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Abstract

Multi-channel intracardiac electrocardiograms (elec-
trograms) are sequentially acquired during heart surgery
performed on patients with sustained atrial fibrillation
(AF) to guide radio frequency catheter ablation. These
electrograms are used by cardiologists to determine candi-
date areas for ablation (e.g., areas corresponding to high
dominant frequencies or complex electrograms). In this
paper, we introduce a novel hierarchical causality analy-
sis method for the multi-output sequentially acquired elec-
trograms. The causal model obtained provides important
information regarding delays among signals as well as the
direction and strength of their causal connections. The
tool developed may ultimately serve to guide cardiologists
towards candidate areas for catheter ablation. Prelimi-
nary results on synthetic signals are used to validate the
proposed approach.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia, but its underlying mechanisms are still not fully
understood. One of the leading theories (rotor theory)
states that specific areas of the myocardium are responsi-
ble for AF initiation and maintenance. RF catheter ablation
is increasingly used to deal with AF, but requires identify-
ing arrhythmogenetic areas. Sites with high dominant fre-
quencies or complex electrograms have been proposed as
candidate areas for ablation, but the success rate of these
approaches still leaves room for improvement.

Several authors have investigated the inference of
causality relationships among physiological signals. In
particular, in electrocardiography the use of partial di-
rected coherence to investigate propagation patterns in
intra-cardiac signals was considered in [1], whereas
Granger causality maps were built in [2, 3]. In this pa-
per, we propose a novel hierarchical causality approach to
guide cardiologists towards candidate areas for cathether
ablation and discriminate between normal (sinus rhythm)
and abnormal propagation (rotors).

2. Granger Causality (G-Causality)

Let us assume that we haveN samples of a multi-variate
time series composed of Q interrelated signals, xq[n] for
q = 1, . . . , Q and n = 0, 1, . . . , N − 1. These signals
correspond to unipolar intra-cardiac ECGs (electrograms)
recorded at a single heart site during catheter ablation ther-
apy. In the next two subsections, we describe two standard
approaches for causality inference, whereas in the follow-
ing section we detail the proposed hierarchical approach.

2.1. Standard Pairwise Causality

In its standard (pairwise) formulation, Granger causality
(G-causality) measures the increase in predictability on the
future outcome of a given signal, xq[n] with 1 ≤ q ≤ Q,
given the past values of another signal, x`[n] with 1 ≤ ` ≤
Q, w.r.t. the predictability achieved by taking into account
only past values of xq[n] [4]. The linear autoregressive
(AR) predictor for xq[n] given its past samples (i.e., the
q-th self-predictor) is given by

x̂q[n] =

Mqq∑
m=1

αqq[m]xq[n−m] = α>qqxq[n], (1)

where Mqq is the order of the predictor (obtained typ-
ically using some penalization for model complexity to
avoid overfitting [5]), αqq[m] are the coefficients of the
model, αqq = [αqq[1], . . . , αqq[Mqq]]

>, and xq[n] =
[xq[n − 1], . . . , xq[n −Mqq]]

>. Similarly, let us define
the linear AR predictor for xq[n] given the past samples of
both xq[n] and x`[n] (i.e., the cross-predictor from the `-th
signal to the q-th signal) as

x̂`→q[n] = α>qqxq[n] + α>`qx`[n], (2)

where M`q is the order of the predictor from the `-th sig-
nal to the q-th output (different from Mqq in general),
α`q[m] its coefficients, α`q = [α`q[1], . . . , α`q[M`q]]

>

and x`[n] = [x`[n − 1], . . . , x`[n −M`q]]
>. The resid-

ual errors of the two predictors in (1) and (2) are εq[n] =
xq[n]−x̂q[n] and ε`→q[n] = xq[n]−x̂`→q[n] respectively.



The pairwise G-causality strength is then measured by the
logarithm of the ratio of these two variances [6]:

G`→q = ln
Var(εq[n])

Var(ε`→q[n])
. (3)

Using these pairwise values, we can build a pairwise G-
causality strength matrix, G, whose (`, q)-th entry is1

G`,q =

{
G`→q, ` 6= q;

0, ` = q.
(4)

Finally, note that we should add a causality link from `
to q only when the decrease in the residual’s noise vari-
ance from (1) to (2) is statistically significant. In order to
construct this causality graph we may define the pairwise
G-causality connection matrix, C, whose (`, q)-th element
is C`→q = Ip(G`→q), where Ip(·) is an indicator function
such that Ip(G`→q) = 1 when the causal link from ` to
q is statistically significant (as indicated by its p-value for
example) and Ip(G`→q) = 0 otherwise.

2.2. Conditional G-Causality

Pairwise causality is unable to discriminate between di-
rect causal relationships (i.e., between parents and sons)
and indirect relationships (e.g., between grandparents and
grandchildren). In order to avoid the undesired extra edges
introduced by these indirect relationships, [6] proposed the
use of conditional G-causality. Let us define as I the set
containing the indexes of the conditioning variables. Now
we can define the conditional self-predictor as

x̂q|I [n] = α>qqxq[n] +
∑
r∈I

α>rqxr[n], (5)

where αrq = [αrq[1], . . . , αrq[Mrq]]
> and xr[n] =

[xr[n− 1], . . . , xr[n−Mrq]]
> for all r ∈ I, and the con-

ditional cross-predictor from the `-th signal (with ` /∈ I)
to the q-th output as

x̂`→q|I [n] = α>qqxq[n] +
∑
r∈I

α>rqxr[n] + α>`qx`[n]. (6)

Now, by defining the residual errors as εq|I [n] = xq[n] −
x̂q|I [n] and ε`→q|I [n] = xq[n] − x̂`→q|I [n], the condi-
tional G-causality strength can be defined as

G`→q|I = ln
Var(εq|I [n])

Var(ε`→q|I [n])
. (7)

Just like in the case of the pairwise causality, we may de-
fine two conditional connection/strength G-causality ma-
trices, GI and CI , whose (`, q)-th elements are respec-
tively G`,q|I = G`→q|I and C`→q|I = Ip(G`→q|I).2

1Note that Var(εq→q [n]) = Var(εq [n]), since x̂q→q [n] = x̂q [n], and
thus Gq→q [n] = ln 1 = 0 and the definition in (4) is consistent with (3).

2Note that the pairwise G-causality connection/strength matrices are
unique, whereas many conditional G-causality connection/strength matri-

3. Hierarchical Granger Causality

On the one hand, pairwise G-causality may provide mis-
leading results. On the other hand, the “brute-force ap-
proach” to conditional causality (i.e., applying conditional
causality on the whole data set all at once) is much more
demanding from a computational point of view and may
obscure some of the existing relationships. Hence, in this
paper we propose a hierarchical approach that is able to
exploit the advantages of both approaches while minimiz-
ing their drawbacks. The algorithm starts by searching for
the node with the highest number of G-causality links to
the other nodes and selecting it as the root node. Then, the
sons of the root node are processed sequentially accord-
ing to their strength, adding new causality links if they are
significant conditioned on the previously added links. This
process is repeated iteratively (on the grandsons of the root
node and so on) until there are no more nodes to process
and a poly-tree has been constructed. In the following, we
describe the hierarchical causality algorithm in detail.

3.1. Initialization: Selecting the Root Node

The initialization stage seeks to find the optimal root
node for the causal graph. This is done by calculating the
pairwise G-causality among all nodes and selecting the one
with the highest number of G-causality links to the other
nodes. As a result, this stage returns the root node, i1, and
the set of its candidate sons, C1 = cand{i1}. The detailed
steps taken are the following:
1. Set G = 0 and C = 0. Initialize the sets of sons
and parents as empty sets: Pq = pa{q} = ∅ and Sq =
son{q} = ∅ for q = 1, . . . , Q.
2. FOR q = 1, . . . , Q−1 and ` = q+1, . . . , Q: Calculate
Gq→` and G`→q , and set the corresponding entries in G
and C.
3. Calculate the G-causality strength of the q-th node
(q = 1, . . . , Q − 1) as the sum of the strength of its
causal links to the remaining nodes, gq =

∑Q
`=1 Gq,` =∑Q

`=1Gq→`, and the number of links for each node as
Kq =

∑Q
`=1 Cq,` =

∑Q
`=1 Ip (Gq→`).

4. Determine the node with the highest number of causal
links stemming from it,

i1 = argmax
1≤q≤Q

Kq, (8)

and set it as the root node, with gq being used only to dis-
criminate among nodes with identical values of Kq .
5. Obtain the set of candidate sons of the root node: Ci1 =
cand{i1} = {` : Ci1,` = 1}.

ces can be constructed. The most usual situation in the literature is setting
I = S¬` = {∞, . . . , `−∞, `+∞, . . . , Q} = {∞, . . . , Q}\{`}
and constructing the full conditional G-causality connection/strength ma-
trices as G`,q|S¬`

= G`→q|S¬`
and C`→q|S¬`

= Ip(G`→q|S¬`
)

respectively.



3.2. First Iteration: Processing the Sons of
the Root Node

This stage is in charge of processing the set of candidate
sons of the root node, determining which of them are true
sons. This decision is taken by sorting the candidates ac-
cording to their G-causality strength and processing them
sequentially (with “stronger” candidates being processed
first). At each iteration, a conditional G-causality strength
is calculated using the current set of sons of the root node
(initially empty). If the G-causality connection is deemed
statistically significant, the candidate is added to the set of
sons of the root node and the corresponding entry in the
conditional G-causality connectivity/strength matrices is
updated. The motivation for this approach is that true sons
still provide statistically significant G-causality values af-
ter conditioning, whereas descendants further away along
the family tree do not provide statistically significant G-
causality values (as they are be masked by closer descen-
dants of the root node). As a result, this stage sets the cor-
responding entries in the strength/connection G-causality
matrices, G`,q|P and C`,q|P , returns the set of sons of the
root node, Si1 = son{i1}, and sets the root node as the par-
ent for the nodes in Si1 , i.e., Pq = pa{q} = {i1} ∀q ∈ Si1 .
The procedure applied is the following:
1. Set Gi1,q|P = 0 and Ci1,q|P = 0 for q = 1, . . . , Q.
Set G`,q|P = NaN and C`,q|P = NaN for 1 ≤ `, q ≤ Q

with ` 6= i1.3

2. Sort the elements in Ci1 according to their G-causality
strength: Ci1(j) ≥ Ci1(k) ∀j < k (1 ≤ j, k ≤ |Ci1 |).
3. Set Ci1→Ci1 (1)|P = 1, Gi1→Ci1 (1)|P = Gi1→Ci1 (1) and
Si1 = son{i1} = {Ci1(1)}.
4. FOR j = 2, . . . , |Ci1 |:
(a) Calculate Gi1→Ci1 (j)|Si1 and Ci1→Ci1 (j)|Si1 =
Ip(Gi1→Ci1 (j)|Si1 ).
(b) IF Ci1→Ci1 (j)|Si1 = 1: Set Ci1→Ci1 (j)|P = 1,
Gi1→Ci1 (j)|P = Gi1→Ci1 (j), Si1 = Si1 ∪ {Ci1(j)} and
PCi1 (j) = pa{Ci1(j)} = {i1}.

3.3. Main Algorithm: Processing the Re-
maining Nodes Iteratively

This final stage is in charge of processing the remain-
ing roots iteratively in a hierarchical fashion. The process
described in the previous section is repeated iteratively,
processing the sons of each of the sons of the root node
(i.e., the grandsons of the root node), starting again by
the “strongest” one. The algorithm proceeds in this way
(i.e., processing the great-grandsons of the root node, the
great-great-grandsons of the root node and so on), until

3NaN is the IEEE arithmetic representation for “Not-a-Number”, which
is obtained as the result of mathematically undefined operations (e.g., 0/0
or∞−∞). We use it here as a convenient way to indicate entries of GP
and CP that have not been defined yet.

there are no more nodes to process. This stage returns the
full strength/connection G-causality matrices, G`,q|P and
C`,q|P , defining a causal network with the corresponding
sets of sons and parents, Sq = son{q} and Pq = pa{q} for
q = 1, . . . , Q. The steps taken are the following:
1. Set t = 1, It = {i1} andMt = {1, . . . , Q} \ It.
2. WHILEMt 6= ∅:
(a) FOR k = 1, . . . , |It|:
• Set S = SIt(k) and sort its elements in decreas-

ing order according to their G-causality strength (i.e.,
“strongest” elements placed first).
• FOR ` = 1, . . . , |S| and j = 1, . . . , |C|: Set
C = CS(`) =Mt \ S(`), and calculate GS(`)→C(j)|It and
CS(`)→C(j)|It = Ip(GS(`)→C(j)|It). IF CS(`)→C(j)|It =
1, then set:

CS(`)→C(j)|P = 1,

GS(`)→C(j)|P = GS(`)→C(j)|It ,

son{S(`)} = son{S(`)} ∪ {C(j)},
pa{C(j)} = pa{C(j)} ∪ {S(`)}.

(b) Set It+1 = ∪|It|k=1SIt(k), Mt+1 = Mt \ It+1 and
t = t+ 1.

4. Numerical Simulations

In this section, we validate the proposed approach by
using synthetic signals generated using a grid of intercon-
nected elements that simulate the behaviour of heart tis-
sue using the FitzHugh-Nagumo model [7]. The Granger
causal connectivity toolbox (see [8]) was used to obtain
the basic pairwise and conditional causality relationships.
A flat propagation wavefront is generated and a catheter
with 9 sensors is placed inside the heart in such a way
that the wavefront enters it through the eighth sensor and
exits through the third sensor. An example of the noise-
less signals and the true causal connectivity matrix, C, is
provided in Figure 1, whereas the ground truth causality
network can be seen in Figure 2. The three approaches
described in the paper (pairwise causality, full conditional
causality and the novel hierarchical causality approach) are
then applied (using M = 16 and p = 5 · 10−4) to infer the
other causal networks shown in Figure 2. As expected,
the pairwise approach includes a huge number of edges,
since it does not discriminate between direct and indirect
causal relationships. The full conditional approach does a
much better job, but still provides some cross-connections
across the nodes that may obscure the interpretation of the
inferred network. Finally, the hiearchical scheme includes
less cross-connections (always pointing in the right direc-
tion) and requires a lower computational effort.



0 100 200 300 400
−2

0

2

4

6

8

10

12

flat1

 

 

Ch. 1

Ch. 2

Ch. 3

Ch. 4

Ch. 5

Ch. 6

Ch. 7

Ch. 8

Ch. 9

C Matrix

Source

S
in

k

2 4 6 8

1

2

3

4

5

6

7

8

9

Figure 1. Example of the synthetic signals (left) and the
true causal connectivity matrix (right)
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Figure 2. True map and causality maps provided by the
tested methods (hierarchical, pairwise and full)

Table 4 provides some numerical results in terms of ac-
curacy (TP+TN

P+N ), sensitivity (TP
P ) and specificity (TN

N ).4

On the one hand, the pairwise technique provides very
good results in terms of sensitivity (detecting all the
edges), but very poor results in terms of specificity (in-
troducing many false edges). On the other hand, the full
conditional scheme obtains very good results in terms of
specificity, but very poor sensitivity results. Finally, the hi-
erarchical approach provides the best accuracy and speci-
ficity results, performing well also in terms of sensitivity.

Method Accuracy Sensitivity Specificity
Hierarchical 0.85185 0.66667 0.87500

Pairwise 0.69136 1.00000 0.65278
Full Cond. 0.81481 0.44444 0.86111

4P denotes the number of positive instances (i.e., existing edges), N
the number of negative instances, TP the number of correctly detected
existing edges and TN the number of correctly detected missing edges.

5. Conclusions and Future Lines

In this paper, we have introduced a novel hierarchical
approach to infer Granger causality relationships among
multi-channel intra-cardiac electrocardiograms. The pro-
posed scheme avoids detecting indirect causal links (as in
pairwise approaches), and has a better performance and
less computational cost than the full conditional causality
method. Synthetic signals, generated using the FitzHugh-
Nagumo model, have been used to validate our method.
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