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Abstract

Ultrasound is known to enhance surface bubble growth and removal in catalytic and microfluidic

applications, yet the contributions of rectified diffusion and microstreaming phenomena towards

mass transfer remain unclear. We quantify the effect of ultrasound on the diffusive growth of a

and explain how ultrasound can enhance the diffusive growth of surface bubbles by up to two

orders of magnitude during volumetric resonance. The proximity of the wall forces the bubble to

oscillate non-spherically, thereby generating vigorous streaming during resonance that results in

convection-dominated growth.

I. INTRODUCTION

A gas bubble undergoing volume oscillations in a liquid–gas solution experiences a mass

transfer enhancement that is believed to result from two phenomena. The first is rectified

diffusion [10], consequence of the asymmetries in the mass transfer rate across the bubble

during the expansion and compression half-cycles, generally favoring growth. The second is

acoustic microstreaming [11], a second-order (in driving amplitude) steady flow driven by

non-spherical bubble oscillations [12]. Microstreaming essentially renews the gas content of

the liquid in contact with the bubble [13].
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single spherical CO bubble growing on a substrate in supersaturated water. The time dependent

bubble size, shape, oscillation amplitude and microstreaming flow field are resolved. We show

Ultrasound application is a promising intensification technology with the ability to im-

prove the energy efficiency of electrochemical reactions by promoting bubble detachment

from the catalyst surface [1], accelerate liquid degassing through cavitation [2] or enhance

mass transfer processes in gas–liquid micro-sono-reactors [3]. From a detrimental aspect,

gas diffusion across ultrasound-driven microbubbles employed in biomedical acoustic thera-

pies and diagnostics [4] may substantially alter the bubble size [5] or longevity [6]. Similarly,

oscillating bubbles driving microfluidic applications [7] or sonochemical reactions [8] are gen-

erally surrounded by non-degassed liquids and unwanted mass transfer effects may become

significant during continued ultrasonic operation [9].



The ultrasound-enhanced growth of gas bubbles attached to surfaces remains a poorly

studied subject. Surface bubbles always oscillate non-spherically, unavoidably giving rise

to microstreaming. Consequently, the classical theories of rectified diffusion [14–16] are no

longer applicable, and the mass transfer process remains unclear. In this work, we conduct

unprecedented experiments that quantify the effect of ultrasound on the diffusive growth

of a single monocomponent surface bubble in supersaturated water. To fully capture the

physics, we resolve both bubble dynamics and streaming flow field as the bubble overgrows

its resonant size.

The diffusive growth rate of an unperturbed bubble is best quantified by the Jakob

number for mass diffusion [17, 18], Ja = (C∞−Cs)/ρg, where C∞ is the mass concentration

of dissolved gas in the ambient liquid, Cs the saturation mass concentration at the bubble

surface, and ρg the density of gas in the bubble. For small Laplace pressures, Ja can be

assumed independent of the bubble size; if so, Ja strictly represents the product of the degree

of supersaturation (C∞/Cs − 1, the driving force) and the dimensionless Henry solubility

(Cs/ρg, the growth-rate amplifier).

Previous experimental studies are mostly constrained to isolated air (multicomponent)

bubbles in water under (close to) saturation conditions (C∞/Cs ≈ 1, Ja ≈ 0) [19–24]. Such

bubbles slowly dissolve due to surface tension, unless sonicated above a certain threshold

amplitude. Kapustina [25] exceptionally studied the growth of air bubbles on a needle

in water notably supersaturated with air (C∞/Cs ∼ 1.5, Ja < 10−2). In contrast, our

experiments are performed at larger Ja ∼ 0.1. All studies [19–25] coincide in that the

appearance of shape oscillations is often accompanied by vigorous streaming and enhanced

rates of mass transfer.

II. EXPERIMENTAL SET-UP

The experimental set-up is sketched in Fig. 1(a). A pressurized tank (Psat ≈ 4 bar) is first

filled with carbonated water saturated at the same pressure, which is subsequently lowered to

P0 ≈ 3.5 bar. Consequently, the solution becomes supersaturated (C∞/Cs = Psat/P0 ≈ 1.14,

nominal Ja = 0.13) and a single CO2 bubble spontaneously nucleates and grows from a hy-

drophobic cavity (20 µm diameter) etched on an otherwise hydrophilic silicon substrate. The

bubble keeps growing until detachment. Meanwhile, a transducer (Benthowave BII-7501/50)
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constantly generates ultrasound waves of frequency ω/2π = 50 kHz. The pressure ampli-

tude was kept constant throughout the lifetime of a given bubble but was varied (nominal

values ranging 2–12 kPa) between experiments. Unfortunately, the exact driving amplitude

transmitted to the bubble remained uncertain since it was uncontrollably weakened by a

substantial number of parasitic bubbles that formed on the transducer surface, in addition

to the likely formation of standing waves within the experimental tank.
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FIG. 1. (a) Experimental set-up (camera view). (1) Waveform generator, (2) ultrasonic transducer,

(3) pressure valve, (4) acoustic absorber, (5) CO2 bubble, (6) silicon substrate, (7) holder. (b)

Evolution of the mean bubble radius in time for four bubbles subjected to different acoustic pressure

amplitudes. The dashed line is the theoretical prediction for purely diffusive growth on a substrate,

namely Eq. (1) with Ja = 0.093 as a free parameter.

III. GROWTH DYNAMICS

The bubble-growth process was captured by a high-speed camera (Photron SA-Z) at

1000 fps. As seen in Fig. 1(b), the ambient bubble radius R0 (defined as the mean sphere-

equivalent radius about which the bubble oscillates) grows by diffusion until it approaches

the resonant size. The early growth dynamics are well predicted by the classical Epstein–

Plesset theory for diffusive growth [26] despite some deviations which can be attributed to

perturbations in the initial condition of the concentration field [27]. Taking into account the
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presence of the substrate, the asymptotic solution reads [28]

R2
0

Dt
= 2Ja

[(
Ja

2π

)1/2

+
(

1

2
+

Ja

2π

)1/2
]2
, (1)

where D = 1.76 × 10−9 m2/s is the mass diffusivity of CO2 in water. The effect of surface

tension (crucial in equilibrated solutions) has been neglected by virtue of the relatively strong

supersaturation. The value of Ja = 0.093 used in Fig. 1(b) is smaller than the nominal

value, consequence of the considerable degassing effect [2, 25, 29] of continuous ultrasonic

operation.

During resonance, the growth rate deviates and strikingly increases by up to two orders

of magnitude. Once the bubble outgrows resonance, it continues growing diffusively until

detaching at R0 ≈ 330 µm [29]. Immediate detachment during resonance was otherwise

observed for higher acoustic amplitudes.

Ignoring the effect of surface tension, the natural frequency of a spherical surface bubble

is given by [30, 31]

ω0 ≈

√√√√2

3

(
3κP0

ρlR2
0

)
. (2)

One may check that ω0 is precisely equal to the driving frequency ω when the bubble

attains the resonant size of R0 ≈ 90–95 µm. Here, ρl is the water density and κ is the

polytropic exponent. The bubbles are expectedly adiabatic at resonance (κ ≈ 1.28), given

that R0/(αg/ω)1/2 ∼ 25� 1 and R0/(αl/ω)1/2 ∼ 130� 1 [32], where αg and αl denote the

thermal diffusivities of the gas inside the bubble (CO2) and the surrounding liquid (water)

respectively. Neglecting surface tension σ on ω0 is justified since 2σ/R0P0 ∼ 0.01� 1 when

resonance occurs.

To obtain more insight into the bubble dynamics, we record the bubble oscillating at

resonance at 200,000 fps (4 frames per oscillation cycle). Owing to the proximity of the wall,

the volumetric oscillations of the bubble occur concurrently with translational oscillations

of its center of mass [33]. At low acoustic amplitudes or sufficiently far from resonance,

perturbations are weak and follow the “Narcissus” effect [33]: Translational oscillations

occur mainly in the vertical direction perpendicular to the wall [Fig. 2(b), panel (i)]. The

snapshots of bubble (i) in Fig. 2(a) evidence the oblate shape that the bubble assumes

during the expansion half-cycle [34].
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Position map of the center of mass for bubbles (i) and (ii) in the vertical plane as a function

of time. Solid lines represent the signature of the centroid position over three cycles (0.06 ms)

at different times. Signatures labeled with numbers (1–5) correspond in time with the bubble

side-view snapshots. The color code represents the evolution in time.
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FIG. 2. (a) Radius growth dynamics of two bubbles during resonance exposed to a comparatively

(i) low and (ii) high amplitude of acoustic pressure; nominal values are approximately (i) 2 kPa

and (ii) 10 kPa. The real pressure delivered remains unknown and may be quite smaller than

the nominal value. The time origin is arbitrary. The continuous line represents the mean sphere-

plitudes, but also lead to a rich variety of surface modes [Fig. 2(a), bubble (ii)]. The latter



occur only during resonance, since the threshold amplitude for shape instability is precisely

minimal at the volumetric resonance size [35]. Lamb’s classical expression [35, 36] predicts

the most unstable surface mode at R0 = 95 µm to be n = 5, in agreement with our experi-

mental observations [snapshot (ii-1)]. Furthermore, the center of mass undergoes extensive

translations, presumably in all directions [37]. It is seen that the center-of-mass oscilla-

tions [Fig. 2(b), panel (ii)], albeit heterogeneous in time, have a predominant horizontal

component. A ∞-shaped signature was commonly found.

The (dimensionless) volumetric oscillation amplitudes normalized by R0 at the moment

of maximum growth are ε < 0.08, i.e., four times larger, at best, than those of the linear

oscillations observed immediately before or after resonance (typically ε ∼ 0.02), whereas the

growth rates can easily differ by two orders of magnitude. It is evident from Fig. 2(a) that a

larger ε and the onset of surface modes are clearly associated with a faster bubble growth rate

(Ṙ0). However, these findings cannot be explained by rectified diffusion alone: Substituting

these values of ε into a model adapted from Crum [14] results in an underestimation of

the order of magnitude of the observed maximum growth rate (see Supplemental Material).

According to the model, the increment in the growth rate that rectification offers is small

IV. MICROSTREAMING

Microstreaming must therefore be the leading-order contributor to the magnitude of

maximum Ṙ0 during resonance. This hypothesis was verified in further experiments where

0.43 ml/l of neutrally buoyant 3-µm polystyrene latex beads (Sigma-Aldrich) were added to
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relative to the already large diffusive growth rate. Rectified diffusion therefore remains a non-

critical and subdominant mechanism to both (i) the unperturbed diffusive mass transfer away

from resonance, and (ii) the microstreaming-enhanced mass transfer during resonance. We

stress that condition (i) applies by virtue of the strong level of supersaturation in the liquid:

The rectified diffusion enhancement offered by the modest acoustic amplitudes applied is

small compared to the fast diffusive growth. In contrast, in a gas-equilibrated solution

(i.e., at a very low super- or under-saturation) the same amount of mass rectification would

become critical and comparatively very significant. Note that the horizontal translations

suffered by the bubble during resonance, while important, also remain a second order factor

in the total mass transfer increase as compared to the effect of microstreaming.



the solution. The streaming flow field generated as the bubble grows through resonance was

visualized by means of particle tracking velocimetry [38]; images were recorded at 1000 fps.

The particle velocities measured during three distinct phases for a particular experiment

(i)

(ii) (iii)

(a) (b)

θ r

(i)

(ii)

(iii)

·R0R0 /D ≈ 0.05

1.3

0.04

(c)

μ

FIG. 3. (a) The first panel shows a typical evolution of the mean bubble radius during resonance

arrows in the three remaining panels (i–iii) correspond to particle velocities measured during three

distinct time phases highlighted along the radius growth curve. The black lines are the theoretical

far-field streamlines according to Eq. (3); in (b) these are directly superimposed on the particle

pathlines covered during phase (ii) which spans 0.25 s. (c) Rescaled far-field velocity magnitude

û = |u/A|(r/R0)
3/R0ω as a function of θ for phases (i–iii). The characteristic source strength A is

computed by fitting each experimental velocity set to the theoretical curve (solid black line) given

by Eq. (4). We obtain (i) A = 7.5 × 10−5, (ii) A = −1 × 10−2 and (iii) A = 4 × 10−5. See also

supplementary movie.

Immediately before resonance [phase (i)], the bubble undergoes weak volumetric and

vertical translation oscillations [cf. Fig. 2, bubble (i)]. We observe weak ‘fountain mode’

streaming [Fig. 3(a), panel (i)], generically reported in similar microbubble streaming ex-
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(time origin is arbitrary). The nominal acoustic pressure amplitude is approximately 10 kPa. The

(provided as a supplementary movie) are shown in Fig. 3. In each of the fifteen streaming

experiments that were conducted, a qualitatively identical streaming behavior was observed.



periments [11, 12, 33, 34, 38, 39]. The streaming velocity close to the bubble, Us, is approx-

imately 0.2 mm/s and the streaming Reynolds number is Re = 2R0Us/ν ≈ 0.04, where ν is

the kinematic viscosity of the liquid. The Péclet number based on Us remains fairly small at

Pe = 2R0Us/D ≈ 28. During resonance [phase (ii)], the bubble undergoes strong volumet-

ric, translational and surface oscillations [cf. Fig. 2, bubble (ii)]. Strikingly, the direction

of streaming reverses (‘antifountain’ mode) [Fig. 3(a), panel (ii)]. The streaming velocities

then escalate by two orders of magnitude (Us ≈ 15 mm/s, Re ≈ 3, Pe ≈ 2100), and so does

the growth rate. There is a second reversal in direction immediately after resonance and all

the attributes prior to resonance are recovered [phase (iii)]. Weak fountain-mode streaming

(Us ≈ 0.18 mm/s, Re ≈ 0.04, Pe ≈ 21) is observed once again.

The onset of surface mode activity is known to induce notably vigorous streaming [20, 37],

whereas a similar reversal from fountain to antifountain mode was first encountered by Elder

[11], which he attributed to the onset of higher-order surface modes triggered at sufficiently

large acoustic amplitudes. Streaming patterns and direction are indeed dictated by the

modes of microbubble oscillation [37, 40–42], which are frequency and amplitude dependent.

The particle pathlines sufficiently far from the bubble were found to be well described

by the streamlines corresponding to the leading-order far-field (dipole-like) axisymmetric

streamfunction proposed by Marmottant and Hilgenfeldt [39],

Ψ(r, θ) =
AR4

0ω

r
cos2 θ sin2 θ, (3)

where A is the dimensionless source strength and r, θ are the spherical coordinates defined

in Fig. 3(b). The best agreement resulted after relocating the coordinate origin of the

theoretical streamfunction on the bubble’s center of mass for the fountain mode [Fig. 3(a)

panels (i, iii)], and on the bubble base for the antifountain mode [Fig. 3(a) panel (ii), Fig.

3(b)]. A likely explanation is the possible existence of a weak recirculation zone very close

the wall [41] (here unobservable) that arises during fountain-mode streaming only [phases

(i) and (iii)].

The source strength A depends on the oscillation mode of the bubble and is a priori

unknown. Typically A is O(ε2) [12, 33, 39], where ε represents some characteristic oscillation

amplitude. However, A may be estimated directly from the far-field velocities [38]. It follows

that the velocity magnitude |u| is a function of θ only when rescaled in the following manner:

|u/A|
R0ω

(
r

R0

)3

=

√
sin2(4θ)

4 sin2 θ
+ sin2 θ cos4 θ. (4)
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We find that A drastically increases from O(10−4) in phases (i, iii) to O(10−2) in phase (ii)

[see Fig 3(c)], following the two order of magnitude increase in the values of Pe. Note the

sign reversal for the antifountain mode.

V. MASS TRANSFER MECHANISM

These results indicate that, during resonance, the microstreaming velocities become large

enough to induce a transition from diffusion-dominated to convection-dominated growth.

A physical explanation can be given in terms of the diffusion layer δ (see e.g. [43]),

namely the characteristic thickness of the concentration boundary layer surrounding the

bubble. It follows that δ scales as δ/R0 = 2/Sh, where the bubble Sherwood number

Sh = (1/Ja)(2Ṙ0R0/D) [28, 29] constitutes a measure of the mass transfer rate. Note that

Sh, hence δ, can be computed independently without any knowledge of the streaming ve-

locity. When there is weak or no streaming [Fig. 4(a)] we find diffusive growth, Sh ∼ 1, i.e.,

δ/R0 ∼ 1 � ε. The bubble oscillations only perturb the boundary layer slightly. Strong

streaming is responsible for the thinning of δ [Fig. 4(b)], resulting in steep interfacial con-

centration gradients, hence Sh � 1. The local mixing induced by the bubble oscillatory

interface is now more relevant since δ/R0 ∼ ε. Nonetheless, to leading order, Sh must

Sh ∼ 1

Pe ≲ 10
δ ∼ R0

2R0 εR0

C∞

Cs

Weak or no streaming

Diffusive growth
Sh ∼ 100

Us

Pe ∼ 1000

δ ∼ εR0

Strong streaming

Convective growth

(a) (b)

FIG. 4. Schematic of the concentration boundary layer thickness δ during (a) weak streaming

and (b) strong streaming. The orange arrows represent the magnitude of the mass transfer; εR0

denotes the characteristic oscillation amplitude.
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only depend on Pe provided that Pe is large. Naturally, amplifying the acoustic driving

strengthens microstreaming: Pe and hence Sh increase.



The above explanation—only applicable when rectified diffusion is subdominant—calls

for a quantitative relation between Pe = 2R0Us/D and Sh at the moment of maximum

bubble growth. To obtain such a relation, the maximum streaming velocity surrounding

the bubble, Us, was first extracted in a consistent manner from a set of ten different exper-

iments. Direct tracking of particle velocities adjacent to the bubble surface during strong

(antifountain) streaming proved unviable due to optical limitations. This was circumvented

by extrapolating the particle velocities measured along the z-axis as described in Fig. 5(a).

The measured velocity profiles along the z-axis were all well described by the theoretical

expression [34]
uz

AR0ω
=

1

3
(fstk + fdip + fhexdp), (5)

where fstk , fdip and fhexdp , defined in Eqs. (8)–(10) in Ref. [34], are dimensionless functions

of z/R0 and d/R0, where d refers to the height of the bubble center. In the far-field limit

(z/R0 → ∞), Eq. (5) simplifies to uz/AR0ω = 2(z/R0)
−3 [see Fig. 5(a)], consistent with

Eq. (4) when θ = 0, r = z. Plotting Eq. (5) reveals that the maximum streaming velocity

is related to the source strength through Us ≈ 0.1|A|R0ω.

Our measurements [Fig. 5(b)] suggest that, at the moment of maximum growth (where Pe

is large), mass transfer is consistent with the scaling law Sh = C
√
Pe, where C is a constant

of order unity. This functional dependence was in fact theoretically derived by Kapustina

and Statnikov [44] and later Davidson [45]. It is no coincidence that the convective mass

transfer of a freely rising bubble (see e.g. [46–48]) follows this same relation.

VI. CONCLUSIONS

In summary, ultrasound can easily enhance the growth of surface bubbles by two or-

ders of magnitude during volumetric resonance. The underlying physical mechanism is as

follows: The proximity of the wall forces the spherical bubble to oscillate non-spherically.

Approaching resonance, the bubble undergoes small volumetric oscillations superimposed

with translational oscillations perpendicular to the wall. The concomitant fountain-like

streaming is weak and the bubble growth rate remains primarily driven by diffusion. During

resonance, however, the onset of surface oscillations and larger translational oscillations lead

to vigorous streaming, resulting in convective growth. Streaming is held majorly responsi-

ble for the mass transfer enhancement: Gas-rich liquid advected from the bulk disrupts the
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  (far-field)
(a) (b)2(z /R0)−3

exact profile

Us ≈ 0.1 |A |R0ω

z

d

FIG. 5. (a) Vertical streaming velocity profiles induced by ten different bubbles (exposed to differ-

ent acoustic amplitudes) during the moment of maximum growth. For each bubble, the measured

particle velocities (markers) are all rescaled by a unique source strength A (free parameter) to

match the theoretical (“exact”) profile given by Eq. (5). The maximum streaming velocity Us is

then computed from the highest value of theoretical velocity. (b) Sherwood number of the same

ten bubbles (at the moment of maximum growth) as a function of the Péclet number, 2R0Us/D.

Dashed line is a linear fit, Sh = 3.6
√
Pe. The error bars arise from the uncertainty in Ja due to the

continuous degassing of the solution. Setting Ja equal to the nominal value yields a conservative

lower bound on Sh; computing Ja from Eq. (1) assuming that the growth rate prior to resonance

[cf. Fig. 3(a), phase (i)] is purely diffusive generally yields a Sh close to the upper bound.

concentration boundary layer surrounding the bubble, greatly strengthening the concentra-

ACKNOWLEDGMENTS

This work was supported by the Netherlands Center for Multiscale Catalytic Energy

Conversion (MCEC), an NWO Gravitation program funded by the Ministry of Education,

12
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ultrasonic-driven spherical or quasi-spherical bubbles attached to a solid surface; namely,

in microfluidic devices [7], sonochemical reactors [8], gas-evolving electrodes [49] or cata-

lysts [50], or even during heterogeneous cavitation [51] and pool nucleation boiling [52] of

gas-containing vapor bubbles.
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