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Abstract: The power coefficient parameter represents the aerodynamic wind turbine efficiency. Since the 1980s, several
equations have been used in the literature to study the power coefficient as a function of the tip speed ratio and the pitch angle.
In this study, these equations are reviewed and compared. A corrected blade element momentum algorithm is used to generate
three sets of data representing different ranges of wind turbines, going from 2 to 10 MW. With this information, two power
coefficient models are proposed and shared. One model is based on a polynomial fitting, whereas the other is based on neural
network techniques. Both were trained with the blade element momentum model output data and showed good behaviour for all
operating ranges. In the results, compared to all the algorithms found in the literature, the proposed models reduced the power
coefficient error by at least 55% compared to the best numerical approximation from the literature. An error reduction in the
power coefficient parameter may have a large impact on many wind energy conversion system studies, such as those treating
dynamic and transient behaviours.

1 Introduction
There are a number of different methods that can be used and
perspectives that can be taken when modelling a wind energy
conversion system (WECS). The effect of aggregated wind
turbines can be studied by developing wind farm models. Similarly,
single wind turbine models can be developed to study the influence
of a single machine. The impact of each of the different
components or subsystems within a wind turbine can also be
modelled.

Since wind energy is usually provided by wind farms, some
authors developed mathematical models taking into account all the
wind turbines in the farm [1–3]. For instance, Conroy and Watson
[1] used a mechanical, electrical, and electronic model of the wind

turbine to study the transient stability between the wind farm and
the power system. Using a similar approach, Di Fazio and Russo
[2] modelled a wind farm for reliability assessment purposes with
the grid. According to them, there are no simplifications for the
wind data or the wind turbine characteristics. Although Zou et al.
[3] mainly focused on wind farm modelling, they analysed a single
machine with three subsystems: wind speed, wind turbine, and
transmission and generator models. To speed up simulations, many
simplifications are typically applied when modelling a wind farm.

Conversely, single wind turbine models are frequently more
detailed than wind farm models. MOD-2 was, in the very early
stages, a wind turbine model with two blades for simulation
purposes. According to Anderson and Bose [4], this model had
problems, but none without resolution. In the same paper, the basic
subsystems a wind turbine model should cover were mentioned.
These subsystems, along with other common ones, are listed in
Table 1. Among the reviewed models, the model proposed by Lee
et al. [5] is the only data-driven model. This means that by
implementing different types of neural networks (NNs), active and
reactive power output was obtained from the following data inputs:
three-phase voltages and rotor speed. Data-driven methods may
avoid using deterministic equations to obtain the desired result,
while the other models were developed with mathematical
equations trying to replicate the physical behaviour of the wind
turbines.

Among the wind turbine subsystem models from Table 1, this
study is mainly focused on the blades model and, more specifically,
on the turbine's power coefficient Cp. A common method for
finding the Cp of a turbine under a variety of operating conditions
is to use the blade element momentum theory (BEM) [22]. To find
the Cp, a BEM algorithm will generally implement a variety of
correction factors to account for three-dimensional aerodynamic
effects that occur under normal operating conditions and that are
not included in classical BEM theory [22]. With the inclusion of
these correction factors, many early BEM algorithms suffered from
numerous regions of non-convergence where the algorithm would
fail to converge due to an initial flow condition. For this reason and
due to the extreme variety of correction factors that can be utilised,
for this study, the robust algorithm used by AeroDyn and proposed
in [23] was chosen. The use of such an algorithm allows for a
comprehensive study of the full range of each turbine's operating

Table 1 Wind turbine subsystem models covered by the
studies
Studies Wind

model
Blades
model

Drive-
train

model

Generator/
electric model

Converter
model

[6] ✓ ✓

[7] ✓ ✓

[8] ✓

[5] ✓

[9] ✓

[10] ✓ ✓

[11] ✓ ✓ ✓

[12] ✓ ✓ ✓

[13] ✓ ✓ ✓ ✓

[14] ✓ ✓ ✓

[15] ✓ ✓

[16] ✓ ✓ ✓ ✓

[3] ✓ ✓ ✓

[17] ✓

[18] ✓ ✓ ✓

[19] ✓ ✓ ✓

[20] ✓ ✓ ✓

[21] ✓



conditions without diverting attention to the development of a
novel BEM algorithm.

In the past, various numerical models have been proposed to
calculate the Cp of a wind turbine as a function of λ, β. In this
study, issues with the accuracy of those models in modern turbines
are discussed and the data gathered from the BEM algorithm
proposed in [23] is used to develop two new numerical
approximations. The proposed Cp models can be used in the static
analysis, such as power production, although its main application
may be related to dynamic studies such as testing control systems
(such as those related to pitch, power electronics etc.) or
integration studies (such as inertia simulation, frequency control
etc.).

The paper is structured as follows. In Section 2, a review of the
different numerical approaches used in the literature to calculate
the power coefficient is presented. Then, a study of previous BEM
works is provided and a new one with a special focus on
correlation parameters is proposed in Section 3. Section 4 shows
the development of two proposed Cp models and the data used for
them. A comparison between all of the described Cp described
models is provided in Section 5. Conclusions are explained and
discussed in Section 6.

2 Review of recent power coefficient models
In this section, a literature review of different numerical
approximations of Cp is introduced. First, the Cp concept is
presented. Then, different algorithms are explained, referenced,
and gathered into tables. All numerical approximations shown in
Tables 2 and 3 are compared with the proposed models in Section
5. 

The power coefficient, called the performance coefficient by
some authors [6, 24, 30, 32, 40], stands for the aerodynamic
turbine efficiency, which differs from one type of wind turbine to
another. The introduction of the Cp concept was made in the one-
dimensional momentum theory, in which a theoretical power

coefficient limit of around Cpmax = 0.59 for two-blade or three-
blade horizontal axis wind turbines was defined by using [43].
When considering a more detailed angular momentum balance, the
power coefficient is a function of the tip speed ratio (TSR) (λ) and
the pitch angle (β), Cp(λ, β) [44]. The TSR mathematical
expression is defined in (15), where wt is the turbine rotational
speed, R is the turbine radius and vw is the wind speed. In
exponential equations, the parameter λi functions on the
instantaneous parameters of (λ, β)

λ = wtR
vw

(15)

There are different techniques for modelling the Cp. These
algorithms can be differentiated into exponential, sinusoidal,
polynomial, or data-driven algorithms. In [25], the researchers
made a similar cluster of these algorithms along with a formula
generalisation for each type except for data-driven algorithms,
which were not included.

In the literature reviewed, the power coefficient model based on
exponential equations has more variations than any other. A
general equation of this type of algorithm was made by Reyes et al.
[25]. In Table 2, all the exponential equations found in the
literature are shown. To the best of the author's knowledge, the
oldest equation is shown in [33] and corresponds to (5). This
equation was developed by Wasynczuk et al. [34] with a least-
square fitting using the manufacturer's model MOD-2 wind
turbine, the characteristics of which can be found in the same
reference. Slootweg et al. [32] slightly modified the coefficients of
the Cp with multidimensional optimisation to exhibit better
behaviour of the model compared with their manufacturer data.
Also, different coefficient numbers were used with constant and
variable speeds. From (5) to (10), the pitch angle is considered in
degrees and the structure of the equations is the same, but with
different coefficients to fit each research paper's purpose.

Table 2 Exponential power coefficient equations
Studies Cp λi Equation
[24–28] Cp(λ, β) = 0.5176( 116λi − 0.4β − 5)e

−21
λi + 0.0068λ

1
λi
= 1

λ + 0.08β −
0.035
β3 + 1

(1)

[29] Cp(λ, β) = 0.5109( 116λi − 0.4β − 5)e
−21
λi + 0.0068λ

1
λi
= 1

λ + 0.08β −
0.0035
β3 + 1

(2)

[14, 25, 29–31] Cp(λ, β) = 0.73( 151λi − 0.58β − 0.002β2.14 − 13.2)e
−18.4
λi

1
λi
= 1

λ − 0.02β −
0.003
β3 + 1

(3)

[25] Cp(λ, β) = ( 110λi − 0.4β − 0.002β2.2 − 9.6)e
−18.4
λi

1
λi
= 1

λ + 0.02β −
0.03
β3 + 1

(4)

[25, 32–37] Cp(λ, β) = 0.5( 116λi − 0.4β − 5)e
−21
λi

1
λi
= 1

λ + 0.08β −
0.035
β3 + 1

(5)

[25] Cp(λ, β) = 0.5( 116λi − 0.4β − 5)e
−21
λi

1
λi
= 1

λ + 0.088 −
0.035
β3 + 1

(6)

[6, 25, 29, 38] Cp(λ, β) = 0.22( 116λi − 0.4β − 5)e
−12.5
λi

1
λi
= 1

λ + 0.08 −
0.035
β3 + 1

(7)

[39] Cp(λ, β) = 0.39( 116λi − 0.4β − 5)e
−16.5
λi

1
λi
= 1

λ + 0.089β −
0.035
β3 + 1

(8)

[25] Cp(λ, β) = 0.5( 72.5λi − 0.4β − 5)e
−13.125

λi
1
λi
= 1

λ + 0.08β −
0.035
β3 + 1

(9)

[25] Cp(λ, β) = 0.44( 124.99λi
− 0.4β − 6.94)e

−17.05
λi

1
λi
= 1

λ + 0.08β −
0.001
β3 + 1

(10)

Table 3 Sinusoidal power coefficient equations
Studies Cp Equation
[25, 40–42]

Cp(λ, β) = (0.44 − 0.0167β)sin
π
2 (λ − 3)

7.5 − 0.15β − (λ − 3)(0.00184β)
(11)

[25, 29] Cp(λ, β) = (0.5 + 0.167(β − 2))sin π(λ + 0.1)
18.5 − 0.3(β − 2) − 0.00184(λ − 3)(β − 2) (12)

[25] Cp(λ, β) = (0.5 − 0.00167(β − 2))sin π(λ + 0.1)
18.5 − 0.3(β − 2) + 0.00184(λ − 3)(β − 2) (13)

[25] Cp(λ, β) = (0.5 − 0.0167(β − 2))sin π(λ + 0.1)
10 − 0.3β − 0.00184(λ − 3)(β − 2) (14)



Equations (3) and (4) add the same quadratic coefficient, while
most of the other constants are changed. Another difference among
them is with the term λi. In (1) and (2), a new constant is added
multiplying the TSR variable into account.

Few algorithms have been created with regard to sinusoidal
equations. In Table 3, the equations used in different studies are
presented and they have noticeable similarities. The pitch angle
must be considered in degrees. The 14 equations found in the
literature are tested in Section 5 and compared with our proposed
models.

In [25], polynomial equations are reviewed. None of them are
used in this study since the power coefficient is shown as a
function of TSR only. Nevertheless, there is a polynomial
approximation of the Cp taking both variables into account shown
in [45]. This algorithm is built from the approximation of two
concrete wind turbines of 1.5 and 3.6 MW. An approximation test
dataset has been generated with this model to compare all the
algorithms from Tables 2 and 3 and the models created with the
manufacturer's wind turbine data. Those results are shown in
Section 5.

Regarding data-driven algorithms, in [46], two ways to

offshore wind turbine from NREL with a nominal power of 5 MW.
The simulation model was designed and tested with the
experimental data from that wind turbine, but no generalisation and
test with other machines have been developed. Nevertheless, the
algorithm seems to have a good performance within the
characteristics of the wind turbine.

3 Blade element momentum model
The BEM theory unifies blade element theory and momentum
theory, synthesised in Figs. 1 and 2. The implemented BEM
algorithm can be found in [23].

The lift and drag coefficients of the aerodynamic profiles are
calculated with 2D and 3D simulations at different angles of attack
and at a fixed Reynolds number, due to the negligible influence on
the polar data at Re > 106 (typical order in wind turbines operation)
[48]. Two corrections are applied to the BEM: the momentum
theory breakdown and the hub-tip loss. To assure the validity of the
code for high axial induction factors and overcome the momentum
theory breakdown, the Glauert correction with Buhl's modification
is applied [49]. The second correction corresponds to the Prandtl's
hub/tip loss correction, used to take into account the difference
between a rotor of a finite and infinite number of blades together
with the effect of the hub-vortexes generation [22].

The axial (a) and the tangential (a′) induction factors represent
the relationship between the induction (Ux, Uy) and free upstream
velocities (Vx, Vy) [22], represented in Fig. 1 and calculated as

Ux = Vx(1 − a) (16)

Uy = Vy(1 + a′) (17)

The axial and tangential parameters needed in the algorithm (K
and K′) are calculated as

K = σ′cx
4Fsin2ϕ

(18)

K′ = σ′cy
4Fsinϕcosϕ (19)

The induction factors (a, a′) are obtained depending on the
momentum region. If ϕ > 0 and K < 2/3, then the axial induction
factor is

a = K
1 + K (20)

Alternatively, if ϕ > 0 and K > 2/3, then

a = γ1 − γ2
γ3

(21)

where

γ1 = 2FK − (10/9 − F)
γ2 = 2FK − F(4/3 − F)
γ3 = 2FK − (25/9 − 2F)

The tangential induction factor calculation is common for both
regions

a′ = K′
1 − K′ (22)

The parameter of interest is the power coefficient, which is
defined as the power extracted from the turbine with respect to the
total possible extracted power from the air

Cp =
P

1
2 ρAVx

3 (23)

Fig. 1  BEM velocity triangle

Fig. 2  BEM algorithm

calculate the Cp are proposed: one is based on statistical data and 
the other is based on real-time data. According to the authors, the 
model generated with statistical data is worth using to define the 
performance of the wind turbine, whereas the model based on real-
time data may have better performance with wind turbine dynamic 
control. Machine learning techniques are not widely used in the
literature for Cp calculations. In [47], an adaptive neuro-fuzzy 
inference system is proposed as a model to obtain the Cp out of the 
pitch and TSR. This model is developed with information from an

I



The BEM algorithm is summarised in Fig. 2. The entire block
diagram is looped through for each cross-section on the blade at
every TSR and pitch value in the operating regime.

4 Data used and proposed models
This section is divided into two parts. First, the data used to
develop the power coefficient algorithms and compare the models
in Section 5 are explained. Then, two different models are
proposed. One is based on polynomial algorithms, and the other
based on data-driven techniques such as NNs.

4.1 Data

There are two purposes when using the data in this study. First, the
aerodynamic details of different wind turbines are used to generate,
through the BEM, a Cp surface as a function of TSR and pitch. The
second purpose is to have three different wind turbine surfaces to
test and compare the models proposed with the numerical
approximations found in the literature.

Regarding the input data for the BEM, three wind turbines are
used in the scope of the analysis: the Tjaereborg 2 MW, the NREL
5 MW, and the DTU 10 MW. The NREL 5 MW [50] and the DTU
10 MW [51, 52] are modern turbines developed in the 21st century
by research institutions, which provide access to the geometric and

performance data. The Tjaereborg machine represents the wind
turbine technology of the early 1980s [53, 54]. Each of the three
wind turbines analysed in this study has unique blade structures. To
model these structures, each blade was discretised into numerous
parts, with each section being represented by a specific airfoil. To
generate the Cp data for each turbine, 3D corrected aerodynamic
data was used for every airfoil that made up each blade.

The BEM is run for the three turbines using a wide range of
pitch angles (β) and TSR (λ) values to generate a surface that
provides the power coefficient. The range is selected to coincide
with the typical operating conditions of a wind turbine. One surface
for each type of wind turbine is generated and used to fit the two
different power coefficient models in Section 4.2. These models
are designed to cover a wind turbine range among the input data
used as the BEM input.

In Section 5, a test dataset made with three different types of
wind turbines is used. Two of them have been shared by different
companies to develop this study, but due to confidentiality
agreements, only the power capacity and the wind turbine
diameters are shown. The smallest wind turbine has a nominal
power of 0.85 MW and a diameter of 52 m. The acronym WT1 is
used to refer to this wind turbine. The second wind turbine has a
nominal power of 1.2 MW and a diameter of 90 m. It is labelled
WT2.

To cover a wider range of examples in the test, a third set of
data was produced out of the numerical Cp model of [45]. This
polynomial algorithm is made out of two wind turbines, one with a
nominal power of 1.5 MW and the other of 3.6 MW. No diameters
were specified for these turbines. By giving the polynomial a
typical operating range of TSR and pitch values, the power
coefficient was obtained. This third data test set is named WT3.

4.2 Power coefficient proposed models

Two different power coefficient models are proposed. One is based
on a polynomial fitting, and the other is based on NN techniques.
Both models were generated using MATLAB coding. Whereas the
polynomial algorithm and equation are given in this section, the
NN model is shared through a GitHub link with the entire
MATLAB code.

4.2.1 Polynomial model: This algorithm has been developed by
gathering the three BEM output sets of data into a matrix with
three columns that correspond to the TSR, pitch, and Cp values.
With this set of data, a fitting function was implemented. Different
polynomial orders were studied. For instance, the fourth-order
algorithm had much better results than the third-order algorithm. In
contrast, the fifth-order algorithm had a slightly better result than
the fourth-order algorithm. The improvement of the sixth-order
algorithm was even less. To have a compromise between accuracy
and complexity, fifth-order was chosen as the polynomial order.
The structure of the algorithm is shown in (24)

Cp(λ, β) = ∑
i = 0

5
∑
j = 0

5
Ki, jλiβ j (24)

The fifth-order polynomial coefficients (Ki, j) were found by
using linear least square regression. With this method, the summed
squared error of residuals is minimised and hence the coefficients
in the polynomial fitted to be as similar to the input data surface
from the BEM algorithm as possible. The obtained values for each
polynomial constant are displayed in Table 4. All the parameters
not shown in the table have no value (equal to zero).

Fig. 3 represents a 3D surface of the polynomial algorithm. In
Fig. 4, the power coefficient is also represented but with nine
fixed-pitch values and compared only with the TSR parameter. 

4.2.2 NN model: NNs are based on biological neurons.
Mathematically, these neurons are interconnected units where
numerical weights are associated with each interconnection. Each
neuron has an input and an output connection. The numerical
weights change during a training process, which is an iterative

Table 4 Cp polynomial coefficients
i j Ki, j (95% confidence bounds)
0 0 0.244 (0.239, 0.2489)
1 0 −0.3744 (0.38, −0.3689)
0 1 −0.03344 (−0.03416, − 0.03272)
2 0 0.1827 (0.1805, 0.1849)
1 1 0.03828 (0.03769, 0.03887)
0 2 0.0009145 (0.0007963, 0.001033)
3 0 −0.0295 (−0.02989, − 0.02911)
2 1 −0.01085 (−0.011, − 0.01069)
1 2 −0.0006625 (−0.0007255, − 0.0005994)
0 3 −1.539 × 10−5 (−2.669 × 10−5, −4.093 × 10−6)
4 0 0.002036 (0.002005, 0.002068)
3 1 0.001118 (0.001101, 0.001135)
2 2 8.23 × 10−5 (7.266 × 10−5, 9.194 × 10−5)
1 3 −1.175 × 10−5 (−1.507 × 10−5, −8.425 × 10−6)
0 4 1.982 × 10−6 (1.487 × 10−6, 2.476 × 10−6)
5 0 −5.193 × 10−5 (−5.291 × 10−5, −5.096 × 10−5)
4 1 −3.721 × 10−5 (−3.781 × 10−5, −3.66 × 10−5)
3 2 −8.369 × 10−6 (−8.808 × 10−6, −7.931 × 10−6)
2 3 1.139 × 10−6 (9.021 × 10−7, 1.376 × 10−6)
1 4 4.356 × 10−7 (3.788 × 10−7, 4.924 × 10−7)
0 5 −6.631 × 10−8 (−7.449 × 10−8, −5.812 × 10−8)

Fig. 3  Polynomial surface of the Cp(λ, β)



The NN surface of the power coefficient equation is represented
in Fig. 6. Fig. 7 shows the variation of Cp compared to the TSR,
with nine fixed-pitch values. Despite being trained with the same
dataset, some differences can be found between the polynomial and
NN models. In Section 5, both models will be compared using all
of the numerical equations from Section 2.

5 Power coefficient models comparison
In this section, a comparison of the power coefficient
approximations from Tables 2 and 3 and both proposed models of
Section 4.2 is developed. Three wind turbine test sets with different
design structures were used to compare the models. The details
about these datasets were defined in Section 4.1.

The normalised root mean square error (nRMSE) was the
chosen parameter to make comparisons among the models. The
nRMSE is represented in (25), where n is the number of parameters
in the vector, y is the real data vector and y is the vector estimated
by the model. The nRMSE is a value per unit, but the table displays
it as a percentage for better understanding. All the results of the
model comparisons are shown in Table 5. The proposed models
have a goodness of fit, measured by the nRMSE, of 4.8% for the
polynomial model and 4.2% for the NN model

Fig. 4  Cp values as function of TSR and nine pitch constants of the polynomial model

Fig. 5  NN structure

mechanism to fit the model to a given dataset [55]. In our NN 
model, the same training data approach was used with the 
polynomial model. The matrix with three columns based on BEM 
outputs is used to train the NN. The data from the matrix is divided 
randomly into three datasets. Typical splitting percentages of 
training, validation, and test datasets are 70%, 15%, and15%, 
respectively. In our model, the entire dataset is used to train the NN 
since the aim is to fit the BEM output as closely as possible.

NN topology may differ from one project to another. Neurons 
are gathered into layers, and each NN model may have more than 
one layer. Layers that are different from the inputs and outputs are 
called hidden layers. Our NN model has the structure shown in Fig. 
5. The proposed model is a non-linear function with two inputs in 
the input layer. Those inputs are first normalised and then 
multiplied by the input and output weights of the hidden layer with 
15 neurons. Those results go to the output layer, which condenses 
the information into a single value. Finally, this value is
denormalised to obtain the final Cp result. When training the NN, 
to update each of the weight and bias values, an optimisation 
according to the Levenberg–Marquardt algorithm was used. The 
MATLAB training function used was Bayesian regularisation 
backpropagation [56], and the trained algorithm can be seen at the 
following link from GitHub (Link).



nRMSE =
∑i = 1

n (y(i) − y(i))2

n
ymax − ymin

(25)

Despite the Cp numerical approximations having similar
structures, each variant shows very different results. Worth noting
is that (12) has an excessive error rate and should be reviewed. The
other differences may be caused by the approximations made in

each study to fit the wind turbine and study purpose. Actually, in
studies [32], with the same equation structure, different coefficients
were used for different situations.

The proposed models had very similar results, but with their
own benefits. For instance, the polynomial model is easier to
understand and has a lower computational cost than the NN model.
It has a 54.8% lower error rate than the next best numerical
approximation, which is (10). The NN model obtained only a 9.8%
lower error rate than the polynomial model. Nevertheless,
regarding the best numerical approximation, it obtained an almost
60% lower error rate. The main benefit of a trained NN is that it
can be retrained to fit new types of wind turbines instead of starting
from scratch. This can allow researchers to make more robust
models. Also, if transfer learning approaches are followed, the NN
model can be reused for new problems, so less data is utilised for
training.

Fig. 8 shows the power coefficient compared with the TSR with
four different pitch values. In Fig. 8a, the pitch value is set to
β = 0. Fig. 8b, it is β = 5. In Fig. 8c, it is β = 10, and Fig. 8d, it is
β = 15. These pitch values have been selected by avoiding the
limitations between the numerical approximations and the wind
turbine data test sets. For instance, in exponential models, when the
pitch value is set to β = − 1, λi = 0 & Cp = ∞. Then, the dataset
resolutions of WT1 and WT2 were not the same, and with values
of β = − 0.5, where the usually achieved optimal Cp value was
unobtainable. The closest value that fitted to all models and test
sets was β = 0. Therefore, steps of five were taken for the β value
to represent a wide range of wind turbine situations.

In Fig. 8, the proposed models are compared to the best
exponential numerical approximation found in the literature, which
corresponds to (10). Continuous lines correspond with the
proposed models, whereas the numerical approximation is
displayed with different line specifications as per the figure legend.
Despite the behaviour with low pitch values being similar, when

Fig. 6  NN surface of the Cp(λ, β)

Fig. 7  Cp values as a function of TSR and nine-pitch constants of the NN model

Table 5 Comparison of nRMSE percentage value among
the power coefficient numerical models
Equations
\test set

WT1
nRMSE, %

WT2
nRMSE, %

WT3
nRMSE, %

Mean
nRMSE, %

polynomial
model

5.8 6.8 5.6 6.1

NN model 5.8 5.3 5.5 5.5
(1) 16.3 17.1 17.6 17
(2) 16.3 17.1 17.7 17
(3) 41.8 47 41.8 43.5
(4) 55.7 65 58.6 59.8
(5) 18.6 19.9 20.4 19.6
(6) 21.2 22.3 22.6 22
(7) 17.4 18.6 17 17.7
(8) 14.5 15.6 15.1 15.1
(9) 36.9 39.7 35.9 37.5
(10) 12.9 14.2 13.5 13.5
(11) 21.2 22 22.1 21.8
(12) 287 275 246 269.3
(13) 51.3 49.3 44.3 48.3
(14) 64.6 67 59.6 63.7



The power coefficient model has been widely used in the body of
research in the literature with a similar equation structure since the
1980s. The errors caused on many occasions by this type of
approximation may be acceptable for the authors' purposes but as
has been shown, it can be significant. This can have a great impact
on dynamic and transient studies, so some review of the error
implications of this type of equation may be worth examining in
future research.

In this study, two power coefficient models have been proposed
and tested. Both obtained between 55 and 60% lower error rates
than the best numerical approximations found in the literature
within this test set. The models were developed with information
obtained through a BEM application where three different sets of
data were generated to cover a wide range of wind turbine
possibilities. Nevertheless, it would be interesting in the future to
study more airfoils over a wider variety of wind turbines to further
enhance the NN's and polynomial fitting performance. The
proposed models obtained goodness-of-fit regarding the BEM
output data of 4.8% for the polynomial model and 4.2% for the NN
model. The aim of developing the models and sharing them was to
obtain good performance when calculating Cp in different types of
wind turbines so the models become as universal as possible. These
kinds of models can be used for static analysis such as power
production. Reducing the error rate in the power coefficient
parameter may have a great impact on many WECS studies, such
as those treating dynamic and transient behaviours.

The polynomial model has the advantage of having an easy
implementation, with good performance and reduced
computational cost. The NN model has better performance, with
the possibility to retrain it or use it with a transfer learning
approach so researchers can make more robust power coefficient
algorithms with less input data.

Fig. 8  Cp values as a function of TSR for the proposed models and the best numerical approximation (10), for some pitch angles:
(a) β = 0, (b) β = 5, (c) β = 10;, (d) β = 15

this variable increases, the difference between our models and the 
numerical approximation increases.

In Fig. 9, two different types of numerical approximations are 
shown. For instance, Figs. 9a and b display the behaviour between 
the exponential equations against the proposed models and the data 
test sets WT1, WT2 and WT3. Fig. 9c and d show the behaviour of 
the sinusoidal equations. Both Figs. 9a and c have a pitch value of
β = 0, whereas Fig. 9b and d have a pitch value of β = 10. In Fig. 
9d, (12) is not visible because it surpassed the power coefficient 
limit by more than double, and the graph resolution did not 
properly show the rest of the models. As per the legend, the 
straight lines correspond to the data test sets, the dashed lines 
correspond to the proposed models and the dot-dash lines belong to 
the numerical approximations. Both cases show that the numerical
models are more fitted for low pitch values where Cp is higher. 
Nevertheless, in Fig. 9a, a huge dispersion can be seen among the 
numerical approximations. This dispersion gets even greater when 
the pitch value increases. Worth noting is that the proposed models, 
despite being trained with data completely different from the test 
set, showed quite good behaviour in all situations compared to the 
numerical approximations. The same thing happens in the 
sinusoidal numerical approximations, where there is a huge
dispersion with β = 0, but it is even higher with β = 10. In this 
case, the numerical approximations obtain at least a 72% lower
error rate than the best sinusoidal model. It is worth noting that by
using (12) with high pitch values, such as β = 10, the power 
coefficient obtained raises above the Cp physical limit established 
in the theory of Betz.

6 Conclusions
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