
ARTICLE

Universal resilience patterns in labor markets
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Cities are the innovation centers of the US economy, but technological disruptions can

exclude workers and inhibit a middle class. Therefore, urban policy must promote the jobs

and skills that increase worker pay, create employment, and foster economic resilience. In

this paper, we model labor market resilience with an ecologically-inspired job network con-

structed from the similarity of occupations’ skill requirements. This framework reveals that

the economic resilience of cities is universally and uniquely determined by the connectivity

within a city’s job network. US cities with greater job connectivity experienced lower

unemployment during the Great Recession. Further, cities that increase their job connectivity

see increasing wage bills, and workers of embedded occupations enjoy higher wages than

their peers elsewhere. Finally, we show how job connectivity may clarify the augmenting and

deleterious impact of automation in US cities. Policies that promote labor connectivity may

grow labor markets and promote economic resilience.
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Like ecosystems1,2, the cities with adaptable labor markets are
best prepared for the future of work. So what makes cities
adaptable? This question remains open because the typical

study of urban labor at equilibrium obfuscates responses to out-
of-equilibrium disruptions. For example, most automation
research relies on occupation-level estimates of technological
exposure3,4. But, labor markets are heterogeneous systems in
which skills5, jobs, geographies6,7, and sectors all interact8.
Accordingly, models built on empirical skills data may better
capture worker mobility and better identify the sources of urban
adaptability through the interdependencies of workplace skills9,10.
Analogous strategies predict resilience to shocks in ecological
systems (e.g., changing acidity or temperature levels) from the
density of mutualistic interdependencies between species—inde-
pendent of population dynamics at equilibrium11,12. Similar
network models have been applied in a variety of economic
systems including global socioeconomic systems13, regional
economies14, banking systems15, and interfirm worker mobility16

through an analogy connecting ecological mutualism to economic
complementarity. In these studies, the interdependencies between
cities, banks, and firms undergird systemic resilience to shocks
even though dynamics in those systems are very different. Despite
their success in other economic domains, studies of inter-
dependencies between skills and occupations remain absent from
urban labor studies on economic resilience.
How strong is the analogy between labor market resilience and

the resilience of ecosystems? To study this question, we first
expand existing labor theory using an analogy between the
overlapping skill requirements of occupations within a labor
market and the mutualistic interactions between species within an
ecosystem. Since labor markets and ecosystems may be governed
by different dynamics, how can ecological methods apply to labor
market resilience? Recent studies demonstrate the prominent role
of structure in determining ecological resilience independent of
the ecosystem’s population-level dynamics11,12. Thus, we ignore
the different equilibrium dynamics that govern a labor market or
an ecosystem, and we apply analogous measures to occupation
networks in US cities constructed from employment distributions
and skills data provided by the US Department of Labor. While
existing foundational studies have identified similar structures in
urban labor markets17–20, we are not aware of any study
empirically relating these economic structures to economic resi-
lience following a labor shock. Thus, we expand this body of work
by applying our theoretical framework to measure labor market
resilience compared to the unemployment experienced across US
cities following the Great Recession. Finally, having empirically
validated our measure following an actual labor disruption, we
apply our framework to understand the impact of another labor
disruption: automation via computerization.

Results
Traditional labor market models (e.g., job matching theory21)
lack the granularity required by this ecological view of labor. In
general, the job matching function M(U,V) describes the
dynamics of employment, E, as a function of unemployed
workers, U, filling job vacancies, V, according to

dE
dt

¼ �λU þMðU ;VÞ; dU
dt

¼ λE �MðU ;VÞ ð1Þ

where λ represents the rate of job match dissolution. Employment
is increased as job seekers fill job vacancies through the matching
function22 between unemployed workers and available jobs; most
research models this process as M(U, V)∝UγV1−γ where γ∈
[0.5, 0.7]. However, the abstract nature of this model obfuscates
the frictions that limit workers’ career mobility23. In particular,

skill mismatch21 is difficult to identify without refining the model
with empirical skill interdependencies.
To describe career mobility between occupations, the model

must be extended to treat each occupation j as its own
submarket9,24,25 with unemployed workers, Uj, and job vacancies,
Vj. This requires a revised matching function M(Ui,Vj) that
respects frictions in the flow of workers between occupations i
and j. To this end, recent studies using the O*NET database from
the US Bureau of Labor Statistics (BLS) have revealed skill
polarization26, the impact of automation in cities3, and demon-
strated how similar skill requirements are predictive of worker
transitions between occupations27,28.

Here, we use O*NET skills data to calculate the pairwise
similarity of skill requirements for occupations i and j according
to wij= 1− ∣∣Oi−Oj∣∣2 where Oj denotes the skill vector of
occupation j (see Methods to learn more about this skills database
from the BLS). We normalize skill similarity scores so that wij∈
[0, 1]. Our results throughout are robust to alternative skill
similarity calculations (see Supplementary Note 2), varying γ (see
Supplementary Note 5), and even small perturbations in the set of
skills used to calculate the similarity (see Supplementary Note 3).
We model skill similarity scores as a job network where occu-
pation pairs are connected with weighted links according to wij.
Consistent with previous work26, the resulting network reveals a
polarized aggregate structure (see Fig. 1B) suggesting that the
topology of skill interdependencies relates to job polarization. In
this new formulation, job matching happens according to
MðU i;V jÞ / wijU

γ
i V

1�γ
j . Since Ej∝Vj across occupations (see

Supplementary Note 1), we use eq. (1) to obtain

dEj

dt
¼ �λEj þ α ∑

i2Jobs
wijE

γ
jU

1�γ
i

dU j

dt
¼ λEj � α ∑

i2Jobs
wijE

γ
iU

1�γ
j :

ð2Þ

Note that this model conserves the total number of workers
(i.e., ∑j∈Jobs Ej+Uj is a constant). We assume that a worker’s
skills are approximated by the skills required by their most recent
employment (i.e., OEj

¼ OU j
) and we assume that the sets of

occupations and skills are fixed. Under these assumptions, the
model is best suited for describing responses to shocks rather
than long-term forces that shape labor markets, such as educa-
tion, retraining programs, and innovation.
Equation (2) resembles models of ecological mutualism29–31. As

with mutualistic ecosystems, labor markets in cities that employ
workers in occupations with overlapping skill requirements create
positive spillover effects that can bolster the resilience of the labor
market. For example, if employment decreases for some occupation,
then other similar occupations could support displaced workers
without costly retraining. Therefore, as in ecological modeling11,12,
the density of connections between occupations within a city could
indicate greater economic resilience to shocks, including unem-
ployment shocks, the automation of workplace tasks, or other major
disruptions. Essentially, city’s with more connections between
occupations will be more resilient to labor shocks.
We test this hypothesis by applying eq. (2) to employment data

for each US city. For city c, we seed the model with occupational
employment according to the BLS to determine Ec

j and assume
that α and λ, which represent national labor trends, are constant
across cities and occupations. If Ec

j ¼ 0, then we assume city c is
unable to support workers in occupation j and we set wc

ij ¼ 0 for
each i∈ Jobs; otherwise, we take wc

ij ¼ wij. Our results are robust
to alternative definitions of the minimum number of jobs to set
wc
ij ¼ 0, see Supplementary Note 3 for more details. Thus, each

city has its own job network constructed as a subset of the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22086-3

2 NATURE COMMUNICATIONS |         (2021) 12:1972 | https://doi.org/10.1038/s41467-021-22086-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


complete job network (see Fig. 1B for the complete job network
and Fig. 1C–E for examples of job networks in cities). These job
networks are extremely high-dimensional representations of
urban labor markets that may seem intractable at first. For
example, a city with N unique occupations has ðN2Þ skill similarity
scores (i.e., links in that city’s job network). However, despite job
network size and complexity, those multidimensional systems can
be simplified to an effective one-dimensional model based on
average nearest-neighbor activity11. Letting wc

j ¼ ∑i2Jobsw
c
ij

(called occupation j’s embeddedness) and Wc ¼ ∑i;j2Jobs2w
c
ij, we

define the effective variables11

Ec
eff ¼ ∑

j2Jobs
Ec
jw

c
j

� �
=Wc; Uc

eff ¼ ∑
j2Jobs

Uc
jw

c
j

� �
=Wc; and wc

eff ¼ ∑
j2Jobs

ðwc
j Þ2

� �
=Wc

ð3Þ
and reduce eq. (2) to

dEc
eff

dt
¼ �λEc

eff þ αwc
eff ðEc

eff ÞγðUc
eff Þ1�γ

dUc
eff

dt
¼ λEc

eff � αwc
eff ðEc

eff ÞγðUc
eff Þ1�γ:

ð4Þ

These effective variables capture the expected long-term
dynamics in each city given our model and rely heavily on each
city’s job network. In particular, wc

eff captures the job network
connectivity between occupations and uniquely determines simu-
lated employment levels. Using the effective system, each city has
two potential long-term outcomes: systemic collapse with Ec

eff ¼ 0
or a healthy system with the fraction of employed workers given by

Ê
c
eff ¼

1

1þ ðλ=ðαwc
eff ÞÞ1=ð1�γÞ : ð5Þ

See Methods section for the complete derivation.
The effective model yields several important insights into the

economic resilience of urban labor markets. First, although the

model allows for system collapse, this outcome is unattainable if
Ec
eff > 0, which is the fortunate case for each city we modeled.

Second, despite varying in size and geography, cities’ expected
employment (i.e., eq. (5)) follows universal dynamics determined
by wc

eff . For each rate of job matching dissolution (λ), the varia-
tion in simulated long-term employment levels (see Fig. 2A)
collapses to a single line after controlling for wc

eff (see Fig. 2B. See
Supplementary Note 7 for simulation details.).
These results suggest that job connectivity is critical to a city’s

economic resilience. Cities with greater wc
eff have a larger fraction

of employed workers Ê
c
eff after simulation (see Fig. 2B). Fixing λ

clarifies this relationship and shows how cities can have different
stationary solutions under the same exogenous forces (see
Fig. 2C). For example, under a large country-wide dissolution rate
of jobs (λ= 0.046), some cities, such as New York, NY, are able to
resist changes to net employment, but other cities, such as Yuma,
AZ, experience significant decreases in their fraction of employed
workers according to simulations. The results in Fig. 2 are robust
to variations in λ (see Supplementary Note 4) and alternative
choices of γ (see Supplementary Note 5).

Beyond simulation, is there an empirical relationship between
job connectivity and urban responses to employment shocks? To
externally validate our model, we compare city’s job connectivity
in 2007 to their peak unemployment rate during the Great
Recession (December 2007 to June 2009) using Local Area
Employment Statistics (see Fig. 2D). In general, larger cities
experienced lower unemployment rates (see Table 1, Model 1), but
city’s total employment in 2007 was not very predictive. This result
suggests that the thickness of their labor markets32 do not deter-
mine their response to the employment shock. Rather, various
aspects of labor diversity better explain urban responses. For
instance, city’s with greater job connectivity also experienced lower
unemployment rates (see Table 1, Model 2) following a stronger
relationship than city size alone. We expand on this result to

Fig. 1 The job connectivity for visualizing urban labor markets. A A schematic for skill similarity wij and the job matching process. B The job network
constructed from skill similarity scores. Each occupation is represented by a circle colored according to sector. This job network visualization is filtered to
links with wij > 0.70; the complete job network was used in all analysis. C–E Example cities are projected onto subsets of the job network based on
employment by occupation in 2017.
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include other aspects of labor diversity such as employment
diversity (i.e., the Shannon entropy of employment by occupation,
Hc) and occupational diversity (i.e., the number of unique occu-
pations, Nc). Employment diversity is given by Hc ¼ �∑j2Jobsp

c
j �

log 10ðpcj Þ where pcj is occupation j’s fraction of employment in
city c. Even after controlling for employment diversity and occu-
pational diversity, job connectivity significantly improves predic-
tions of peak unemployment rates during the Great Recession (see
Table 1, Model 3 compared to Model 4 & 5). Combined, this
evidence highlights the critical role of job connectivity in city’s
economic resilience to labor shocks, like the Great Recession.
Since job connectivity may promote economic resilience to

labor disruptions, how can policy makers and individuals leverage

connectivity and job network projections? One way is to compare
the embeddedness (wc

j ) of a single occupation in the job network
projection of each city (e.g., see Fig. 3A, B). For 75% of US
employment and 96% of US occupations, workers of a given
occupation that is more embedded in their city’s labor market
earn higher annual wages than workers of the same occupation in
other cities (see Fig. 3C, D). We observe evidence for this
embeddedness wage premium even after additionally controlling
for a occupation’s employment share, educational requirements,
city fixed effects, and occupation fixed effects (see Supplementary
Note 8 for more details). This suggests workers may benefit from
employment opportunities in cities where their employment
would boost the city’s job connectivity. In general, cities that

Fig. 2 Job connectivity determines a universal trend in urban resilience and predicts unemployment during the Great Recession. A The steady-state
solutions of the simulation model for each city while varying the rate of job match dissolution λ. B Similar to (A) but controlling for the job connectivity in
each city wc

eff. Solid line is the analytically-derived employment rate at equilibrium. C The equilibrium solutions of our model for each city for λ= 0.046 and
job network projections for two example cities given by occupations with nonzero employment in each city. In (A–C), symbol size and color represent total
employment in the city. The color bar provided in (A) also applies to (B) and (C). D Unemployment by US city during and after the Great Recession. Lines
are colored by the city’s job connectivity in 2007.

Table 1 Linear regression models predicting the peak unemployment rate in US cities during the Great Recession. Using 2007
employment data from the year before the recession, labor diversity measured through urban employment distributions (Hc),
occupation diversity (Nc), and job connectivity (weff) predict labor responses to Great Recession. Variables were centered and
standardized prior to analysis.

Dependent variable: Peak unemployment Rate during the Great Recession

Variable Model 1 Model 2 Model 3 Model 4 Model 5

log 10 Total Employment (Tc) −0.175* 0.514 0.521 0.510
Job connectivity (wc

eff) −0.218** −3.952*** −4.372***

Occupation diversity (Nc) 0.210 4.005*** 4.559***

Employment diversity (Hc) −0.988*** −0.833*** −0.847***

wc
eff ´ T

c −0.344
wc
eff ´N

c 0.039
wc
eff ´H

c 0.267*

R2 0.031 0.047 0.190 0.234 0.262
adjusted R2 0.026 0.043 0.178 0.218 0.235

pvalue < 0. 1*, pvalue < 0.01**, pvalue < 0.001***
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increased their job connectivity from 2010 through 2017 saw an
increase in their wage bill (i.e., total wages. See Fig. 3E). Thus,
policy makers may be able to grow their local labor market
through targeted investment in the companies and industries that
employ workers of embedded occupations which increases the
overall job connectivity of the city.
Besides the Great Recession, can job connectivity tell us about

other labor shocks, such as technology and automation? To
explore, we combine our model with estimates of occupation-
level exposure to computerization4 and simulate urban employ-
ment (see Supplementary Note 7 for simulation details). An
occupation i is automated if its probability of computerization is
above some minimum threshold θ. All workers of an automated
occupation are immediately unemployed and job seekers can no
longer become employed in that occupation (i.e., wij= 0 for each
i ≠ j). With Chicago, IL as an example (see Fig. 4A), decreasing θ
corresponds to greater automation and decreasing job con-
nectivity in cities (see Fig. 4B). Not only are jobs lost because of
automation, but job networks become sparser and less resilient.
In Fig. 4C, we simulate eq. (2) for each using 2014 employment

data until the simulation reaches a steady-state, then we automate
each occupation whose probability of computerization exceeds θ=
0.4. This produces a sudden increase unemployment in each city.
However, as we continue the simulation of urban responses after
the automation shock, we observe a rich set of responses including
the possibility of decreased unemployment. For example, Burling-
ton, VT, and Bloomington, IN, experience similar changes in
unemployment immediately after the automation shock, but Bur-
lington is able to recover after the shock while Bloomington
experiences increased unemployment. Similarly, Charlottesville,
VA, experiences greater initial automation shock than Florence, AL,
but is able to recover in the long-term while Florence experiences
worsening unemployment. Interestingly, several cities experience
increased unemployment immediately after the automation shock,

but actually experience lower unemployment in the long-term
compared to their unemployment prior to the shock. The reason for
this variety of behaviors lies in how job connectivity is affected by
automation in different cities. Job connectivity in cities like Char-
lottesville or Burlington is high even after some jobs are automated,
while it drops significantly in places likes Florence or Bloomington.
As a result, the latter labor markets cannot accommodate the initial
automation shock.
In general, these simulations offer a new tool to policy makers

for distinguishing between potentially substitutive technological
impact and augmentation. First, consistent with previous studies
of automation and cities3, small cities tend to face greater impact
(i.e., greater initial disruption) from automation. The gray points
in Fig. 4D demonstrate the exposure to automation in each US
city using methods from3. However, simulating long-term
employment dynamics using eq. (2) after the initial shock sug-
gests higher-order dynamics. Cities can recover, or worsen, after
the initial impact. Although our simulation of automation shocks
is simplistic (e.g., rarely are whole occupations automated8,33,34),
this type of insight sheds light on the growing economic and labor
disparity between large US cities and smaller rural areas3,35 and
offers a potential pathway to forecast labor dynamics and resi-
lience given the uncertain nature of future technologies.

Discussion
As complex interdependent systems, urban labor markets are more
than the sum of individual occupations or sectors. Specifically, this
study maps the dependencies between occupations in urban labor
markets based on occupational skill requirements and demonstrates
how the topology of these connections between occupations relates
economic resilience to job network connectivity and relates workers’
wages to occupational embeddedness. Job connectivity and occupa-
tional embeddedness are topological features that rely entirely on the

Fig. 3 Workers earn higher wages when their occupation is embedded in their local labor market which increases job connectivity and the city’s wage
bill. A A schematic explaining occupation embeddedness (wc

j ) in a city’s job network projection. B US cities colored according to the embeddedness of
Financial Managers in 2015. C In cities where the occupation is more embedded, Financial Managers earn higher wages than their peers in other cities.
Point color corresponds to Financial Manager’s embeddedness in each city (i.e., corresponds to the city’s color in B)). D For 75% of workers nationwide,
workers of the same occupation earn higher wages in cities where the occupation has greater embeddedness. See Supplementary Note 8 for a controlled
regression analysis and embeddedness maps for other occupations. E Using 2010 as a baseline, cities that increased job connectivity (wc

eff) saw
corresponding increases in wage bill ($). There is a data point for each city and each year from 2011 to 2017. See Supplementary Note 9 for regression
analysis and a similar analysis of year-to-year dynamics.
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job network in each city, and insights based on these features would
not be calculable in the absence of the job network (e.g., using
employment for each industry or job title in isolation). Further, our
analysis of job connectivity and occupation embeddedness is careful
to control for potential confounders from traditional network-
independent variables that might limit the salience of our conclusions
(see Supplementary Notes 8 and 9 for details). These refinements to
traditional job matching theory provide insight into economic resi-
lience to labor disruptions, including technological change and the
Great Recession. In particular, our results suggest policy that pro-
motes the occupational embeddedness of workers may increase job
network connectivity, as well as the economic resilience and size of
their local labor market (e.g., as measured by total wage bill). Future
research could develop more sophisticated spatial econometric
models36 and identify specific policy instruments for promoting job
connectivity and occupational embeddedness, and quantify the most
impactful use of these policy options.

Methods
BLS. Number of jobs and wage estimates by sector and city were obtained from the
US BLS for the 2017 year37. Cities are defined as the core-based statistical areas
(CBSA) the New England cities and town areas (NECTA) included in the US
Census. By definition the CBSAS or NECTA are geographical areas that consist of
one of more counties (or equivalents) anchored by an urban center of at least
10,000 people plus adjacent counties that are socioeconomical tied to the urban
center. Some of the cities/areas span over different states, like the ones in New York
or Boston, for example. The BLS data contains information about the number of
workers and wage estimates of 772 occupations and 422 cities. Occupations are
described by the Standard Occupational Classification 6 digits38.

The O*NET database. The O*NET Database is a data product of the US BLS39.
The O*NET program is the “nation’s primary source of occupational information,”
and is continually updated through surveys of various workers from each

occupation in the Standard Occupation Classification (SOC) taxonomy. The
O*NET database identifies the distinguishing characteristics of each occupation.

Every occupation requires a different mix of knowledge, skills, and abilities, and
is performed using a variety of activities and tasks. In this study, we focus on the
abilities, interests, knowledge, skills, work activities, work contexts, education,
training, and experience O*NET variables to identify the importance of 232
different workplace skills for 775 different occupations. These O*NET variables
result from a composition of surveys each conducted with varying Likert scales;
thus, we normalize the responses from each survey so that each O*NET variable s
has some real-valued importance to occupation j denoted by O(j, s)∈ [0, 1] such
that O(j, s)= 1 indicates that s is essential to j and O(j, s)= 0 indicates that s is
irrelevant to j. Letting S denote the set of 232 O*NET variables, we also use Oj=
[…,O(j, s),… ]s∈S to represent the skill vector associated with occupation j.

Unemployment data. Unemployment rates were obtained from the US BLS Local
Area Unemployment Statistics40. Specifically we used the seasonally adjusted
metropolitan area estimates by month.

Deriving effective long-term employment. Equation (4) describes a system with
two fixed points that represent the potential long-term employment dynamics of a
given city’s labor market. The first occurs when Eeff= 0 which indicates a systemic
collapse where employment in that city has disappeared. However, the instability of
this fixed point suggests it is difficult for real-world labor systems to realize this
abysmal future. Rather, the second—and more preferable—fixed point describes
the long-term fraction of workers with employment (denoted Ê

c
eff ) given a city c’s

job connectivity wc
eff .

To derive this second fixed point associated with Êeff at Eeff and Ueff, we begin
with

0 ¼ _Eeff ¼ �λEeff þ αweff ðE�
eff ÞγðU�

eff Þ1�γ ð6Þ
which we rewrite as

U�
eff ¼ E�

eff
λ

αweff

� �1=ð1�γÞ
: ð7Þ

Recalling that the model conserves the total number of workers, we have

E�
eff ð0Þ þ U�

eff ð0Þ ¼ E�
eff ðtÞ þ U�

eff ðtÞ ð8Þ

Fig. 4 Automation decreases job connectivity in cities and yields diverse employment responses. A The job network projection of Chicago, IL in 2014
(wc

eff ¼ 307). Job connectivity (wc
eff) decreases as occupations are removed from the labor market according to each occupation’s automation risk4. B The

change in job connectivity across cities of different sizes with varying automation exposure. wauto
off denotes the city’s job connectivity after removing

occupations from automation. C Simulated city responses to an unemployment shock from automation. If occupation i has probability of automation
greater than θ= 0.4, then all workers of i immediately become unemployed and we set wc

ij ¼ 0 for each other occupation j. Each simulation begins at
steady-state using the city’s complete job network projection in 2014. Each color represents a different US city. D The simulated fraction of unemployed
workers in each US city compared to total employment. Gray points correspond to expected job impact from automation in each US city3 (solid line is a
linear fit). Colored points correspond to the steady-state solution of simulations while varying the rate of job match dissolution (λ).
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¼ 1þ λ

αweff

� �1=ð1�γÞ !
E�
eff ðtÞ ð9Þ

which can be rewritten as

E�
eff ¼

E�
eff ð0Þ þ U�

eff ð0Þ
1þ λ

αweff

� �1=ð1�γÞ ; ð10Þ

which implies the fraction of employed workers is given by

Êeff ¼ 1= 1þ λ

αweff

� �1=ð1�γÞ !
: ð11Þ

Data availability
Data supporting the findings of this study are available within the paper and its
supplementary information files. All employment and skills data used in this study are
publicly available from the US BLS. City-level estimates of automation impact are
available in the supplementary materials of3.

Code availability
Standard numerical integration methods were used to integrate the equations of model
(2). Standard linear regression methods are used to fit the data. The python codes used to
analyze data and run the simulations of model (2) are available from the authors upon
reasonable request.
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