthemixtureis

ϕid({hi})=logη−1+∑
i

xilogxi+
2π

0
hi(φ)loghi(φ).

(4)

Thetotalfree-energyperparticleisϕ({hi})=ϕid({hi})+
ϕexc({hi}),andtheGibbsfree-energyfunctionalperparticle
gcanbeobtainedfrom

g({hi})=ϕ({hi})+
βp

ρ
. (5)

Thelatterexpressionisveryusefulforthecalculationof
thephasediagramsofbinarymixtures,inparticularwhen
thefluiddemixesintotwocoexistingphases. Theproce-
dureis:(i)fixthepressuretosomeconstantvaluep(x,ρ)=
ρ2∂ϕ/∂ρ=p0;(ii)usingthisconstraint,calculatethetotal
densityρ(x;p0)asafunctionofthemolarfractionofsquares
x≡x1,andinsertbackintotheGibbsfree-energytoobtainthe
functiong(x,p0).NotethatintheaboveprocedureallFourier

amplitudes{h
(i)
n}havetobeobtainedthroughtheequilibrium

condition∂ϕ/∂h
(i)
n =0.Fromthedouble-tangentconstruc-

tionofthefunctiong(x,p0),whichguaranteestheequality
ofchemicalpotentialsofthespeciesatthecoexistingphases,
wefindthecoexistingvaluesx(a)andx(b),andfromthesethe
coexistingdensitiesρ(a)andρ(b).Changingthepressurep0
andrepeatingtheaboveprocedurewecanconstructthatpart
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FIG.2.Bifurcationcurvesηn(x)forn=1(I-N,dashedline),n=2
(I-T,dottedline),n=3(I-TR,dot-dashedline),andn=4(I-O,solid
line)correspondingtosquaresandtrianglesofequallengths,l1=l2.
xisthefractionofsquares.Thesolidcircleistheintersectionpoint
(x∗,η∗)oftheI-NandI-Tbifurcationcurves.Thepatternedarea
indicatestheregionwheretheIphaseisstableagainstorientational
order

ofthephasediagraminthepressure-compositionplanewhere
demixingispresent.
Inthecaseofsecondorderphasetransitionsabifurcation
analysisisrequired(see11forthecaseofmixturesoftriangles
usingtheSPTformalism).Thepackingfractionatbifurcation
(spinodalcurves)turnsouttobeasimplegeneralizationofthe
correspondingexpressionfortheone-componentfluid29:

ηn=
1

1−∑ixiK
(2)
ii,n/a

. (6)

Theorientationalorderofsquaresandtrianglesismeasured
usingthesetoforderparameters

Q
(i)
2n=

2π

0
dφhi(φ)cos(2nφ)=

h
(i)
n

2
. (7)

TheseparametersaccountforN(n=1),T(n=2),TR(n=3)
andO(n=4)ordering.

A. Bifurcationcurves

Inthissectionwecalculatetheinstabilitypointsofthe
Iphaseagainstorientationalfluctuationsofagivenliquid-
crystalsymmetry.Notethatthesymmetryofthemixtureis
dictatedbythelowestsymmetryofthetwospecies;e.g.if
triangleshaveauniaxialsymmetryandsquareshaveatetratic
symmetry,thesymmetryofthemixturewillbeuniaxial.The
spinodalcurvesηn(x)forn=1,···,4fromEqn.(6)areplot-
tedinFig.2forabinarymixtureofparticleswithl1=l2.The
I-N(n=1)andI-T(n=2)curvesdepartingfromx=0(one-
componenttrianglefluid)andx=1(one-componentsquare

fluid)aremonotonicallyincreasingordecreasingfunctions
ofx,respectively,andintersectatx∗≃0.376.Thisinturn
meansthatmixingstabilizestheIphase,whichcanbeeasily
explainedbythedifferent(two-vs.four-fold)symmetriesof
theliquid-crystalphasesofhard-triangleandhard-squareflu-
ids,respectively.Theshadedareainthefigureindicatesthe
regionofI-phasestabilityagainstorientationalorder.Aswe
willshortlysee,thepoint(x∗,η∗)isalwayslocatedinsidethe
demixinggap.ItisinterestingtonotefromFig.2thatthe
effectofmixingleadstotheloweringofthepacking-fraction
differencebetweentheI-OandI-NorI-Tbifurcations.This
indicatesthattheOphaseofthemixturebecomes"less"un-
stablewithrespecttotheNorTphases.Howeverthismixing
effectisnotsufficienttostabilizeit.

B. Phasediagrams

Phasediagramshavebeencalculatedforfourdifferentbi-
narymixtures,Figs. 3(a)-(d). Definingthelengthratio
κl≡l1/l2,thefourmixtureshaveκl=1/2,1/

√
2,1,and

√
2.

Thearearatioκa≡a1/a2forthemixturesis1/2,1,2,and
4,respectively.I-NandI-Tsecond-ordertransitioncurvesde-
partfromthex=0andx=1axes,respectively.Bothcurves
endincorrespondingtricriticalpoints.Forpressuresabove
thesetricriticalpointsthecorrespondingtransitionsbecome
offirstorder.InthecaseoftheI-Tcurvethetransitioncorre-
spondstostrongdemixing,withstrongfractionationofthe
twospecies. Bothphasetransitionsareboundedaboveby
atripleI-N-Tcoexistence(dottedhorizontallinesinpanels
(a)-(c)ofFig.3),andforhigherpressuresdemixingtakes
placebetweenaNphase,richintriangles,andaTphase,rich
insquares.Itisinterestingtonotethatthelowesttricritical
pointisalwaysthatoftheI-Tspinodalcurve.Thisistheef-
fectofthelargedecrementintotalaveragedexcludedarea,

∑
i,j

xixj K
(2)
ij h,whenT(insteadofN)orientationalorder-

ingisinducedbysquares.ItisclearfromFig.3(b)thata
mixtureconsistingofspecieswithapproximatelythesamear-
eas(valuesofκaintheneighborhoodofunity)alsoexhibits
strongdemixing.Thiscanbeexplainedbytwofacts,which
weelaborateinthefollowing.

(i)Thedifferent(two-vs.four-fold)symmetriesoftheN
andTphasesofthehard-triangleandhard-squarefluids,
respectively.TrianglesorientedintoaTconfiguration
generateahighfree-energycostduetotheparticular
formofthetriangle-triangleexcludedarea.FromFig.
1wecanseehowtheequipartitionofparticleorien-
tationsintothediscretesetofangles{0,π/2,π}(per-
fectTordering)generatesanaveragedtriangle-triangle
scaledexcludedarea

A(φ) ≡
1

2a
K
(2)
22(φ)h−1

=
1

4
[A(0)+2A(π/2)+A(π)]=

7

4
, (8)

largerthanthatcorrespondingtoequipartitioninto
theangles{0,π}(perfect Nordering), equalto
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FIG. 3. Reduced pressure-composition phase diagram of binary mixtures of hard squares and triangles with (a) (kl ,ka) = (1/2,1/2), (b)

(1/
√

2,1), (c) (1,2), and (d) (
√

2,4). Coexistence binodals of �rst-order or demixing transition are shown by solid curves, while dashed

curves represent second-order I-(N,T) transitions. The regions of stability of I, N and T phases are correspondingly labeled. The dotted

horizontal line indicates the triple I-N-T coexistence. Particles are drawn in each case, showing the corresponding ratios between particle

areas.

1

2
[A (0)+A (p)] =

3

2
. Also a �uid of hard squares

cannot exhibit a N phase due to the symmetry of the par-

ticles, which give an excluded area invariant under p/2-

rotations. Therefore, at high enough pressures, phase-

separation into two phases, each having the orienta-

tional order promoted by the most populated species,

guarantees a much lower free-energy at equilibrium.

(ii) The decrease in excluded area promoted by orienta-

tional order is less for the triangle-square pairs than for

triangle-triangle or square-square pairs (Fig. 1), which

obviously favors the demixed state.

A �nal comment on the phase diagrams is that the coexis-

tence region of the �rst-order I-N transition shrinks dramat-

ically with the ratio kl , eventually disappearing for kl =
√

2

(see panel (d) of Fig. 3). This is the most likely scenario,
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FIG. 4. Order parameters Q
(i)
2 (dotted), Q

(i)
4 (solid), and Q

(i)
8 (dashed)

of (a) squares (i = 1), and (b) triangles (i = 2), as a function of com-

position x. The mixture asymmetry is kl = 1/
√

2 (ka = 1) and the

pressure value is �xed to b pl2
2 = 360.

something that cannot be settled with total certainty as the

minimization in Fourier space cannot be achieved success-

fully for pressure values close to the intersection between the

I-N second order transition curve and the N binodal of the N-

T demixing. Our numerical minimization scheme does not

give reliable results at these pressure values, even for a num-

ber of Fourier coef�cients h
(i)
n equal to 100, due to the incor-

rect numerical representation of hi(f). A pressure difference,

measured from the I-T tricritical point, of b Dpl2
1 ≃ 160, is the

highest pressure for which we could perform accurate numer-

ical minimizations. If this scenario were correct the second-

order I-N transition would end as a critical end-point at the N

binodal of the N-T demixing transition.

These phase diagrams resemble those recently obtained

from MC simulations of mixtures of hard disks and squares35,

where the packing fraction for the I-hexatic transition, coun-

terpart of the present I-N transition, increases with the mo-

lar fraction of squares, and the I-T transition increases with

the molar fraction of disks. Both transition curves merge in

a mosaic region where a microsegregated phase with mixed

hexatic and T symmetries becomes stable. This region is in

turn bounded above by a triangular-solid-T demixing which,

at high enough pressures, becomes a solid-solid demixing be-

tween a triangular solid, rich in disks, and a square crystal,

rich in squares. Here we do not consider nonuniform phases

in the triangle-square mixture, so we cannot discard that, for

high enough pressures, the demixed phases found are in fact

crystalline (instead of liquid crystalline).

We now study the orientational properties of the mixture

with asymmetry kl = 1/
√

2 (ka = 1). The �uid pressure was

�xed to a value b pl2
2 = 360, i.e. above the I-N-T triple point

(see panel (b) of Fig. 3). The total free-energy per particle was

minimized with respect to all Fourier amplitudes {h
(i)
n }, and

the equilibrium orientational distribution functions {hi(f)}
and order parameters Q

(i)
2n were obtained as a function of mix-

ture composition x. Results for the latter are shown in Fig.

4. Note that, for a wide range of compositions, the curves

Q
(i)
2n(x) represent order parameters of the unstable mixture due

to the demixing transition shown in Fig. 3(b). However it is

illustrative to look at the behavior of the orientational ordering

of triangles and squares as a function of composition for the

whole interval [0,1]. Close to the one-component limits x = 0

or x = 1, the N order parameter of triangles Q
(2)
2 , or the T or-

der parameter of squares, Q
(1)
4 , is highest, indicating strong

N or T orientational ordering. In the neighborhood of x = 0

squares follow the orientation of the more abundant triangu-

lar species by orienting their axes into a T con�guration, but

with rather low orientational ordering. However, as Fig. 5(a)

indicates, the function h1(f) has (aside from the three main

peaks located at {0,p/2,p}, typical of the T symmetry), two

additional small peaks at p/4 and 3p/4; this is again an in-

dication that square-triangle interactions are behind the rising

of orientational correlations with eightfold symmetry. This in

turn affects the difference between the order parameters Q
(1)
4

and Q
(1)
8 , which is anyway rather small as can be seen from

Fig. 4 (a).

For triangles, we see from Fig. 4(b) that Q
(2)
2 (x) decreases

with x and becomes zero for x ≥ x∗ ≃ 0.65, while Q
(2)
4 is al-

ways different from zero, exhibits a local minimum at x∗ and

then increases monotonically. This means that for x∗ ≤ x ≤ 1

triangles adopt the same T-orientational symmetry as squares.

It is interesting to note that, for these compositions, the val-

ues of the T (Q
(2)
4 ) and O (Q

(2)
8 ) order parameters of trian-

gles are very similar, which again points to the existence of

square-triangle correlations with eightfold symmetry. This

feature can be directly seen in Fig. 5 (b), where the functions

hi(f) are plotted for a stable mixture with x = 0.93. Note

the strong T ordering of both, squares and triangles, indicated

by the presence of sharp peaks at {0,p/2,p}, but also the

presence of small satellite peaks in h2(f) at {p/4,3p/4}, a

clear signature of the O-orientational correlations promoted

by square-triangle interactions. Despite the presence of these

correlations, we should bear in mind that triangles are clearly

oriented in a T-con�guration, with the symmetry h2(f) =
h2(f +p/2). The exact O symmetry, h2(f) = h2(f +p/4), is

never observed for any mixture-asymmetry, pressure or com-

position values.

Fig. 5(c) shows the functions hi(f) for a mixture with
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FIG.5.Orientationaldistributionfunctionsforsquares,h1(φ)(solid),andtriangles,h2(φ)(dashed),correspondingtomixtureswithκl=1/
√
2

(κa=1).Themolarfractionsarefixedat(a)x=0.1,(b)x=0.93,and(c)x=0.63665.Thevalueofpressureisβpl
2
2=360.

areferencevalueofx=0.63665(atwhichthecurvesQ
(2)
2

andQ
(2)
4 crosseachother). Notethatthismixtureisun-

stablewithrespecttophase-separation.Inthiscasesquares
clearlyorientinaTconfiguration,buttriangleshavearather
lowuniaxialNordering,withsignificantsecondarypeaks
at{π/4,π/2,3π/4},againasignatureofeightfoldsquare-
triangleorientationalcorrelations.Theconclusioncanbeex-
tractedfromalltheseresultsthat,despitetheexistenceof
square-triangleinteractions,whichpromotethepresenceof
smallsecondarypeaksinh2(φ)signallingO-typeordering,
theeffectisnotsufficienttostabilizetheOphase.

III. THECLUSTERINGEFFECT

Asshowninourpreviouspaper29,aDFTbasedonthe
second-orthird-virialcoefficientsisnotcapableofaccount-
ingfortheOliquid-crystalsymmetryinaone-component
fluidofhardrighttriangles.MCsimulations8,29,however,in-
dicatethatthesecorrelationsarepresent.Clearly,anyattempt
toformulateatheoryforthefluidofhardrighttrianglesshould
consideratleastfour-bodyparticlecorrelations.Needlessto
saythisisanexceedinglycomplicatedtask.Becauseofthese
high-ordercorrelations,wemayexpectparticlestobeprone
toarrangeintomoreorlessshort-livedclusterscontaininga
few(butanomalouslyhighascomparedto‘normal’fluids)
numberofparticles.Inthecaseofrighttrianglesitisnot
difficulttothinkofthegeometriesofthemoststableparticle
arrangements(seebelow).Itisalsoreasonabletoexpectthat
these‘clusters’maydominatethefluidstructureandgovern
thebulkorientationalpropertiesofthefluid.Withthisideain
mind,astepforwardinourattemptstoconstructanalternative
modelforOcorrelationsisbasedonconsideringtheseclusters
asspecialentities,connectingtotheideaself-assemblyofpar-
ticles(takenasmonomerunits).Thisidealeadstoanextreme
model,wheremonomersform‘superparticles’,whichinturn
mayorientinsuchawayastogiverisetoeightfoldsymmetry
inthefinalmonomerorientationaldistributionfunction.

BasedonpreviousMCsimulations8,29andonadditional

FIG.6.Sketchofthreedifferentclustersandfreemonomers(shown
indifferentcolors)formedbyright-angledtriangularmonomers:(i)
twodifferentdimersareformedbyjoiningthelargestorshortest
sidesoftwotriangularmonomers,givingasquaredimerora(larger)
right-angledtriangle,respectively;(ii)tetramersareformedbyjoin-
ingfourtriangularmonomerswiththeirshortestsidesincontact,
producingabigsquarewithsideequaltothelargestsideofthe
monomers.Allclusters(species)aresketchedinatetratic-likecon-
figuration,promotedbythesquareclusters,givingrisetoaglobal
monomerorientationwithanapproximateeightfoldsymmetry(this
isshownbyeightarrows,whichrepresenttheeightequivalentdirec-
tors).Aclusterwithrhomboidalsymmetry,nottakenintoaccountin
ourtoymodel,isshownenclosedinarectangularbox.

MCsimulationstobepresentedbelow,wehaveidentified
whatcanberegardedas‘important’localparticleconfigura-
tionsinthefluidathighpackingfractions.Atotaloffoursuch
configurationshavebeenchosenbecauseoftheirhighprob-
abilityalongtheMCchainsgeneratedinthesimulations.A
sketchofthesefourimportantconfigurationsisshowninFig.
6,wheretheyaredrawnindifferentcolors.Hereafterthese
configurationswillbecalled‘clusters’andwenowproceedto
definedtheirstructureandshapes.

Firstwedefine‘big-square’clusters.Theseappearclose
totheT-crystaltransitionandmayberegardedastetramers,
madeoutoffourrighttriangles(monomers)withtheirshort
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equally-sizedsides(oflengthl)almostincontact,andwith
theirright-angledvertexesalsoincloseproximity.Thiscon-
figurationgivesabigsquarewithsideequaltothetrianglehy-
potenuse(

√
2l).Four-bodycorrelationsobviouslyinducethe

formationofthesestructures.Wealsoidentifyanothertypeof
clusterofsquaresymmetrybutwithsmallersize,obtainedby
joiningtwotriangularmonomersbytheirhypotenuse,creat-
ingasmallsquaredimerofsidel.Obviouslythepresenceof
theseclustersinthefluidisverylikelybecausethisconfigura-
tionguaranteestheabsoluteminimumofthetriangle-triangle
exludedarea(whentherelativeanglebetweenparticleaxes
isπ),butnotethattetramersdonotresultbymergingtwoof
theseclusters.Next,iftwotriangularmonomersarejoinedby
theirequally-sizedsideswiththeright-angledvertexesincon-
tacttheyformalargeright-angledtriangularclusterwiththe
equally-sizedlengthsequalto

√
2l.Triangularclustersneed

tobeconsideredintheanalysissincetetramerscanbeformed
bymergingtwoofthese.Thelastspeciestoconsideris,ob-
viously,thefreetriangularmonomer(thebuildingblockofall
thelargerclusters).
Weshouldnotethatarhomboidaldimer(seeFig.6)can
bealsoformedbytwotriangleswiththeirsmallsidesalmost
incontactandtheirright-angledandacute-angledvertexesin
closeproximity. Eventhoughtheseclustersarepresentin
somecases(seelater),theywillbediscardedfromthemodel
inordertomakeitcomputationallymanageable.Also,other
possibleclustersofdifferentshapesorlargersizeswillnotbe
takenintoaccount.AgainwerefertoFig.6forthedefini-
tionofthefourclustersandalsotoTableIwheretheirshapes,
sizesandareasaresummarized.
InthefollowingwepresentasimpleextensionoftheSPT
modelforthequaternarymixturethatresultsfromaconsid-
erationofthefourclustersdefinedaboveasdistinctspecies.

l
(k)
i willdenotethelengthofthespecies,withiindicatingthe
geometry(i=1forsquaresandi=2fortriangles),andkthe
clustersize(k=1forsmallandk=2forbigclusters).Theex-
cessfree-energyperparticleofthemixturecanbeobtainedby

substitutingtheproductliljbyl
(k)
il
(m)
j ,andtheparticleareas

aibya
(k)
i,intoEqn.(3),thusobtainingthegeneralizedcoeffi-

cientsK
(2,km)
ij,n whicharethenusedin(1).Notethatthesums

overijinthelatterequation,andalsointheidealfree-energy
(4),shouldrunoverfour(ijkm)andtwo(ik)indexes,respec-
tively.Obviouslyweneedtoextendthesamelabellingtothe
molarfractionsandtotheorientationaldistributionfunctions:
x
(k)
i andh

(k)
i(φ),respectively.Thetotalpackingfractionis

thenη=ρ∑
ik

x
(k)
ia
(k)
i,andtheorientationalorderparameters

arewrittenas

Q
(ik)
2n=

2π

0
dφh

(k)
i(φ)cos(2nφ) (n=1,···,4).(9)

Now we specify how the orientationalordering of
monomersiscalculatedfromthatofclusters.Clusternumbers
inthemixturearegivenbyn

(k)
i =x

(k)
iNc(i,k=1,2),withNc

thetotalnumberofclusters.Thetotalnumberofmonomers
distributedamongalldifferentclusterscanbecalculatedas

Nm= 2x
(1)
1 +4x

(2)
1 +x

(1)
2 +2x

(2)
2 Nc.Firstletusconsider

FIG.7.Sketchoftriangularandsquaredimersandtetramers,with
themainmonomer(blackthinarrows)andcluster(redthickarrows)
axesshown.
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FIG.8.(a)Equilibriumorientationaldistributionfunctionsh
(j)
i(φ)

(i,j=1,2)ofdifferentspecies(clusters)inaquaternarymixturewith

molarfractionsx
(1)
1 =0.4,x

(2)
1 =0.15(squaredimersandtetramers,

respectively),x
(1)
2 =0.35,andx

(2)
2 =0.1(monomersandtriangular

dimers,respectively).TheresultswereobtainedusingtheSPT.The
scaledpressureisfixedtop∗=220.(b)Orientationaldistribution
functionforthemonomeraxisorientation,hm(φ),asobtainedfrom
Eqn.(14).Theapproximateeightfoldsymmetryofhm(φ)isclearly
seen.
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Species (i j) 11 12 21 22

Geometry

l
( j)
i l

√
2l l

√
2l

a
( j)
i l2 2l2 l2/2 l2

TABLE I. Labelling of the different species with their shapes, charac-

teristic lengths, l
( j)
i , and areas, a

( j)
i . The unit is the monomer length

l.

the case of square dimers. The main axes of the triangular

monomers point parallel and antiparallel to one of the square

axis, i.e. the one perpendicular to the square diagonal coin-

ciding with the monomer hypotenuse (see Fig. 7). Note that

if we select the square axis to be parallel to the other diag-

onal these angles are ±p/2. However, as the squares only

have I or T liquid-crystal phases, which are orientationally in-

variant with respect to p/2 rotations, the above de�nitions are

identical, i.e. they do not affect the �nal result for the ori-

entational ordering of monomers. Thus the contribution of

the n
(1)
1 square dimers to the global orientational ordering of

monomers is given by the function

h
(11)
m (f) =

n
(1)
1

Nm

�

h
(1)
1 (f)+ h

(1)
1 (f +p)

�

=
x
(1)
1

�

h
(1)
1 (f)+ h

(1)
1 (f +p)

�

2x
(1)
1 + 4x

(2)
1 + x

(1)
2 + 2x

(2)
2

. (10)

For square tetramers, we can see, as Fig. 7 shows,

that the axes of the triangular monomers are at angles

{p/4,−p/4,3p/4,−3p/4}with respect to one of the square

diagonals. Thus the contribution of the n
(2)
1 square tetramers

is

h
(12)
m (f) =

x
(2)
1 åk=±1

�

h
(2)
1 (f + kp/4)+ h

(2)
1 (f + 3kp/4)

�

2x
(1)
1 + 4x

(2)
1 + x

(1)
2 + 2x

(2)
2

.

(11)

The n
(1)
2 free triangular monomers give a contribution of

h
(21)
m (f) =

x
(1)
2 h

(1)
2 (f)

2x
(1)
1 + 4x

(2)
1 + x

(1)
2 + 2x

(2)
2

. (12)

Finally, for triangular dimers, it is easy to see that the two

monomer axes point at angles {3p/4,−3p/4}with respect to

the main axis of the dimer (see Fig. 7). The contribution of

the n
(1)
2 triangular dimers is then

h
(22)
m (f) =

x
(2)
2

�

h
(2)
2 (f − 3p/4)+ h

(2)
2 (f + 3p/4)

�

2x
(1)
1 + 4x

(2)
1 + x

(1)
2 + 2x

(2)
2

. (13)

The total orientational distribution function of monomers is

just the sum of the different contributions obtained above,

hm(f) = å
i, j=1,2

h
(i j)
m (f), (14)

and from this we can calculate the order parameters of

monomers as

Q
(m)
2n =

Z 2p

0
dfhm(f)cos(2nf). (15)

We have performed a minimization of the total free-energy per

particle with respect to all the Fourier amplitudes {h
(ik)
n } (note

the labelling extension i,k = 1,2) of the quaternary mixture.

Possible demixing scenarios were not searched for because we

are only interested in the effect of clustering on the orienta-

tional ordering of monomers. Fig. 8(a) shows the equilibrium

orientational distribution functions {h
( j)
i (f)}, for a scaled

pressure �xed to p∗ ≡ b p
�

l
(1)
2

�2

= 220, and a set of molar

fractions with values x
(1)
1 = 0.4, x

(2)
1 = 0.15, x

(1)
2 = 0.35 and

x
(2)
2 = 0.1, ful�lling the equality x

(1)
1 +x

(2)
2 = x

(2)
1 +x

(1)
2 = 0.5.

Clearly the system exhibits T ordering in all the species, with

square clusters being more ordered and with the presence of

secondary peaks (located at f = p/4 and f = 3p/4) in the dis-

tribution functions of triangular clusters. As explained above,

this is due to square-triangle interactions. The monomer dis-

tribution function hm(f), calculated from Eqn. (14), is shown

in panel (b). It has a quasi-eightfold symmetry, with peaks

located at kp/4 (k = 1, · · · ,4). Note however that the perfect

symmetry hm(f) = hm(f +p/4) is not exactly ful�lled: small

differences in the height of the peaks are clearly visible. To

put this result in perspective we remark that, in a MC simula-

tion, small differences like these would naturally be attributed

to the effect of limited angular sampling in the histogram of

h(f). In any case the function hm(f) plotted in Fig. 8(b)

shows a high O-type ordering, which is a direct consequence

of the strong particle clustering.

Next, order parameters Q
(i j)
2n obtained using Eqn. (9) are

shown in Fig. 9 as a function of monomer composition x
(1)
2 ∈

[0,0.45], following a path in molar fractions x
(1)
1 = x

(1)
2 +0.05,

x
(2)
1 = 0.5− x

(1)
2 and x

(2)
2 = 0.45− x

(1)
2 (these values ful�ll the

constraints x
(1)
1 +x

(2)
2 = x

(2)
1 +x

(1)
2 = 0.5: the sum of composi-

tions of big triangles and small squares is equal to the sum of

compositions of the other two species). Panel (a) shows that

square tetramers have the largest T ordering, as compared to

that of square dimers. This order decreases with x
(1)
2 as a con-

sequence of the fact that x
(2)
1 (the fraction of big squares) also

decreases along the selected path. In turn, triangular dimers

and monomers exhibit N ordering up to x
(1)
2 ≃ 0.3, beyond

which it vanishes due to the fact that x
(2)
2 (the fraction of big

triangles) decreases with x
(1)
2 along the same path, see panel

(b). From this value, triangular species follow the T ordering

of the square species. It is interesting to note that the O order

parameter of the triangular species, Q
(2 j)
8 ( j = 1,2), becomes

larger than the T order parameter, Q
(2 j)
4 , indicating the pres-

ence of satellite peaks in h
( j)
2 (f) at p/4 and 3p/4. Panel (c)

shows the monomer order parameters Q
(m)
2n as a function of

x
(1)
2 , calculated from Eqn. (15). The N ordering of monomers
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FIG. 9. N (n = 1), T (n = 2) and O (n = 4) order parameters, Q
(i, j)
2n , of (a) square-like species, i = 1 and j = 1,2, and (b) triangular species,

i = 2 and j = 1,2, as a function of the free monomer composition, x
(1)
2 ∈ [0,0.45]. The order parameters were obtained from the SPT-

minimization of a quaternary mixture, at �xed scaled pressure p∗ = 220, and with species compositions x
(1)
1 = x

(1)
2 +0.05, x

(2)
1 = 0.5− x

(1)
2 ,

and x
(2)
2 = 0.45−x

(1)
2 , which ful�ll the constraint x

(1)
1 +x

(2)
2 = x

(2)
1 +x

(1)
2 = 0.5. (c) Monomer order parameters, Q

(m)
2n , as calculated from Eqn.

(15), using the function hm(f), for n = 1 (dotted curve), n = 2 (solid curve) and n = 4 (dashed curve). Note that, in the case n = 2, it is the

absolute value of the T order parameter, |Q(m)
4 |, that is shown (this is due to the change of sign at x

(1)
2 ≈ 0.33).

is relatively low, something that can be seen from the negli-

gible value of Q
(m)
2 which becomes zero beyond x

(1)
2 = 0.3.

We also see that, close to x
(1)∗
2 ≃ 0.33, the T order param-

eter, Q
(m)
4 , becomes zero, while the O ordering, measured

through Q
(m)
8 , is relatively high in the neighborhood of x

(1)∗
2 .

Therefore there exists an interval in x
(1)
2 around x

(1)∗
2 where

the orientational distribution function of monomers hm(f) is

similar to that shown in Fig. 8 (b), i.e. it shows a quasi-

eightfold symmetry. Note that, for x
(1)
2 < x

(1)∗
2 , the T director

of square clusters coincides with that of the preferential align-

ment of square dimers, while for x
(1)
2 > x

(1)∗
2 it changes to that

of square tetramers (rotated by p/4 with respect to the for-

mer). This is the reason why the order parameter Q
(m)
4 exhibits

a change in sign at x
(1)∗
2 . Again we can conclude from these

results that the O ordering is highly enhanced by the presence

of particle clustering: when monomers are mainly distributed

into square dimers and tetramers, there exists an interval in the

composition of free monomers for which the monomer distri-

bution function exhibits quasi-eightfold symmetry.

Fig. 10 shows the evolution of the order parameters of

all species [panels (a) and (b]) and of the monomers [panel

(c)] as a function of reduced pressure p∗ for the same �xed

set of compositions as in Fig. 8: x
(1)
1 = 0.4, x

(2)
1 = 0.15,

x
(1)
2 = 0.35, and x

(2)
2 = 0.1, where all species exhibit T or-

dering. The quasi-O ordering, measured by Q
(m)
8 , increases

from zero at the same pressure value where square dimers and

tetramers exhibit a second-order I-T transition at b pl2
2 ≈ 100.

For higher pressures the O order parameter of monomers,

Q
(m)
8 , is signi�cantly larger than the T order parameter Q

(m)
4 .

The angular distribution function of monomers with quasi

eightfold-symmetry can also be obtained for a ternary mixture

of free monomers and dimers of triangular or square symme-

try, i.e. for vanishingly small tetramer composition. This is

shown in Fig. 11(a), where all cluster orientational distribu-

tion functions, h
( j)
i (f), are shown for a quaternary mixture

with x
(1)
1 = 0.45, x

(2)
1 = 0.01, x

(1)
2 = 0.1 and x

(2)
2 = 0.44 and

reduced pressure p∗ = 300. For comparison, the monomer

function hm(f) is also shown (see inset). This time free

monomers and triangular dimers clearly orient in a N-like con-

�guration. As pointed out before, the axes of monomers in

triangular dimers are oriented with respect to the dimer axis

with relative angles of ±3p/4, while monomers in square

dimers have their axes parallel or anti-parallel to the dimer

axis. Taking into account these relative orientations, and the

fractions of the different clusters (0.45 and 0.44 for triangular

and square dimers, respectively; and the rather small values of

0.1 and 0.01 for free monomers and tetramers, respectively),

the quasi-eightfold symmetry of hm(f) explains itself. We

expect that the inclusion of the fourth virial coef�cient in the

theory would cause the orientational distribution function of

triangles to exhibit strong O correlations, since con�gurations

where two or four triangles form triangular or square dimers,

and also square tetramers, might be entropically favored.

The above set of values {x
( j)
i } is just a particular case of

the path obtained by varying the free-monomer composition

x
(1)
2 inside the interval [0,0.98], together with the constraints

x
(1)
1 = 0.5− x

(1)
2 /2, x

(2)
1 = 0.01, x

(2)
2 = 0.49− x

(1)
2 /2 (keep-

ing �xed the small tetramer composition). The evolution of

the order parameters of monomers, Q
(m)
n , with respect to x

(1)
2

along this path and for the same pressure p∗ = 300 is shown

in Fig. 11(b). A wide region exists, close to the x
(1)
2 = 0 axis,

where the O order parameter Q
(m)
8 is highest, which corre-

sponds to strong eightfold orientational correlations between

monomers. In the opposite region, close to the x
(1)
2 = 1 axis,
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FIG. 10. Order parameters Q
(i, j)
2n as a function of reduced pressure p∗ of (a) square and (b) triangular species for a quaternary mixture with

�xed compositions x
(1)
1 = 0.4, x

(2)
1 = 0.15, x

(1)
2 = 0.35, and x

(2)
2 = 0.1. (c) The resulting T (n = 2, solid curve) and O (n = 4, dashed curve)

monomer order parameters, Q
(m)
2n .

monomers are oriented in an N-like con�guration (Q
(m)
2 begin

the highest parameter). Obviously this is a direct consequence

of the small population of triangular and square clusters with

respect to free monomers.

IV. MONTE CARLO SIMULATIONS

To understand the relevance of clusters in the con�gurations

of hard right triangles and give some support to the assump-

tions underlying the models presented in the previous sec-

tions, we have performed NVT-MC simulations of a system

of 576 particles in a square box using periodic boundary con-

ditions, using 2× 105 MC steps for equilibration and 3× 105

MC steps for averaging. Different expansion and compression

runs were performed, starting from different initial con�gura-

tions, to explore different liquid-crystalline phases. For more

details on the simulations we refer to our previous work29.

As shown in Ref. 29, the high-density �uid of hard right

triangles seems to be very prone to staying in speci�c con-

�gurations which can be controlled by an adequate choice of

symmetry for the initial con�guration. This would mean that

there are dense regions in phase space from which it would be

dif�cult to escape, probably due to unlikely local rearrange-

ments of particle orientations. Thermodynamically we could

think of these con�gurations as corresponding to metastable

phases. A reasonable procedure to identify the true stable

phase at each density would be to perform free-energy calcu-

lations using thermodynamic integration or applying the cou-

pling method34. In this section, however, we are not inter-

ested in thermodynamic stability (which would require exten-

sive simulations), but rather we use this feature of the hard

right-triangle �uid to probe for particle clustering in �uids of

different bulk symmetries. Also, since we are using the MC

technique, we are not addressing the stability in time of clus-

ters as separate entities, but simply the occurrence of a set of

particular con�gurations and their relative importance along

the MC chains.

While the de�nition of clusters in a one-component �uid

of hard particles may be clearly speci�ed, the criteria used

in a simulation to associate a particular local con�guration of

particles to a given cluster type is somewhat arbitrary. Here

we have focused on the clusters de�ned in Section III used

to explore the consequences of the mixture model since, as

explained previously, these are the most natural con�gurations

of the system. We advance that indeed these con�gurations

are very frequent, depending on the total �uid density.

Again we refer to Fig. 6 and Table I for the de�nition of

three types of clusters: square tetramers, square dimers, an

triangular dimers. In the simulations we have also focused on

rhomboidal dimers (de�ned in Section III), since they may be

present at not too high densities. To de�ne a dimer with a par-

ticular symmetry (either square, triangular or rhomboidal), we

calculate the distance between the barycenters of two neigh-

bouring triangles as well as their relative angle. Each perfect

dimer (particles in contact with the correct relative orienta-

tion) has speci�c values for these two variables (relative dis-

tance and relative angle). We de�ne a dimer of a given type

whenever these variables depart by less than 15% from their

ideal values. This criterion is totally arbitrary and, in fact, may

lead to a situation where some pairs of particles are not con-

sidered to form a dimer, whereas visually one would clearly

ascribe the pair to be a dimer. Also, a given pair of neighbor-

ing particles may be considered as a dimer discontinuously

along the MC chain. Finally, the fact that the same tolerance

is used to de�ne all types of dimers may introduce a bias in

the relative fraction of dimers. Again, the analysis is qualita-

tive and not aimed at extracting de�nite numbers on quantities

that are otherwise ill-de�ned.

Finally, square tetramers are de�ned as the association of

two triangular dimers by applying a more relaxed criterion

on distance and angle (20%) with respect to the ideal values

for a square tetramer with all four particles in contact. This

is because the positions and angles of the two particles of a

triangular dimer will already depart from the ideal values.

Fig. 12 shows some particle con�gurations where partic-
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FIG.11. (a)Angulardistributionfunctionsofclustersh
(j)
i(φ)in

thequaternarymixturewithcompositionsx
(1)
1 =0.45,x

(2)
1 =0.01,

x
(1)
2 =0.1andx

(2)
2 =0.44,andreducedpressurep

∗=300. The
insetcorrespondstotheangulardistributionfunctionofmonomers,

hm(φ).(b)Orderparametersofmonomers,Q
(m)
2n,forn=1(dotted

curve),n=2(solidcurve)andn=4(dashedcurve),asafunction

ofthefreemonomercompositionx
(1)
2 ∈[0,0.98],followingapath

x
(1)
1 =0.5−x

(1)
2/2,x

(2)
1 =0.01,andx

(2)
2 =0.49−x

(1)
2/2.Thepres-

sureisfixedtothesamevalueasin(a).

ularexamplesofthefourclustersdefinedabovehavebeen
highlighted.Thefractionsofthefourspeciesasafunction
ofpackingfractionareshowninFig.13.Tocalculatethe
fractionofagivenspecies,theaveragenumberofclustersof
thattypealongthesimulationisdividedbytheaveragenum-
berofclustersofallspecies,including"isolated"triangles
(monomers).Severalexpansionandcompressionrunswere
performed,followingtheresultspresentedinRef.29.InFig.
13thedifferentclustersareindicatedbydifferentsymbols,
asshowninthekeybox.Filledsymbolscorrespondtocom-
pressionruns,whileopensymbolsarefromexpansionruns.
Intheisotropicphase,ourclustercriterionidentifiesasmall
fractionofthetwotypesofdimersandrhomboids.Theycor-
respondtolocalarrangementsthatdonotpersistalongthe
MCchain. Asdensityisincreased(compressionrun,filled

symbols)clusterfractionsalsoincrease.Intheliquid-crystal
regionanorder-parameteranalysis(seeRef.29)identifiesthis
phaseastetraticoroctatic,sincetheQ4andQ8adoptcom-
parableandrelativelyhighvalues.ThestrongOorderingis
comingmainlyfromsquaredimers,whichalsoforceneigh-
boringmonomerstoadoptorientationsthatfosterthistypeof
ordering.Notethatrhombicclustersarealsopresent,butno
tetramerscanbeidentified.

Anexpansionrunfromaperfectcrystaloftetramers(per-
fecttetraticcrystal)atη=0.98isalsoshowninFig.13.
Initiallyonlytetramersarepresent,butasdensityisdecreased
theseclustersbreakintotriangulardimers.Attheendofthe
crystalphasethelatterclearlydominate,butatthesametime
afractionofsquaredimersiscreated. Theseareprobably
formedby"free"monomersthathavebeendetachedfrom
neighboringtetramers.Inessencetheexistenceoftheseclus-
tersandtheevolutionoftheirfractionswithdensityareper-
fectlycompatiblewithacrystalphaseshowingthermalfluc-
tuations.Asexpected,thefractionofrhombicclustersises-
sentiallynegligibleasparticleswouldhavetorotatelocallyby
90◦,whichisverydifficultathighpackingfraction.

Meltingofthecrystalisassociatedwithachangeinthe
variationoffractionswithdensity. Tetramershavedisap-
pearedwhilethefractionsofsquareandtriangularclusters
tendtobesimilar.ThefluidbecomesorderedinaTphase,
dominatedbythesetwotypesofclusters.Asdensityisfur-
therdecreasedthisphasechangestotheisotropicphase.Note
thatintheTphasenorhombicclustersareexcited. How-
ever,thefractionoftheseclustersincreasessuddenly,andthe
equilibriumvalueofthisfractionintheisotropicphaseisre-
producedbytheexpansionrunfromtheTassoonasthephase
transitioniscrossed.

AfinalcompressionrunwasperformedfromtheTphase.
Asexpected,thefluidcannotcrystallizeandthefractionof
squareclustersdoesnotmatchtheoneobtainedfromtheex-
pansionrun,eventhoughtriangularclustersdohavealmost
identicalfractions.

Asregardsthecomparisonbetweenourtoy-modelandthe
simulations,acoupleofpointsareworthcommenting.One
concernsthecompressionrunfromtheIphase. Ascanbe
seenfromFig.13,thefractionofrhomboidaldimersisclose
tothefractionoftheotherclusters(notethattetramersare
notpresent)forpackingfractionsbetween0.75and0.8.As
alreadymentioned,thesetypeofdimerswerenottakeninto
accountinourmodelforthesakeofcomputationalsimplic-
ity,butitisreasonabletoassimilatethemtotriangulardimers,
whichresultsinanincreasedmolarfractionforthelatter.By
takingtheotherclusterfractionstobeequaltothosefrom
simulations,theSPTminimizationgivesanangulardistribu-
tionfunctionofmonomerswhichexhibitsuniaxialsymmetry
butwithoctaticcorrelations,similartotheMCresultswhich
showsaquasi-octaticsymmetry(theeightpeaksintheinter-
val[0,2π]areofsimilarheights).Thesecondpointconcerns
theexpansionrunsfromthecrystal,particularlyintheregion
ofpackingfractionsbetween0.85and0.9.Thesimulations
showaclearTphase,whileourmodelwiththesimulationval-
uesofmolarfractions(notethatrhomboidaldimersarenow
totallyabsent)alsopredictsaTphase,withthepresenceof
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FIG.12.Snapshotsofparticleconfigurations.(a):ConfigurationobtainedbycompressingtheIphaseuptopackingfractionη=0.749.
Someoftherhomboidal,triangularandsquaredimersidentifiedbytheclusteralgorithmhavebeenshaded.(b):Systematpackingfraction
η=0.857obtainedbycompressionfromapreviouslypreparedperfectcrystaloftetramers.Someofthesquaredimers,triangulardimers
andsquaretetramersdetectedhavebeenshaded.(c):Systematpackingfractionη=0.910obtainedbytheexpansionfromthecrystalof
tetramers.Notethat,forthesakeofclarity,particleslocatedattheperiodicboundarieshavebeeneliminatedinallfigures.

0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

1

0.9

η

x(
j) i

square tetramers
square dimers

triangular dimers

rhomboidal dimers

ISOTROPIC liquid-crystal CRYSTAL

FIG.13.Fractionofclustersx
(j)
i obtainedfromtheMCsimulations

asafunctionofpackingfractionη.Thenatureoftheclusterisindi-
catedinthekeybox.Filledsymbolscorrespondtocompressionruns,
whileopensymbolsarefromexpansionruns.Theverticalshadedre-
gionsareapproximatetwo-phaseregionsderivedfromdatainRefs.
8and29.Errorbarsarenotshownwhentheirsizesaresimilartothe
symbolsizes.

satellitepeaksatπ/4and3π/4.Weexpectthattheinclusion
ofrhomboidaldimersinourmodelwillresultinabettercom-
parisonwithMCsimulations.Inaddition,acalculationwhere
clusterfractionsareobtained(ratherthanimposed)consis-
tentlybymeansofachemicalequilibriumbetweenclusters
ofdifferentinternalenergieswillcertainlyimprovethere-
sults.Finally,notethattheoverallbalancebetweencluster
fractionsascomparedtomonomersisverysensitivetothe

(somewhatarbitrary)criteriatodefineclustersinthesimula-
tions.Amoreflexibledefinitionofpairconnectednessforthe
differentdimerscanbeseentoleadtoincreasedfractionsby
approximatelythesamefactor,makingthepredictionsofthe
modelclosertothesimulations.
Insummary,the MCsimulationsshowthattheparticle
clustersintroducedinSectionsIIandIIIdooccurinthefluid
ofhardrighttriangles,inhighproportionandinvaryingde-
greesaccordingtotheglobalorientationalorderofthesys-
tem.Therefore,amodelbasedontheequilibriumstatisticsof
theseclustersasseparateentitiesmaybeafruitfulwaytoun-
derstandtheessentialorientationalpropertiesofthehardright
trianglefluid.

V. CONCLUSIONS

Inthispaperwehaveaddressedtheoriginoftheliquid-
crystalphaseofhardrighttriangles. Compression Monte
Carlosimulationsindicatetheexistenceofanexoticliquid-
crystallinephaseexhibitingtetraticorderandstrongoctatic
correlations,whichthestandardandextendedSPTversions
ofDFTareunabletodescribe. Asastepforward,andin
viewoftheapparentlyimportantclusteringtendenciesofright
trianglesintosquareandtriangularclusters,wehaveimple-
mentedanSPT(second-virial)approachtoanalizethephase
behavioroffourdifferentbinarymixturesofrighttriangles
andsquares,andcalculatedtheirrespectivephasediagrams.
Thelength-asymmetryofthespeciesareκl=1/2,1/

√
2,1

and
√
2,wherethesecondcasecorrespondstospecieshav-

ingequalparticleareas(κl=1/
√
2).Allmixtures(including

theequal-areaone)exhibitstrongI-TandN-Tdemixing,a
regionofI-Nfirstordertransition,andthepresenceofaI-N-
Ttriplepoint.Thedemixingscenariosdirectlyfollowfrom
thedifferentliquid-crystalsymmetriesexhibitedbytheone-
componentfluidsofhardtrianglesandhardsquares,i.e.Nand
Tsymmetries,respectively.Trianglesinthemixturecanadopt
aTorderingwhichfollowsthenaturalorderingofthemore
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populated square species, but with an orientational distribu-

tion function, h2(f), exhibiting two relatively small satellite

peaks located at {p/4,3p/4}, which points to the importance

of square-triangle interactions in the existence of orientational

correlations with eightfold symmetry. However, the distribu-

tion function has a clear T character (with T and O order pa-

rameters having similar values).

We also provided some results that explain the evidence

that, under certain conditions, particle clustering can give rise

to situations where the O order parameter, Q8, is much higher

that the N, Q2, or T, Q4 order parameters. Our results are

based on the implementation of a toy model consisting of a

quaternary mixture where species are triangular monomers,

triangular and square dimers, and �nally tetramers, all as-

sumed to form in the real one-component �uid by monomer

self-assembling. Evidence from MC simulation for the preva-

lence of these clusters in the equilibrium con�gurations of this

�uid was presented in Section IV. We then used the SPT ap-

proach to estimate the free-energy of the mixture and, via min-

imization, calculated the equilibrium orientational distribution

functions of clusters. From them the corresponding function

for monomers can be derived. The question of the possible

demixing scenarios, which do certainly exist in these mix-

tures, was not addressed. The focus was put on the monomer

distribution function hm(f) which, for certain sets of cluster

compositions, exhibits quasi eightfold symmetry, with four

peaks of similar, although not identical, height in the inter-

val [0,p ]. This demonstrates that the elusive eightfold order-

ing seen in the simulations, but not in the standard two- and

three-body versions of DFT, can originate from the prevalence

of particle clustering and its effect on the global orientational

properties of the �uid. Further studies focusing on the dynam-

ics of these processes may reveal whether the clustering idea

is just a convenient artifact to partition con�gurational space

or a real situation with clearly separated time scales associated

to cluster kinetics, internal cluster dynamics and the �uid dy-

namics of clusters as separate entities. In any case, our results

indicate that it is reasonable to appeal to the clustering effect

to explain why the O phase, observed in simulations, cannot

be stabilized by the usual implementations of DFT. Also, we

showed that a simpli�ed model where particle clustering is

assumed implicitely can produce the O and T symmetries if

particular choices of cluster molar fractions are made. These

symmetries are completely absent in the original model for the

one-component right triangle, as shown in a previous work29.

Even if the idea of the �uid as a collection of clusters turns

out to be useful, the present assumption that cluster compo-

sition can be �xed in advance should be improved by consid-

ering these compositions as an output of the model. Consis-

tent with the theory for the kinetics of clustering, monomer

aggregation and evaporation, and cluster formation and frag-

mentation, may be described by a set of chemical reactions,

with certain reaction constant ratios at equilibrium. These ra-

tios can be obtained from the difference between the chemical

potentials of the species involved in the reactions. The more

realistic model would consider the �uid as a polydisperse mix-

ture of cluster or superparticles of different sizes and shapes,

each cluster having a particular association energy as in mod-

els of associated �uids. We believe these ideas deserve some

exploration in the future.
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