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A B S T R A C T

The estimation of electrical power generation in photovoltaic (PV) grid-connected systems based on meteor-
ological data is a nontrivial, highly useful task, for instance to achieve accurate energy assessment. Widely used
PV generation simulators are PV Systems (PVsyst), System Advisor Model (SAM) and PVLib. These simulators are
characterized by presenting numerous features and providing complete results, however the PV estimation
model SoL is an example of a new approach to PV generation estimation. SoL is characterized by its simplicity
and computational efficiency. The objective of this paper is validating the recently published SoL model using
real data from two PV locations for several years and facilities and comparing the results with those of three
other PV simulators, namely PVsyst (in Spain), SAM (in Denver) and PVLib (both). It has been found that SoL
estimates power production accurately for both locations and its estimations are more precise than those given
by PVsyst, SAM and PVLib. It proves to be more computationally efficient than PVsyst, it can work with higher
resolutions than SAM and PVsyst and requires fewer inputs than PVLib, SAM or PVsyst. Finally, a self-shading
model is proposed as an enhancement for the SoL model. The number of inputs required is minimal, and it is an
approximate yet efficient model. The estimation when using the self-shading enhancement is even more accurate
than the previous estimation for SoL in locations where self-shading is evident. SoL proves to be an appropriate
model for power estimation, and its results are enhanced when using the self-shading model proposed in this
paper.

1. Introduction

The estimation of electrical power generation in photovoltaic (PV)
grid-connected systems based on meteorological data is a nontrivial,
highly useful task that can be applied, for example, for accurate energy
assessment. A PV power simulator must encompass the synthesis and
processing of meteorological and geographical data, as well as char-
acteristics of the PV modules and inverter, to provide accurate power
estimation. This power estimation is performed through the conversion
of irradiance into the tilted plane (Perez et al., 1992; Hay and Davies,
1980; Gueymard, 2009), and from it into output power from the PV
array (Jordan and Kurtz, 2013) and inverter (King et al., 2007; Chen
et al., 2013).

Characteristics that enhance the value of a PV generation simulator
are as follows: user friendliness, computational efficiency, accuracy of
results, accessibility, and so on. Currently, there are numerous simu-
lation tools for estimating PV power production (Smith and Reiter,
1984 provides a detailed overview of photovoltaic system performance
models). Rodden et al. (2011) compares the performance of four

different PV modelling tools. Some of the most relevant state-of-the-art
simulation tools that can be used for PV estimation are as follows: The
System Advisor Model (SAM), PV systems (PVSyst), and PVLib
(Gurupira and Rix, 2017 and Stein et al., 2016).

These simulation tools are characterized by presenting numerous
features and providing complete results. To provide such complete
outputs, several inputs and extensive know-how about the program are
needed. As a different approach to PV simulation, less complicated
models have been developed (Zhou et al., 2007; Villalva et al., 2009 or
Al-Amoudi and Zhang, 2000 among others). These models are char-
acterized by simplicity, computational efficiency, and a reduced
number of inputs.

The objective of this paper is to validate one of the simplest and
more cost-effective models for PV estimation, namely the SoL model,
(Santos-Martin and Lemon, 2015). The validation will be conducted by
analyzing the error in power estimation using SoL and then comparing
this error to the error rates of other state-of-the-art PV simulators.
Partial shading in the modules has proven to have a significant impact
on power production (Deline, 2009). The SoL model does not account
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for partial shading between modules. Therefore, in addition to the
model validation, a self-shading (SS) submodel is proposed as a new
feature for SoL model for improvement of the results.

2. Description of the models used for validation

The SoL model is presented in Section 2.1. The two softwares used
to compare the results of the SoL model, PVsyst and PVLib respectively,
are introduced in Sections 2.2 and 2.3. Their structure, inputs, and main
differences are explained. SAM, another PV software used for efficiency
comparison in this paper, is also briefly explained in Section 2.4.

2.1. SoL model

The SoL model, explained in Santos-Martin and Lemon (2015), is a
PV generation model for grid integration analysis in distribution net-
works. It is a simple model that does not need graphic design or specific
requirements of the PV farm, and it focuses on simulating power gen-
eration given a certain number of inputs. The main goal of the model is
fully describing the conversion of irradiance into electric power.

The system works using nine submodels with equations from state-
of-the-art models (sometimes updated or reformulated to fit the needs
of the global model). The structure and data flow of these nine sub-
models are represented in Fig. 1. These equations are generally alge-
braic relations with extremely low computational cost. This makes SoL
a very convenient model for managing distribution networks, because
of its functional nature (it can be used numerous times for automatic/
stochastic calculations), however it is also suited for individual PV plant

Fig. 1. Flowchart of the SoL model showing submodels and key variables. Adapted from .Santos-Martin and Lemon (2015).

Table 1
Required inputs for the SoL Model.

Input Format Units/ Range

Time Structure with fields:
• Year Positive integer
• Month Positive integer

(1–12)
• Day Positive integer

(1–31)
• Hour Positive integer

(0–24)
• Minute Positive integer

(0–60)
• Second Positive integer

(0–60)
• UTC offset Integer
• Day of the year Positive integer
• Daylight savings 1 daylight savings, 0

elsewhere

Each field is a vector of equal
length, except the UTC offset

Location Structure with fields:
• Latitude degrees
• Longitude degrees
• Elevation meters

Rating of the
inverter

Numerical value Watts
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analysis. Because of this functional nature, the SoL model is easily
implemented as a Matlab function and can be easily operated by ex-
perienced or non-experienced users. For a list of well-defined inputs,
some required (Table 1) and some optional (Table 2), there is a unique
output, namely, the estimated power generation of the solar panels.

One of the key aspects of the SoL model is the reduced amount of
inputs required. No specific information about the PV modules is
needed due to the great effort of statistical summaries included in the
several proposed submodels. Other parameters, are all considered with
default values carefully chosen according to literature or regression
analysis, Santos-Martin and Lemon (2015). Additionally, those default
values can be easily replaced by real information regarding the PV plant
(as optional inputs in Table 2), if it is available, thus enhancing the
accuracy of results.

The resolution of the output data depends on that of the input data.
The SoL model is designed to operate with an ideal resolution of
10 min. There is no internal database associated with the model;
therefore, no meteorological inputs (temperature, horizontal irra-
diance) can be selected within the model given a certain location. The
SoL model is designed so that the user is able to include their own local
meteorological inputs. Local values for horizontal irradiance are
strongly suggested, as the default clear sky model is not a common
scenario.

The SoL model is, for now, limited to PV configurations with mono
and polycrystalline modules (not suited for bifacial modules, DC-DC
optimizers, HJT or CdTe). It is also not suited for PV systems using
trackers. This is a significant limitation (for the time present) for the
SoL model, since the current market is advancing towards trackers and
bifacial PV modules according to the 2018–2019 International
Technology Roadmap for Photovoltaic ITRPV (2019).

2.2. PVsyst

PVsyst is a commercial software program that focuses on modeling,
sizing, designing, simulating, and analyzing PV systems. The inputs that
the user is required to insert are numerous. The procedure for obtaining

the desirable results is complicated, and the steps must be followed with
precision. In contrast, the software offers extensive reports and a variety
of outputs. Because of its complexity, it can be highly detailed and
tailored to the needs of each project. It is developed to meet the re-
quirements of experienced users (engineers, architects) due to the re-
quisite definition of the system (specific inverter, PV modules type and
layout, etc.). All the above make it complete in terms of addressing all
the needs of professionals. Its maximum data resolution is 1 h.

The steps needed to create and evaluate the results of a grid con-
nected project in PVsyst are summarized in Fig. 2. The different inputs
and outputs, as well the various options and settings, are schematically
represented. PVsyst can provide default values for some inputs.

Information regarding PVsyst software and the physical models it is
built on can be found from PVsyst Team (2019).

2.3. PVLib

PVLib is a set of well documented functions for simulating the
performance of PV energy systems (see Sandia National Laboratories,
2019). A series of performance functions are developed and docu-
mented so that the user can benefit from them. PVLib is developed both
in Phython and Matlab.

PVLib, unlike PVsyst or SAM, is not a software as such or a closed
model like SoL. It is an open source toolbox. This means its functions
are completely free, available and benefit from the input of various PV
professionals. This makes it a very complete and adjustable tool con-
taining functions for: time and location data treatment, irradiance and
atmospheric functions, irradiance analysis and translation functions, PV
system functions (including some parameter estimation functions). It
also has some numerical utilities and very powerful databases.

Due to the adjustability of PVLib there are numerous ways to per-
form a PV grid connected power estimation analysis. The minimum
number of inputs required for all the modules to work is shown in
Fig. 3a. Module and inverter parameters can be found in the Sandia
database, nevertheless, if the module cannot be found every parameter
should be introduced manually or estimated. PVLib provides default

Table 2
Optional inputs for the SoL Model and its default values.

Input Format Units Default value

Horizontal irradiance Vector with values for each instant of
time

Wm 2 Clear sky irradiance values calculated by the Ineichen model

Ambient temperature Vector with values for each instant of
time

°C Constant 20 °C

Oversizing ratio Numerical value – 1.05
Module age Numerical value years 0
Power factor Numerical value – 1
Clearness index Vector with values for each instant of

time
- Global horizontal irradiance extraterrestrial irradiance ratio, with value 0 when the sun

elevation is very low.
Ground albedo Numerical value – 0.2
Azimuth offset Numerical value – 0
Linke turbidity pollution factor Numerical value – 0
Tilt angle Numerical value degree Function of latitude
Effective irradiance factors Structure with fields:

• Soiling – 0.98
• Shading – 1

Derating factors Structure with fields:
• Mismatch – 0.98
• Wiring – 0.98
• Connections – 0.995
• Light induced degradation – Function of module age, initial light induced degradation (0.985) and yearly light induced

degradation (0.005)
• Nameplate rating – 0.99
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values for other intermediate variables it uses (these are not specified
for clarity purposes). The functions used with PVLib during the power
estimation analysis in this paper are presented in Fig. 3b. This set of
functions and inputs has been decided by combining the available in-
formation, minimizing the required number of inputs and adapting the
available functions to the analysis to be performed.

2.4. SAM

SAM is a free performance and financial model for the renewable
energy industry developed by the National Renewable Energy
Laboratory (NREL). It is a powerful and complete tool, involving several
models and databases. PV systems can be found among its performance
models. It can provide power estimation based on meteorological and
the PV system data for a maximum data resolution of 1 h. Information
regarding the software can be found from National Renewable Energy
Laboratory (2019).

3. SoL model validation

The validation of the SoL model is performed by comparing the
output inverter power estimation from the model to that power mea-
sured from the inverter in real PV facilities. Two geographically diverse
locations are selected for the study: A parcel in a PV farm in Tarragona,
Spain is described in Section 3.1 and three NREL facilities in Denver,
USA, are employed in Section 3.2.

The methodology of the model validation is described here. The
power output, both measured and from the model, consists of data
vectors with a given time resolution. The accuracy of the model results
is measured according to several error indicators. Power error is only
considered during power production hours, because night values give a
0% error. All the power errors are normalized by the maximum dif-
ference in power readings for the considered set of data. Since the
minimum power reading will always be 0, it is equivalent to say that
the power errors are normalized by the maximum power recorded. The
error indicators are described below:

1. Annual energy production signed error: The annual energy pro-
duction is computed based on the sum of power production over the
given period of time. The annual percentage energy production
error, model, is computed according to Eq. (1), where Emodel and Ereal
are the total annual energy generation values for the model and the
real plant, respectively:

= E E
E

.model
model real

real (1)

2. Power error indicators: Root mean square error (RMSE), mean
absolute deviation (MAD) and bias of each set of power data are
considered. All these indicators are normalized, making the com-
parison between PV plants easier. The tracking signal (TS), which is
the ratio between the bias and MAD value, is also considered to

Fig. 2. PVsyst schematic use scheme.
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ensure that the bias in estimation is not excessive.
3. Power error percentiles: The 0th, 1th, 5th, 25th, 50th, 75th, 90th,

95th, 99th, and 100th percentiles of the normalized absolute power
errors are calculated.

4. Error heatplots: To understand the distribution of errors, in

Fig. 3. Inputs and functions flowchart for PVLib PV grid connected system estimation.

Fig. 4. Blueprint for the 21 parcel in Els Valentins PV farm.

Table 3
Energy percentage error for SoL model and PVLib for years 2015, 2016 and
2017.

Year

2015 2016 2017

SoL model 3.32% 3.74% 3.49%
PVLib 7.23% 8.26% 8.42%
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addition to the magnitude and sign, hourly and seasonal error
heatplots were considered. For each month, the MAD and bias
normalized values for a certain power-producing hour are computed
and displayed in a color map.

To complete the SoL model validation, the mentioned error in-
dicators are compared with those of other models. Data which is not
physically coherent, such as abnormal power production due to inverter
shutdowns, incorrect reading of the sensor, or shutdowns due to snow,
are excluded from the study.

Table 4
Normalized power measurement error indicators for SoL and PVLib for years 2015, 2016, 2017. 10-min resolution data.

RMSE MAD BIAS TS

SoL model PVLib SoL model PVLib SoL model PVLib SoL model PVLib

2015 3.59 4.52 2.43 3.36 1.39 3.03 0.57 0.9
2016 3.51 4.57 2.38 3.55 1.48 3.28 0.62 0.92
2017 3.94 5.11 2.56 3.86 1.51 3.64 0.59 0.94

Fig. 5. Heatmaps of hourly normalized MAD and BIAS errors for Els Valentins.10 min resolution data.

Table 5
Energy percentage error for SoL model and PVsyst for years 2015, 2016 and
2017.

Year

2015 2016 2017

SoL model 3.25% 3.69% 3.54%
PVsyst 3.77% 3.91% 3.83%

Table 6
Normalized power measurement error indicators for SoL and PVsyst for years 2015, 2016, 2017. 1 h resolution data.

RMSE MAD BIAS TS

SoL model PVsyst SoL model PVsyst SoL model PVsyst SoL model PVsyst

2015 2.98 4.94 2.13 3.45 1.32 1.53 0.62 0.44
2016 3.02 3.31 2.18 2.31 1.49 1.57 0.68 0.68
2017 4.32 4.55 2.53 2.68 1.58 1.61 0.63 0.64
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3.1. First location: Els Valentins, Spain

The SoL model has been used to estimate the power production of
the 21st parcel of the Els Valentins PV farm located in Tarragona, Spain.
The years 2015, 2016, and 2017 have been considered. To validate the
model, its estimated power is compared with that read by the inverter
at the plant (real power). The results are compared to the power esti-
mated by PVLib (10-min data resolution) and PVsyst (1-h data resolu-
tion) in Sections 3.1.1 and 3.1.2 respectively. This is done by using the
same inputs as those chosen for the SoL model (plus any other addi-
tional ones required by PVLib or PVsyst to function).

The PV farm is located in Partida de Els Anolls–Ulldecona

Fig. 6. Heatmaps of hourly normalized MAD and BIAS errors for Els Valentins. 1 h resolution data.

Fig. 7. Blueprint for the NREL facilities.

Table 7
Input data for SoL model for the three plants in Denver, USA.

Model of
employment

Facility

Visitor
Parking

RSF2 STFS

Tilt angle SoL, PVLib 8° 10° 10°
Azimuth angle (from

North)
SoL, PVLib 165° 165° 164°

Location Latitude SoL, PVLib 39.74° 39.74° 39.74°
Longitude −105.18° −105.18° −105.17°
Elevation 1829 m 1829 m 1829 m

Inverter rating (kW) SoL 500 500 75
Oversizing ratio SoL 1.05 0.82 1.25

Module age SoL 0 0 1 (2011)
2 (2012)

Module PVLib Sun Power
SPR-315-
E-WHT

Sun Power
SPR-315-
E-WHT

Evergreen
Solar ES-
190-RL

Inverter PVLib SM
America’s
SC250U
480 V (2
inverters)

SM
America’s
SC250U
480 V (2
inverters)

Sacton
Technology
Corporation

PVS-75
480 V

Modules in series PVLib 8 8 15
Strings of modules PVLib 208 162 33
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(Tarragona, Spain). Its installed total capacity is 2.8 MW, which is
distributed in 100-kW parcels. The arrangement of the solar panels, as
well as the parcel and PV modules’ dimensions, is described in Fig. 4.

The SoL model validation requires a series of data regarding the
plant. These data are to be used as input for SoL, PVLib and PVsyst. All
the data variables and parameters that have been used in the model
validation are contained in Table A.16; its source, type, resolution,
value, units of measurement, and model in which it is used, as well as
any relevant comment related to how the data has been treated.

Monthly values for all the dynamic variables used in the study for
the average of 2015, 2016, and 2017 are contained in Table B.17 as
follows: horizontal irradiance, power measured in the inverter, and
temperature.

For the power data analysis and comparison, a certain percentage of
the data (7% for 2015, 5% for 2016, and 6% for 2017) has been ex-
cluded due to incoherent physical behavior as explained at the begin-
ning of this section.

3.1.1. Validation of SoL against the real PV plant readings and PVLib
comparative

The SoL model power estimation results are compared with the real
power data provided by the Supervisory Control and Data Acquisition
(SCADA) system in the plant. The SoL model uses the data described in
Section 3.1 as input. The resolution of the input data, output power data
from the SoL model and real power measures from the plant is adapted
to 10 min (the ideal resolution of SoL model).

In addition, the same estimation is conducted with PVLib. The data
resolution is also 10 min. The approach described in Fig. 3 is used. It
should be noted that both the Siliken modules and inverter could not be
found in the database. Therefore, their associated parameters were in-
troduced manually or assumed to be the same as the module or inverter
in the database with the closest characteristics. Wind data was also not
available for Els Valentins. Since wind is a necessary input for PVLib
wind was estimated to be a constant 0 m/s in order to eliminate the
weight of that variable in the model. A wind versus annual energy
sensibility test performed estimates a ~1% annual energy increase for
every m/s for constant winds between 0 and 10 m/s.

Initially, the signed energy percentage error for the SoL model and
PVLib is considered. The annual signed energy percentage errors for
2015, 2016, and 2017 are in Table 3. The estimation error for SoL is

positive and always inferior to 4% (see Table 3). This means that the
SoL model slightly overestimates energy production for every year.
PVLib overestimates energy production more than SoL does.

At this point, the power error must be considered. Several mean
deviation indicators are shown to represent the characteristics of the
power estimation error. RMSE, MAD, bias and TS for the power errors
for each year studied are in Table 4. The power estimation absolute
error percentiles (normalized) for 2015, 2016, and 2017 are found in
Table C.20.

As shown in Table 4, MAD values are inferior to 3% for SoL for all
three years. This is an acceptable error for instant power estimation. A
higher value for the RMSE for 2017 indicates the existence of larger
errors in this year, as RMSE gives a higher weight to higher deviations.
The bias is positive for all the years. This indicates, in a similar way to
the positive energy percentage errors in Table 3, that the SoL model
overestimates power more frequently that it underestimates it. Never-
theless, the TS value indicates that the bias in the estimation is accep-
table. Both absolute errors and bias are higher for PVLib.

To understand the distribution of the error data, and find possible
sources for these errors, heat-plots with the MAD and bias values (both
normalized) for the different hours in the day for each month in the
year for 2015 (an arbitrarily chosen year) are represented in Fig. 5.
Only one year is displayed, given that the heat-plot pattern is repeated
during 2016 and 2017. By observing these heatplots two main con-
clusions can be drawn:

1. As a general repeated pattern for SoL during every year the biggest
MAD values (see Fig. 5a) are focused on the first and final hours in
winter. These few, low-power-producing hours accumulate the most
significant errors in estimation. These errors are probably due to SS
between modules, as the SoL model does not consider this effect and
neither does PVLib.

2. By studying the bias heat-plots for SoL, it can be concluded that the
biggest absolute errors are positive errors (supporting the SS hy-
pothesis). The bias plots also show that the SoL model overestimates
power for the first and last hours of every month (although greater
errors are evident in winter months), while errors are not biased in
any specific pattern for the remaining hours of the day. This is
consistent for all the years studied.

3. By observing the bias heatplots for PVLib, it can be appreciated that,
while the overestimation due to SS is also evident, there exist a clear
and general overestimation independently of season or producing
hours. This is thought to be due to the fact that PVLib does not
incorporate a detailed electric losses (missmatch, connections, and
so on) model, while SoL contains one with default values.

The power plots for the SoL model and PVLib outputs and the real
power data from the Els Valentins plant for clear and cloudy days for
each of the four seasons are represented in Fig. D.18. The error phe-
nomenon explained in point 1 of the heatplot discussion can be clearly
appreciated in Fig. D.18a. The SoL model clearly overestimates power

Table 8
SoL model and PVLib energy percentage errors for the Denver PV plants.

PV plant

Visitor Parking RSF2 STFS

2011 2012

SoL −0.48% 1.27% −0.06% −0.1%
PVLib 5.51% 5.24% 7.08% 7.4%

Table 9
Normalized power measurement error indicators for SoL model and PVLib for the Denver PV plants 1 h resolution data.

RMSE MAD BIAS TS

SoL PVLib SoL PVLib SoL PVLib SoL PVLib

Visitor Parking 4.02 4.45 3 3.4 −0.2 2.28 −0.07 0.67
RSF2 3.77 4.42 2.53 3 0.54 2.25 0.22 0.75

STFS 2011 5.34 5.93 3.85 3.99 −0.03 3.5 −0.01 0.88
2012 6.51 6.52 4.1 4.1 −0.05 3.54 −0.01 0.88
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production in the first and final hours in winter (see Fig. 5a), while for
the rest of the seasons, the power estimation is significantly more ac-
curate.

It can be concluded that while overestimation in the hours where SS
is evident is the same for SoL and PVLib, SoL estimates power more
accurately for the rest of the hours. The reason for this is that SoL
considers electric losses and that inaccuracies for PVLib could be due to

the lack of some of the module and inverter input parameters. The
assumption of a constant wind of 0 m/s is not considered to be a source
of extra inaccuracies, because stronger wind, and refrigeration would

Fig. 8. Heatmaps of hourly MAD and BIAS normalized power errors for SoL and PVLib for Denver. 1 h resolution data.

Table 10
Comparison between SoL and SAM models normalized power errors. 1 h resolution data.

Visitor Parking RSF2 STFS

SoL SAM SoL SAM SoL SAM

2011 2012 2011 2012

Annual energy error (%) −0.48 −1.18 1.27 −1.36 −0.06 −2.2 −0.1 −2.73
Normalized power RMSE (%) 4.02 4.25 3.77 5.1 5.92 5

Fig. 9. Shadow dimensions in a PV panel.

Fig. 10. Graphical representation of the projection of the elevation angle onto
the plane perpendicular to the panel, proj.
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imply even higher overestimations for PVLib.

3.1.2. SoL model validation compared with PVsyst
The SoL model power estimation output data are compared with the

output data of the commercial software PVsyst. The highest data re-
solution allowed by PVsyst is 1 h. Therefore, the resolution of the input
data for PVsyst, SoL model output, real power provided by the SCADA
system and PVsyst for this study are also averaged for 1 h.

The annual signed energy percentage errors for the SoL model and
PVsyst against real power data for 2015, 2016, and 2017 is listed in
Table 5.

PVsyst presents a higher energy error for all three years studied. The
energy error is positive, meaning that PVsyst also overestimates energy
production.

Power error is now considered. The same error indicators used in
Section 3.1.1 are employed. RMSE, MAD, bias, and TS values for 2015,
2016, and 2017 are found in Table 6. Note that, in Table 4, the errors
are calculated with an estimation resolution of 10 min, in contrast to 1-
h resolution in Table 6. The absolute power error percentiles for both
models for all the years are indicated in Table C.21.

Absolute error indicators, such as the MAD or RMSE in Table 6 are
also larger for PVsyst than for SoL model for each of the years studied.

PVsyst results also present a higher bias for each year, which is coherent
with it presenting higher energy percentage error.

The heat-plots for MAD values for the different hours in the day for
each month of 2016 for PVsyst and SoL model are represented in
Fig. 6a. The error pattern is repeated for SoL and PVsyst for the three
different years, and 2016 is chosen as an example. The equivalent heat-
plots for bias values are represented in Fig. 6b. The error distribution
varies between models as follows:

– PVsyst also concentrates the biggest inaccuracies during winter
months, but only in the final hours in the day. In addition, it pre-
sents significantly large errors in high production during the
summer months. The bias of the error also follows a different pattern
than that of the SoL model. The biggest absolute errors also present
a positive bias, but more negative bias values are registered than
emerge in the SoL model. Most of these negative bias errors are
concentrated in the last hours of the summer months, and present
higher absolute error values than those in SoL.
PVsyst does provide a SS option based on the module layout.
However, when using this option, the results were more inaccurate
than when the shading option was not used. PVsyst strongly un-
derestimated power during shading hours. This is thought to be due
to the 1-h data resolution, which is clearly insufficient for power
estimation; this is discussed further in Section 4.1.3.

The error study between the two models shows that the SoL model
presents to some extent more accurate results for both instant power
and energy production for all the years studied. In addition to the error
indicators discussed, examples of power estimation for clear and
clouded days in each of the seasons are found in Fig. D.19. It can be
confirmed visually that the SoL model power estimation curve is more
accurate than that of PVsyst, especially on clear sky days.

In addition to presenting less accurate results for 1-h resolution data
than SoL does, PVsyst power estimation is limited to a 1-h resolution,
while the SoL model can work with higher and lower data resolutions.
This limitation also affects accuracy and interpretation of the results as
it can clearly be visualized by comparing Fig. D.18f to Fig. D.19f, as
they both present results for the same day of the same year.

Fig. 11. Graphical representation of the height of the shadow of the panel,
sheight .

Fig. 12. Graphical representation of the unshaded length of the panel, dunshaded.
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3.2. Second location: Denver, USA

The SoL model has been used to estimate the power produced by
three different NREL PV facilities in Denver, Colorado, USA. All three of
the research facilities are extremely close to each other. One is located
on the visitor’s parking lot roof at NREL and is referred to as Visitor
Parking. The second is located at the second Research Support Facility
and is referred to as RSF2. The last one is the smallest one and it is
located in the Science and Technology Facility Study (it will be referred
to as STFS). The model validation is conducted for 2012 for all three
facilities, as well as for 2011 in STFS. Information from the facilities has
been extracted from Freeman et al. (2013).

The measured power in each facility is compared with the output of
the SoL model and will be also compared to the estimation provided by
PVLib following a procedure analogous to Section 3.1.1.

A satellite view of the facilities is presented in Fig. 7. Information
regarding the inputs from each plant and the model employing them
(SoL, PVLib or both) is summoned in Table 7.

Time, global horizontal irradiance, and ambient temperature are the
only dynamic variables used as input for SoL. PVLib additionally

Fig. 13. Shading fraction estimations from the proposed SS model and PVsyst SS feature using Els Valentins data.

Fig. 14. Influence of data resolution in SS estimation. Els valentins data.

Fig. 15. Example of a module layout.

Table 11
Energy percentage error for SoL model for years 2015, 2016 and 2017 with and
without SS feature. 10 min resolution data.

Year

2015 2016 2017

SoL model 3.32% 3.74% 3.49%
SoL model with SS 2.33% 2.83% 2.48%
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requires wind data. Hourly meteorological data for the site were pro-
vided by the Solar Radiation Research Laboratory. The meteorological
data are the same for all three facilities, as they are situated in close
proximity to each other. The hourly resolution of the data was not al-
tered and it is used for simulating power output with the SoL model and
PVLib. The monthly values for the meteorological data used for both
PVLib and SoL, as well as the measured power in each of the facilities, is
shown for 2011 in Table B.18 and 2012 in Table B.19.

For the power data analysis and comparison, a certain percentage of
the data (14% for Visitor Parking, 7% and 6% for STFS in 2011 and
2012, respectively and 10% for RSF2) has been excluded due to in-
coherent physical behaviour (as explained in Section 3). Reasons for
this significant amount of excluded data are snow covering the panels
during winter months and accidental inverter shutdowns.

3.2.1. Validation of the SoL model against the real readings of the PV plant
and PVLib comparative

The measured power for the three PV facilities is compared with the
output of the SoL model. The SoL model uses the data described in
Section 3.2. The resolution of the meteorological data and power output

Table 12
Power measurement error indicators for years 2015, 2016, 2017 with and without SS feature for 10-min resolution data

RMSE MAD BIAS TS

SoL model SoL model SS SoL model SoL model SS SoL model SoL model SS SoL model SoL model SS

2015 3.59 3.08 2.43 2.22 1.39 0.98 0.57 0.44
2016 3.51 2.87 2.38 2.18 1.48 1.13 0.62 0.52
2017 3.94 3.26 2.56 2.31 1.51 1.08 0.59 0.47

Fig. 16. Influence of the SS feature.

Fig. 17. Addition of the SS model into SoL’s structure.

Table 13
SS model variables.

Variable Description Range/Units

Input R Distance between panels in the array m
ncolumn Number of columns of modules in a

panel
integer

nrow Number of rows of modules in a
panel

integer

Lmodule Length of the PV module m
hmodule Height of the PV module m

Input† Pn Net active power W
s Solar elevation angle (0°,90°)

s Solar azimuth angle (0°,360°) clockwise
from N

Azimuth angle of the PV from North (0°,360°)
Tilt of the PV array from horizontal (0°,90°)

Gbi Beam (direct) incident irradiance W m−2

Gri Reflected incident irradiance W m−2

Gdi Diffuse incident irradiance W m−2

Output PSS Net active power considering SS W
sheight Height of the shaded fraction of a PV

panel
(0, L n·module row) in m

dunshaded Length of the unshaded fraction of a
PV panel

(0, h n·module column) in
m

dsun Distance from the origin of a PV
panel to the intersection point
between the ray of sun and the
ground

m

† Input from another submodel notes.
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is of 1 h. The same procedure is repeated also for PVLib.
Initially, the signed percentage error for the SoL model is con-

sidered. The annual signed energy percentage error for all the facilities
and years studied is contained in Table 8.

It can be observed that SoL estimates the annual energy production
very accurately for the three plants considered (less than 1.5% error for
all of them). It slightly underestimates production for STFS and Visitor
Parking, while it overestimates the annual production for RSF2. The
behaviour is different for PVLib as it overestimates energy production
for every facility.

The power error is now considered. RMSE, MAD, and bias error
indicators and the TS are found in Table 9. STFS holds the largest RMSE
and MAD values (absolute error indicators). Although slightly larger
than those described in Section 3.1.1 in Els Valentins, the absolute error
indicators for SoL for the rest of the facilities are under 5%. The bias
values are coherent with the annual production results of Table 8. The
TS indicates that bias in estimation is perfectly acceptable. While ab-
solute error indicators for PVLib are similar to those of SoL they are
always biased. The normalized SoL model and PVLib error percentiles
for all three facilities are presented in Table C.22.

To understand the distribution of errors, the MAD and bias heatplots
for RSF2 are presented in Fig. 8. The error distribution is consistent for
all three facilities; therefore, for simplicity, only RSF2 is shown. The
error distribution for SoL varies significantly from that shown in Section
3.1.1 for Els Valentins. The conclusions to be drawn are the following:

1. Winter months show higher absolute error values than any other
month, accumulating the highest errors in the last hours of such
months. However, although the biggest absolute errors are con-
centrated on the last hours, the Denver facilities accumulate bigger
inaccuracies in peak production hours than those in Els Valentins. In
this case, no shading is expected, as the PV modules have a low tilt
angle due to being installed on the roof.

2. A clear seasonal bias is evident for SoL when observing Fig. 8b. In
winter months, the power is over estimated by SoL, while in the
central and last hours of summer the months, the power is lower for
the SoL model’s output than it is in reality.

3. Like in Section 3.1.1, there is a clear general overestimation of
power for PVLib due to the lack of consideration of electrical losses.

The seasonal bias phenomenon for SoL and the general power
overestimation for PVLib can be visualized in Fig. D.20 which re-
presents the real, SoL and PVLib power output plots for clear and
cloudy days for each season for RSF2.

3.2.2. Comparison between the SoL model and SAM power errors
Freeman et al. (2013) published a validation report for the PV si-

mulator SAM using the same facilities employed for SoL validation in
Section 3.2.1.

The annual energy errors and RMSE normalized values for the three
facilities studies for SoL and SAM are in Table 10.

The annual energy percentage errors are always smaller for the SoL
model, which estimates the annual power production more accurately.
It is specially remarkable how, for RSF2, SoL overestimates the energy
production, while SAM underestimates it. For the remaining cases, the
sign of the error is the same for both models. The SoL model presents
lower RMSE values for the Visitor Parking and RSF2, while SAM pre-
sents a better RMSE value for STFS.

It should be noted that, aside from globally providing more accurate
results for the facilities studied, SoL is a simpler model than SAM is. SoL
requires no information regarding the type or layout and dimensions of
the modules or type of inverter, while SAM does. In addition, SoL re-
sults were expected to be suboptimal because its optimal resolution
(10 min) could not be used.

4. The SS enhancement feature for SoL

Recurrent small inaccuracies were found for SoL model power es-
timation during the first and last hours for the winter months for the Els
Valentins study. They arose because SoL does not account for SS power
losses. SoL does include an optional shading loss factor input; however,
the entire power output is affected by this factor. SS could be con-
sidered in terms of annual energy production by this shading factor, but
instant power errors remain.

To account for the instant power losses due to SS and improve the
overall accuracy of SoL, a simple SS model is presented in this section.
The proposed SS model consists of 2 submodels. The first (Section 4.1)
estimates the geometry of the shaded portion of the module array as a
function of known solar angles and the basic dimensions of the PV array
and it is adapted from Braun and Mitchell (1983). The theoretical

Table 14
SS model equations.

Id Equation References

(16)

= °
°

d h n· · if 90

NaN otherwise

sun
module column

s
s

s
s

s

sin 180 arctan tan
cos( )

sin arctan tan
cos( )

Adapted from Braun and Mitchell (1983) and Duffie and Beckman (1980)

(17)

= >
°

s h n R d R· ·

NaN otherwise

height
module column

s
s

s
s

sun

sin arctan tan
cos( )

sin 180 arctan tan
cos( )

Adapted from Braun and Mitchell (1983) and Appelbaum and Bany (1979)

(18) = +d R s h ntan( )·( ( · )·cos )unshaded s height module column Adapted from Braun and Mitchell (1983) and Appelbaum and Bany (1979)
(19)

=

> >

< >

+
+ +

+ +

+ +

P

P s h d L

P s h d L

P

· if and

· if0 and

otherwise

SS

n
Gdi Gri

Gdi Gri Gbi
height module unshaded module

n

Gdi Gri
sheight

hmodule
Gbi

Gdi Gri Gbi
height module unshaded module

n

1 ·

Adapted from Deline et al. (2013)
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formulation of this submodel is explained in Section 4.1.1 and validated
against the Els Valentins data in Section 4.1.2. The second submodel
(Section 4.2) estimates a power derating factor given the shadow di-
mension in the array and the connections between modules. The the-
oretical formulation of this submodel is explained in Section 4.2.1 and
validated against the Els Valentins data in Section 4.2.2. The in-
troduction of the SS model as a feature for SoL is explained in Section
4.3.

4.1. Shadow dimension submodel

The shadow dimension submodel proposed here provides the di-
mensions of the shaded portion of the panels of an array as an output.
The submodel can be used for a series of npanel solar panels of constant
length Lpanel and width Wpanel, separated by a constant distance R and
with a fixed tilt angle , located on a flat field surface. The shadow
formed on a panel because of its adjacent one is assumed to be perfectly
rectangular, as a simplification. The shadow dimension height is sheight ,
and the unshaded length of the panel is dunshaded (see Fig. 9).

The purpose of the submodel is providing a series of general and
simple expressions to calculate the dimensions of the shadow as a
function of array information, comprising n L W R, , , ,panel panel panel , the
solar elevation angle s, and the effective azimuth angle eff , which is
calculated according to Eq. (2), where s is the sun azimuth angle and
is the panel surface azimuth angle:

= .eff s (2)

In Section 4.1.1 the theoretical formulation of the submodel, based on
geometrical relations, is explained. In Section 4.1.2 this submodel is
used for the data from Els Valentins and validated against the PVsyst
shadow fraction feature.

4.1.1. Theoretical formulation
First, the projection of the solar elevation angle, s, onto the plane

perpendicular to the ground and parallel to the normal of the panel
surface is calculated. The projection plane corresponds to plane xy in
Fig. 10:

The projected elevation angle, denoted as proj can be calculated
according to Eq. (3), adapted from Braun and Mitchell (1983), using
trigonometric functions.

= arctan tan
cos

.proj
eff (3)

The trajectory of a ray of sun seen through plane xy and the height of
the shadow one panel projects onto the adjacent one, sheight is re-
presented in Fig. 11.

The distance dsun can easily be calculated through the sine theorem,
as shown in Eq. (4), adapted from Duffie and Beckman (1980):

=
°

d W ·
sin(180 )

sin( )
.sun panel

proj

proj (4)

Once the distance dsun is computed, the shadow height, sheight , can be
calculated using the same theorem. This is shown in Eq. (5), adapted
from Appelbaum and Bany (1979):

=
°

s d R ·
sin

sin(180 )
.height sun

proj

proj (5)

The length of the unshaded part of the panel, dunshaded, delimited by the
ray of sun acting on the highest leftmost point on the adjacent panel is
represented in Fig. 12.

The expression for calculating dunshaded, Eq. (6), is adapted from
Appelbaum and Bany (1979). The projection of the distance X Y onto
the xy plane (Fig. 12a) is computed, and then, by simple trigonometry,
dunshaded is obtained (Fig. 12b, Fig. 13):

= +d R s Wtan ·( ( )·cos ).unshaded eff height panel (6)

In order for Eqs. (5) and (6) to be physically coherent, they can only be
used provided all the conditions in (7)–(9) are met:

°90 ,eff (7)

> 0, (8)

>d R.sun (9)

Analogously, the dimensions of the shadow should be bounded to the
maximum dimensions of the panel. This is translated as Eqs. (10) and
(11):

> =s W s Wif thenheight panel height panel (10)

> =d L d Lif thenunshaded panel unshaded panel (11)

The fraction of a panel that is shaded, panel, can be easily calculated by
dividing the shaded area by the total area of the panel (see Fig. 9), as
shown in Eq. (12):

=
s L d

W L
·( )

·
.panel

height panel unshaded

panel panel (12)

The fraction of the total area of the array of panels that is shaded is
computed assuming that every panel is equally shaded, except for the
first panel, which is not shaded at all because it has no other panel in
front of it. The expression for this total fraction, total, is shown in Eq.
(13):

=
n

n
·

1
.total panel

panel

panel (13)

4.1.2. Validation of the shadow dimension submodel with the Els Valentins
data

The theoretical model proposed in Section 4.1.1 was used with the
data in the Els Valentins study. The basic array geometrical parameters
were provided by the PV farm staff, and the geometrical angles required
for the model were obtained from SoL’s Solar Geometry model.

Due to the unavailability of empirical shadow dimension data, the
model has been validated against a shadow dimension estimation fea-
ture in PVsyst. This is presented in PVsyst as an independent feature.
Results are provided for various resolutions (higher than the maximum
1-h resolution for power estimation), which makes it a viable validation
source (influence of data resolution for SS analysis is addressed in
Section 4.1.3). This shadow dimension feature provides a graph of the
shaded percentage of the modules due to SS for a given time resolution.
Both the shadow fraction estimation for the 21st Els Valentins parcel,
using the PVsyst feature and the model presented here, are shown in
Fig. 9. This shading fraction estimation is shown for four different days
of the year (each corresponding to a different season) to appreciate the
behavior of the model in every possible SS scenario. The data resolution
used is of 10 min (optimal for SoL) and available in the PVsyst SS
feature.

The shadow dimension model used for the SS feature of SoL and the
PVsyst SS feature provide very similar results.
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4.1.3. Influence of data resolution in SS estimation
SS is a phenomenon that occurs during a reduced period of time.

Therefore, data resolution is thought to be a key aspect when con-
sidering its effect on power estimation. A shading fraction estimation
for a given day using different time resolutions is represented in Fig. 14.

The loss of accuracy regarding SS estimation when lowering the
data resolution is visually noticeable in Fig. 14. Differences for 15-s
versus 1-min resolution are unnoticeable. Lowering the data resolution
to 10 min leads to slight loss of symmetry in the data, a small variation
in the maximum shaded fraction values, and a slight data offset.
However, when the resolution is lowered to 1 h, data symmetry is
completely lost, and the shading fraction results are unacceptably dif-
ferent from reality. In the day considered as an example, the derating
effect of SS in the first hours will be totally overlooked if a 1-h data
resolution is chosen, and the SS effect will be overestimated in the last
hours of the day.This is why the power estimation considering using the
SS provided by PVsyst proved to be less accurate than the one without
that feature.

4.2. Power derating factor submodel

The design of an accurate power derating factor submodel due to SS
is a highly complex process. An accurate model for SS requires the
following:

• A large list of input variables with information regarding electrical
connections of the panels, modules and solar cells, electrical para-
meters of the modules (voltage–current-power curves), precise
geometrical information of the panel array, etc.

• A different submodel for each array configuration, as different
connections imply different behaviors toward SS.

• An additional submodel representing the effect of SS regarding
diffuse and ground irradiance (note that the submodel presented in
Section 4.1 only accounts for how beam irradiance is blocked). The
influence of SS regarding diffuse and ground irradiance is minimal
compared with its effect on beam irradiance; nevertheless, if an
accurate SS model is required, it should also be considered.

All the above requirements make the addition of an accurate SS
model incompatible with the simple and effective nature of the SoL
model. Therefore, the power derating factor submodel presented here is
a simplified and approximate model. This will be adequate for SoL for
several reasons, which are as follows:

• Although a general, simplified model for SS may not be suitable for
every array configuration, SoL would implement it as an optional
feature. This implies the SS feature will always represent an en-
hancement and never a source of inaccuracies.

• Reducing the number of inputs for the SS model will not compro-
mise SoL’s simplicity significantly.

• The SS phenomenon is only relevant during the first and last low-
producing hours of certain months. The overall cost of inaccuracies
is low in the context of an annual time span. Therefore, the in-
vestment of resources in developing a precise model for SS would
not be optimal.

4.2.1. Theoretical formulation
The submodel presented here is designed for panels formed by a

number nrow of rows of modules (2 in Fig. 15) and a number ncolumn of
columns of modules (3 in Fig. 15) connected between them.

Because the power loss is bigger when a module is completely
shaded than when it is partially shaded (effect of bypass diodes), two
alternative derating factor expressions are used depending on whether
the bottom row of modules is completely shaded (Eq. (14)) or not (Eq.
(15)). These equations are adapted from Deline et al. (2013). The
proportional factor to Gbi in Eq. (15), in a continuous way, accounts forTa
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the effect of bypass diodes. A continuous approach for this phenomenon
allows the model to be used for any number of bypass diode config-
urations (thereby reducing the number of required inputs of the model):

= +
+ +
G G

G G G
,derating

di ri

di ri bi (14)

=
+ +

+ +
( )G G G

G G G

1 ·
.derating

di ri
s

h bi

di ri bi

height

module

(15)

In Eqs. (14) and (15), Gdi is the diffuse irradiance at that moment of
time, Gri is the ground reflected irradiance, and Gbi is the beam irra-
diance. Eqs. (14) and (15) are valid provided dunshaded is sufficiently low
( <d Lunshaded module).

4.2.2. Validation of the SS model with Els Valentins’ power data
This section provides an error analysis analogous to that in Section

3.1.1 for the power estimation for SoL once the power derating factor,
derating, has been considered for the data in Els Valentins for 2015, 2016,

and 2017. The error results are compared with those for SoL without
derating. The resolution of the data is 10 min.

The annual energy percentage errors are compared in Table 11. The
power error indicators are compared in Table 12.

There is an improvement regarding every error indicator con-
sidered. This validates the SS model proposed.

The measured power, SoL model estimation, and SoL model SS
enhanced estimation for a winter day is represented in Fig. 16. It can be
visually appreciated how, after introducing the SS enhancement, the
overestimation during the first and last hours of the day disappears.

The discrete versus continuous approach to SS modelling explained
in Section 4.2.1 regarding Eq. (15) can be very clearly appreciated in
Fig. 16. Els Valentins’ modules have three bypass diodes. During hours
when SS is a noticeable phenomenon, the real power curve shows three
discrete steps, while the SS SoL model is continuous. However, the error
caused by this continuous approximation is extremely small considering
the power production and the difference with the SoL estimation
without SS. The level of simplicity obtained by using a simplified model
highly outweighs its reduced inaccuracies.

4.3. SS as part of the SoL model

The proposed SS model is introduced into the SoL model structure.
The new SS submodel would be introduced into the original flowchart
(see Fig. 1) as proposed in Fig. 17.

Tables 13 and 14 contain the variables and equations for the SS
submodel in SoL according to the structure presented in Santos-Martin
and Lemon (2015).

5. Conclusions

Two locations have been studied, Els Valentins and the NREL fa-
cilities. The SoL model provides fairly good results for both. However,

the nature of the inaccuracies varied between locations as described
below:

1. The inaccuracies in Els Valentins are caused by self-shading between
the modules. This leads to the development of a new enhancement
(and optional use) feature for SoL regarding SS losses. The results for
SoL with the SS enhancement for Els Valentins are extremely posi-
tive. This validates the SS enhancement model for SoL for the data
available. However it is a simple model that can be enhanced in the
future. Additionally, its performance will be fully confirmed when it
is validated against more data.

2. For the facilities in Denver, a seasonal bias in power estimation is
observed. SoL overestimates power during winter months while it
underestimates it for the summer months. Because of the module
layout, there is no SS phenomenon.

SoL model’s performance has been compared to that of other PV tools
for the facilities and years studied sharing the same input data. They are
compared in terms of accuracy, user-friendliness, performance, and so
on in Table 15. It can be noted that PVLib’s results could be improved
by implementing a model to account for electrical (mismatch, connec-
tions, etc.) losses. Furthermore, SoL has also been compared to SAM for
the NREL facilities. SoL provided better RMSE results for 2 out of the 3
facilities (3.9 average RMSE for SoL compared to average 4.7 RMSE for
SAM for those two facilities). It also provided better energy estimation
values for all the facilities, with an average 0.48% energy error com-
pared to 1.87% of SAM. SoL is also simpler and can work with higher
resolutions than SAM.

This validation and comparative evaluation provides a clear con-
clusion. SoL is an appropriate model for energy and power estimation
or as part of a forecast tool for PV systems with mono or polycrystalline
modules and fixed geometries. Its results are enhanced when using the
SS model proposed in this paper, for panel array layouts where SS is a
relevant phenomenon. It is not meant to replace other tools like PVsyst
or SAM for PV power plants, as these can work with a higher amount of
features, and SoL cannot, for now, meet that level of detail and com-
plexity. However, if the user is searching for the simplest PV model or
wishes to obtain a very accurate estimation for power production with a
very reduced number of inputs (for example checking the hypothetical
profitability of a PV system without knowing exact information about
modules or inverters) SoL will probably be one of the most adequate
models to use. Furthermore, it is very well suited for stochastic analysis
where multiple plants or configurations want to be studied.
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Appendix B. Averaged monthly data tables

Tables B.17, B.18, B.19.

Appendix C. Percentile error tables

Tables C.20, C.21, C.22.

Table B.17
Averaged monthly data for Els Valentins for years 2015 to 2017.

Month

1 2 3 4 5 6 7 8 9 10 11 12

Horizontal Irradiance (Wm 2) 91 132 174 254 274 306 286 252 189 135 109 86
Temperature (°C) 8.6 9.8 12 13.8 18.1 22.3 24.9 24.1 20.5 17.1 12.2 8.8
Averaged monthly power (kW) 12.9 16.4 21.5 23.1 24 24.7 22.5 20.7 20.8 19.3 18.6 13.2

Table B.18
Averaged monthly data for Denver for the year 2011.

Month

1 2 3 4 5 6 7 8 9 10 11 12

Horizontal Irradiance (Wm 2) 110 156 205 233 232 297 288 257 215 173 125 104
Temperature (°C) 3.7 3.8 7.2 8.6 11 20.3 23.7 24.5 18.2 12.4 6.5 2.5
Power for STFS (kW) 25.6 32.5 33.5 32.4 29.7 33.3 32.7 33.2 33.2 30 27.1 23.7

Table B.19
Averaged monthly data for Denver for the year 2012.

Month

1 2 3 4 5 6 7 8 9 10 11 12

Horizontal Irradiance (Wm 2) 107 154 222 258 271 292 271 246 213 149 114 94
Temperature (°C) 4.7 1.6 10.2 11.6 14.9 23.4 23.8 22.8 18.3 10 7.8 3.2
Power for STFS (kW) 9.2 10.7 18.8 19.5 20.5 21 19.8 18.9 17.4 12.3 10.1 7.8
Power for RSF2 (kW) 103.2 125.9 168.3 166.8 158.4 161.5 145.7 144.7 150.2 129.3 112.7 100.9
Power for Parking (kW) 124.8 162.2 203.2 211.9 193.5 199.5 180.7 196.4 168.3 154.3 125 115.9

Table C.20
Normalized power percentile errors (in percentage) for SoL and PVLib for years 2015, 2016 and 2017. 10-min resolution data.

Percentile

0 1 5 25 50 75 90 95 99 100

2015 SoL 0 0.02 0.15 0.87 1.83 2.96 5.14 6.93 13.27 88.64
PVLib 0 0.07 0.37 1.51 2.64 4.31 6.55 8.59 15.44 86.8

2016 SoL 0 0.01 0.15 0.88 1.83 2.97 4.76 6.26 13.3 51
PVLib 0 0.08 0.41 0.1.65 2.92 4.74 6.64 8.43 15.13 28.2

2017 SoL 0 0.02 0.14 0.83 1.84 3.07 5.42 7.24 16.15 64.68
PVLib 0 0.11 0.49 1.77 3.12 4.92 7.31 9.68 17.44 64.57
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Table C.22
Normalized power percentile errors (in percentage) for SoL and PVLib for the Denver PV plants.

Percentiles

0 1 5 25 50 75 90 95 99 100

Visitor Parking SoL 0 0.04 0.17 0.84 2.24 4.6 6.54 7.96 11.08 22.7
PVLib 0 0.05 0.17 1.23 3.37 6.07 7.91 8.88 13.01 21.22

RSF2 SoL 0 0.03 0.15 0.81 1.78 3.48 5.33 7.07 11.4 46.98
PVLib 0 0.03 0.16 0.83 2.18 4.56 6.32 7.3 13.78 50.29

SRFS 2011 SoL 0 0.04 0.24 1.47 3.21 5.28 7.48 9.14 16.8 72.1
PVLib 0 0.04 0.14 0.83 1.94 3.98 6.29 8.46 16.66 78.4

2012 SoL 0 0.04 0.28 1.41 3.24 5.42 7.68 9.35 22.57 89.12
PVLib 0 0 0.2 1.48 3.37 5.19 7.13 8.83 17.12 96.18

Table C.21
Normalized power percentile errors (in percentage) for SoL and PVsyst for years 2015, 2016 and 2017. 1 h resolution data.

Percentile

0 1 5 25 50 75 90 95 99 100

2015 SoL 0 0.03 0.14 0.81 1.67 2.67 4.6 6.12 10.15 27.94
PVsyst 0 0.04 0.17 0.93 2.57 4.84 7.3 9.29 19.14 33.18

2016 SoL 0 0.03 0.17 0.91 1.75 2.76 4.49 5.64 9.75 46.73
PVsyst 0 0.02 0.13 0.66 1.62 3.32 4.95 6.5 10.54 43.63

2017 SoL 0 0.04 0.15 0.8 1.78 2.93 5.37 7.26 14.57 75.68
PVsyst 0 0.02 0.13 0.76 1.86 3.41 5.61 7.55 13.06 77.44
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Appendix D. Daily power plots

Figs. D.18, D.19, D.20.

C. Nicolás-Martín, et al.

Fig. D.18. Clear sky and cloudy day plots for the power estimated by SoL, PVLib and the real readings of the Els Valentins plant. 10 min resolution data. 



Fig. D.19. Clear sky and cloudy day plots for the power estimated by SoL, PVsyst and the real readings for the Els Valentins plant. 1 h resolution data.
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Fig. D.20. Clear sky and cloudy day plots for the power estimated by SoL, PVLib and the real readings for the Denver plant. 1 h resolution data.
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