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ABSTRACT

The improvements of the last two decades in data modeling and computing have lead
to new biometric modalities. The Electrocardiogram (ECG) modality is part of them, and
has been mainly researched by using public databases related to medical training. Despite
of being useful for initial approaches, they are not representative of a real biometric
environment. In addition, publishing and creating a new database is none trivial due
to human resources and data protection laws.

The main goal of this thesis is to successfully use ECG as a biometric signal while
getting closer to the real case scenario. Every experiment considers low computational
calculations and transformations to help in potential portability. The core experiments
in this work come from a private database with different positions, time and heart rate
scenarios. An initial segmentation evaluation is achieved with the help of fiducial point
detection which determines the QRS selection as the input data for all the experiments.

The approach of training a model per user (open-set) is tested with different machine
learning algorithms, only getting an acceptable result with Gaussian Mixture Models
(GMM). However, the concept of training all users in one model (closed-set) shows
more potential with Linear Discriminant Analysis (LDA), whose results were improved
in 40%. The results with LDA are also tested as a multi-modality technique, decreasing
the Equal Error Rate (EER) of fingerprint verification in up to 70.64% with score fusion,
and reaching 0% in Protection Attack Detection (PAD).

The Multilayer Perceptron (MLP) algorithm enhances these results in verification
while applying the first differentiation to the signal. The network optimization is achieved
with EER as an observation metric, and improves the results of LDA in 22% for the worst
case scenario, and decreases the EER to 0% in the best case. Complexity is added creating
a Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM) based
network, BioECG. The tuning process is achieved without extra feature transformation
and is evaluated through accuracy, aiming for good identification. The inclusion of a
second day of enrollment in improves results from MLP, reaching the overall lowest
results of 0.009%–1.352% in EER.

Throughout the use of good quality signals, position changes did not noticeably impact
the verification. In addition, collecting data in a different day or in a different hour did
not clearly affect the performance. Moreover, modifying the verification process based on
attempts, improves the overall results, up to reach a 0% EER when applying BioECG.

Finally, to get closer to a real scenario, a smartband prototype is used to collect new
databases. A private database with limited scenarios but controlled data, and another
local database with a wider range of scenarios and days, and with a more relaxed use of
the device. Applying the concepts of first differentiation and MLP, these signals required
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the Stationary Wavelet Transform (SWT) and new fiducial point detection to improve
their results. The first database gave subtle chances of being used in identification with
up to 78.2% accuracy, but the latter was completely discarded for this purpose. These
realistic experiments show the impact of a low fidelity sensor, even considering the same
modifications in previous successful experiments with better quality data, reaching up to
13.530% EER. In the second database, results reach a range of 0.068%–31.669% EER.
This type of sensor is affected by heart rate changes, but also by position variations, given
its sensitivity to movement.

vii



RESUMEN

Las mejoras en modelado de datos y computación de las últimas dos décadas,
han llevado a la creación de nuevas modalidades biométricas. La modalidad de
electrocardiograma (ECG) es una de ellas, la cual se ha investigado usando bases de datos
públicas que fueron creadas para entrenamiento de profesional médico. Aunque estos
datos han sido útiles para los estados iniciales de la modalidad, no son representativos de
un entorno biométrico real. Además, publicar y crear bases de datos nuevas son problemas
no triviales debido a los recursos humanos y las leyes de protección de datos.

El principal objetivo de esta tesis es usar exitosamente datos de ECG como señales
biométricas a la vez que nos acercamos a un escenario realista. Cada experimento
considera cálculos y transformadas de bajo coste computacional para ayudar en su
potencial uso en aparatos móviles. Los principales experimentos de este trabajo se
producen con una base de datos privada con diferentes escenarios en términos de postura,
tiempo y frecuencia cardíaca. Con ella se evalúan las diferentes seleccións del complejo
QRS mediante detección de puntos fiduciales, lo cual servirá como datos de entrada para
el resto de experimentos.

El enfoque de entrenar un modelo por usuario (open-set) se prueba con diferentes
algoritmos de aprendizaje máquina (machine learning), obteniendo resultados aceptables
únicamente mediante el uso de modelos de mezcla de Gaussianas (Gaussian Mixture
Models, GMM). Sin embargo, el concepto de entrenar un modelo con todos los usuarios
(closed-set) demuestra mayor potencial con Linear Discriminant Analysis (Análisis de
Discriminante Lineal, LDA), cuyos resultados mejoran en un 40%. Los resultados de
LDA también se utilizan como técnica multi-modal, disminuyendo la Equal Error Rate
(Tasa de Igual Error, EER) de la verificación mediante huella en hasta un 70.64% con
fusión de puntuación, y llegando a un sistema con un 0% de EER en Detección de Ataques
de Presentación (Presentation Attack Detection, PAD).

El algoritmo de Perceptrón Multicapa (Multilayer Perceptron, MLP) mejora los
resultados previos en verificación aplicando la primera derivada a la señal. La
optimización de la red se consigue en base a su EER, mejora la de LDA en hasta un 22%
en el peor caso, y la lleva hasta un 0% en el mejor caso. Se añade complejidad creando una
red neural convolucional (Convolutional Neural Network, CNN) con una red de memoria
a largo-corto plazo (Long-Short Term Memory, LSTM), llamada BioECG. El proceso de
ajuste de hiperparámetros se lleva acabo sin transformaciones y se evalúa observando la
accuracy (precisión), para mejorar la identificación. Sin embargo, incluir un segundo día
de registro (enrollment) con BioECG, estos resultados mejoran hasta un 74% para el peor
caso, llegando a los resultados más bajos hasta el momento con 0.009%–1.352% en la
EER.

Durante el uso de señales de buena calidad, los cambios de postura no afectaron
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notablemente a la verificación. Además, adquirir los datos en días u horas diferentes
tampoco afectó claramente a los resultados. Asimismo, modificar el proceso de
verificación en base a intentos también produce mejoría en todos los resultados, hasta
el punto de llegar a un 0% de EER cuando se aplica BioECG.

Finalmente, para acercarnos al caso más realista, se usa un prototipo de pulsera para
capturar nuevas bases de datos. Una base de datos privada con escenarios limitados pero
datos más controlados, y otra base de datos local con más espectro de escenarios y días y
un uso del dispositivo más relajado. Para estos datos se aplican los conceptos de primera
diferenciación en MLP, cuyas señales requieren la Transformada de Wavelet Estacionaria
(Stationary Wavelet Transform, SWT) y un detector de puntos fiduciales para mejorar los
resultados. La primera base de datos da opciones a ser usada para identificación con un
máximo de precisión del 78.2%, pero la segunda se descartó completamente para este
propósito. Estos experimentos más realistas demuestran el impact de tener un sensor de
baja fidelidad, incluso considerando las mismas modificaciones que previamente tuvieron
buenos resultados en datos mejores, llegando a un 13.530% de EER. En la segunda base
de datos, los resultados llegan a un rango de 0.068%–31.669% en EER. Este tipo de sensor
se ve afectado por las variaciones de frecuencia cardíaca, pero también por el cambio de
posición, dado que es más sensible al movimiento.
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CHAPTER 1. INTRODUCTION

1. INTRODUCTION

In the last two decades, several fields such as mathematics and computing have
experienced huge advances. The interdisciplinary efforts done between disciplines such as
neural networking and high performance hardware, have expanded the limits of existing
machine learning solutions. These advances have been the basis of the rising of new
biometric traits.

While conventional modalities are based on features that do not change with time,
such as fingerprints, iris or even DNA, the most recent modalities have a tendency to focus
on less obvious patterns than those in a fingerprint image, yet can be used to distinguish
one individual from the rest. The nature of these patterns and their complexity make them
difficult to forge or replicate, and add convenience depending on the application.

The field of ECG biometrics has been present since then, in the early 2000s, and
has been proven as a good biometric signal. However, the lack of standardization and
difficulties in publishing databases complicate the replication of real environments. In
this thesis we present an attempt to recreate these environmental conditions, going from
low to more complex situations and solutions. Moreover, we observe the differences
and consequences that changing the heart-rate, position, or collection device have in
recognition.

The main core of the thesis is achieved with a private database. The data collection
was achieved with a professional ECG device, allowing to assume that the obtained results
only depend on the process, and not on the quality of the data. This database has a variety
of scenarios, representing cases from sitting down, standing and after exercise, including
collections in different days. These characteristics give a closer representation to real case
scenario that has not been previously observed in literature.

Once the main observations are achieved with this database, two new databases
are introduced. These databases get closer to the real scenario by using a smartband
prototype, adding a level of uncertainty to the results, as they could be affected by the
signal quality. In this case, the databases differ on the collection protocol, adding the
assessment of how controlled the collection must be to get acceptable results.

This thesis begins with an introduction to biometrics in chapter 2, in order to further
understand biometrics generally, followed by 3.1 which discusses the characteristics and
advantages of ECG biometrics. Then, chapter 4 deeply describes the applied databases,
as well as the prototype components. The following chapter 5 explains and details the
different tools and techniques that were needed throughout the different experiments.
The first experiments are collected in chapter 6, where we focus on the suitability of
the main database in recognition, and extended the final results. In chapter 7, we show
the capabilities of this modality to improve fingerprint verification. The initial verification

1



CHAPTER 1. INTRODUCTION

results get improved in chapter 8 by using more complex classification, while assessing
different approaches and observing their behavior. Chapter 9 collects the experiments
related to the use of Deep Learning for recognition purposes, as well as the evaluation of
the effects of including an extra day of enrollment. The last chapter regarding experiments
is chapter 10, which applied the obtained knowledge from previous chapters to the case
of using a smartband device in recognition. Finally, the last chapter 11 summarizes the
conclusions of this thesis and includes extra considerations for future works.
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CHAPTER 2. INTRODUCTION TO BIOMETRICS

2. INTRODUCTION TO BIOMETRICS

The words "biometrics" or "biometry" are defined in the dictionary as the process
by which a person’s unique physical and other traits are detected and recorded by an
electronic device or system as a mean of confirming identity. Therefore, the biometric
trait or modality refers to the characteristic that allows human recognition. Based on
these traits, the recording and feasibility vary.

2.1. Biometric signals, applications and modalities

Initially, biometrics were mainly used in criminal investigations. However, nowadays the
improvements in the involved technologies have spread the usage of biometric traits to
other fields such as forensic purposes (i.e.: body identification, criminal investigation,
kinship determination), governmental applications (i.e.: identity documents, border
control) and commercial transactions (i.e.: ATMs, building access control, phone locking,
online payments).

Every physiological or behavioral characteristic in humans has the potential of being
used as a biometric trait. The physiological traits collect all those characteristics that are
intrinsic to the human body, whereas the latter consist on the different ways to do common
actions. To be suitable for biometrics, they need to fulfill specific requirements: they
need to be present in every human (universality) but different enough among individuals
(uniqueness). The characteristic must be permanent over time with respect to the
matching criterion (permanence) and possible to measure quantitatively (collectability)
[7]. Fingerprint, face, hand geometry, palm print, vein, iris, ear, ECG and DNA are
physiological modalities, while dynamic and static signature, gait, voice or keystroke
form part the behavioral group.

In addition, when designing a biometric system, the chosen trait must be considered
based on the cost of collecting that data and its convenience, as well as the environment
the system would take part on. These and other factors can impact how easily accepted the
system is in people’s daily lives (acceptability), how difficult is to be forged or accessed by
fraudulent users (circumvention) and how fast and accurate the system is (performance)
[7]:

Even though some characteristics can be used in biometrics, not all of them have
been equally researched or reached to the same performances. In Table 2.1 there is a
comparison on the most widely spread biometric traits with a comparison among their
different requirements:
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Table 2.1: Comparison of different biometric traits according to [7]. H: High. M: Medium. L:
Low.
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Ear M M H M M H M
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Fingerprint M H H M H M M
Gait M L L H L H M

Hand geometry M M M H M M M
Hand vein M M M M M M L

Iris H H H M H L L
Keystroke L L L M L M M
Palmprint M H H M H M M
Signature L L L H L H H

Voice M L L M L H H

2.2. Biometric systems

Biometric systems and their different approaches are countless. However, their software
usually follows similar stages for their performance. There are different schemes in
literature to represent these stages, which vary according to the procedure: enrollment,
verification or identification. These three schemes are represented independently in [7],
and have been merged and modified accordingly to summarize in one represented in
Figure 2.1.

The three processes require the user-sensor interaction to collect the raw data. The
data is processed with heterogeneous tools in the feature extraction stage, to finally
achieve a reference that represents the user’s information. However, the differences in
each path aims to represent follows:

• Enrollment: the goal of this stage is providing the reference information. From this
data, there are two approaches:

– Distances: the features are stored in the references for further distance
comparison. Each user has their own reference. The number or type of
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Figure 2.1: Main stages for a biometric system in enrollment, verification and identification.
Arrows coming out of storage are retrieved references, whereas 1 indicates only one retrieved
reference and N refers to all the stored references.

references for one user is defined by design.

– Models: the features are applied as training data to create a model. If only one
model characterizes the whole set of enrolled users, it is called closed-set, as it
does not allow new users to come in without re-training the model. If, on the
contrary, every user has their own model, the system is open-set, as enrolling
new users in the system would not require extra changes.

• Recognition: analogously to the enrollment, the recognition process needs to
specify how many samples are part of a recognition attempt. This parameter is
determined by design or requested by the system on-the-go. When more than one
sample is considered as part of one attempt, the criteria for the decision needs to be
properly designed to enhance the performance. There are two types of recognition:

– Verification: confirms whether or not the user is who he/she claim to be in the
provided ID. This procedure only requires the retrieval of one reference from
the database, or only one comparison for the model. This process summarizes
into a binary decision: valid or not.

– Identification: searches for the match (if any) of the user’s reference, so the
ID information is not required. The reference retrieval consists of as many
references as users are enrolled, carrying out a comparison for each one of
them. The final decision is an ID assignation or no assignation if the system
considers that the user’s data is not enrolled.

2.2.1. Sensor

Every biometric system starts with a sensor that collects the biometric data of the user.
These sensors are specific to every biometric trait, and need to be fast and feasible in the
acquisition. Data should preferably be consistent independently of the circumstances of
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its collection. In addition, to improve its acceptability, the sensor should be easy to use
by the average user of the system.

Depending on the modality, the sensor would have a specific degree of intrusiveness.
In modalities such as iris, the user takes part on more inconvenient recognition processes.
On the contrary, fingerprint or face biometrics result in very easy and non-intrusive
collections, obtaining more acceptability.

These issues are often related to the trade-off between security and convenience. In
very secure environments is preferable to use inconvenient but more feasible processes,
such as those involved in iris. However, in scenarios where convenience is more relevant
than security, such as phone unblocking, the recognition process needs to be as simple as
the one in fingerprint, which provides slightly less security than iris, but is compensated
with a non-intrusive sensor.

2.2.2. Signal pre-processing and feature extraction

The pre-processing block optimizes the signal for the following procedures. The main
goal is to increase the Signal-to-Noise Ratio (SNR), providing more information about
the collected data and getting rid of unwanted information. This stage is usually formed
by frequency filters or more sophisticated systems to detect more complex noise in the
signal.

The feature extraction module has the objective of obtaining signal features that are
discriminant and help distinguishing the individual from any other potential user. The
goal in this stage of a biometric system is to facilitate the next comparison process. The
feature extraction stage can have some or all the following steps:

• Filtering: average, median or frequency filters.

• Transformations: Wavelets, Fourier Transform, thresholding.

• Feature detection: location of specific features such as minutiae in fingerprint or
face feature location for face biometrics.

• Feature selection: discarding of the least relevant features to reduce data and avoid
mistakes in classification.

2.2.3. Comparison

Up to this stage, enrollment and recognition data are affected by the same procedures,
with no difference. However, when proceeding to compare, the data gets affected
differently. For distances in enrollment, the obtained reference/s go to storage with the
corresponding user’s ID. In the case of modeling, the data is modeled with the remaining
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users (closed-set) or independently (open-set) and the model is stored. These metrics are
further referred in ISO 19795 [8].

Each attempt in recognition is specified in design, as they can be formed by one or
more samples, dealing with the distances or scores in different ways. For identification,
the new data gets compared against the reference data from all the users already enrolled
in the system. Some identification systems require meeting a given criterion like a
threshold; others consider a given number of best compared candidates regardless of
threshold. Usually, the valid decision is determined by the reference ID that results in
the highest similarity or lowest distance. To characterize an identification system, the
False Negative Identification Rate (FNIR) and False Positive Identification Rate (FPIR)
are usually obtained based on the threshold. The rate of correct identifications is given by
the accuracy in Equation (2.1).

Accuracy =
Num.o f correctidenti f ications

Num.o f comparisons
(2.1)

In the case of verification, data is only compared against a given ID previously
specified, as represented in red arrows in Figure 2.1. As the corresponding result is
obtained after comparing against one user, there are no comparative criteria to take the
decision like it happens in identification. This issue is solved by using a threshold
value that determines whether the sample is valid or not. The two types of errors are
represented in rates, where the false negative rate is the False Non-Match Rate (FNMR)
and the false positive rate is the False Match Rate (FMR). The system’s performance has
analogous metrics, False Accept Rate (FAR) and False Rejection Rate (FRR), that follow
Equations (2.2 and 2.3). These equations depend on both metrics FNMR and FMR, but
also Failure-to-Acquire Rate (FTAR). When the FTAR is unknown or not considered,
FRR = FNMR and FAR = FMR. These values vary depending on the selected threshold
value, providing as many results as values are given to the threshold. The minimum error
is given when FNMR = FMR, which is called the Equal Error Rate (EER). These results
can be summarized in graphs of FNMR vs FMR or in Detection Error Trade-off graphs,
based on probabilities as showed in Figure 2.2. However, the final threshold for the real
system is determined in design based on these evaluations. Depending on the application
of the system, the trade-off between FNMR and FMR needs to be selected. Having very
discriminant thresholds may lead to more attempts that result inconvenient, and on the
contrary it may result in a very inefficient result.

FAR = FMR(1 − FT AR) (2.2)

FRR = FT AR + FNMR(1 − FT AR) (2.3)
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Figure 2.2: Error rates in a biometric system as given in [7].
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3. ECG AND ITS USE AS A BIOMETRIC MODALITY

3.1. Introduction to the ECG

The complex functionality of the heart can be summarized as a periodical contraction that
pumps the blood through the body. The blood gets oxygenated in the lungs and flows
into the general circulation, providing the rest of the body with the required oxygen.
This pumping activity propagates through the heart muscle cells, whose main function is
generating and propagating electrical currents.

The cardiac impulse begins in the sinoatrial (SA) node and travels towards the
atrioventricular (AV) node, producing the atrial depolarization resulting in the contraction
of the heart. When the AV node is reached, there is a brief pause and the signal
disseminates through the bundle of His, which is formed by left and right branches. The
left branch propagates the impulse towards the ventricles through the Purkinje fibers,
producing the ventricle contraction [9].

The Electrocardiogram (ECG) is a graph that represents this electrical heart activity
with respect of the time. The most typical representation is formed by 3 waveforms which
are represented in Figure 3.1 and have the following meaning:

• P wave: corresponds to the atrial depolarization and is the result of the superposition
of both right and left atrium. Its repolarization is overlapped by the following QRS
complex. The PR interval lasts 0.12 to 0.20 s [9].

• QRS complex: represents the current that causes the ventricular contraction or
depolarization, and it is more noticeable in the ECG as it implies more voltage
than the atrial depolarization. A normal QRS has a duration up to 0.12 s [10].

• T wave: belongs to the ventricular repolarization. The QT interval has a duration
of 0.35 to 0.43 s.

3.1.1. Lead-based systems

The first ECG records were taken in by Willen Einthoven, in a work that was completely
published in 1906 [11]. Einthoven modified the string galvanometer to measure the
heart’s electrical activity. The electrical currents were conducted through a short and
thin silver-coated quartz filament between two electromagnets. The filament produced
an electromagnetic field that was strong enough to move a string that could be captured
in a photographic paper. He created the famous Einthoven’s triangle, where leads I, II
and III were defined. The 12-leads were derived from these points, forming the most
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Figure 3.1: Scheme of an ECG waveform and its relevant intervals.

common technique for ECG acquisition for medical purposes. The different leads are
useful because, even though the general ECG pattern is constant, some of its waveforms
are transformed depending on where it is measured from. As a result, the ECG gets more
precision as some heart issues get better reflected in certain leads. The angle acquisition
is represented in Figure 3.2 and is classified into two types [12]:

• Limb leads: require four sensors on right arm (RA), left arm (LA), right leg (RL)
and left leg (LL). RL behaves as a ground.

– I, II and III: also called standard bipolar leads. They measure voltages in pairs
LA-RA, LL-RA and LA-LL respectively.

– aVR, aVL, and aVF: named after augmented unipolar leads. These lead do
not require ground references, as they represent relative voltages with respect
to the extremities.

• Chest leads (V1, V2, V3, V4, V5, and V6): also denominated precordial leads. Six
sensors are placed on different parts of the chest, requiring very precise positioning
with respect to the ribs. An extra sensor acts as a ground reference.

The Vectorcardiogram (VCG) was derived from the 12-leads and was highly
researched between the 1950s to mid 1980s [14]. The Frank leads system is the most
famous VCG acquisition. This system obtains 3 orthogonal leads: X, Y and Z with 8
sensors represented in Figure 3.3. Two of the sensors are positioned on the back, which
is uncomfortable for ambulatory acquisition and one the reasons why this system has lost
popularity in the last decades [14].
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Figure 3.2: Representation of the 12-lead vectors. Solid arrows represent the limb leads and the
discontinuous arrows correspond to the chest leads [13].

3.1.2. Medical monitoring

Even though the 12-lead is the most well-known type of ECG acquisition, these leads
are limitless. Multichannel ECG (MECG) provides different leads that may differ from
those in the 12-leads. Sensors are placed based on body mapping by using t-shirts,
belts or vests. Both techniques are applied for short-term ECG monitoring which allows
to observe conditions that are frequently present in the ECG. However, if the cardiac
pathology is only observable in specific periods of time, the diagnostic could be done
through ambulatory monitoring. These acquisitions usually last up to 24-48 hours and
can be done out of the hospital, as they are usually carried out with a portable Holter
monitor, represented in Figure 3.4. Nonetheless, these devices are uncomfortable for
the user, as they require wires and wearing the device for the long data acquisition [16].
Alternatives for in-home and ambulatory recording have arisen due to the inconvenience
of Holter monitors. Depending on the aim of the monitoring process, different devices are
already commercialized to facilitate the process [17]:

• Patch ECG monitors: allow long-term recordings and are wireless. In the case of
Zio AT patch [19], recordings can last up to 14 days with one lead and it provides
alerts and reports that are transmitted daily to the doctor.

• External loop recorders (ELR): only record segments with specific duration fixed
by the patient. The sensor system-on-chip by Imec [20] has 3 channels and it is
implemented with instant transmission and can be worn up to 30 days.

• External event recorders: are activated by the patient after a symptomatic event.
These type of monitors do not demand long lasting batteries or big storage capacity,
as they do not provide continuous monitoring. Alivecor’s Kardia [21] is one of the
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Figure 3.3: Representation of the Frank lead vectors and sensor placement. X goes from right
arm to left arm. Y goes from neck to feet. Z goes from front to back [15].

most well-known monitors in this category, which requires an attachable sensor that
communicates with a smartphone, in order to send and visualize data.

These devices must minimize the measured noise and its impact. The noise added
when measuring the heart’s activity with a sensor is produced by three main sources:
baseline wanders and drift, power-line interference and muscle artifacts [22]. The baseline
wander is related to the impedance variation between the electrode and the skin, which is
a result of the user’s breathing or subtle movements [23]. This type of noise translates into
abrupt movements drastically affect the signal. Power-line interference ranges between
50 and 60 Hz whereas the baseline wander is usually between 0.2 and 0.5 Hz. Moreover,
the hearts is surrounded by other muscles and also produce electrical pulses. This
independent activity also propagates to the skin, adding undesired information. The
muscles provide high frequency artifacts with frequencies above 100 Hz [24]. Other
noises are originated by human mistakes, such as sensor displacement when interchanging
electrodes, which produce reverse amplitudes; or not precised positioning in the chest
leads, as the rib cage distortions the signal [25].

The ECG was first used as a biometric trait in the early 2000s [26]. For 20 years it
has experimented a popularity increase provoked by the improvements in processing and
computing techniques. This section discusses ECG signals’ suitability and characteristics
in the field of human recognition.
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Figure 3.4: Representation of a Holter monitor with 5 sensors (represented in red). The gray area
is the monitoring device, which is carried by the user for the whole monitoring period [18].

3.1.3. Suitability as a biometric trait

The monitoring of the heart’s activity was first intended to be helpful in medical diagnosis.
However, the nature of the ECG meets the requirements of a potential biometric signal.
Every alive individual can produce an ECG signal thanks to the functioning heart. It
can also be measured with non-intrusively and precisely with electrocardiographs. The
information provided by the ECG is variant among individuals due to the different factors
that take place in the electrical propagation of the heart’s activity. Age, gender, weight and
the shape of the chest are some factors that make each ECG unique [27]. Furthermore,
the ECG has been proven as a long term stable signal up to several years [28].

3.1.4. Advantages and challenges

A biometric system based on ECG provides extra security: the user must be alive in
order to produce the required electrical impulses, which complements the modality with
an intrinsic life-proof detection. In addition, data is not easy to collect without the user’s
cooperation because it is not visible and requires specific sensors to be observed. Even if
the biometric data is finally acquired without permission, its replication is an added issue
which complicates forgery. However, this last characteristic also presents a challenge for
correct recognition. The ECG has constant width and amplitude-wise transformations
caused by the heart rate variations and other physiological scenarios, such as pathologies
or the user specific conditions. These condition make more difficult to detect the repetitive
pattern in every cycle, isolating the circumstantial variations.
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3.2. State of the art

This section presents and discusses the approaches that can be found in the existing
literature. They are divided according to the different stages involved in the process as
indicated in Figure 2.1.

3.2.1. Sensors

Section 3.1 referred to the types of ECG acquisitions, which involve several sensors
and a specific and precise placement. This requirements would not be user-friendly
in a biometric recognition environment, as it requires expertise and time for the user.
Therefore, it is convenient to simplify the sensor or capture device to only collect one
lead, choosing the most representative one. The most used in biometrics is the type I
lead, as it only involves sensor placement in both arms, involving fingers and/or wrists
[29]–[32].

The device also must be precise enough to capture the P-QRS-T waves with a clear
resolution. The fastest part of the cycle is the QRS complex, which usually takes 0.12 s,
meanwhile P and T are slower waveforms. The selection of the sampling frequency does
not gravitate to a clear value. Some approaches establish this value in 1 KHz [26], [33]–
[35], whereas successful results have also been obtained under lower sample frequencies
such as 300 Hz [36], 360 Hz [37] and even 125 Hz [38].

The sample frequency selection tends to select low frequencies in these type of
applications as it directly impacts the processing and storing technology. Higher
frequencies require more powerful hardware regarding those issues, and limit the
performance in devices with lower capabilities such as mobile phones. This choice does
not benefit approaches that focus en individual cycle (fiducial) characteristics, as the
resolution is more relevant in these cases. However, global (non-fiducial) features are
not as affected by the resolution. As mobile devices are proven to add noise and decrease
the signal quality [39], selecting non-fiducial features would benefit the system in these
cases, as they do not consider specific data points that may have gotten distorted.

The selection of capture devices in literature is heterogeneous, as the selection varies
between using commercial devices or prototypes. The most common commercial devices
are the following, which are divided into non-portable and portable devices:

• Non-portable devices:

– BioPac MP150 [40], which is used for one of the databases in this thesis.

– BioPac Remote Monitoring [41] for remote ECG acquisition.

– Vernier EKG [42], which allows 3-lead ECG and surface EMG.

• Portable devices:
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– AliveCor’s Kardia [21] which operates on smartphones and does 30 s signal
collection.

– ECG Savvy [43] is a long term event recorder with medical purposes.

– FitnessShirt [44], a vest with incorporated sensors for ECG an respiration
recording.

Prototype designs are frequently based on disposable electrodes with default
configuration. When referring to type I lead or its modifications, devices are employed
using the thumbs, the wrists or hand palms. Even though these devices are not as
optimized as the commercial devices, they are flexible and can be adapted to the point
of being portable.

The recent increment in the number on works related to ECG biometrics have
increased the interest on developing portable ECG devices, leading to commercial releases
focused on mobile measurements. The ECG Check by Cardiac Designs [45] is formed
by two plates to place the fingers of both hands, as observed in Figure 3.5, and connects
to the smartphone through Bluetooth. The goal of this solution is monitoring the ECG to
detect potential cardiac problems, but does not allow to extract the raw data that has been
collected.

Figure 3.5: Example of use with ECG Check by Cardiac Designs [45].

Another commercial ECG capture device is the Nymi’s band [46] in Figure 3.6, which
is a wearable smartband whose objective is the user’s recognition. The device gets linked
to a smartphone or computer, allowing to unblock the device. As it happens with the
ECG Check, this smartband does not allow to obtain the ECG or any parameter in the
authentication system.
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Figure 3.6: Nymi wearable smartband [46].

3.2.2. Existing databases

Some authors do not include data collection in their works, as it is a non-trivial procedure
with complex logistics. Thanks to the publicly available ECG databases, the field of
ECG biometrics was created and has been able to improve since then. These databases
are collected in PhysioNet [47], which provides large collections of physiological and
clinical data. The most well-known databases in literature are summarized in Table 3.1.
These acquisitions are mainly characterized by long recordings, as the collection focuses
in education about cardiovascular diseases.

Depending on the database, the collection reports miss some data in the database
description, as the type of capture device or sensor used. Most of the information collects
long and continuous recordings of the user, which invalidate the option of developing a
recognition system. The option of validating these databases is also discarded, as well as
comparing the obtained results with other specific databases, due to significant differences
in the procedure.

The fact of considering users with cardiovascular diseases implies limitations
when applied to biometric recognition. The common population are not affected by
cardiovascular diseases, resulting in a lack of representation in these public databases.
Moreover, there are possibilities that the system could only be detecting the pathology
instead of the user.

As a relatively new biometric trait, ECG does not have quality standards to be used
in human recognition. The only found work regarding the standardization of the quality
assessment was done in [48] and has not been confirmed by the scientific community.
Moreover, the public databases have very heterogeneous parameters and the results are
not really comparable.
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From all the public databases, there is only one specifically developed for human
recognition purposes: the ECG-ID database [49]. However, this database is not
homogeneous regarding the number of samples per user and the time of capture, which
can vary between the same day to up to 6 months between visits. In addition, it does not
include specific scenarios that could modify the heart rate.

Table 3.1: Summary of characteristics for some of the public ECG databases available. P: Proto-
type. C: Commercial. -: Unknown.

Database Users Records Lead Device Duration Notes
ST-T [50] 79 90 2 leads - 2 h Myocardial ischemia

L-T ST [51] 80 86 Lead combinations C 21-24 h ST segment changes
MIT-BIH [52] 47 48 Mostly lead II + V1 C 30 min Mixed (40% arrhytmia)

PTB [53] 290 549 12-leads + Frank leads P 38.4 - 104.2 s Several pathologies
ECG-ID [49] 90 310 Lead I - 20 s No pathologies. Aimed for biometrics.

It is common to observe works that use the same public database. The MIT-BIH
has been broadly used, but the number of users vary among works. Some authors used
20 users [54], [55] or 18 [56] and some cases apply the entire database [57] or mix it
with others like PTB [58]. In fact, the PTB database is also a common selection in
public databases. However, the number of subjects selected from it is also heterogeneous,
ranging from 13 [59], 14 [35] and 20 [33] to 74 [28].

Custom databases are recurrent in literature, as they allow to focus on specific
contexts. Some authors did the capturing using prototypes [54], [55], [60]–[63], others
achieved it with commercial devices [38], [39], [64]–[67] and others selected both
approaches [68], [69].

3.2.3. Signal pre-processing and feature extraction

The data heterogeneity in the published results is high, so there are not clear, common
paths among different research works. However, there is a clear differentiation between
two types of features: fiducial and non-fiducial.

Fiducial features are those based on detecting certain points in the signal regarding
the cycle shape, i.e.: P wave or Q, R and S points. These points act as references for
further calculations, such as amplitudes or temporal distances between them. On the
contrary, non-fiducial features are based on the entire segment of data, and manipulates
the information through specific transformations such as Wavelets or covariance matrices.
These approaches are based on the assumption that all cycles have the same type of
pattern.

Non-fiducial features usually result in better performances than fiducial features.
However, some authors proved otherwise in [70], which is part of an earlier work in
the field. The different results in these approaches show the lack of universality in the
databases.
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The earliest approaches in this biometric trait date from the early 2000s, and applied
fiducial features. The features were based on different variations of correlations i.e.:
correlation matrix [26], average correlation [71] or stepwise canonical correlation [54],
[55]. Even though these correlation-based features did not lose presence in the following
years, new techniques for feature extraction appeared. The Discrete Cosine Transform
(DCT) is applied both for feature extraction and signal denoising [33], [35], [58],
[70], [72]. Wavelet transforms have been similarly applied for signal conditioning and
feature extraction [37], [73], [74]. Other approaches throughout literature regarding noise
removal, Moving Average (MA) filters [75] and Convolutional Neural Networks (CNNs)
[76] are two of the alternatives. However, the most recurrent tool is the band-pass filter
[77].

In this stage, some works also apply data reduction and discriminant analysis such as
Linear Discriminant Analysis (LDA) [54], [55], [59], Independent Component Analysis
(ICA) [37] or Principal Component Analysis (PCA) [32].

3.2.4. Comparison

The comparison stage is not different in terms of the numerous alternatives there are in
literature. The earlier approaches consisted on template comparison based on different
distance metrics. One of the most recurrent ones is the Euclidean distance [28], [35],
[54], [78] but Hamming and Wavelet distances are also considered [39], [60], [79].

Another common solution is based on data modeling. To achieve this, two algorithms
have been the most selected by authors [28], [80]: Support Vector Machines (SVMs) [57],
[62], [67], [81], [82] and k-Near Neighbors (k-NN) [38], [56], [58], [66], [82]. However,
in the last decade, Artificial Neural Netowrks (ANNs) have increased their popularity
[65]. One of the simplest algorithms in the field is the Multilayer Perceptron (MLP)
[56], [65], [83], which evolved into more sophisticated architectures such as Deep Neural
Networks (DNNs), which have the potential to solve problems in SVM and k-NN [77].

Since 2017 the research on ECG biometrics has leaned towards the use Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). CNNs are applied
in several ways, such as multiscale 1D or 2D CNN [84]–[86] and the most common
approach for RNNs is the Long Short-Term Memory (LSTM) networks, given the
memory characteristics that benefit ECG classification [87]. In these cases, feature
transformation becomes expendable, even though the classification can be achieved with
extracted features.

Considering all the possible parameters that have taken part in literature, determining
the average recognition results in ECG biometris is not possible. Some works focus on
verification while others aim for identification, and some works report reaching 100% of
accuracy in the latter. Typically, Equal Error Rates (EER) in verification range between
0% [88] to 14.3% [89] depending on the circumstances. The more the evaluations
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approach to a real biometric environment, the higher the EER tends to be. Including users,
lowering the data fidelity and the processing, are parameters that impact these results.

3.3. Conclusion

There are motley solutions regarding ECG biometrics. Each one approaches the issue
differently, from the used capture device to the data segmentation process. These lead to
different results that cannot be compared with each other by these values, but they require
more contextualization.

A desirable approach should consider public databases in order to facilitate
comparisons between works. However, the current public databases are not representative
enough of a biometric environment, and the developed systems cannot be considered
totally feasible for a real application. Those databases that try to be more representative
of a biometric context, are not public due to data privacy restrictions. Therefore, these
results cannot be tested nor improved by other authors, decreasing its feasibility. In
addition, there are not commercial devices suitable for recognition that allow to obtain
the ECG signal, which also complicates the development of realistic databases.

As a result of the different data that takes part in literature, the techniques and tools to
solve this issue are also variable. It is not possible to confirm which type of classification,
fiducial detection or features works best for ECGs, as the results rely heavily on collection
parameters. It would be logical to obtain worse results from a wearable prototype if
it considers less data than another public database collected with a professional device.
However, these results cannot be checked by the scientific community, and can only be
used as suggestions for other data or capture devices.

In conclusion, the results of the state of the art must be carefully assessed to consider if
they are suitable for our purposes or not. Even though some approaches may be reported
as precise and useful in some cases, that could not happen in another specific conditions. It
is clear that the field of ECG biometrics requires some specific guidelines and frameworks
to allow comparisons between works. In addition, the work towards data publication
regarding ECG biometrics should also be prioritized, even though the existing legislation
do not facilitate this task.
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4. SENSORS AND DATABASES

The present chapter collects all the related information to the three private databases
that were used in this thesis. The BMSIL and BSMIL-SB databases were externally
collected,while the GUTI database was collected locally.

4.1. BMSIL database

The BMSIL database was collected in the Biomedical Signal and Information Laboratory
(BMSIL) at Seoul National University (SNU). The original database collected a variety
of bio-signals such as Electroencephalogram (EEG) and Ballistocardiogram (BCG).
However, the present work has only required two of the signals: ECG and fingerprint.

4.1.1. Hardware

The following, is a summary of the features and configurations of every hardware device
used according to the collected signal:

• Fingerprint:

– Device: Hamster I by Nitgen.

– Resolution: 248x292 pixels (500 dpi).

• ECG:

– Device: ECG100C with MP150 by Biopac.

– Electrode displacement: left wrist (V+), right wrist (V-), right wrist (GND).

– Electrode type: wet Ag-AgCl.

– Signal bandwidth: 0.5 - 35 Hz.

– A/D converter: 16 bits within ±10 V and 1000 gain.

4.1.2. Acquisition protocol

The BMSIL database is formed by 105 healthy users with gender and age proportions
referred in Table 4.1. The age range gets wider as the age increases because the
number of participants decreases as age increases. The database was collected in a
university environment, where the majority of the population are students. Considering
under-graduate and post-graduate students, these ages fluctuate between 18 and 30 years.
This age gap was divided into two to add more resolution. The next range encompasses

20



CHAPTER 4. SENSORS AND DATABASES

an age gap of 10 years when the last range is of 20, as the representation keeps decreasing.
The female to male ratio is close to half the total, but the distribution based on age and
gender is heterogeneous. There is a predominance of people from 25 to 30, followed
by people from 18 to 24, getting a total of more than 78% participation in the database,
whereas people older than 41 only constitute less than 5% of the total data.

Table 4.1: Number of users based on age range and gender for the BMSIL database. The age
ranges get wider as the number of users in the range decreases. Proportions are represented in %
with respect to the total users and are rounded to two decimals.

Gender Female Male Total
Age range Num. Users Proportion (%) Num. Users Proportion (%) Num. Users Proportion (%)

18-24 23 21.90 16 15.23 39 37.14
25-30 21 20.00 23 21.90 44 41.90
31-40 6 5.71 11 10.48 17 16.19
41-60 4 3.81 1 0.01 5 4.77
Total 54 51.42 51 48.58 105 100

For the fingerprint data, every user provides two captures of all fingers from left and
right hand, in a total of 10 fingers. The ECG signals were acquired simultaneously, but
independently of the fingerprint data. The data collection was divided in two different
stages, providing two subsets extracted from the BMSIL database. These sets of data
follow the same general scheme, as the collection is taken in two different days (D1, D2)
with a separation of one day to two weeks. In each day, there are two different visits (V1,
V2), specially selected to affect ECG signals. Each of the visits is repeated 5 times with
a 70 s duration of proper signal acquisition and extra adjusting time, depending on the
case. For all the signal acquisitions, the first and last 5 seconds are truncated, reducing
each signal to 60 s reducing the probability of having motion artifacts.

S1

This first subset (S1) was planned to observe the day-to-day variations. In this case, visits
1 and 2 only differ in the user having their eyes open or closed. However, recent works
with this database did not take these conditions into consideration [90]. Therefore, visits
1 and 2 are considered as visits taken under the same conditions, providing two different
sets of data. The steps for this acquisition process are the following:

1. Sit and adjust: 20 seconds.

2. Visit 1 (V1): resting, sitting down 70 s.

3. Visit 2 (V2): resting, sitting down 70 s.

4. Adjust: 30 s.

5. Repeat 2-4.
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The data was collected from 50 of the users. The corresponding age and gender
proportion is specified in Table 4.2. This initial stage also reflected a predominance of
the 25-30 age range, with a 54% of the data in S1. However, the male proportion was
greater than it was in the entire BMSIL database, with a 60%.

Table 4.2: Number of users based on age range and gender for subset S1. Proportions are repre-
sented in % with respect to the total users in S1.

Gender Female Male Total
Age range Num. Users Proportion (%) Num. Users Proportion (%) Num. Users Proportion (%)

18-24 6 12 4 8 10 20
25-30 10 20 17 34 27 54
31-40 4 8 8 16 12 24
41-60 0 0 1 2 1 2
Total 20 40 30 60 50 100

S2

The second subset of the BMSIL, S2, was collected to focus on ECG variations related
to position and heart rate variation. With the difference of S1, visits in this case were not
taken one after the other in each repetition. On the contrary, repetitions on the first visit
were finished before collecting data related to the second visit of the day. Visit 1 on each
day provided information about the user being resting while sitting down. Visit 2 in the
first day focuses on changing the user’s position from sitting down to standing up. In the
second day, the user exercises for 5 minutes on a stepper to increase their heart rate up to
130 bpm, being their data acquire after sitting down. For clarification, the followed steps
were:

• Day 1 (D1):

1. Sit and adjust: 20 s.

2. Visit 1 (V1): resting, sitting down 70 s.

3. Adjust: 20 s.

4. Repeat 2 and 3.

5. Stand and adjust: 20 s.

6. Visit 2 (V2): stand up 70 s.

7. Adjust: 15 s.

8. Repeat 6 and 7.

• Day 2 (D2):

1. Sit and adjust: 20 s.

2. Visit 1 (V1): resting, sitting down 70 s.
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3. Adjust: 20 s.

4. Repeat 2 and 3.

5. Exercise: 5 min.

6. Sit and adjust: 20 s.

7. Visit 2 (V2): sitting down after exercise 70 s.

8. Adjust: 15 s.

9. Repeat 7 and 8.

These protocols resulted in two sitting down visits, one standing visit and another
one after exercising. These procedures were achieved with the remaining 55 users in
the BMSIL database, with gender and age proportions collected in Table 4.3, where the
female to male proportion were the opposite as in S1, with almost 62% of females. In this
subset the age range of 25 to 30 loses presence in advantage of the range 18 to 24, which
composes more than half of the database.

Table 4.3: Number of users based on age range and gender for the subset S2. The age ranges get
wider as the number of users in the range decreases. Proportions are represented in % with respect
to the total users and are rounded to two decimals.

Gender Female Male Total
Age Num. Users Proportion (%) Num. Users Proportion (%) Num. Users Proportion (%)

18-24 17 30.91 12 21.82 29 52.73
25-30 11 20.00 6 10.91 17 30.91
31-40 2 3.63 3 5.45 5 9.09
41-60 4 7.27 0 0 4 7.27
Total 34 61.81 21 38.18 55 100

For easier understanding, Table 4.4 summarizes the different experiments in every of
the subsets, as well as the naming criteria that is followed in the rest of the manuscript.

Table 4.4: Summary of days (D1, D2) and visits (V1, V2) for every BMSIL subset of data (S1,
S2). R: Resting, sitting down (S1). R1: Resting, sitting down in D1 (S2). R2: Resting, sitting
down in D2 (S2). S: Standing up. Ex: after exercise.

Day 1 (D1) Day 2 (D2)
Visit 1 (V1) Visit 2 (V2) Visit 1 (V1) Visit 2 (V2)

S1 R R R R
S2 R1 S R2 Ex

4.2. ECG Smartband Databases

To avoid the inconvenience of operating with devices that require long periods of adjusting
and placement, wearable or mobile devices are key in biometrics. Nowadays, smartbands
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are commonly worn and its usage has been widespread in the last years. However, it is
not applied to ECG, as its acquisition is mainly required for medical purposes and as a
consequence, demands more precision. To the best of the author’s knowledge, there is
only one commercial smartband that collects ECG data, the Nymi’s band [46], and it does
not allow to retrieve the raw data as it is managed in software for personal verification.
Due to the lack of commercial devices that facilitate raw data retrieval, the smartband
data was collected with help of specific hardware, which has not been commercialized,
completing two different databases and protocols.

4.2.1. Hardware

The goal device must be wireless and compatible with widely spread Operative Systems
(OS) such as Windows, Android or iOS. As this sensor was conceptualized as a
smartband, the only measurable lead was the type I, which only consider the limbs. In
order to measure the voltage between left and right arms, the smartband had to contain
two different sensors, each one being in contact with each limb. The process could be
achieved by locating one of the sensors in contact with the left wrist, and an external
sensor, on the opposite side, which would require to position the right finger on it.

This smartband concept is not unfamiliar nowadays, as the usage of this type of
devices is getting more and more accepted in society. In addition, it requires the user
to do a conscious verification, so the data cannot be measured without consent. However,
the process itself requires full arm mobility so it would not be recommended in specific
environments such as driving or situations where the user may be carrying weight, such
as grocery bags or hand luggage.

Electrodes

The electrodes must have good conductivity and reduce impedance with the skin. They
must be small enough to fit in the device and not be uncomfortable to wear on the
wrist. The Figure 4.1 represents an example of commercial electrodes applied in ECG,
surrounded by an adhesive that facilitates its fixation. However, the use of the smartband
required to apply pressure on the external sensor, which fixes the internal one to the skin,
not requiring the addition of the adhesive.

Amplifier

The ECG signal was amplified with an operational amplifier which was set in a simple
configuration represented in Figure 4.2. The chosen amplifier was a LM358-N by Texas
Instruments.
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Figure 4.1: Example of a commercial ECG electrode [91].

Figure 4.2: Simple amplification scheme.

Wireless communication

The data transfer must be wireless and universally compatible, therefore only WiFi and
Bluetooth (BT) are considered. The 4.0 version is considered low energy (BT LE), with
improved security connections in BT 4.2 [92]. This factor constraints the microcontroller
unit (MCU) selection, as discussed in the following paragraphs.

A/D converter

Databases throughout literature implement sampling frequencies from 250 kHz to 1000
kHz. Sampling at higher frequencies allow to extract data with higher precision, so 1000
kHz is preferred as long as the MCU allows it. There is not a special requirement for the
A/D converter, which would be determined by the chosen MCU.

Microprocessor

In addition to the previous characteristics, the MCU is preferred to require small batteries
for an ergonomic smartband adaptation and convenience. Therefore, the selected MCU
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must have a low energy consumption. The chosen MCU is the model C2540R2F by Texas
Instruments with, but not limited to, the following features:

• ARM Cortex-M3 at 48 MHz.

• 12 bits A/D converter.

• Maximum sampling frequency of 200 kHz.

• Ultra-Low Power Sensor with possible autonomy of 2KB SRAM.

• AES-128 security module.

• Low energy characteristics:

– Power from 1.8-3.8 V.

– Active-Mode RX: 5.9 mA.

– Active-Mode TX at 0 dBM: 6.1 mA.

– Active-Mode TX at +5 dBm: 9.1 mA.

– Active-Mode MCU: 61 µA/MHz.

– Active-Mode Sensor Controller: 0.4 mA + 8.2 µA/MHz.

– Standby: 1.1 µA.

– Shutdown: 100 nA.

• Bluetooth Low Energy compatibility with 4.2 and 5.0 versions.

Battery and power supply

The device was estimated to be used 4 times a day on average, with a total 12 seconds
of activity and 40 seconds in stand-by, hibernating the remaining time. Considering the
BT requirements, power should provide 410 mAh. Battery dimensions are also limited to
those in the device, which are 17x35 mm2. Considering these constraints, the available
commercial devices are limiting. The final choise was a battery by Adafruit with 350 mAh
and dimensions 36x20 mm2. A final charging circuit was added, based on the USB-C
technology. The circuit is also specifically made by Adafruit for the selected battery.
Both components can be observed in Figure 4.3.

Final prototype

The final prototype was assembled by Upines, based in South Korea. The result has 12x35
mm2 dimensions. The main module is represented in Figure 4.4. Electrodes and battery
were attached with the addition of a plastic band to fix the device to the wrist and make it
easier to use. The final prototype and a usage example are shown in Figure 4.5.
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Figure 4.3: Battery and charging circuit connected [93].

Figure 4.4: Main module for the prototype, without electrodes and battery.

4.2.2. Acquisition protocols

Two different databases were acquired using the smartband prototype: the BMSIL-SB
and the GUTI database. The stages in each protocol differ substantially and are further
explained in the following paragraphs.

BMSIL-SB Database

The first database collected with the smartband prototype was also collected by BMSIL,
and included fingerprint acquisition with the same device and protocol as in section 4.1.
The database was formed by 206 users from 18 to 68 years old, with age and gender
distributions summarized in Table 4.5. Users are generally healthy, with the exception of
4 cases of Premature Atrial Contraction (PAC), which represents less than 2% of the
database. In this case, the presence proportion of users from 18 to 30 is even more
noticeable than observed in the previous database.
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Figure 4.5: Final prototype and usage example.

Table 4.5: Number of users based on age range and gender for the BMSIL-SB database. The age
ranges get wider as the number of users in the range decreases. Proportions are represented in %
with respect to the total users and are rounded to two decimals.

Gender Female Male Total
Age Num. users Proportion (%) Num. users Proportion (%) Num. users Proportion (%)

18-24 53 25.73 47 22.82 100 48.55
25-30 30 14.56 52 25.24 82 39.80
31-40 8 3.88 8 3.88 16 7.76
>40 5 2.43 3 1.46 8 3.89

Total 96 46.60 110 53.40 206 100

In opposition to the initial BMSIL database, the BMSIL-SB database was focused on
obtaining data while resting and after exercise, without different day acquisitions. The
proper ECG capturing in each session lasted 9 s. The number of sessions per user varies,
ranging between 4 to more than 8. The majority of users presented from 5 to 8 sessions,
as observed in Table 4.6. The different scenarios are defined as follows:

• Rest: the left hand, where the smartband is placed, is steady while the right hand’s
index is executing the action. The technician evaluates when the user is calmed and
quiet to capture the signal, and the process is repeated accordingly.

• Exercise: the user exercises during 5 minutes in a stepper, rising between 40% and
50% the heart rate. The signal is captured afterwards, when the user sits down, with
a steady hand. This process is done under time constraints to avoid the heart rate
reaching its resting state.

Table 4.6: Distribution of number of sessions among the users, with their corresponding propor-
tion.

Num. sessions 4 sessions 5-8 sessions > 8 sessions
Num. users 2 188 16

Proportion (%) 0.97 91.26 7.77
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GUTI Database

This database was collected in the University Group for Identification Technologies
(GUTI). The main motivation behind the development of this database was to extend the
strong points in BMSIL database in smartband while adding extra considerations. The
BMSIL database only considered scenarios in different days for resting experiments, not
making possible to compare how the change of position or the heart rate evolve through
time.

The GUTI database proposed an acquisition protocol repeated in two different days
(D1, D2), with at least 15 days of separation. Each day consisted on two visits (V1,
V2) with a minimum separation of 2 h. All the data collection was achieved with a
technician that evaluates the correct performance of the experiments. An oximeter is
employed before collecting the signals. In the case of resting and standing, the pulse
needed to be stable to consider that the user was relaxed. For the exercise phase, the heart
rate was required to be a minimum of 120 bpm. Initially, the exercise required the user to
workout on the stepper. However, it ended up not being limited as some users had more
tolerance and required stronger cardio activities to reach the heart rate goal.

Each type of scenario had a collection of 5 ECG signals with 9 s duration, with the
smartband positioned on the left wrist:

1. Sit: the user is sitting down while resting the left wrist on a table. The right index
finger is positioned on the external sensor, providing a gentle pressure, and avoiding
any movement.

2. Walking: the user walks calmly for 20 m, without rising the heart rate, to ensure
that the user was standing for a while before capturing the signal. The user proceeds
to place the right index finger onto the external sensor while trying to have the left
hand steady and horizontal.

3. Exercise: the user works out, measuring the pulse from time to time until reaching
the required minimum of 120 bpm. The user stands up while having the signal
captured, trying to stay in the same positions as in the standing experiment.

The database contains data of a total of 72 different users, with no specified age
group, gender nor cardiac diseases. However, as it was collected in University Carlos
III of Madrid, the population was also prominent with younger users, between 18 to 30
years old. Once the user came to the given appointment for the data collection, the three
scenarios were carried out with no exception. D1 had a 100% completion for both visits.
However, four users were missing from D2V1 and an extra user missed D2V2, having a
total of 5 users without D2 completion, as reflected in Table 4.7.
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Table 4.7: Number of users that completed the data collection, based on the different days (D1,
D2) and visits (V1, V2). 67 users completed the whole process, a 93.05% of the initial users.

Visit D1V1 D1V2 D2V1 D2V2
Users 72 72 68 67

4.3. Conclusion

The available databases in this thesis are characterized heterogeneously. The initial
BMSIL database was collected with professional devices and provided reliable data to
further study ECG biometrics under different circumstances and periods of time. The
addition of fingerprint data allowed the possibility of fusing it with ECG. The smartband
databases complemented the previous one, considering features that resulted in scenarios
that were closer to a realistic biometric environment, even though data might be less
reliable.

Altogether, the collected databases provided enough information for a structured
study, going from more ideal cases (i.e.: data collected with professional devices) and
narrowing the solution to a more specific, constrained problem (i.e.: ECG information
acquired by sensors with lower fidelity).
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5. METHODS

The applied tools in this thesis are further discussed in this chapter, following the
scheme in Figure 2.1. for a detailed description of the employed sensor, refer to chapter
4.

5.1. Signal pre-processing

The raw signal retrieved by the corresponding sensor is considered a raw ECG signal.
As referred in section 3.1.2, ECG main noise sources are baseline wander (0.2-0.5 Hz),
power-line interference (50-60 Hz) and muscle artifacts (around 100 Hz). One of the
most common approaches in literature are the band-pass filters, which were the selection
in pre-processing throughout the whole thesis. This tool was applied based on [90] which
used the tool in the BMSIL database. The band-pass filter is a 5th-grade Butterworth filter
with cutting frequencies of 1 and 35 Hz.

This filtering is common for all chapters that require pre-processing: chapters 6, 8, 9
and 10.

5.2. Feature extraction

The QRS complex segmentation has been a common approach at this stage for both
fiducial and hybrid features, defining the waveform as the most information-dense part
of the ECG signal. Firstly, this section details the fiducial point detection methods
applied for the QRS segmentation. Transformations and feature selection techniques are
explained in the following subsections.

5.2.1. Fiducial point detection

The QRS segmentation is easier to achieve once the R peak is detected. This point is
generally the most prominent in every P-QRS-T waveform, as observed in Figure 3.1,
making it convenient to detect. The length of the QRS complex can be also determined
by the Q and S point detection, but this problem is complex and adds further issues in the
topic resulting in data samples with different lengths. Therefore, the segmentation range
was fixed with the detected R peak as a reference point.
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BMSIL algorithm

An alternative algorithm was developed by the BMSIL considering high quality signals
in the BMSIL database. The alternative algorithm aimed to be easy and deal with signals
that do not come from medical monitoring. The fiducial point detection also needed to be
simple for biometric purposes, avoiding the use of complex methods to make it easier to
scale. In [90] the R peak detection in signals with these characteristics was achieved with
the same database. The pre-processed signal gets differentiated to obtain first and second
derivatives, helping with the detection of the R peak. Finally, outliers are discarded by
thresholding the correlation coefficients.

Pan-Tompkins algorithm

The Pan-Tompkins algorithm [94] was a really successful algorithm that detected the QRS
complex in real time. The databases applied to develop the algorithm had high quality
signals from Holter monitoring, and included pathologies.

The Pan-Tompkins algorithm’s good performance in literature leads to check its
performance in lower quality signals, such as those in BMSIL-SB and GUTI databases.
Two ECG signals are represented for the most relaxed scenarios of each database: one
reflecting an example of the best performance, and another one showing less ideal results.
All the examples come from original ECG with clear QRS complexes.

The examples corresponding to the BMSIL database are in Figure 5.1, where 5.1a
shows a correct performance, properly locating the R peaks in the center, with not
observable mistakes. On the contrary, Figure 5.1b shows two errors in detection,
misinterpreting T-waves as R peaks, while correctly detecting the remaining peaks.

(a) Signal with ideal detection. (b) Signal with some incorrect detections.

Figure 5.1: Extreme performance cases for the Pan-Tompkins algorithm for the BMSIL-SB
database, considering good signals.

Similarly, Figure 5.2 shows different performances of the Pan-Tompkins algorithm in
the GUTI database. In the best case, Figure 5.2a shows a correct QRS detection, with
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no errors. However, the signal is shifted to the left, finding the T-wave in the center of
the QRS. This fact informs us that the Pan-Tompkins algorithm is detection the T-wave
maxima as the R peak. Even though this misinterpretation leads to a proper QRS complex
detection, it is not what it is meant to do. Probably this issue is what leads to poor
performances such as those observed in Figure 5.2b, which represents the result in an
original signal with similar quality as the previous one.

(a) Signal detection centered in the T-wave. (b) Signal with poor detection.

Figure 5.2: Extreme performance cases for the Pan-Tompkins algorithm for the GUTI database,
considering good signals.

The different nature of these databases can be observed in Figures 5.1a and 5.2b. The
BMSIL-SB database has more stable complexes. It was also observed that this database
provided signals with lower number of cycles (heart rate) in the most relaxed scenario.
This implies that users for the BMSIL-SB database were more relaxed than those in the
GUTI database, probably in relation to the different protocol followed prior to the signal
acquisition.

The different peak detection algorithms are applied in those experiments that require
detecting the QRS complex. The BMSIL algorithm is applied to the BMSIL database in
chapters 6 and 8, 9. The Pan-Tompkins algorithm is one of the peak detection alternatives
for BMSIL-SB and GUTI databases to test its performance in smartbands in chapter 10.

5.2.2. Transformations

The segmented data usually requires specific processes to increase the following
classification performance. In this thesis we mainly focus on computations that do not
require complex computations, for potential viability in devices with lower processing
capabilities.

Differentiation

The differentiation is a simple transformation that emphasizes abrupt changes in the
signal. First and second differentiation are calculated in the BMSIL peak detection
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algorithm, and also used as features in chapters 8 and 10.

Wavelet Transform (WT)

The WT allows to analyze a signal into different frequencies at different resolutions,
known as multi-resolution analysis. The windowing is done with functions called
wavelets, and their scaling allows to obtain the different resolutions: narrow wavelets
increase time resolution, whereas wider wavelets improve the frequency resolution.

The discrete version of WT is the Discrete Wavelet Transform (DWT). The DWT is
a decomposition, which passes the signal through low and high pass filters, providing
coefficients at every level. The low pass portions give approximation coefficients, and
high pass portions refer to detail coefficients, which are downsampled. The whole process
results in sets of approximation and detailed coefficients. However, this transformation
is time variant, which translates into different results when the original signal presents a
significant movement.

The Stationary Wavelet Transform (SWT) was developed to solve the time variant
property of the DWT. The SWT dispenses with downsampling, and filters the same
way it happens in the case of DWT. Level 1 results in the same number of data points
as the original signal. The process is achieved for the jth level by filtering with the
coefficients in the level (j − 1) [95]. The Figure 5.3 represents the scheme for the 1D
SWT decomposition, where the original signal length needs to be divisible by 2j.

The 1D SWT is employed in chapter 10 as one of the transformations to the signal, in
order to improve the classification with smartband databases.

Figure 5.3: Approximation (cA) and detailed (cD) coefficients of level j for SWT. L and H repre-
sent the low and high pass filters, respectively [95].

Discrete Cosine Transform (DCT)

The DCT converts a time sequence into the sum of cosine functions in different
frequencies and amplitudes. The DCT allows to represent signals with a lower number of
coefficients as it stores more signal energy in each one of them. Its role results has been
very common in audio and ECG signal compression, among other multiple applications.
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The DCT is applied to the ECG data in chapter 6 to observe the difference in
performance with other types of features.

5.2.3. Feature selection

In some circumstances, the available features give out large amounts of information.
Some of the extracted data could be redundant, noisy or confusing for classification.
In addition, when dealing with great databases, the data must be minimized to lower
the processing time and complexity. These issues get solved through feature selection
mechanisms. The ones applied in this Thesis are briefly explained in the following
paragraphs.

Principal Component Analysis (PCA)

The PCA algorithm establishes a new set of coordinates based on the covariance matrix.
If the original data has n samples and m features (n, m), it gets into transformed data of
dimensions (n, l) where l < m. The algorithm evaluates the relevance of every available
feature, providing a ranking for feature selection.

This tool is applied in chapter 6 for data reduction and to observe how the performance
is impacted by the discarding of certain features.

Infinite Feature Selection (IFS)

The IFS algorithm ranks a set of given features from most to least relevant. The method
is based on graphs that consider every feature distribution as a node, V. Every possible
pair of distributions is modeled by E. The final graph G is represented as an adjacency
matrix A, which represents the energy terms between the different feature pairs. The
calculation of every element of the matrix is given by Equation (5.1), where 0 ≤ α ≤ 1
and σij = max(σ(i), σ(j)) being σ the standard deviations over the samples of each feature
distribution. Finally, the coefficient cij is defined in Equation (5.2), where the Spearman
operator refers to the Spearman’s rank correlation coefficient [96].

The approach in IFS is applied in chapter 10 as an attempt to reduce the dimensions
and improve the classification algorithm.

ai j = ασi j + (1 − α)ci j (5.1)

ci j = 1 − |S pearman( f (i), f ( j))| (5.2)
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5.3. Comparison

The main event in the comparison stage is related to the classification of new data in
comparison to previously acquired references, which eventually leads to a decision.

The classification algorithms applied in this thesis belong to Machine Learning and
Deep Learning tools. In general, the data is used as a closed-set, which implies that it is
assumed that no new data is going to enroll in the system. This leads to modelling the
whole database as one, using supervised algorithms. However, in experiments dealing
with open-set experiments, an extra unsupervised algorithm is applied.

5.3.1. Classifiers

The explored algorithms are detailed below, following a chronological order of use and
complexity. These classifiers depend on internal parameters or hyperparameters that need
to be adjusted for an optimal solution. For this hyperparameter optimization, the used
data is isually divded into the following subsets:

• Development set: it is formed by the data that helps creating the model. In this
thesis, this set comes from the data collected during enrollment. The development
proportion is defined by d, where 0 < d ≤ 1. At the same time, this set usually
divides into two:

– Train set: it is the bigger division of the development set. It is the proper
information to form the model and its proportion in the development set is
usually 0.8 or 80%.

– Validation set: it is the remaining data and always represent a smaller
percentage of the data than the train set. It helps to check whether the training
is achieving good results with new data. As a consequence, it usually is 20%
of the development set.

• Test set: it is the new data that comes to the trained model. In biometrics this set
is formed by the new data to be recognized. As a consequence, when the test set
comes from the same set of data, its proportion is 1 − d.

Dynamic Time Warping (DTW)

DTW is a distance based algorithm that measures similarities between two
time-dependent signals. The main advantage of this algorithm is on the capability of
dealing with signals with different lengths. However, it can only happen if their starting
and finishing points get mapped. DTW is useful for sequence alignment and similarity
measurement through the warping path.
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The lack of constraints for the sample length is very valuable in the problem of
ECG biometrics, as the heartbeat width varies depending on the user and conditions.
If the starting and finishing point of each of the QRS complexes is known, DTW helps
transforming data into same length samples.

The DTW algorithm is applied in chapter 6 to determine the most suitable
segmentation in ECG classification.

Support Vector Machine (SVM)

SVMs calculate the hyper-plane that best separates two sets of data. The result is achieved
by finding the hyper-plane whose distance to the closest point from both groups is
maximized. If the hyper-plane is not found, the data gets projected to another dimension
with the help of kernel functions, creating a new feature space. The applied kernel is
linear, as this type of kernel requires lower computational costs than other alternatives
such as Radial Basis Function (RBF) or polynomial kernels.

In practical cases, data is not linearly separable. Some incorrect classifications are
allowed with a penalty factor, considering a soft-margin with formulation in Equation
(5.3). The goal of the SVM classifier is to minimize this soft-margin, where λ is
the box constraint, n represents the number of samples, yi is the given label, w the
classifier weights, xi the available data to create the classifier. In the case of multiclass
classification, SVMs take the one-vs.-one approach, producing nclasses · (nclasses − 1)/2
classifiers [97].

⎡⎢⎢⎢⎢⎢⎣1n
n∑︂

i=1

max(0.1 − yi(wT xi − b))

⎤⎥⎥⎥⎥⎥⎦ + λ||w||2 (5.3)

SVMs are used in chapter 6 as one of the first approach for a closed-set recognition
with ECG.

k-Near Neighbors (k-NN)

The k-NN algorithm is a simple approach that finds the k closest pattern points (nearest
neighbors) stored in the model. The distance is calculated based on different approaches
such as Euclidean or Hamming distance, among others. The first one is selected in the
present thesis.

This algorithm is applied to chapter 6 similarly to SVMs, as it is one of the initial
approaches to study the viability of ECG recognition.
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Linear Discriminant Analysis (LDA)

The LDA classification is a generalization of Fisher’s linear discriminant, which finds the
lineal combination of features to help separate two or more classes. It can be used as a
tool in dimension reduction, but the purpose in this thesis is only as a classifier.

The generalization depends on the mean and co-variance of each class as observed in
Equation (5.4), where C is the number of classes with the same variance Σ, and each
class has the mean µi. The separation of each class is given by the Equation (5.5).
The co-variances and means are usually unknown in real cases, so they get estimated by
training. In addition, in the case of non-linear classification the problem can be extended
with the use of kernels as it happened with SVMs. In real situations, sometimes the
software cannot invert the covariance matrix, so it does the pseudo inverse.

Σb =
1
C

C∑︂
i=1

(µi − µ)(µi − µ)T (5.4)

S =
w⃗T
Σbw⃗

w⃗T
Σw⃗

(5.5)

The LDA algorithm is one of the main algorithms applied in this thesis, and takes part
in chapter 6, and its results are the ones required for those experiments in chapter 7.

Gaussian Mixture Models (GMM)

GMMs are an approach normally applied for clustering, as it is an unsupervised learning
algorithm. These models assume that the original data is formed by the combination of
a fixed number of multivariate Gaussian distributions. GMMs are the only unsupervised
method applied in the present thesis.

The prior distribution of the vector of parameters in the mixture model, θ, is modeled
as in Equation (5.6). K is the number of components in the mixture model, and each of
them are characterized differently by weights ϕi, means µi and covariance matrices Σi.
The posterior distribution of the available data, p(θ|x) is also a Gaussian mixture model,
represented in 5.7 where the ϕ̃i, µ̃i and Σ̃i are updated with the Expectation-maximization
(EM) algorithm. The initial values of θ are randomly assigned and iterate until reaching
convergence [98].

p(θ) =
K∑︂

i=1

ϕiN(µi, Σi) (5.6)

p(θ|x) =
K∑︂

i=1

N(µ̃i Σ̃i) (5.7)
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GMMs are used as an alternative algorithm for open-set ECG verification in chapter
6.

Multilayer Perceptron (MLP)

The MLP algorithm is one of the most simple NN algorithms. MLP networks are applied
in supervised learning and they have three main parts: input, output, and hidden layers, as
represented in Figure 5.4. The input layer is formed by nodes or neurons that represent the
different input features {xi|x1, x2, . . . , xn}. Every feature is labeled with its corresponding
class, {yi|y1, y2, . . . , yn}. In the case of only having one hidden layer, the output layer gives
the function in Equation (5.8) [99]:

f (x) = W2g(WT
1 x + b1) + b2. (5.8)

Figure 5.4: MLP with one hidden layer.

Where W1 represents the sets of weights applied to every feature in the input layer.
These weights vary between them, in the way that every feature xi has m different weights:
one per node in the following hidden layer. On the same way, W2 represents the weights
applied in the hidden layer, at nodes {aj|a1, a2, . . . , am}. Value b1 is the bias in the hidden
layer while b2 is the bias on the output layer. The activation function is represented by g(·).
The most common functions are identity (or no activation function), logistic, hyperbolic
tangent (tanh) and rectified linear unit function (ReLU). All the corresponding functions
are represented in Table 5.1.

As this structure works for supervised learning, the weights need to change in every
connection after the data is processed to decrease the processed error. In this case,
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Table 5.1: Most common activation functions.

Name Identity Logistic Tanh ReLU
Formula g(x) = x g(x) = 1

1+e−x g(x) = tanhx g(x) = max(0, x)

it is done by back propagation, which comes from the Least Mean Squares (LMS)
algorithm. These weights can be updated differently, depending on the approach for their
optimization. The most common optimizer is of Stochastic Gradient Descent (SGD). Its
formula depends on a factor called learning rate, which ensures the weights converge
quickly.

The MLP is the algorithm that chapter 8 is based on, aiming to improve those results
from GMMs and LDA in chapter 6.

Convolutional Neural Networks (CNN)

The purpose of this neural networks is summarizing the segmented data by extracting the
most relevant features. It reduces the amount of data to interpret by the following units,
easing the procedure and reducing its complexity [100].

The CNN has specific properties for one-dimensional signals, but the concept is
similar to 2D CNN. The main difference is related to how the sliding window moves
through the data. Two-dimensional sliding windows need to specify their width and
height, as they slide horizontally and vertically. In the case of 1D convolutions, the only
required value is how many features are taken into consideration in every sliding iteration.
The hyperparameters that affect the 1D CNN output size are:

• Kernel (k): the number of samples that are used in every iteration for the
convolution.

• Filters (f): the number of sliding windows involved in the process, which translates
into the number of extracted features.

• Strides (s): the number of positions the window slides each time.

The final dimensions are summarized in Figure 5.5, where b is the batch size, k the
kernel size, f the number of extracted filters and how many units each filter strides. The
output dimensions per batch correspond to a 3D matrix, as the process in every batch is
done with f number of filters (b, o, f). The value o is the output width determined by
Equation (5.9).

o =
W − k

s
+ 1 (5.9)

CNNs take part in the initial approaches in chapter 9 and as a classfier and feature
extractor for the final BioECG network in the same chapter.
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Figure 5.5: Scheme for CNN layer, where Htrain is the number of samples to train and W the
number of features.

Long-Short Term Memory (LSTM)

LSTMs are a type of Recurrent Neural Network (RNN), as they also have chained
recurrent modules. However, the different LSTM cells are more complex than those in
standard RNNs. The specific structure is represented in Figure 5.6, where every rectangle
represents a fully connected layer with their corresponding activation, sigma (σ) and tanh.
Input data in the timestep t is represented by xt. Similarly, the current cell state and outputs
are represented by Ct and ht.

The current cell state, Ct, depends on minor linear interactions related to the previous
cell state, Ct−1. The LSTM gates are formed by a sigmoid (σ) layer and a pointwise
multiplication so the outputs are kept between 0 (discarded information) and 1 (valid
information). The forget gate, ft, operation is in Equation (5.10), where Wf represents
the corresponding weight matrix for that gate and stays unaltered through time. This
calculation determines which information is required to be kept based on the previous
output and the current information, plus bf which represents a bias. Similarly, it is
obtained with the same process and different weights and bias, Wi and bi, as seen in
Equation (5.11). This gate is known as the input gate; it selects which values get updated.
The output it gets combined with a vector of candidate values, C̄t, obtained with a tanh
layer, weights WC and bias bC, as observed in Equation (5.12).

The previous cell state Ct−1 updates resulting in Equation (5.13). Ct then a tanh pushes
it to values between −1 and 1 before getting multiplied by the output of another sigmoid
gate. This part leads to the final output as formulated in Equations (5.14) and (5.15), using
weights Wo and bias bo. This process is done recurrently as many times as timesteps there
are.

ft = σ(W f · [ht−1, xt] + b f ) (5.10)

it = σ(Wi · [ht−1, xt] + bi) (5.11)
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Figure 5.6: LSTM cell composition.

C̄t = tanh(WC · [ht−1, xt] + bC) (5.12)

Ct = ft ·Ct−1 + it · C̄t (5.13)

ot = σ(Wo · [ht−1, xt] + bo) (5.14)

ht = ot · tanh(Ct) (5.15)

To implement a multilayered LSTM, the output sequence of the LSTM cell in a given
timestep, ht, is returned and fed into the next layer. Figure 5.7 is an unrolled two-layered
LSTM, where T represents the maximum number of timesteps. The last layer does not
require retrieving all the hidden cell outputs but only the output in the last timestep. In
the case of Figure 5.7, the final output corresponds to h′T.

As a result, there are two key hyperparameters that define LSTM networks:

• Hidden neurons (n): number of hidden neurons in the LSTM cell gates.

• Hidden layers (L): number of LSTM layers to connect.

LSTM networks are the second most important part of the BioECG network developed
in chapter 9, which is in charge of classifying the data retrieved by the CNN.
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Figure 5.7: Scheme for an unrolled LSTM with two layers.

5.3.2. Metrics

Every type of recognition is associated to different metrics: accuracy for identification
and EER for verification. The present Thesis focuses on verification, which is related
to EER. However, identification metrics are frequently applied in model training to
observe their suitability for this process. These accuracies are obtained considering each
sample individually applying the Equation (2.1). On the contrary, for verification, other
approaches are taken.

For generalization, the verification data matrix has height of Huser samples and a width
W that corresponds to the number of available features, as represented in Figure 5.8. At
user level, every attempt is formed by HA samples. The data is divided accordingly to
Figure 5.8, with no repetition between attempts, and obtaining as many attempts as the
verification data allows. If the division is not an integer, the remaining samples are not
used, flooring the result. The number of attempts is NA = ⌊

Huser
HA
⌋. Each attempt data is

then transformed into a score matrix, with the same height HA, but with a width of U,
which corresponds to the number of users in the stored model.

Considering this general scheme, two paths are considered to determine the metrics:

• Verification with one attempt: the EER is calculated with every attempt
individually. The scores of every user, U, are averaged along the columns, obtaining
a score average vector of length U. Once this calculation is done for the same
attempt number in all the different users U, the final score matrix is obtained for
that given attempt. Doing this process recursively with all different attempts, gives
a vector of EER with as many results as number of total attempts, NA.

• Verification with all attempts: the EER is calculated considering all the attempts.
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Figure 5.8: Division for different attempts and variable length HA in verification.

The mean scores of the samples in each attempt, are averaged as a single result.
This process results in a squared score matrix of dimensions (U, U) which leads to
a single EER calculation.

Once the scores are obtained, the EER can be obtained. In this thesis, FMR and FNMR
are calculated for 100 different thresholds in steps of 0.01. The EER is theoretically
calculated when FNMR = FMR. However, values from these curves are not continuous
in real case scenarios, so the EER has to be estimated from the available data. This
is achieved by finding the two values of the threshold, th1 and th2, that correspond to
the two closest points of FNMR and FMR vectors, as represented in Figure 5.9. These
values provide two values for each curve, allowing to characterize the straight lines that
pass through these values. This estimation finally provides the estimation where the two
curves meet, the EER.

Both of these approaches are used as an extended and more realistic evaluation of the
performances obtained in chapter 8 and 9. However, it is important to remark that final
performances are obtained with HA = 1 and using all the available samples, as these are
the conditions that provide the FNMR vs. FMR graphs, and the extended verification
techniques only provide a behavior insight on the different scenarios.

5.4. Conclusion

The present chapter has collected all the methods applied in this Thesis for the different
stages of the developed systems.

Due to the different characteristics of the three available databases for this work,
the resources are multiple and always focus on trying to best analyze and improve the
recognition process through ECG.
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Figure 5.9: Graphic representation of the EER calculation from FNMR and FMR data.
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6. VIABILITY OF HUMAN RECOGNITION WITH THE BMSIL
DATABASE

The initial stages of this thesis start with the viability study of the BMSIL database.
The preliminary experiments focus on determining the best QRS segment, and how to
approach the enrollment regarding the number of stored references, used score and the
algorithm for open-set and closed-set. These experiments were defined more in depth
in [101]. The open-set approach with GMM, closed-set with LDA and their extended
verification are specifically done for this thesis.

6.1. Reference selection with DTW

The signal is pre-processed and R peaks are detected using the BMSIL peak detection
algorithm referred in section 5.2.1. From this starting point, there is the need to specify
the segment delimitation. How do the P and T wave affect the recognition? Is it better
to provide only information related to the QRS complex? Is it worth to relay on fiducial
detection for the segmentation? How many stored patterns need to be stored to improve
the performance?

The R peak detection is achieved with the BMSIL peak detection algorithm referred
in section 5.2.1. To help in different versions of the segmentation, P and T wave detection
are also detected to determine the QRS boundaries. The P and T waves are observed in
a frequency range between 0 and 10 Hz, so a Butterworth filter with cut-off frequencies
2-10 Hz retrieves more obvious P and T waves. The final fiducial detection is achieved
by finding local minima and maxima and it is represented in Figure 6.1. QRS start and
QRS end points correspond to the QRS complex defined in Figure 3.1. Q’ is the local
maximum associated to the Q point, and S’ is the local maximum that corresponds to
the S point, which in this case is the same as the QRS end. After the fiducial detection,
14 segmentation criteria are defined in Table 6.1 using the temporal interval durations
referred in section 3.1.

The results are obtained using only the first session as the enrollment data and treating
it as the development set. Experiments are achieved using D1V1 and D1V2, as they
represent the most relaxed state in both S1 and S2 (sitting and standing). As the available
segments may have different lengths, DTW is calculated for every available segment
provided by the same user. This approach performs an open-set classification. For the
reference selection, there are two approaches based on the mean DTW of each segment:

• Single reference: the segment with the lowest mean distance of all is the selected
reference.
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Table 6.1: Different segmentation versions based on theoretical interval time criteria and fiducial
point detection. T and P refer to theoretical T and P wave duration, while T’ and P’ refer to
detected wave duration.

Version Start End
1 Middle point R and previous R Middle point R and next R
2 QRS start QRS end
3 Q S
4 0.1 s before R 0.1 s after R
5 QRS start 0.43 s after QRS end
6 0.2 s before R QRS end
7 0.43 s before QRS end QRS end
8 QRS start 0.2 s after QRS end
9 QRS start T’ wave end

10 P’ start QRS end
11 T’ duration before QRS end QRS end
12 QRS start P’ duration after QRS end
13 P’ start T’ end
14 0.2 s before QRS start 0.43 s after QRS end

• N references: select the N references with lowest distance, and store them. This
number needs to be optimized.

The recognition experiments are done using D2V1 and D2V2 as new visits. The
decision is also taken by calculating the DTW against the stored reference/s. There are
two ways to approach the recognition based on the number of references:

• Single references: every segment is compared against the reference, obtaining a
distance.

• N references: distances are calculated against the N references, where 1 < N ≤ 10.
There are four final available values to determine the performance:

– Best: lowest distance.

– Worst: highest distance.

– Median: median of the N distances.

– Average: mean of the N distances.

After testing the possibilities with DTW and the different references in both
enrollment and recognition, machine learning classification is selected searching for a
performance improvement. Two approaches are taken for classification with machine
learning algorithms: closed-set and open-set. These experiments also deal with three
types of features and their sorting order in PCA:
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Figure 6.1: Example of the fiducial points used in [101].

1. Time: the whole segment of data. The version may vary according to Table 6.1.

2. DCT: DCT transformation is applied to the time segment data.

3. Metrics: related to time distance between fiducial points and their amplitudes.

6.2. Open-set recognition with GMMs

In the open-set experiments, every user needs to be modeled separately. This implies a
large number of training processes and storage. To reduce these limitations, the database
is reduced. After heuristically observing tendencies, users 10 to 30 are selected for this
experiment.

Previous experiments related to the open-set environment limited the BMSIL database
to 20 users. In addition, the obtained results were related to identification. The goal for
this experiment is to improve performances with the complete database in verification. For
this purpose, GMM is proposed as the classification algorithm. The cycle segmentation
corresponds to version 4 in Table 6.1, which corresponds to 0.1 s duration at each side of
the detected R peak (W = rng1 + rng2 = 200).

6.2.1. Model convergence

This experiment was developed using Mathworks and Netlab’s GMM Matlab libraries
[102]. The GMM’s convergence is relevant to be observed in both of the libraries. For
a user to be enrolled in the system, the algorithm needs to converge. The number of
converged model is tested using data from one session of D1V1, with d = 1. Experiments
in section 6.2 provided extra results with PCA for the different applied features (time,
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DCT and metrics). This information applies to data for further dimension reduction,
which allows to observes how the convergence varies.

To solve convergence issues, the number of Gaussians is fixed to k = 10 while using
DCT and metric features over version 4 segments. The convergence is similarly tested
observing the different features independently.

6.2.2. Verification

For verification, results are achieved with D1V2 as new data, which in S2 is a standing
position, resulting in mixed data for the entire BMSIL database. The score for the EER
calculation is the one retrieved by the last sample. The classification is done using
Netlab’s implementation, as previously referred. Two main parameters are tested in
verification: number of Gaussians (k), and the number of attributes with the selection
order given by the PCA algorithm.

6.3. Closed-set recognition with Machine Learning: an initial approach

For the closed-set, the idea is modeling using D1V1 as training data by using SVM, k-NN
and LDA algorithms, using d = 1. These algorithms require samples of fixed length.
Therefore, the selected versions are 4 and 14, which only depend on time criteria and
provide fixed segments.

Section 6.2 obtains the accuracy of LDA in a closed-set experiment, and it leads to
the attempt of using this algorithm in a verification environment. The enrollment is done
with D1V1 data from one session with no available data reduction. In this case, all the
first sessions of the remaining BMSIL visits are used for verification: D1V2, D2V1 and
D2V2. The first experiment with LDA approaches verification in a way that differs from
the general procedures in this thesis: the stored score for the EER calculation is the one
corresponding to the last detected cycle of the attempt. Given this situation, the results
are further extended with LDA.

6.4. Closed-set verification with LDA

Initial results with LDA have proven this algorithm as a potential solution for ECG
biometric recognition. However, some aspects can be improved: the BMSIL database
provides 4 different types of visits whose information is collected in different and relevant
scenarios. Even though these experiments have been partially covered, it is not done
consistently and extensively. The main focus of this section is working with LDA scores,
as the previous experiments only use the score from one of the samples in the recognition
visit and only considering the first session for training and testing. These issues give a
lot of uncertainty as these result could be just a consequence of a coincidence, and not be
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representative from all the provided information. In addition, available information is not
applied to the problem.

Considering the number of detected samples in each session of the visit, c, and n
number of sessions per visit, each user has Huser samples per visit. Composing a matrix
with all the samples, Muser has dimensions (Huser, W), where W = rng1 + rng2 = 200 in the
BMSIL database, using version 4 segmentation. Multiplying Huser by the development set
proportion, d, and flooring the result gives the different set dimensions with a constant
number of features, W. Table 6.2 shows the different samples of each data per user, when
using n = 5 and c = 50.

Table 6.2: Available samples per user in every set using D1V1 as enrollment. Development
samples are the sum of train and validation.

d Test Development Train Validation
0.8 50 200 160 40
0.5 125 125 100 25

To evaluate the performance, different type of attempts are considered by evaluating
the number of samples that take part. Two proportions of development set are observed: d
= 0.5 and d = 0.8. If the verification data proceeds from D1V1 or the remaining scenarios,
number of attempted samples vary according to Table 6.3.

6.4.1. Verification with one attempt

The enrollment data is obtained from the D1V1 visit. For the validation of the results,
the system uses the accuracy as the assessment metric. However, when final results are
achieved, there is an EER calculation. The accuracy of the test set results for D1V1 allows
to observe how well data is modeled in the best case scenario. If the results are good, it
can be considered as a good model for the remaining visits, allowing to observe how this
type of data behaves in both identification and recognition.

Table 6.3: Number of attempts, NA, depending on the available verification samples and samples
per attempt HA.

HA

Samples
50 125 250

1 50 125 250
5 10 25 50

10 5 12 25
15 3 8 16
20 2 6 12
25 2 5 10
30 1 4 8
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Table 6.4: EER (%) for both enrollments and type of segment.

Enroll D1V1 D1V2

Version
Recognition

D2V1 D2V2 D2V1 D2V2

1 12.26 26.40 22.82 26.66
2 22.10 25.06 26.08 25.00
3 24.01 26.27 26.44 26.71
4 19.02 22.37 22.77 23.59
5 19.07 22.02 21.54 21.98
6 23.81 28.05 26.25 27.31
7 26.40 29.89 27.88 29.46
8 19.44 23.01 19.50 22.25
9 18.15 20.97 20.9 23.01

10 20.59 24.96 24.47 25.06
11 22.90 27.30 24.70 27.09
12 20.82 24.43 23.44 25.15
13 16.81 20.05 20.74 21.19
14 19.80 22.63 21.23 20.27

As described in section 5.3.2, every attempt provides different scores and mated and
non-mated data, as a consequence. To summarize how the system performs when having
as many EER results as attempts, the mean EER and standard deviations are calculated.

6.4.2. Verification with all attempts

The process for the metric calculation is described in section 5.3.2, by obtaining a single
score from averaging the scores from all the attempts with different number of samples,
HA. It results in a single EER, that reflects the system’s performance using the specific
attempts.

6.5. Results

The results in this section correspond to those experiments previously detailed in the
present chapter.

6.5.1. Reference selection with DTW

With the single reference enrollment for each segment version in Table 6.1, the EER is
calculated. Results are summarized in Table 6.4 for both types of enrollments.
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(a) Recognition with D2V1. (b) Recognition with D2V2.

Figure 6.2: DET performance with D1V1 in enrollment and segments 4, 5 and 9.

Observing results when D2V1 is the recognition data, the best type of segmentation
are 1, 4, 5, 8, 9, 13 and 14, in no specific order. Every type of version is related to the
inclusion of different parts of the ECG cycles. Based on this, DET graphs are used for
further conclusions.

Segmentation types 4, 5, and 9 include the QRS complex. Version 4 involves QRS
time criterion for the delimitation, version 5 refers to including the T wave with time
criterion and version 9 also includes the T wave, but using fiducial detection criterion.
Figure 6.2 collects DET graphs for D1V1 as training and D2V1 and D2V2 in recognition,
Figures 6.2a and 6.2b, respectively. Differences between time and fiducial criteria can be
observed by comparing only 5 and 9 segments.

Version 4 is now compared against segments which include the P wave segment, with
time constraint and fiducial detection, corresponding to versions 6 and 7, respectively.
Results are represented in Figure 6.3. Differences between the two different criteria in P
detection can be observed between versions 6 and 7.

Analogously, the same procedure is considered against version 4 with fiducial and
time criteria when including the whole P-QRS-T segment which belongs to version 13 and
14. The different DET graphs are collected in Figure 6.4 for D2V1 and D2V2 (Figures
6.4a and 6.4b).

Results conclude in version 13 as the optimal approach for the cycle segmentation.
Recalling Table 6.1, this option segments the P-QRS-T complex with the P and T wave
fiducial detection.

Different number of references from D1V1 are stored following the version 13,
collecting the different types of metrics referred in the design. Results are summarized in
Table 6.5 and the corresponding DET represented for 1, 4 and 10 patterns in Figure 6.5

There is also the option to optimize how many cycles are considered a single
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Figure 6.3: DET performance with D1V1 in enrollment and segments 4, 6 and 7 for recognition
with D2V1.

(a) Recognition with D2V1. (b) Recognition with D2V2.

Figure 6.4: DET performance with D1V1 in enrollment and segments 4, 13 and 14.

Table 6.5: EER (%) with D1V1 as enrollment and D2V1 in recognition for version 13 segmenta-
tion and different number of references, N.

Distance
N

1 2 3 4 5 6 7 8 9 10

Mean 16.81 17.02 17.15 17.00 16.65 16.78 16.76 16.71 16.71 16.61
Best 16.81 15.83 15.26 14.93 13.89 13.53 13.34 13.13 13.02 12.91

Median 16.81 17.02 17.35 17.02 17.41 16.81 17.11 16.78 16.8 16.75
Worst 16.81 17.41 17.45 17.34 17.27 17.30 17.14 17.09 16.98 16.99
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Figure 6.5: DET performance for version 13, with D1V1 in enrollment, D2V1 for recognition
and up to 10 stored references.

recognition attempt. The procedure is similar to the comparison against more than one
reference. Considering a single reference, all the recognition cycles are compared to
it using DTW with the same metrics as previously referred. Best results are detected
selecting the lowest distance of all the references. For all the metrics, the performance
improves as the number of stored references increase. Storing more referencess decreases
the EER from 16.81% for D2V1 and version 13 in Table 6.4 to 12.91% in Table 6.5.
If the number of references keeps increasing, the EER should continue improving until
reaching a certain number. The stored references are selected based on how well they
represent the remaining cycles in the enrollment signal, and getting the lowest distance
among a large range of references, could mean that the obtained value is the one belonging
to the least representative signal. This issue would cause the EER to increase again. In
addition, including more references would multiply the number of comparison and storage
capability of the system

Results are plotted in Figure 6.6. Again, the results are analogous to those in
the enrollment optimization, as the higher the number of cycles, the best performance
considering the best distance. When using average and median, results are similar and do
not improve. On the contrary, they decrease as they represent the general performance of
all the presented cycles. With the best distance, the EER reaches values under 10%.

The obtained DET graphs in Figure 6.7 show the different evolution under several
number of cycles using the best distance, for both D2V1 and D2V2. The improvement
in Figure 6.7a is obvious when increasing the number of cycles. However, in Figure
6.7b the impact of this variation is not significant. D2V2 refers working out for the S2,
which may be the reason why even dealing with the lowest distance still provides lower
performances.
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Figure 6.6: Evolution of the EER (%) based on the number of cycles and measures for single
pattern enrollment with D1V1 and recognition with D2V1.

(a) Recognition with D2V1. (b) Recognition with D2V2.

Figure 6.7: DET performance with 1, 10 and 15 cycles in recognition using the best distance.
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6.5.2. Open-set recognition with GMMs

The parameter values for the best obtained results under every experiment is collected
in Table 6.6. Difference of performance between LDA and other algorithms is obvious.
Varying the parameters λ and k in SVM and k-NN respectively, did not result in accuracies
above 47%. The performances with the reduced database in an open-set experiment are
summarized in Table 6.7.

Table 6.6: Best accuracies for the closed-set experiment.

Classifier SVM k-NN LDA
Features Version 4: time Version 14: DCT - time Version 4: DCT - time

Accuracy (%) 41 47 - 46 97.9 - 97.7

Table 6.7: Best accuracies for the open-set experiment with 20 users.

Classifier SVM k-NN LDA
Features Version 4: time Version 4: time Version 4: DCT - time

Accuracy (%) 83 88 91 - 91

When using all time data from version 4 segmentation, k = 2 for the GMMs, to reduce
computational costs for the first approach. Both toolboxes have a maximum number
iteration of 100. The number of training models by Mathworks is noticeably higher than
results with Netlab: 85 (80.9%) and 17 (16.19%). The convergence in Netlab must be
increased, as Mathworks cannot be used for this thesis’ goals due to its low convergence.
The number of non-convergent models for the different number of features and Gaussians
(k) is represented in Figure 6.8.

Figure 6.8a collects results from DCT features, observing an acceptable number of
non-convergent results with the lowest values of k, specially between 2 and 4, where the
number of features does not really affect convergence. Greater numbers of Gaussians
behave worse when dealing with more than 3 features. Analogously, results are plotted
in Figure 6.8b for metric features. The behavior noticeably varies from results in DCT,
where lower k improve in convergence (lower number of non-convergent models) to a
certain point, when they start to spike around 4 o 6 features. In this case, increasing the
number of Gaussians from 2 to 3, implies a huge decrease in convergence, where the
percentage of non convergent models is almost doubled.

In both cases, the lower number of Gaussians, the more converged models. For values
from 2 to 5, the EER is calculated for both types of features, and represented in Figure 6.9.
These graphs do not provide the whole data, as we also have to consider the number of
converged model for every k and number of features. In the case of Figure 6.9a, between
4 and 6 Gaussians provide good performances, and spike at 7. When the number of
components is higher than 9, k = 2 performs better. According to Figure 6.9b, the best
values of EER are achieved with the highest number of features and Gaussians. However,
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(a) DCT. (b) Metric.

Figure 6.8: Number of non-convergent models, based on the number of components (features)
and Gaussians (k) when training with D1V1 with DCT and metric features.

(a) DCT. (b) Shape.

Figure 6.9: EER (%) based on the number of components (features) and Gaussians (k) when
testing with D1V2 with DCT and metrics features.

Table 6.8: Results for the parameter combinations that best converge for DCT and metric features.

Feature Num. of features Num. of Gaussians EER (%) Non-convergent models

DCT
4

2

11.78
1

5 11.26

Metrics
6 13.95

5
9 10.99

it is easier to achieve better performances when you are dealing with a lower number of
models to compare to: the higher number of features and Gaussians, the lowest number
of convergent models.

To observe this trade-off more clearly, Table 6.8 collects the two best EER results for
the parameter combinations that provide the highest converged models. For both types,
the best results for convergence are when k = 2.

The best results for DCT and metrics are close: 11.26 and 10.99% in EER. However,
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Figure 6.10: DET performance for versions 4 and 14, with DCT features, k = 2 and 5 features.

results in DCT are more significant, as there is only one use that did not reach
convergence. Same parameter combinations are tested in the Version 14 segmentation
in DCT features. Results are represented in Fiigure 6.10. According to the graph, version
4 still performs better than version 14.

6.5.3. Closed-set recognition with Machine Learning: an initial approach

Using LDA in the whole database as a verification problem provided the DET and FNMR
vs. FMR plot. The observed EERs in the DET from Figure 6.11 gives 7.465%, 7.704%,
7.951% and 8.096% EERs for D1V1, D1V2, D2V1 and D2V2 visits, respectively. Figure
6.12 shows the corresponding thresholds, which are around 0.04, giving the idea that
mated comparisons do not score high and data is not clearly separated. It is remarkable
that the EER for D1V1 is not close to 0, or results in a lower EER given that is the
most similar data for the enrollment. One issue that could affect these results is that the
verification with this visit also requires less comparisons, as it is formed by the remaining
available data from enrollment, which is half the data from the remaining visits.

6.5.4. Extended closed-set verification with LDA

The LDA training achieved good results with the remaining test data in D1V1, reaching
accuracy of 99.72% and 99.64% for d = 0.8 and d = 0.5, respectively. Both proportions
result in two different models, leaving remaining test sets of 50 and 125 samples per user.
Both results are similar so the selected value the enrollment proportion is the lowest one,
denr = 0.5. The average EER and their standard deviations are represented in Figure 6.13,
based on the number of samples per attempt, HA. To make observations more precisely
in terms of the mean EER value, Table 6.9 collects all the specific values.

In Figure 6.13a, the higher EER is obtained under D1V1 which is very remarkable,
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Figure 6.11: DET performances for LDA using one sample per attempt considering all attempts
with D1V1 as enrollment and denr = 0.5.

Figure 6.12: FNMR and FMR curves for LDA using one sample per attempt attempts with D1V1
as enrollment and denr = 0.5.
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(a) Considering a single attempt. (b) Considering all attempts.

Figure 6.13: EER (%) average results for both extended verification alternatives with D1V1 as
enrollment and denr = 0.5. Consdering D1V1 experiments contain half the samples as the remain-
ing.

as the best results are obtained with verification using D2V2. This could be, initially,
provoked by two factors: firstly, the verification samples for D1V1 are half the samples
in the remaining visits, involving less attempts and secondly, that mated and non-mated
data could be less separated in the different attempts in the case of D1V1. In addition,
performances throughout the different number of samples per attempt is not really
remarkable, as standard deviations are similar along along the x-axis. When HA = 20
the average EER ranges between 4.571% and 6.433%.

When considering all attempts in Figure 6.13b, the patterns with respect to HA are
similar in the second day, obtaining lower performances in the case of resting. This
alternative uses all the possible attempts, so choosing the highest value of HA does not
really affect to the recognition process, considering HA = 25 as the most suitable value for
D1V1 when not dramatically impacting over the remaining experiments. Table 6.9 also
collects the threshold ranges where the EER is calculated for every visit. The threshold
fixation could impact the performance in one way or another, impacting the false positive
and false negative ratios. The wider ranges of the threshold value are given by the D2V2
as it could be expected by the nature of the data.

Table 6.9: EER (%) average results considering the two types of extended verification considering
HA. D1V1 is the enrollment and denr = 0.5.

Visit D1V1 D1V2 D2V1 D2V2

HA

Type
One attempt All attempts One attempt All attempts One attempt All attempts One attempt All attempts

5 6.349±0.602 5.315 5.877±0.442 5.578 5.201±0.444 5.768 4.721±0.691 5.241
10 6.400±0.600 5.649 5.819±0.365 5.841 5.214±0.398 5.982 4.586±0.572 5.269
15 6.435±0.610 6.144 5.789±0.343 5.913 5.241±0.371 5.560 4.570±0.524 5.069
20 6.433±0.606 6.293 5.787±0.350 5.949 5.265±0.359 5.444 4.571±0.511 4.955
25 6.413±0.606 5.770 5.790±0.345 5.897 5.283±0.361 5.687 4.582±0.489 5.091
30 6.411±0.600 6.419 5.792±0.337 5.893 5.287±0.361 5.337 4.543±0.610 4.715
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6.6. Conclusions

The initial stage of this chapter provided a reduction of the segmentation approaches
for the ECG segmentation based on the R peak detection with an specific algorithm.
Through the use of DTW the best choices were reduced to two: version 4, which refers
to a temporal windowing of 0.2 s, whose center is the detected R peak; and version 14,
which starts 0.2 s prior to the theoretical QRS starting point and finishes 0.43 s after the
theoretical QRS end.

After narrowing down the segmentation criteria, several Machine Learning algorithms
were preliminary tested and their results are summarized in Table 6.10. The performance
evaluation was mainly based on accuracy and enrollment with the entire D1V1 set,
considering identification with the same scenario in another day (D2V1), and using
only the score from the last sample comparison. The closed-set with the entire BMSIL
database was only doable through the use of LDA classification, as SVM and k-NN
algorithms did not retrieve good results considering the ideal conditions of the enrollment
an recognition. The open-set approach required a noticeably higher memory management,
and the BMSIL database was then reduced to 20 users. The three algorithms performed
better, but for SVM and k-NN was not possible to know if it was caused by the shrinking
of the database.

Table 6.10: Summary of the initial results for identification for the different algorithms tested in
the present chapter. The parameter d refers to the proportion of the visit used for enrollment.

Classifier Type Users Segmentation Features Enroll Recognition Accuracy (%)
SVM

Closed-set 105
Version 4 Metrics

D1V1 (denr = 1)
HA = 1.

Last attempt.

41
k-NN Version 14 Metrics/DCT 47/46
LDA Version 4 Metrics/DCT 97.7/97.9
SVM

Open-set 20 Version 4
Metrics 83

k-NN Metrics 88
LDA Metrics/DCT 99/91

More complex approaches were achieved based on improving results in open-set with
all users BMSIL database, as well as to further research the potential of LDA in closed-set
experiments. The final results are collected in Table 6.11. This time, to narrow down
the complexity of identification, results were evaluated for verification. GMMs were
successfully tested considering variations in the position and same position data collected
in the same day (D1V2), obtaining the best result under DCT features and training with
the entire enrollment visit. The convergence only failed in one user, which implied less
than 1%, and allowed to perform the open-set task and an acceptable verification result
considering the conditions.

Results for closed-set the best results were achieved using 50% of the visit for
enrollment, allowing to test the verification under the remaining data. The tested
algorithm was LDA, as its EER with reduced data in identification was desirable, as
summarized in Table 6.11. In this case, no data reduction nor transformation is demanded,
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using all the time points of the selected QRS segmentation. Results are improved with
respect to GMMs even when including more complex scenarios (such as those for D2V2)
and reducing the number of attempts.

Table 6.11: Summary of the best results for verification and the different algorithms tested in
the present chapter. The parameter d refers to the proportion of the visit used for enrollment. In
identification, the metric is accuracy, when in verification it refers to the EER. Visit where X and
Y can be substituted by 1 or 2.

Classifier Type Users Segmentation Features Enroll Recognition EER (%)

GMM Open-set 104 Version 4 DCT D1V1 (denr = 1)
D1V2.
HA = 1.

All attempts.
11.26

LDA Closed-set 105 Version 4 Time D1V1 (denr = 0.5)

DXVY.
HA = 1.

All attempts.
7.465–8.096

DXVY.
HA = 20.

One attempt.
4.571–6.433

DXVY.
HA = 25.

All attempts.
5.091–5.897

This chapter has proven the viability of ECG recognition under the BMSIL database
characteristics, which imply including exercising data and visits in different days.
Moreover, it settles an starting point for further improvements and study of other factors
and algorithms.

62



CHAPTER 7. MULTIMODAL VERIFICATION

7. MULTIMODAL VERIFICATION

In chapter 6 the ECG has been tested as a potential good modality, even more when the
user is resting. However, classic biometric modalities still provide better performances,
such as fingerprint recognition which has verification performances with EER = 0.1%
or lower, depending on the case scenario [103]. However, this modality is susceptible
to attacks, and the increase of its use in mobile biometrics has increased the interest on
Presentation Attack Detection (PAD) and fusion.

The ECG as a biometric trait provides advantages that are not usual in
fingerprint-based systems, as they are more difficult to access, provide liveness detection
and it is a continuous signal. The addition of this modality could lead to an improvement
of the fingerprint performance, helping with the rejection of false presentations.

7.1. Fingerprint performance

The BMSIL database contains data related to fingerprints of every user that took part in
it. Each finger was collected twice to provide a reference and a comparison sample. The
Innovatrics [104] algorithm analyzes the quality of the fingerprint image and extracts its
reference based on the detected minutiae. The DET and EER get calculated considering
only data when the reference is the right index in the first samples. The scores range from
0 and 1000, and get normalized between 0 and 1 to have the same range as those scores
in ECG.

7.2. Score fusion

Score fusion consists on merging both modalities’ results into one to enhance the system’s
performance. For this purpose, weighed sum in Equation 7.1 is proposed, where A is the
weight for ECG scores (sECG) and B is for fingerprint (sfp). This concept is represented
in Figure 7.1 when using the scores obtained from with LDA using the last sample
verification in chapter 6.

s f usion = A · sECG + B · s f p (7.1)

7.3. PAD

The score fusion does not allow to detect attacks. The sequential comparison of both
modalities could produce better results discarding forgeries, as ECG allows to detect if
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Figure 7.1: Score fusion scheme for ECG and fingerprint.

the sample comes from an alive user, and how likely it is for the following fingerprint
to be the correct one. As it has been seen, the ECG is not as accurate as fingerprint,
but establishing a minimum threshold could potentially help determining which user is
suitable to continue with the fingerprint verification. This threshold is obtained from
those scores obtained with LDA in chapter 6

The followed steps are represented in Figure 7.2, where the ECG is initially required,
and the scores sECG are filtered with a threshold. If the obtained score for the ECG is
higher than the threshold, the verification continues asking for the fingerprint data, and
considering it the final system’s performance. On the contrary, if the threshold condition
is not met, the system stops considering the data as an attack.

7.4. Results

This section collects the results of the PAD and fusion approaches for ECG and
fingerprint.

7.4.1. Fingerprint performance

The fingerprint database has an EER of 0.218%. The DET representation is in Figure 7.3.
One must consider that these performances in mobile fingerprint biometrics usually have
lower performances, as the computation and sensors are more limited.
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Figure 7.2: PAD scheme for ECG and fingerprint.

7.4.2. Score fusion

The observed results are summarized in Table 7.1 under the different obtained values of A
and B. The best improvement is achieved under A = 1 and B = 2, giving more relevance to
those results in fingerprint. Compared to the fingerprint results by themselves, they were
improved from 41.28% to 70.64%. These results are easily observed in the DET from
Figure 7.4 and the distributions in Figure 7.5. In all three distributions, the non-mated
scores are well differentiated from the mated ones. This behavior correspond to accurate
true negatives or very low FNMR rates. The scores in mated comparisons are generally
more heterogeneous.

Table 7.1: EER (%) results for the different verification data and A and B combinations in score
fusion, as well as the improvement with respect to the initial fingerprint performance.

Verification A B EER (%) Improvement (%)
D1V2

1 1
0.092 57.80

D2V1 0.119 45.41
D2V2 0.137 37.15
D1V2

2 1
0.101 53.67

D2V1 0.128 41.28
D2V2 0.147 32.57
D1V2

1 2
0.064 70.64

D2V1 0.101 53.67
D2V2 0.128 41.28
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Figure 7.3: Fingerprint performance in the BMSIL database.

Figure 7.4: DET graph for the different performances with A = 1 and B = 2 in score fusion.

7.4.3. PAD

To observe the different results based on the threshold for ECG, several thresholds are
tested to observe the performance. The percentage of discarded samples for mated and
non-mated comparisons are collected in Table 7.2 for the different type of verification
data.

Logically, the higher the threshold, the highest number of discarded non-mated
comparisons. However, it also implies a higher mated discarding, which is not desirable
as it would imply that a genuine user would require more attempts to be verified. The
best trade-off is obtained under the score threshold of 10−10. As the non-mated discarding
is 99.222%, it implies that only 0.778% of possible attacks are not detected as such.
According to ISO/IEC 30107-3, this results is the Attack Presentation Classification
Error Rate (APCER). Similarly, the genuine comparisons detected as attacks is the
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(a) D1V2. (b) D2V1.

(c) D2V2.

Figure 7.5: Distribution graphs for A = 1 and B = 2 in score fusion. Red belongs to non-mated
scores, and blue to mated scores.

1.905%, considered the Bonafide Presentation Classification Error Rate (BPCER). After
this thresholding, the final alid scores are those provided by fingerprint comparisons, so
the system summarizes in 0% EER.

7.5. Conclusions

This chapter has proven the potential of ECG as a multi-modal approach with a
conventional biometic trait as fingerprint. The fusion of these two signals strengthens
the outcomes that each one have individually. A score fusion approach is slightly affected
by the ECG scores, as fingerprint already provides enough precision on its own. However,
they are still improved with help of ECG up to 70%. These improvements could be even
higher considering mobile recognition, as the fingerprint performance usually decrease
due to limited computation and sensor quality. The multi-modal approach has been more
productive when applying it as a PAD scheme. This approach characterizes the final
system with liveness detection and produces an initial discarding, avoiding presentation
attacks. This process results in detecting more than 99% of the attacks, and the valid
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Table 7.2: Percentage of discarded mated and non-mated comparisons for different threshold in
the PAD scheme.

Verification Threshold Discarded mated (%) Discarded non-mated (%)
D1V2

10−10

1.905 99.222
D2V1 3.809 99.286
D2V2 4.762 99.066
D1V2

10−5

4.762 99.725
D2V1 6.667 99.744
D2V2 7.619 99.615
D1V2

0.1
6.667 99.890

D2V1 8.571 99.872
D2V2 9.524 99.853
D1V2

0.4
6.667 99.908

D2V1 10.476 99.881
D2V2 13.333 99.863
D1V2

0.9
10.476 99.945

D2V1 12.381 99.927
D2V2 14.286 99.918

fingerprint scores give a system with 0% EER.

These results are a good initial approach for the use of both modalities, but further
research on this topic would be required to finally confirm its benefits. In addition,
the database did not provide elaborated Presentation Attacks, such as those with fake
fingerprints, so the correct performance of ECG in PAD is not really observed, as results
could be highly improved. However, the application of these approaches could be really
relevant once applied in mobile biometrics.
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8. ECG VERIFICATION USING MULTILAYER PERCEPTRON

Chapters 6 and 7 have dealt with the complete BMSIL database. Throughout the
achieved results, we can infer that data collected under scenarios different to the one in
enrollment provoke lower performances. This chapter is initially planned to be focused
on the S2 part of the BMSIL database, as it is the one with different acquisition scenarios,
both in time and physical conditions. However, it is further extended to the entire BMSIL
database as the experiments evolve.

The present chapter aims to improve the previous results using MLP algorithm
implementation by scikit-learn in Python 3 [99]. In addition, considering the potential
use in mobile devices, the feature transformations are reduced to the minimum to avoid
extra computations. It is based on the process that was carried out in [2]. However, even
though the experiments are executed in the same way, the results have been re-calculated
after error correction of the developed code.

8.1. Input data

The data pre-processing is formed by the 1-35 Hz band-pass filter referred in previous
chapter 5. The R peak detection is carried out with the BMSIL algorithm in section
5.2.1. This algorithm requires the first and second derivative calculations to proceed
with the peak detection. Therefore, using the differentiated QRS complexes does
not add computation complexity, as they were already calculated. Figure 8.1 shows
the data pre-processing and preparation for the three differentiation matrices: ND
(Non-Derivative), FD (First Derivative) and SD (Second Derivative). The number of
samples per user, Huser is determined by the number of cycles detected in each session
of the visit. In this case, as it happened in chapter 6, the number of cycles per session
is fixed to 50, c = 50. All the five available sessions are used for this chapter so n
= 5. Therefore, the available data per user is given by Huser = c · n, which results in
250 samples. The variable W refers to the cycle length or number of features in the
sample. Experiments in previous chapters have shown that segmenting in 0.1 s with the
R peak in the center is a good approach. Therefore, considering the sample frequency,
W = rng1 + rng2, where rng1 = rng2 = 100. The FD and SD matrices have the same
length as ND, as the segmentation is obtained from the differentiated signal, not after
the segmentation.

8.2. Hyperparameter optimization

The hyperparameter optimization process is done independently for each of the
differentiation types. In this section the type of matrix is not referred, as the process
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Figure 8.1: Scheme of pre-processing and data preparation for one user.

is common for ND, FD and SD. However, the final hyperparameter sets are likely to be
different.

This process aims to find the set of hyperparameters for the MLP algorithm that best
fit the training data. To avoid large computational costs as a result of the large number
of possible hyperparameters, some of them get fixed based on previous knowledge. The
possible values that every hyperparameter can get are defined and random combinations
chosen and tested using the Random Search and Exhaustive Grid methods. The best set
is then retrieved to proceed the evaluation of the different performances.

8.2.1. Fixed hyperparameters

Fixing some of the hyperparameters facilitates the following tuning process. The number
of layers is set to one, as it usually performs properly and avoids extra slowdown [105].
The used optimizers are Stochastic Gradient Descent (SGD), Adam [106]; which is SGD
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based, and a quasi-Newton optimizer, L-BFGS. However, preliminary trials showed very
low performance results with all of them except for Adam. These results allowed to fix
the optimizer to Adam, discarding the selection of a specific learning rate, as it is only
required for SGD optimizers. As a consequence, there is a learning rate step, which is the
quantity to upgrade the weights and it is fixed to the scikit-learn default value. Finallly,
the number of iterations without change is heuristically fixed to 10, and refers to the
number of epochs that need to present no change to consider convergence. The fixed
hyperparameter values are summarized in Table 8.1.

Table 8.1: Summarization of the fixed MLP hyperparameters.

Hyperparameter Description Value
Hidden layers Number of hidden layers. 1

Solver Function used for weight updating. Adam

Learning rate
Function used to update the learning rate

that takes part in the optimizer.
Not applicable

with adam optimizer.
Learning rate step Step size for the learning rate updates. 0.0001

No change iterations
Number of iterations with no relevant

change to consider convergence.
10

8.2.2. Tuning process

After fixing some of the hyperparameters, there are still remaining values that need to be
determined by hyperparameter tuning. The number of hidden layers is set to one, however,
the number of nodes needs to be determined. In addition, the activation function can be
any of those in Table 5.1, and it is optimized in tuning. The alpha (α) parameter belongs to
the L2-regularization component α||W||22, where α or alpha is the penalty term and ||W||2
represents the Euclidean norm of the weights. The value of alpha avoids overfitting it
is also included in tuning. The final value to set is the tolerance, which determines the
improvement in the loss that needs to be improved in order to keep iterating.

The tuning process follows the steps in Figure 8.2, where Hdb refers to all the available
samples for the tuning process, considering all users. In this case, as all the different users
provide the same number of samples, Hdb = Huser · U, being U the number of users in the
database, which is 55 in the case of S2. The whole process is based on the EER metric
instead of accuracy, by using a customized Python function that calculates the EER one
sample per attempt, considering all attempts (section 5.3.2). The possible array of values
for the different hyperparameters is collected in Table 8.2. The activation functions are
those mentioned in Table 5.1, and the numerical values try to represent extreme values in
small steps to observe how determining each hyperparameter is.

The different parts of the tuning process have the following purposes:

• Stratified Shuffle Split: divides the data into development set with Hd samples, and
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Figure 8.2: Hyperparameter tuning steps.

Table 8.2: Possible values for the remaining hyperparameters.

Hyperparameter Possible Values
Hidden layer size 1, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250

Activation Identity, logistic, tanh, ReLU
Alpha 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 5, 10, 50, 100

Tolerance 0.01, 0.05, 0.1, 0.5

test set, with Htest samples. The development size proportion specified by d. This
division shuffles the samples so they do not have temporal correlation and keeps the
category proportion, which is the same for all the users.

• Random Search CV: a determined number of hyperparameter combinations are
evaluated using cross-validation (CV) with 5 folds, assessing 50 for this experiment.
This process implies dividing the development set into training and validation sets,
with a 80%-20% ratio.

• First hyperparameter selection: the best 3 results from the Random Search are
selected, and their hyperparameter values fed into the following step to narrow
down the possible combinations.

• Grid Search CV: similar process to Random Search, but evaluating all the possible
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combinations based on the given value possibilities. The combinations are reduced
as a consequence of the previous steps, and returns the final best result.

• Test: the best set of hyperparameter values is then used for training the final model
using the whole development set. It then gets tested with the test set to observe
its performance. As the results belong to the same data scenario, the EER should
be low to confirm the correct modeling. This testing process provides intra-class
information, as further explained in the following section.

8.3. Optimization of the design

At this point, we must differentiate two similar parameters: d and denr. The proportion
of visit in the data used in the development set for tuning is defined by d. However, the
parameter denr refers to the proportion of data used for enrollment. This differentiation is
included in this chapter to avoid having extreme performances that could be only related
to the size of the development set.

Once the hyperparameter tuning is achieved using proportion d, there are more
required parameters to characterized the system. These parameters are not part of the
classification model, but affect the data and have impact in its optimal configuration. In
this case, we focus on three aspects: type of differentiation, enrollment size (denr) and
characteristics of attempts in verification. The process consists on narrowing it down
from first to last until the final system characterization.

8.3.1. Differentiation

Obtaining the test results with the final hyperparameter set for each of the three
differentiation already gives information about the inter-class variability, as they are
obtained under the same conditions and visit, D1V1. These results are considered the
baseline, as they are a result of the best possible conditions. However, as the S2 provides
3 extra visits in different scenarios and days, it is interesting to further observe the
differences in those cases. The test stage in Figure 8.2 is also represented in Figure 8.3,
when the used model is the best one obtained in the Grid Search, therefore d = denr for
this scenario.

From now on, denr is used instead of d because we are not referring to the tuning
process anymore, but the final model training with the given enrollment information.
When denr = 1, there is no remaining information for testing with that data, so the DET
for D1V1 cannot be calculated. If denr < 1, the test set with D1V1 has Htest samples and
the training set, Henr samples.

The inter-class variations are represented when obtaining DETs for those experiments
that do not belong to the enrollment data D1V1. Comparing these results to those in D1V1
gives information about the data differences that could produce a lower performance. In
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these cases, the whole information is used for testing by using one sample per attempt,
considering all the attempts. This results in testing sets of Hdb samples.

Figure 8.3: Steps to obtain the DETs for all the possible visits.

8.3.2. Enrollment size

Once the best differentiation is determined, it can be used to observe how changes in
enrollment size affect the result. They are tested for values of 0.3, 0.5, 0.7 and 0.9. As
the number of used samples may change the behavior of the network, the same values are
used for d in tuning, resulting in four different sets of hyperparameters.

Every possible enrollment proportion is used in all the four possible hyperparameters
combinations, determining the final model that will represent the system.

8.3.3. Extended verification

After considering the best differentiation and enrollment size, we can further observe the
effects of different approaches in attempts. So far, the results are obtained using EER
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considering the one sample per attempt with all the possible available attempts. This
section follows the alternatives previously referred in section 5.3.2, considering 5, 10, 15,
20, 25 and 30 samples per attempt in both options.

8.4. Results

Once the optimization is achieved for S2, the same process is carried out with the entire
BMSIL database following the same steps.

8.4.1. Optimization of the design

Differentiation

The first stage for the optimization is getting the system tuned to compare all types of
differentiation. In this case, tuning is done with d = 0.5 for D1V1 in S2, using the
remaining data for testing. The retrieved EER for these features would allow to assess
which one performs better. The visit D1V1 provides data in resting conditions while
sitting down, which is expected to provide more stable and feasible data. The mean EER
results and the corresponding hyperparameter values obtained from the Random Search
CV are summarized in Table 8.3 and come from 50 different combinations. The results
in this initial search already show how potentially different the performances of ND, FD
and SD are going to be.

Table 8.3: Best hyperparameter values in Random Search CV and their EER (%) for ND, FD and
SD.

Signal Hidden Layer Size Activation Alpha Tolerance Mean EER (%)
ND 350 ReLU 0.01 0.5 0.040

350 Identity 1 0.5 1.212
700 ReLU 1 0.05 1.223

FD
500 ReLU 0.0001 0.05 0.175
700 ReLU 0.005 0.05 0.505
400 Identity 0.01 0.1 0.593

SD
500 Identity 0.005 0.01 3.347
350 Identity 0.0001 0.05 5.280
350 Identity 0.01 0.01 6.218

The different values for the hyperparameters are fed into the Random Search CV,
obtaining the best three sets of values for each one of the differentiated matrices, as seen
in Table 8.4. The right column has the EER results for the remaining test set of D1V1,
which is equivalent to saying that denr = d.
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Table 8.4: Best hyperparameter values in Exhaustive Grid Search and their EERs for ND, FD and
SD. Each final set of values has the corresponding testing result.

Signal Hidden Layer Size Activation Alpha Tolerance Mean EER (%) Test EER (%)
ND 350 Identity 1 0.05 0.761 0
FD 400 Identity 0.0001 0.1 0.128 0
SD 500 Identity 0.005 0.01 3.151 2.290

The results in Table 8.4 show a good separation between data in ND and FD, being
lower in the case of SD. These results imply good training and sufficient inter-class
variation for the verification process. However, comparing these results with the
remaining visits is insightful of the intra-class variability between different physiological
scenarios. The results are numerically summarized in Table 8.5 and graphically
represented in Figure 8.4. Generally, the best performances are obtained with FD, as
the EER are the lowest for all the visits. ND represents a huge increase in the scenario
with exercise, D2V2. In terms of reducing the EER in different scenarios, SD successes,
as the EER in visits D2V1 and D2V2 decrease. However, the differences in performance
between D1V1 and the remaining visits show the lack of generalization with this data.

Table 8.5: EER (%) performances when denr = 0.5.

D1V1 D1V2 D2V1 D2V2
ND 0 3.636 4.810 11.970
FD 0 3.636 3.112 5.454
SD 2.290 7.273 6.003 5.454

Enrollment size

Once that the FD is determined as the best differentiation, the tuning is achieved for every
value of d. The obtained hyperparameters under every value of d are the ones in Table
8.6. The difference is patent to those initial results in Table 8.4, as the hyperparameter
selection is more heterogeneous throughout the different sizes. Finally, the best EER is
obtained for d = 0.9.

Table 8.6: Best hyperparameter configurations for FD obtained under different values of d and the
mean EER (%) obtained in validation.

d Hidden Layer Size Activation Alpha Tolerance Mean EER (%)
0.3 700 Tanh 0.0005 0.05 0.081
0.5 400 Identity 0.0001 0.1 0.054
0.7 700 ReLU 0.01 0.01 0.058
0.9 500 ReLU 0.0001 0.05 0

Considering the previous configurations, the results for the each enrollment size are
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(a) ND. (b) FD.

(c) SD.

Figure 8.4: DET graphs for each differentiation after tuning and training with d = denr = 0.5.

collected in Table 8.7 and with their DETs representation in Figure 8.5. Within the same
visit D1V1, using less than half of the data for training would not be advisable, as the
EER is not optimal, being this information the only one visible in Figure 8.5a. There is
no real difference between using 0.5 or 0.7 proportions in enrollment for the same day, as
the results are very similar, as observed in Figure 8.5c. However, in the case of D1V2,
increasing the enrollment size to 0.9 noticeably lowers the EER in 40%. In the case of
D2V1, the improvement is clear when denr > 0.3, more specifically using 0.7. Finally, the
worst performances are obtained under D2V2 data, with no difference between 0.5 and
0.9 enrollment ratios and surprisingly reaching the lowest EER when denr = 0.3.
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Table 8.7: EER (%) performances for the different enrollment proportions with the parameters
obtained when tuning with d = 0.9.

denr

Visit
D1V1 D1V2 D2V1 D2V2

0.3 0.101 3.636 3.636 4.796
0.5 0 3.636 3.112 5.454
0.7 0 3.636 2.647 5.454
0.9 0 2.515 2.681 5.454

Extended verification

By using FD and denr = 0.9 with the initial verification approach, the FNMR and FMR
plots result in those in Figure 8.6 where D1V1 is not plotted as the EER is 0. To extend the
information and refer to more realistic context, different types of attempts are evaluated
with all the visits. The results are graphically represented in Figure 8.7, where 8.7a
considers one attempt at a time, reflecting the mean EER and Figure 8.7b collects results
considering the average score of all the possible attempts.

Table 8.8: EER (%) average results considering the two types of extended verification considering
HA. D1V1 is the enrollment and denr = 0.9.

Visit D1V1 D1V2 D2V1 D2V2

HA

Type
One attempt All attempts One attempt All attempts One attempt All attempts One attempt All attempts

5 0 0 0.094±0.071 0.034 0.373±0.507 0.202 0.473±0.597 0.640
10 0 0 0.085±0.057 0.034 0.337±0.382 0.236 0.425±0.601 0.438
15 0 0 0.082±0.052 0.067 0.318±0.355 0.269 0.318±0.255 1.010
20 0 0 0.084±0.046 0.067 0.309±0.346 0.269 0.356±0.363 1.413
25 0 0 0.039±0.247 0.067 0.393±0.393 0.202 0.310±0.219 0.673
30 - - 0.076±0.035 0.067 0.282±0.320 0.303 0.299±0.244 0.774

Results for one attempt are similar throughout the different values of HA. The EER
increases as the experiments change more significantly. In Figure 8.7a the standard
deviation is higher for experiments in the second day, more significantly in D2V2. This
implies that the selected samples are really relevant in verification for this visit, as
probably some of them are more stable than others, resulting in best performances. In the
case of HA = 15, the EER average goes ranges between 0% to 0.318%. In the experiment
considering all the possible attempts, in Figure 8.7b, huge variations also occur in the
case of D2V2, where the EER drops noticeably when using 10 samples in each attempt
but spikes when increasing HA. It is remarkable, as this data is the less stable one, which
could mean that each score for every attempt gets heavily compensated in some cases.
In general, results are less constant in all visits when varying the samples per attempt.
However, in general, the EER average is noticeably decreased in comparison to data only
from one attempt. In the case of D2V2 for 10 samples, the EER goes from 0.034% to
0.438%. However, verification time must be considered, as using 10 samples per attempt
allows to execute 25 attempts with the available data, which is not a convenient number
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(a) D1V1. (b) D1V2.

(c) D2V1. (d) D2V2.

Figure 8.5: DET graphs for the each enrollment size after tuning with d = 0.9.

of attempts in a real case scenario.

8.4.2. Results with the entire BMSIL dataset

The initial work presented in [2] only considered the S2 subset as the goal was only
focused on physiological changes. However, to facilitate further comparisons between
algorithms, the results are extended to the entire BMSIL data, which includes S1 and S2
and elevates the number of users to 105. Considering FD the MLP model and verification
results are obtained under the the same criteria as in the previous sections.

The hyperparameters in tunning are specified in Table 8.9 with the corresponding
testing results. In this case, the lowest testing results are obtained when d = 0.7. The
parameters result in the FNMR vs. FMR graph plotted in Figure 8.8 where the EERs are
0%, 1.503%, 3.243% and 6.324% for D1V1, D1V2, D2V1 and D2V2, respectively.
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Figure 8.6: FNMR and FMR curves for D1V2, D2V1 and D2V2 with hyperparameters of tuning
with d = 0.9 and same value of denr. The verification approach is using one sample per attempt
with all the attempts. The EER points are marked in black.

Table 8.9: Best hyperparameter configurations for FD obtained under different values of d and the
mean EER (%) obtained in validation using the entire BMSIL database.

d Hidden Layer Size Activation Alpha Tolerance Mean EER (%)
0.3 300 Tanh 0.0001 0.01 0.711
0.5 300 Identity 0.001 0.01 1.102
0.7 700 Identity 0.0005 0.01 0.158
0.9 400 Identity 0.0005 0.1 1.735

Results for the different types of verification are also summarized in Table 8.10 and
their graphs plotted in Figure 8.9. In this case, there is a clear impact in comparison to
those results with the S2 data. When verifying with one attempt the results are not really
affected as the HA varies, as represented in Figure 8.9a. The best result is obtained when
HA = 30 and is determined based on the visits from the second day, as experiments from
the first day are always correctly classified. This is a consequence of adding the S1, as
D1V2 data corresponds to resting and sitting acquisitions, probably making the system
easier to classify. The EER average ranges between 0.831% to 1.886%. Nonetheless,
the standard deviations are higher, even more for D2V2, so these results would depend
heavily on the sample selection. When considering all the attempts, similar results occur
in the first day, as the general EER is 0%, which is clear in Figure 8.9b. Best results are
again obtained when HA = 5, where EER has a range of 0–2.711%.
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(a) Considering a single attempt. (b) Considering all attempts.

Figure 8.7: EER (%) average results for both extended verification alternatives with D1V1 as
enrollment and denr = 0.9. Considering D1V1 experiments contain half the samples as the re-
maining.

Table 8.10: EER (%) average results for the entire BMSIL database, considering the two types of
extended verification considering HA. D1V1 is the enrollment and denr = 0.7.

Visit D1V1 D1V2 D2V1 D2V2

HA

Type
One attempt All attempts One attempt All attempts One attempt All attempts One attempt All attempts

5 0 0 0 0 1.542±3.111 0.467 2.711±5.309 0.348
10 0 0 0 0 2.255±3.515 0.412 4.039±6.077 0.275
15 0 0 0 0 2.441±3.508 0.247 4.591±6.301 0.366
20 0 0 0 0 2.377±3.408 0.265 4.588±6.278 0.284
25 0 0 0 0 2.393±3.414 0.302 4.590±6.270 0.320
30 0 0 0 0 2.325±3.412 0.229 4.346±6.182 0.247

8.5. Conclusions

In the present chapter the MLP algorithm has been successfully tested as a good approach
for ECG biometric verification. The initial goal for this algorithm was to prove that
changes in posture or heart rate do not interfere in the recognition. Additional, it provides
good performances by using simple transformations. Based on the obtained results in
chapter 6 for the QRS segmentation criteria, a hyperparameter tuning procedure has
been established for MLP. The first differentiation was chosen as the most suitable one,
retrieving the results in Table 8.11 for the S2 dataset.

The results for S2 gave EER values that ranged from 0% to 5.454% in the worst case
scenario, which belonged to experiments regarding increasing heart rate. The extended
approaches for verification using different samples per attempt, resulted in a lower EER
than general results for LDA in the same verification approaches. Depending on these and
the number of samples per attempt, the average EER generally decrease to values lower
than 0.5% in both verification alternatives. Only considering one attempt provides more
and more distant whenever the recognition scenario heavily differs from the enrollment
one. This observation reinforces the requirements of having a quality assessment in the
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Figure 8.8: FNMR and FMR curves for verification using the entire BMSIL database and D1V1
as enrollment visit with denr = 0.7. The verification approach is using one sample per attempt with
all the attempts. The EER points are marked in black.

recognition purposes.

To facilitate the comparison with the results from chapter 6 concerning LDA, the
procedure was repeated with the first differentiation using the BMSIL database in its
entirety (S1+S2). Even though MLP required more enrollment length (70% vs. 50% in
LDA), the improvement in EER is patent. The algorithm has proven to generalize better,
as D1V1 experiments lay in a 0% EER, when LDA resulted in 7.465%. In addition, the
worst case scenario got a maximum value of 6.324% while LDA had almost 2% more
EER in that case. These initial results clearly impacted the two extended verification
approaches, reaching a maximum of 1.886% when using a single attempt with 30 samples;
and 0.247% considering all of the attempts.

Comparing the use of MLP with S2 and S1+S2, S2 provides less users so it requires
more enrollment data to achieve the best results. The EER also is lower in general for S2,
which could be provoked by the fact that the number of users is lower. However, it could
be that using both S1 and S2 made the classification more confusing, as in the case of S1
the scenarios do not vary between visits.

The set of samples for verification and the approach have significantly affected the
results in the MLP algorithm, which shows how different each comparison behaves.
This could be a product of two issues: the lack of quality assessment in the verification
samples and/or the impossibility of the algorithm to generalize under certain type of QRS
complexes. In the former, there are no consensus as how to assess the quality of an ECG
for verification. However, focusing in other complex algorithms is something doable and
insightful for the available data.

82



CHAPTER 8. ECG VERIFICATION USING MULTILAYER PERCEPTRON

(a) Considering a single attempt. (b) Considering all attempts.

Figure 8.9: EER (%) average results for both extended verification for the entire BMSIL database.
The enrollment visit is D1V1 and denr = 0.7. Considering D1V1 experiments contain half the
samples as the remaining.

Table 8.11: Comparison of the final results for the best classifiers tried so far, LDA and MLP.
The segmentation comprehends a window of 0.2 s with the R peak in the center. The recognition
experiments are carried out with all the available visits, so the EER is represented as a range of
percentages.

Classifier Database Features Enroll Verification EER (%)

LDA S1+S2 ND D1V1 (denr = 0.5)

HA = 1.
All attempts.

7.465–8.096

HA = 20.
One attempt.

4.571–6.433

HA = 25.
All attempts.

5.091–5.897

MLP S2 FD D1V1 (denr = 0.9)

HA = 1.
All attempts.

0–5.454

HA = 15.
One attempt.

0.082–0.318

HA = 10.
All attempts.

0–0.438

MLP S1+S2 FD D1V1 (denr = 0.7)

HA = 1.
All attempts.

0–6.324

HA = 30.
One attempt.

0–2.711

HA = 30.
All attempts.

0–0.247
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9. ECG RECOGNITION WITH DEEP LEARNING

In chapter 8 we proved that MLP is a more complex yet a better approach than LDA
for ECG verification, even when having scenarios that vary the shape and acquisition of
the ECG. The MLP algorithm is one of the simplest networks that are part of Machine
Learning, but increases the complexity in LDA. However, more complex techniques have
been developed and formed Deep Learning algorithms.

The present chapter has the goal of testing Deep Learning in similar conditions
without using differentiation and experiment other type of enrollments. Given that more
sophisticated algorithms are included, the experiments also aim for identification and not
only verification. The whole implementation used Keras [107] in Python 3.

9.1. Initial approaches

The first goal of this chapter was complementing the results in MLP verification, in order
to observe how well Deep Learning manages the different data. As a consequence, the
employed data is the S2, using the same input data in section 8.1, but only considering
ND differentiation.

9.1.1. LSTM and hardware limitations

Considering the characteristics of ECG and the decision of avoiding complex
pre-processing, Neural Networks are a good approach as they are known to properly
generalize from raw data [108]. LSTM networks were considered a good approach, as
they belong to RNNs but also deal with long-term dependencies [109]. The early stages
of the LSTM network relied on very simple structures, with only one hidden layer and
nodes. However, the network optimization took days to end, with poor fitting results,
and some times it ended running out ouf memory. The hardware was upgraded from an
Intel®Core™i7-6700 CPU with 16 GB RAM without dedicated GPU to an i9-9900K
CPU with 16 GB RAM and Nvidia GeForce RTX 2080 Ti GPU. Even the inclusion of a
powerful GPU made the optimization impossible to achieve due to the required time and
memory, so a LSTM-based network was not possible to design.

9.1.2. CNN

The CNN are commonly applied to image processing as they are 2D matrices. However,
CNNs can also be one-dimensional and help extracting relevant features for classification.
This type of networks reduce the quantity of data, probably avoiding the previous
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problems with LSTM. Initially, only CNNs are used for this classification, and the process
is further detailed in [110].

Network architecture

The network different layers are designed with a common and simple approach in Figure
9.1 [111][112]. The concept of 1D Convolutional layers was already defined in section
5.3.1. In this case, it is followed by a maximum pooling layer, which retrieves the
maximum in the selecting window and usually performs better than average pooling
[113]. The concatenation of these two layers are considered one hidden layer, and the
design can use more of them, but they are not represented for simplicity. The dropout
layer helps avoiding overfitting, as it discards samples with a given probability. Finally,
the dense layer results in as many outputs as classes we want to predict when using a
softmax activation.

Figure 9.1: Basic layer architecture for CNN.

Hyperparameter optimization

The initial goal for the present chapter was to proceed with similar experiments to those
in chapter 6. However, due to the differences in the used software, processing times and
hardware limitations, some had to be changed accordingly as follows:

• Differentiation: the type of best differentiation initially was a parameter to further
assess in this chapter, as it happened in chapter 8. The first experiments were
achieved with ND, and the results were planned to be extrapolated to FD and SD.
However, the processing time, amount of resulting data and analysis complexity
experienced impeded achieving the same with the remaining differentiation. To be
coherent and comparable to the results in MLP, these should have been achieved
considering FD, but results with ND are sufficiently good and obtained under no
transformations.

• Cross-validation: the hyperparameter tuning for MLP implemented
cross-validation with 5 folds in all iterations, including the training of the
final model. However, due to processing times required by the BioECG network in
training, this step is avoided in its tuning. However, the final model is trained with
a 5-fold cross-validation.

• Evaluation metric: the available toolboxes in scikit-learn allowed to train
minimizing custom functions. This allowed to implement the EER as an evaluation
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metric. However, to deal with neural networks we use Talos [114], which is a
computer software that facilitates tuning in Keras. The capabilities of this software
are not as wide as those in scikit-learn, limiting the options of creating a custom
target function. As a result, this function is chosen from the available functions in
software. In this case, in other to also pay attention to identification, we selected
the accuracy.

As it has been done with MLP verification, this system also required hyperparameter
fixation and further tuning. Table 9.1 collects all the fixed values and ranges given for
tuning for the different hyperparameters. The fixed values were determined after heuristic
observations with the inclusion of an Early Stopping criteria, which stops the training
when there is no improvement, in order to avoid overfitting and long computations.
The maximum value is determined by Epochs, which is 250. The loss function is the
Cross-Entropy as defined in Equation (9.1) [111], where C is the number of classes, p(s)
is the softmax result and t indicates whether the class is positive or not. In addition, the
evaluation metric in this process is the accuracy, which is one of the biggest differences
with the one carried out in section 8.2.2, where the metric was the EER.

Table 9.1: Values and set of values given to the CNN architecture.

Hyperparameter Value/s
Conv activation ReLU
Dense activation Softmax

Optimizer Adam
Loss function Cross-Entropy
Dropout value 0.5

Epochs 250
Hidden layers [1, 2, 3, 4]

Number of filters (f) [32, 64, 128, 256]
Kernel size (k) [2, 3, 4, 5]

Pooling size [2, 3, 4, 5]
Batch size (b) [32, 64, 128, 256, 512]

CE(t, p(s)) = −
C∑︂
i

tilog(p(s)i) (9.1)

The tuning process follows the same steps as the one achieved in section 8.2.2.
Different values of d are given to obtain more sets of hyperparameters for D1V1 of S2.
This process determines the best model using the remaining data as test.
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Enrollment size

After determining the set of hyperparameters, the values of denr are modified for training.
To observe how differently these models may behave, each possible model is used for
verification with all the enrollment proportions to determine the best one.

9.2. BioECG: design, optimization and recognition

After observing the performances with CNN and the limitations to use LSTM networks on
their own, an extra network concept in introduced. The combination of CNN and LSTM
architectures is commonly used through literature in human recognition, where feature
extraction and classification are carried out in the same network [115]. This process is
expected to decrease the amount of data to be processed by the LSTM network, making
the corresponding calculations doable under the given hardware limitations. From now
on, this combination is going to be named BioECG.

9.2.1. Architecture design

The general scheme for the BioECG network is represented in Figure 9.2. The different
parts are defined as follows, when considering enrollments with D1V1 experiments:

• Input data: where Huser is the available data per user formed by 50 segmented QRS
in 5 sessions, with 200 points length and the R peak in the 101th index. The number
of users is represented by U which is 105 for the whole BMSIL database. U1 = 50
when only dealing with S1 and U2 = 55 when applying S2. This input data may
vary depending on the process: tuning is affected by the parameter d, and training
by denr, which specify the proportion data used in each procedure. In the case of
testing, Huser = Htest = 250.

• CNN: summarizes the data fed into the LSTM network.

• Batch normalization: helps with convergence and learning between layers when the
input is fed in batches [116], keeping the same dimensions as the CNN output.

• LSTM(s): represents a single or multilayered LSTM network, as it was described
in Figure 5.7. Considering L as the number of layers, n the number of neurons, b
the batch size and o the output size, the possible configurations of this network are:

– L > 1 and l = 1, the output dimensions were (b, o, 2n), as the number of hidden
neurons is doubled.

– L > 1 and 1 < l < L, retrieves dimensions of (b, o, n).

– L > 1 and l = L, resulted in (b, n) dimensions, as it was the last layer.

87



CHAPTER 9. ECG RECOGNITION WITH DEEP LEARNING

– L = 1 the only layer was also the output layer. The output had dimensions (b,
2n).

• Dense: a densely connected layer with as many layers as users in the database, with
softmax activation that allows to obtain the prediction probabilities per batch.

• Output: results in the final probabilities for all the batches. In the case of training,
the final dimensions are (Htest, U)

Figure 9.2: Scheme for the layers in the BioECG network.

9.2.2. Hyperparameter optimization

The hyperparameter optimization is achieved similarly as it was in section 9.1.
There is an initial hyperparameter fixation based on previous knowledge and heuristic
experimentation, and then it is followed by a Random Search and Exhaustive Grid.
However, as a result of the constraints by hardware, there were two modifications:

1. There is no cross-fold validation in tuning, only in training, due to time limitations.

2. The enrollment sizes are not tested for every set of hyperparameters obtained with
d. We assume denr = d all the time.

In this case, there is a preliminary tuning for the CNN network to obtain the best
values of s, k and f. The final values were determined setting d = 0.5, b = 35, L = 2 and
n = 32. Based on previous results, the adam optimizer is set as the most suitable option.
The system is expected to have from 1 to 3 hidden LSTM layers, and neurons that change
in a 2 exponent. The maximum number of epochs for early stopping is 500, with a 20
patience. All the possible values and the fixed ones are summarized in Table 9.2, where
in the case of CNN hyperparameters the selected ones are in bold font.

9.2.3. Recognition analysis

The previous experiments that have used MLP and CNN for classification, only focused
on the S2 database in verification. This was induced by the interest on classifying data
under different physiological scenarios. However, the goal is to provide a further in-depth
study in the case of BioECG. This implies not only assessing S2 but also S1, allowing
to observe how the different conditions affect. The results collect EER and accuracy for
both recognition purposes.
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Table 9.2: Possible values and fixed hyperparameters for the BioECG architecture.

Hyperparameter Values
Batch size (b) [20, 35, 50, 100]
Kernel size (k) [3, 5, 7, 9]

Strides (s) [3, 5, 7, 9]
Filters (f) [8, 16, 32, 64]
Activation ReLU

CNN layers 1
LSTM layers (L) [1, 2, 3]

LSTM neurons (n) [16, 32, 64, 128]
Epochs 500
Patience 20

Optimizer Adam
Learning rate (η) 0.001

The recognition process considered two types of enrollments: one-day and two-days
enrollments. These sets of data for enrollment are compared by using the same number
of samples, but with different origin. The one-day enrollment refers to the development
and enrollment proportions as in the previous section. This value translates into a given
number of samples per user, Huser · d. In the case of two-days enrollment, this value has
to be constant, extracting data with proportion d/2 from each visit. In this case, data
comes from D1V1 and D2V1 as they have the same physiological conditions in the entire
BMSIL database. The total sum of samples result in the same quantity for both types of
enrollment. The goal is observing how adding an extra enrollment day could impact the
system, analyzing the trade-off between practicality and performance.

Due to the BMSIL characteristics, the recognition analysis is divided in two depending
on the scenario. These experiments are carried out for both enrollments and further broken
down into the following:

1. Same scenario.

• Variations in the same day: D1V1, D1V2 for S1. D1V1 for S2.

• Variations between days: D2V1, D2V2 for S1. D2V1 for S2.

2. Different scenario.

• Different position: D1V2 for S2.

• Different heart rate: D2V2 for S2.
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9.2.4. Final configuration and extended verification

A final configuration is selected based on the recognition analysis, considering the values
of d = denr. For this selection, the main goal is achieving the most reasonable EER, as the
environment of use is undetermined. This final configuration is tested with S1, S2 and
the entire BMSIL database (S1+S2) for identification and verification, using one-day and
two-days enrollments. The results were obtained considering one attempt formed by as
many samples as the available test data allows.

To observe the behavior under to a more realistic conditions, the verification gets
extended results by applying the two different criteria described in section 5.3.2 which
imply fixing the number of samples that belong to each attempt. The two approaches
have been observed: considering one attempt and considering all the possible attempts.
The obtained results have several issues to address: the difference between enrollments,
difference of performance between the sets of data and how much the number of samples
per attempt affect the result. Considering both types of enrollment, the available samples
for testing under the different conditions are summarized in Table 9.3.

Table 9.3: Number of attempts per test set according to the number of samples HA and the type
of enrollment when denr = 0.5.

One-day Two-days
Test set D1V1 Rest D1V1 & D2V1 Rest

HA

Test samples
125 250 188 250

5 25 50 37 50
10 12 25 18 25
15 8 16 12 16
20 6 12 9 12
25 5 10 7 10
30 4 8 6 8

9.3. Results

9.3.1. Initial approaches

The final tuning values based on the enrollment proportion are in Table 9.4. As the
number of samples for training increase, the system requires more epochs to finally reach
an acceptable training. The hyperparameter values do not vary drastically between the
different sizes of the development set. As the amount of data increases, more hidden
layers help increasing the performance, and the batch size is also augmented. However,
these trends are considered normal as more data requires more complexity.
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Table 9.4: Final tuning values for every value of d using CNN.

d 0.3 0.5 0.7 0.9
Hidden layers 2 3

Number of filters (f) 64
Kernel size (k) 3

Pooling size 2
Batch size (b) 32 64
Final epochs 44 54 78 83

After observing the performances of all the possible combinations of enrollment sizes
and hyperparameter sets, the tuning with d = 0.7 is considered the best. The result
with respect to enrollment lengths are collected in Table 9.5, and the best option is
using denr = 0.9. This enrollment is a 3 min 45 s procedure that results in theoretical
performances of 1.730%, 3.523% and 10.194% EER for D1V2, D2V1 and D2V2
respectively. The different graphs are summarized in Figure 9.3.

Table 9.5: EER (%) with different values of denr after tuning with d = 0.7.

denr D1V2 D2V1 D2V2
0.3 3.636 7.585 8.948
0.5 2.034 6.214 11.434
0.7 1.818 6.604 14.070
0.9 1.730 3.523 10.194

Figure 9.3: DET for test sets when training with d = 0.7 and denr = 0.9 of D1V1.

This selection is not the only solution, as it depends on the system’s applications. In
this case, the results for D1V2 and D2V1 have been noticeably improved while decreasing
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performances in D2V2. This represents an environment in which having scenarios with
increased heart rates is not likely to happen.

9.3.2. BioECG: design, optimization and recognition

Same scenario: variations in the same day

The different results in the same day are summarized in Table 9.6; it shows one-day and
two-days data in enrollment, respectively. Results were slightly better in the one-day
enrollment, as all the data in the verification process belonged to the same day and visit,
D1V1. The best results required a lower value of d than in the best results for the two-days
enrollment. Even when requiring the same number of samples, the two-days enrollment
had half of data related to D1V1, which results in requiring higher enrollment lengths to
achieve equally good verification rates when verifying with D1V1. However, the number
of available samples were split in half between D1 and D2 in a two-days enrollment,
resulting in worse performances for visits in D1.

In the case of S2 for Table 9.6, d = 0.9 provided a very different result, as it was the
only non-zero value. This could be a result of the individual tuning for every value of d,
which could be not as accurate as in the rest of the cases. On the contrary, performances
for D1V1 were better in S2 than in S1 in Table 9.6, both in identification and verification.
In this case, the best metrics were achieved with d = 0.9, although results slightly differed
with the remaining values.

Table 9.6: Identification and verification results for same day in S1 and S2 for scenario R. The
best considered options for one-day and two-days enrollment are in bold font with d = denr.

Dataset S1| S2
Visit D1V1 D1V2 D1V1

d
Metric

Accuracy (%) EER (%) Accuracy (%) EER (%) Accuracy (%) EER (%)

One-day enrollment

0.3 92.81 0 93.25 0 96.30 0
0.5 98.19 0 97.96 0 95.86 0
0.7 96.90 0 96.42 0 95.80 0
0.9 96.37 0 97.12 0 74.58 1.58

Two-days enrollment

0.3 94.42 0.04 94.09 0.04 97.24 0
0.5 90.17 0.45 89.58 0.57 91.64 0.03
0.7 93.09 0.08 93.12 0.08 97.62 0
0.9 94.55 0.04 95.20 0.04 96.39 0

Same scenario: variations between days

Results for R in different days were collected in Table 9.7. One-day data results are
represented in Table 9.7. The decrease of accuracies and increment in EER show how
different ECGs can be between days, even under the same scenario. Results in Table 9.7
belong to those with two-days development data. In this case, the improvement from
one-day to two-days enrollment was relevant. From accuracies around 66–76% in Table
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9.7 to values in Table 9.7 for d = 0.3. Maximum achieved accuracy reached 98.91% in
d = 0.7, comparable to those with same-day scenarios, as seen in Table 9.6. In terms
of verification, the EER decreased from 2–6.54% in one-day enrollment to values that
ranged between 0% and 0.24% in two-days enrollment.

Table 9.7: Identification and verification results for different days with R scenario in S1 and S2.
The best considered options for one-day and two-days enrollment are in bold font with d = denr.

Dataset S1 S2
Visit D2V1 D2V2 D2V1

d
Metric

Accuracy (%) EER (%) Accuracy (%) EER (%) Accuracy (%) EER (%)

One-day enrollment

0.3 66.43 4 67.54 4 67.99 6.3
0.5 76.86 2 76.50 2.53 66.14 4.59
0.7 71.58 3.71 71.62 3.06 67.78 5.45
0.9 70.39 4 71.53 4 48.72 6.54

Two-days enrollment

0.3 92.54 0.04 92.27 0.04 98.81 0
0.5 87.81 0.24 88.31 0.24 93.75 0.17
0.7 94.83 0.12 94.95 0.12 98.91 0
0.9 97.68 0 97.17 0 98.12 0

The different results between Tables 9.6 and 9.7 can be a product of the
intra-individual variability between days, where doubling data related to D1V1 did not
give enough information about the ECG variability in the long term. Moreover, comparing
results in Table 9.7, results were noticeably better in all the values of d and in all the
visits in D2 when applying a two-days enrollment. When d = 0.9, accuracies went from
48.72–71.53% to 97.17–98.12%.

Different scenario: different positions

The data that also considered the change of position was acquired in the same day as the
enrollment but in a different visit. This implies that observed differences could only be
related to the position and short time variation. Table 9.8 summarizes those results. Even
though test data was acquired on the same day as in Table 9.6, the change of position
made the results decrease noticeably: almost a third in accuracy and going from almost
ideal values up to 5.45% in EER in the worst-case scenario. This information confirms
that changing the position affects the verification results even considering experiments in
the same day.

Table 9.8 collected performances when changing into two-days enrollment. The
results improved noticeably in comparison to those in Table 9.8. Even though the second
day of data used in training did not provide information about the change of position, it
has also helped to generalize in this case. It resulted in almost doubling the accuracy in
the worst previous result, while decreasing the different EERs up to 50%.
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Table 9.8: Identification and verification results for scenario S. The best considered options for
one-day and two-days enrollment are in bold font with d = denr.

Dataset S2
Visit D1V2

d
Metric

Accuracy (%) EER (%)

One-day enrollment

0.3 37.59 3.64
0.5 67.32 5.45
0.7 68.80 3.64
0.9 63.78 4.54

Two-days enrollment

0.3 80.42 1.82
0.5 73.88 3.64
0.7 79.45 1.99
0.9 85.14 1.28

Different scenario: different heart rate

Performances for the change of heart rate are collected in Table 9.9. Both identification
and verification presented a huge decrease in performance for one-day enrollment in Table
9.9. Opposed to those results in Table 9.8, this verification data belongs to a different
acquisition day, adding extra variations that may not be related to the heart rate. However,
comparing results in the same scenario in Table 9.7 with those in Table 9.9 help in the
assumption that the performance decrease is due to the heart rate variation.

Table 9.9: Identification and verification results for scenario Ex. The best considered options for
one-day and two-days enrollment are in bold font with d = denr.

Dataset S2
Visit D2V2

d
Metric

Accuracy (%) EER (%)

One-day enrollment

0.3 42.91 11.43
0.5 44.36 9.83
0.7 50.62 7.27
0.9 29.26 14.16

Two-days enrollment

0.3 59.91 3.64
0.5 58.58 3.64
0.7 56.28 5.45
0.9 58.04 3.90

On the other hand, Table 9.9 presents results with two-days enrollment. Results were
still not good in terms of identification, remaining below 60%. However, in verification,
EERs decreased noticeably. It was proved that adding an extra day of information for
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training improves the system noticeably in terms of verification, once it was compared to
Table 9.9. In d = 0.9 EER dropped almost 10% and close to 7% in the case of d = 0.3.

9.3.3. Final configuration and extended verification

Considering the different results in the previous section, the solution to the final system’s
configuration was not unique. Depending on its purpose, some factors needed to be taken
into account.

The enrollment process needed to be long enough to provide good information for the
development set. However, if the enrollments were too long (i.e., a greater value of d),
the user might get tired. Adding an extra day of acquisition has been proven to provide
better results. Unfortunately, users are usually reluctant to extend the enrollment process
to several sessions. However, if the system was required to have higher performance, it
may be worth the effort.

If the purpose of the system focused on fast recognition more than high performances,
the enrollment process could get shorter and easier. It would also depend on
the probability that users come up with different positions or heart rate throughout
recognition, e.g., members working out regularly may have different heart rate as when
they go out, because they may have not been fully recovered yet.

Once these issues have been addressed, this work suggests one specific configuration
as a trade-off choice, which was considered to provide good general verification results in
all different scenarios. Doing a two-days enrollment is key for increasing the verification
performance and even more if there are heart rate variations in the recognition process.
The chosen enrollment size is denr = 0.5 as it was a frequent value when obtaining the
best discussed results. However, when it was not the best of all the proportions, it still
performed properly while allowing to have a shorter enrollment process. Considering the
250 samples per user, using that ratio implies 125 samples per user between two-days.
That means around 63 QRS samples per visit, which requires two ECG signal acquisition
as 50 complexes are extracted from each one. It summarized in an enrollment process of
a maximum duration of 140 s, as every 50 peaks requires 70 s of acquisition. Setting the
number of detected peaks to a greater value would allow for the enrollment of people with
one signal acquisition, depending on the user’s resting heart rate.

The hyperparameter tuning provided as the best configuration b = 20, L = 2, and n =
64. The tuning reached 151 epochs following the early stopping criteria. The mean time
taken for training each fold in cross-validation was 147.7 s for the whole S2 dataset.

The system was trained according to these hyperparameters for S1 and S2
independently. The same process was achieved using S1 and S2 as a whole dataset too,
S1+S2, providing heterogeneous samples as D1V2 and D2V2 are different scenarios.
Verification performance results under these conditions are collected in Table 9.10. All
the FNMR and FMR curves are plotted in Figure 9.4 for the different type of enrollments
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and data. Testing for D1V1 resulted in values close to 0 in all possible combinations, so
they are not represented for simplicity. These graphs also provide a representation of the
different EERs, which are marked in black and summarized in Table 9.10. All subfigures
provide the same axes for easier comparison.

Table 9.10: EER (%) results for every database, visit and type of enrollment with denr = 0.5.The
values in parenthesis are the percentage of improvement with respect to the one-day enrollment.

Visit D1V2 D2V1 D2V2
Set Enroll One-Day Two-Days One-Day Two-Days One-Day Two-Days

S1 0 0.571 2.305 0.240 (−89) 2.700 0.240 (−91)
S2 5.432 3.928 (−25) 5.268 0.168 (−97) 10.124 3.636 (−64)

S1 + S2 1.905 0.700 (−63) 8.013 0.009 (−99) 14.309 1.352 (−91)

In relation to the different enrollments, for the three sets there is a clear improvement
in two-days enrollment with respect to one-day enrollment. The S1 verification has lower
EER than S2, as a result of having the same scenario in all the collected visits. Adding a
second day of enrollment decreases the performance for D1V2, but in exchange there is
noticeable improvement for experiments in the second day, which improve up to 91%. In
the case of S2, there is also an improvement from one-day and two-days even in the case
of D1V2, which means that including a second day in enrollment adds extra information
even for experiments in different days and scenarios.

Comparing S1 and S2, there is a clear decrease of performance when adding extra
scenarios in S2. D1V2 and D2V1 do not show great differences in the one-day enrollment,
but D2V1 gets really affected by a second day of enrollment. As it has been observed
throughout the work with this database, D2V2 still provides the worst performance in S2.
However, its improvement with a two-days enrollment makes this verification go from
not good to acceptable.

Finally, it is easy to observe that S1+S2 results in EERs are decreased compared to
those in S1 or S2 alone. The number of users almost doubles with the entire database,
making the verification more complex. For one-day enrollment, results are worse for the
second day than the observed in S1 and S2 individually. As observed in Figure 9.4e,
the thresholds for these days are very low, which implies that some mated data does not
score high and the distributions get overlapped. For the two-day enrollment, D2V1 gets
mated scores with higher thresholds, as this visit contributes in enrollment. Thresholds
are slightly incremented for D1V2 and D2V2, but their EER gets noticeably decreased
with a maximum of 1.352%.

For the sake of brevity, this subsection is only focused on those results for S1+S2, i.e.:
the entire BMSIL database, as it helps for further comparison with the previous algorithms
experimented in this thesis. The average EER result for one attempt verification based
on the number of samples in each attempt (HA) is plotted in Figure 9.5, with the
corresponding standard deviation. Similarly, results for all the attempts are represented in
Figure 9.6. Observing two-days enrollments, Figure 9.5b has EER values that are always
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lower than 0.005% and reach 0% in the majority of the cases. In addition, Figure 9.6b all
the results dropped to 0. As a result, the numeric results for the two-days enrollment were
not collected in Table 9.11.

The graph for one-day enrollment is in Figure 9.5a, where the value of HA does not
have dramatic impact in the general average. HA = 30 gets the lowest EER for most of the
scenarios, including D2V2. The two-days enrollment reduces all the EER to 0% when
HA = 30 or 20, when reaching close to 0% values in the rest.

For one-day enrollment when considering all attempts, the results are noticeably bad
for the second day, specifically in D2V2. This results in EERs that are superior to those in
the initial verification of the one-day enrollment observed in Figure 9.4e. The maximum
in the initial verification was 14.309%, but in this case it reaches values that range between
13.964% to 22.409%. On the contrary, the data provided in Figure 9.6b uses the same
information for verification than those to obtain the FNMR and FMR curves in Figure
9.4f. However, the way the scores are calculated impacts the result positively. In the
former solution, which is equivalent to using HA = 1, the two-days enrollment gave a
range of 0.240%-3.636%, whereas increasing the HA results in 0% of EER, benefiting
from averaging the scores in groups instead of taking each score individually.

Table 9.11: EER (%) results for one-day enrollment with denr = 0.5 using BioECG and different
values of HA.

Visit D1V1 D1V2 D2V1 D2V2

HA

Type
One attempt All attempts One attempt All attempts One attempt All attempts One attempt All attempts

5 0 0 0.009±0.010 0 1.515±2.760 4.142 5.746±10.780 13.964
10 0 0 0.008±0.005 0.009 2.441±2.838 3.503 5.412±10.140 15.683
15 0 0 0.008±0.004 0.018 1.422±2.766 4.133 4.765±8.990 18.135
20 0 0 0.009±0.004 0.009 1.180±2.493 4.343 4.102±8.603 17.206
25 0 0 0.006±0.005 0.009 1.516±2.871 4.708 5.219±9.751 17.358
30 0 0 0.004±0.004 0.009 1.236±3.000 7.360 3.773±9.130 22.409

9.4. Conclusion

The present chapter has included different approaches for biometric recognition using
Deep Learning algorithm. The initial focus was into data with different morphological
conditions, provided by S2 subset of the BMSIL database. CNNs were tested as
a potential approach on their own, but the best performances were obtained jointly
with LSTM networks, forming the BioECG architecture. After tuning the different
hyperparameters using the detected QRS complexes considered in chapter 6, we have
provided an in-depth analysis of the recognition, assessing several factors such as
enrollment length, days in enrollment and type of verification. These results and
observations were extended to the entire BMSIL database, to allow further comparisons
with previous chapters.

A summary under the S2 database is detailed in Table 9.12, only collecting those
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results for the initial verification, as it is the common approach for MLP, CNN and
BioECG. The CNN algorithm does not improve results from the MLP algorithm,
considering they have the same enrollment proportion. Using BioECG improves MLP
when adding a second day of enrollment improves all results using the same number of
samples. However, it is not possible to tell if the results was caused by the classifier or the
fact of adding an extra day in enrollment. These results reinforce MLP as a good classifier
for one-day enrollment when using the first differentiation.

In the case of using the entire BMSIL database, the results are collected in 9.13. This
time, CNN is not considered, so the results can include the extended verification. Again,
as the database contains S2 the tendencies are similar, where BioECG performs worse
than MLP for the initial verification using HA = 1 and all the attempts. Using one attempt,
the average EERs are not drastically distant for one-day enrollment, but reaching better
results for MLP. Using all the attempts, MLP performs noticeably better than BioECG,
providing results that are close to 0%. In addition, adding extra enrollment has a huge
impact in BioECG, going from bad results to a maximum of 1.352% in EER.

As a conclusion, this chapter has shown that the complexity of Depp Neural Networks
is not as successful as simpler algorithms for the ECG user verification. In addition, we
have proven the viability of not using any modification to the QRS complex when adding
an extra day of enrollment to the process. In addition, we have observed that there are
great differences depending on the type of verification, where taking too many attempts
does not always result in a good verification. However, the selection of the verification
samples is key in the case of not providing homogeneous data.

Table 9.12: Comparison between algorithms with the initial verification. The value denr is divided
by two so the number of total samples is the same as one-day enrollment.

Classifier Database Features Enroll Verification EER (%)
MLP

S2

FD D1V1 (denr = 0.9)
HA = 1.

All attempts.

0–5.454
CNN ND D1V1 (denr = 0.9) 1.730–10.190

BioECG ND
D1V1 (denr = 0.5) 0–10.124

D1V1 (denr = 0.25)
D2V1 (denr = 0.25)

0–3.928
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Table 9.13: Comparison between algorithms for all types of verification with S1+S2 data. The
value denr is divided by two in the case of two-days enrollment, as it represents the data proportion
in the proper visit.

Classifier Database Features Enroll Verification EER (%)

MLP

S1+S2

FD D1V1 (denr = 0.7)

HA = 1
All attempts.

0–6.324

HA = 30
One attempt.

0–2.711

HA = 30
All attempts.

0–0.247

BioECG ND

D1V1 (denr = 0.5)

HA = 1
All attempts.

1.905–14.309

HA = 30
One attempt.

0–3.773

HA = 5
All attempts.

0–13.964

D1V1 (denr = 0.25)
D2V1 (denr = 0.25)

HA = 1
All attempts.

0.009–1.352

HA = 20
One attempt

0

HA = 5
All attempts.

0
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(a) One-day enrollment with S1. (b) Two-days enrollment with S1.

(c) One-day enrollment with S2. (d) Two-days enrollment with S2.

(e) One-day enrollment with S1+S2. (f) Two-days enrollment with S1+S2.

Figure 9.4: FNMR and FMR curves for the different subsets of data S1, S2 and S1+S2. The EERs
are marked with black dots.
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(a) One-day enrollment. (b) Two-days enrollment.

Figure 9.5: Performance results using data from the entire BMSIL database, S1+S2, using one
attempt with different samples.

(a) One-day enrollment. (b) Two-days enrollment.

Figure 9.6: Performance results using data from the entire BMSIL database, S1+S2, using all
attempts with different samples.
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10. VIABILITY OF HUMAN VERIFICATION WITH A
SMARTBAND PROTOTYPE

The experimentation in previous chapters has been carried out using the BMSIL
database. This database has helped setting a baseline, observing how effective every
algorithm and approach is for ECG recognition. However, this quality is provided in
exchange of convenience. The capture device in the BMSIL database is not user-friendly
for a biometric environment, as it involves sensor placement and experience with the
acquisition process. For this reason, the knowledge collected in the chapter 8 is applied
to the smartband databases specified in chapter 4.

10.1. Peak detection algorithms

The peak detection algorithm of choice has been the one specified in section 5.2.1
throughout all the experiments with the BMSIL algorithm. However, the smartband
databases, BMSIL-SB and GUTI, do not have suitable data for this algorithm and it
performs poorly. This issue lead to the development of a custom R peak detection
algorithm for smartband data, but also considering extra alternatives.

10.1.1. Custom algorithm for smartband

Both databases were collected with the same smartband prototype. However, the GUTI
database presented more challenges as the acquisition protocol aimed to be closer to a
realistic environment by reducing the supervision in the process. For this purpose, the
person in charge of recording the user’s data was not required to observe the retrieved data
and check its correct collection in any of the different visits. Instead, the user was told to
be as still as possible, but avoiding to take long periods of time to increase acceptability.

These mentioned characteristics resulted in lower quality signals in both smartband
databases, where signals with abrupt fluctuations and noise are more frequent in the
GUTI database. These events affected the performance of the initial peak detection
algorithm, creating peaks with high amplitudes that interfere the detection of valid peaks.
The Pan-Tompkins algorithm did not perform properly either. The initial approach to
solve this problem was to set a quality criteria to discard signals with fluctuations. As
fluctuations reduced the number of detected peaks or mislead the detection, the criteria
was based on determining the number of peaks and discard those signals with less peaks
that the ones given by a threshold.

Despite of devising this approach as a quality criteria, it required a complete peak
detection, which finally became a peak detection algorithm itself, instead of being used for
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discarding signals. The deployed algorithm was achieved with simple signal operations,
involving thresholds for some of the stages. The scheme of the algorithm is represented in
Figure 10.1 and are further discussed below. The following figures represent the outcomes
of each step for two different users in GUTI database in resting. Parameters wSize and
minPeakDist are fixed to 0.2 s or 200 data points. In the case of BMSIL-SB, 0.2 s
correspond to 100 data points.

Figure 10.1: Scheme for the peak detection algorithm for low fidelity signals. Parameters wSize
and minPeakDist are fixed by observation, and wNum is derived from wSize.

Signal scaling

The filtered signal returned by the pre-processing stage got scaled. The scaling is done
based on the maximum absolute value of the signal. The scaling is in Equation (10.1),
where F represents the ECG after pre-processing and Fscale is the resulting scaled signal.
This method allowed to keep the baseline in 0 and amplitude-related thresholds between
0 and 1.

Fscale =
F

max(|F|)
(10.1)

Max-min location

This block of the algorithm applied fixed length overlapping windows and obtained their
local maximum and minimum for each one. The number of final windows, m of length
k considering an overlap of r from an original signal of length n is determined by the
Equation (10.2). Particularizing for a window length of 0.2 s, its value based on the

103



CHAPTER 10. VIABILITY OF HUMAN VERIFICATION WITH A SMARTBAND
PROTOTYPE

sampling frequency resumes as wSize = 0.2 · fs. Determining a 50% overlap, the final
number of windows is only defined by the original signal duration, as seen in Equation
(10.3). As the windows overlap, the max-min location would sometimes get repeated.
If the case, the repeated point would be discarded. As a consequence, some final pairs
would be very close to each other as observed in Figure 10.2.

m =
n − r
k − r

(10.2)

wNum = 10(ts − 0.1) (10.3)

Pattern confirmation

Based on the shape of a QRS complex, R peaks are immediately followed by a minimum,
which is the S point of the complex, as previously detailed in Figure 3.1. In an ideal case
scenario where all the maximum and minimum were correctly found, their location in
time would be alternate, i.e.: after a maximum there would always be a minimum, and
the other way around. To ensure that the resulted data was fulfilling this condition, there
was a detection of points that were two consequent maximum or minimum, deleting the
first one that was observed. This step allows to discard redundant points resulting from
the previous windowing process, as observed in Figure 10.3.

Peak correction

The previous detected peaks were sometimes placed in their corresponding T waves or
found inside an abrupt fluctuation which would produce incorrect data. This part of the
algorithm encapsulated two types of correction, one related to abrupt fluctuations and
another one regarding to the T wave location corrections.

• Abrupt fluctuations: the signal value in the different retrieved time points was
obtained as a vector. The variance got calculated for every point in the vector
in order to observe how they independently fluctuate. Normal fluctuations were
considered to have a variance value lower than 0.05. Therefore, every greater value
was considered an abrupt change. User A did not present obvious fluctuation so
it remained unaffected after this step, in Figure 10.4a. Nonetheless, the user B
presented an initial distortion in the middle, so the peaks detected in that area were
discarded, as seen in Figure 10.4b.

• T wave location: According to section 3.1, the QRS has a duration of 0.12 s. The
given time point was applied for the center of a windowing process with 0.2 s of
duration, to ensure the encapsulation of the QRS complex. If the point location
belonged to a T wave, there has to be a maximum in the window with higher
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amplitude. Otherwise, the obtained point corresponded to a correct R peak. In the
case of user A, represented in Figure 10.5a, there were several instances in which
the R peak was detected around the T wave location. In some cases they did not
even correspond to the said T wave, but represented a similar shape. This method
discarded said points and corrected them into the proper location. However, in the
case of user B in Figure 10.5b there were a few incorrect identifications of the T
wave error, as the R present a slightly lower amplitude in some cases. However,
most of them remain correctly identified.

Outlier discarding

In some cases, after the previous stages, some peaks remain incorrectly detected. Some
peaks remain too close to those correct R peaks, and stated before, there cannot be two
R peaks in a window with higher duration than the QRS. When two peaks were detected
with a proximity of less than 0.2 s, the lowest peak was discarded. User A did not result
in any changes after this process, as observed in Figure 10.6a. On the contrary, user B
did present some mistakes that were fixed with this criterion, represented in Figure 10.6b.
However, there is a mistake that keeps appearing since the T wave correction and belongs
to a fluctuation issue.

The two user examples provided in the previous pages are a representation of different
types of signals present in both smartband database, considering that data in BMSIL-SB
was more stable in general. Even though some R peaks could not be properly detected,
and/or some of them were missed, in Figure 10.7 there is a representation of the average
of all the detected peaks for both users A and B. Every window is scaled with the same
criteria from Equation (10.1). Even considering the different performance and nature of
these signals, for both users the most constant part for every window is the QRS complex.
As observed, the mean QRS fits accurately with the joint plot of the individual windows.
Figure 10.7a represents less noise than Figure 10.7b, but this noise compensates to form
a clear ECG waveform after calculating the mean.

The same algorithm was also tested in the BMSIL-SB database, considering the
fs = 500Hz. Figure 10.8 collects examples for resting in two different users, C and
D. Figure 10.8a shows more stable QRS complexes in comparison to those in the
GUTI database, resulting in an average signal with less fluctuations. In Figure 10.8b
the algorithm shows some detection errors related to a high amplitude in the T-wave.
This may have happened due to the T-wave having an absolute higher amplitude than
the R peaks or the corresponding window not being big enough to encapsulate the
corresponding R peak, which is a result of a low heart rate. This issue leads to a
normalization with respect to the highest point, which would correspond to the T-wave.
However, the algorithm still retrieves valuable information, and the average shows a good
QRS are.
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10.1.2. Other alternatives

None of the available databases for this thesis provided R peak labeling. As a
consequence, it is not possible to achieve a numerical performance evaluation of the
algorithm. The given parameters and steps taken in the algorithm have been visually
assessed using samples from all the different experiments in the GUTI database, relying
initially on the D1V1 visit in the sitting scenario. As this database contains more complex
data with lower quality, its performance deals properly with the BMSIL-SB database.

In order to check a common and feasible state-of-the-art algorithm, the Pan-Tompkins
algorithm has been included in this stage, and the experiments are carried out using this
approach, too. Visually, the performance is adequate when used in BMSIL-SB, for not
suitable in the case of GUTI database. This may be a result of the first database having
more quality, as the Pan-Tompkins algorithm was designed for professionally collected
ECG signals.

The lack of algorithm validation for the available data could give uncertainty when
carrying out experiments that rely on said algorithms. To be sure that the verification
results are only a product of the classifier or the data quality, an extra R peak detection
has been achieved manually for the BMSIL-SB. However, it was not used for validating
the peak detection algorithm, as the indexes may slightly vary between the automatic and
manual detection. This would require extra criteria to determine the evaluation, and it is
not easy to determine.

The final number of detected peaks for BMSIL-SB and GUTI database are
summarized in Table 10.1 and Table 10.2. We must consider that the first database was
formed by heterogeneous numbers of samples of 206 users, whereas the latter was formed
up to 72 users, hence the big difference between their detected peaks.

Table 10.1: Number of detected peaks for the BMSIL-SB database and both algorithms. The
average number of peaks per user is in parenthesis.

Visit
Algorithm

Custom Pan-Tompkins Manual

Rest 10507 (51.00) 12883 (62.5) 12792 (62.1)
Exercise 14665 (71.2) 17404 (84.5) 18002 (87.4)

In both databases, the Pan-Tompkins algorithm is the one with most detected peaks.
This could imply more errors, or detecting peaks that were not considered in the manual
detecton. In addition, there is a clear increment in the exercise experiments, as a result
of the increased heart reate. However, in the custom detection in the GUTI database that
does not happen, as it could be a result of avoiding fluctuations, which may be more
present in that scenario.

It is important to highlight the differences between the manual detection and the
algorithms in Table 10.1. The Pan-Tompkins algorithm detects more peaks, which could
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Table 10.2: Number of detected peaks for the GUTI database and both algorithms. The number
of peaks per user is in parenthesis.

Visit Scenario Custom Pan-Tompkins

D1V1
Sit 4053 (56.3) 5471 (76)

Walking 3717 (51.6) 5734 (79.6)
Exercise 3368 (46.8) 6460 (89.7)

D1V2
Sit 3894 (54.1) 5387 (74.8)

Walking 3621 (50.3) 5475 (76)
Exercise 3445 (47.8) 5917 (82.2)

D2V1
Sit 3721 (54.7) 4729 (69.5)

Walking 3451 (50.7) 4797 (70.5)
Exercise 3263 (48) 5815 (85.5)

D2V2
Sit 3852 (57.5) 4815 (71.9)

Walking 3630 (54.2) 4670 (69.7)
Exercise 3242 (48.4) 5422 (80.9)

probably be related to detection mistakes. The custom algorithm always detects less than
the other two approaches. This is a result of the algorithm being conservative, as it is
designed to preferably detect less but correct data, instead of detecting wrong points in
the signal.

10.2. Data preparation and tuning

Once the R peak algorithms are specified, the segmentation, differentiation and classifier
are selected based on the results obtained throughout this Thesis. However, extra feature
transformations are included to the differentiation as it is expected to have worse results
with smartband data.

The taken procedures are based on those in [90], which applied them to the BMSIL
database. There are some differences, as the referenced work applies an initial longer
segmentation, considering 0.4 s before and after the R peak detection. In addition, the
applied algorithm for R peak detection is different, and there is more data available with
less users. The different parts of the experiment are applied to both databases as follows:

• Segmentation: centered R peaks with 0.1 s before and after. The peak detection
algorithms are the following:

– BMSIL-SB: manual, Pan-Tompkins and custom peak detection with the
previously specified and 500 Hz sampling frequency.

– GUTI: Pan-Tompkins and custom peak detection with 1000 Hz sampling
frequency.
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• User discarding: users with a total number of peaks less than 5 is discarded.

• QRS features transformations:

1. FD: First differentiation of the QRS complex.

2. FD + SWT: SWT with Daubechies 9 wavelet for the FD, selecting level 4
coefficients.

3. FD + SWT + IFS: IFS to the SWT coefficients, choosing the selected features
to use.

The tuning process is similar to the one in MLP, but with extra specifications:

• Each tuning process is independently achieved depending on the type of features
for both databases.

• BMSIL-SB only allows one-day enrollment, using the sitting experiment with d =
0.8 development set.

• GUTI database allows one and two-days enrollments:

– One-day: using D1V1 sit in tuning and development set proportion d = 0.8.

– Two-days: using D1V1 sit and D2V1 sit in tuning. The denr value refers to
the data proportion considering both days altogether. In this case, the d gets
values of 0.4 and 0.8: the first uses a similar number of samples to one-day
tuning, and the second one takes advantage of the larger number of samples,
doubling it.

• Each training, including those in tuning, implement a 5-fold cross-validation with
80-20 proportions.

• Three final different models are trained with these hyperparameters specifying
different enrollment proportions, where denr can be 0.5, 0.7 and 0.9 including the
two-days enrollments.

10.3. Verification experiments

10.3.1. BMSIL-SB

Even though the main focus is put in verification, identification results are also considered
to observe how different these two approaches can be in the process. The BMSIL data
only collects two types of scenarios, which simplifies the analysis.
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10.3.2. GUTI

In the case of the GUTI database, the results are also achieved as in the BMSIL-SB up to
the exhaustive search. Once this search is done for all the three feature transformations
and two peak detection algorithms, the viability of every approach is observed through
training with the different enrollments, without needing to test the remaining scenarios.

Based on the training results, the best approach is selected with its according
enrollment size. Then, they are analyzed based on the different type of scenarios: sitting,
walking and exercise. The final performances are obtained individually for one-day and
two-days enrollments, considering the best enrollment proportions for each case.

10.4. Results

10.4.1. Effects of SWT and IFS

As a preliminary observation for the SWT and IFS features, an extra section is included
providing the behavior of both smartband databases. This procedure also determines the
fixed features that are selected from the IFS algorithm for each of the databases, so they
are crucial for verification. For representation purposes, the SWT complexes are averaged
and they are divided by the maximum. This division is also done with the weights from
the IFS, to represent the feature relevance.

BMSIL-SB

Figure 10.9 represents the results for both experiments in the BMSIL-SB, with the three
peak detection alternatives. The manual detection presents wider coefficients, followed by
Pan-Tompkins algorithm with the custom algorithm being last. As the manual detection
was conservative, we can assume the averaged coefficients as only correct ones. As the
x-axis separates from the enter, in Pan-Tompkins and custom algorithms, the average is
more constant. We can infer this as a result of different small amplitudes canceling each
other on the average calculation.

Considering the same peak detection algorithm, there are clear similarities in shape
between scenarios. Even though outliers could vary this mean result, there is constancy in
the SWT coefficients. The observed weights in the exercise scenario peak in the extremes
of the representation, which implies the starting of a new QRS complex. This does not
happen in rest scenarios as the complexes are wider due to the lower heart rate.

The weight shape on the manual peak detection is smoother, considering the
surroundings of the R peak the most relevant features, and decreasing clearing the further
it gets. However, in the case of the custom algorithm and Pan-Tompkins algorithms, the
weights are not as clear, but they are also in the same range. This is a result of detected
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outliers, which did not happen in the manual peak detection. In addition, the custom
algorithm presents more fluctuations in the extremes than Pan-Tompkins, which implies
more mistakes detecting the R peak, which is probably shifted towards the highest weight
is.

GUTI

The GUTI database only had the possibility of using Pan-Tompkins and the custom peak
detection algorithms. However, the number of scenarios and experiments are larger.
The observations are based on the three scenarios given in D1V1 with both algorithms.
The results of the normalized mean SWT and weights are in Figure 10.10. The axis is
doubled with respect to those in BMSIL to represent the same lapse of time, as the sample
frequency is doubled.

The left column with Figures 10.10a, 10.10c, 10.10e refer to the custom peak detection
algorithm. In contrast to those in the right column, Figures 10.10b, 10.10d, 10.10f, they
show more noise. However, the weights from the Pan-Tompkins algorithm are more
chaotic, implying possible mistakes in detection. More specifically in the case of exercise,
where it is clear that some of the complexes are shifted, as most of the high weights are
represented in the left side of the graph.

As opposed to the BMSIL database, the GUTI database has narrower complexes in
general. This proves that the BMSIL database had more supervision in the data collection,
as the users had a lower heart rate as they were more calmed.

Regarding the weights in the IFS database, results tend towards those in the BMSIL.
The most relevant features are around the R-peak. In this case, the number of involved
features could appear to be lower, but we have to consider the increased number of
samples. The highest weighted features are close to the R-peak, collecting around 50
features. The selection for these experiments will be a window segment centered in the R
peak, representing 50 ms.

10.4.2. Verification with BMSIL-SB

Hyperparameter tuning

The results using a development set of 80% of the rest scenario in the BMSIL-SB database
are collected in Table 10.3. These results are summarized in Figure 10.11 to easily observe
how each factor affects to the mean EER.

The graphical representation of the mean EER shows that the Pan-Tompkins achieves
the best results of all the algorithms in the three cases, being the FD + SWT
transformations the most successful. This transformation is also the one with the best
results in manual peak detection and the second best in the custom algorithm.
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Regarding the manual detection with FD it is remarkable that the achieved results
are the worst of the three. It can be a result of having a conservative manual detection
by a naked eye with no medical expertise. However, it benefits from using the SWT
coefficients, as the EER drops drastically. This might be a result of the noise deletion in
the SWT.

In the custom algorithm, the SWT does not improve the results. It its probably a
consequence of wrong R peak detection. If the complexes are misplaced, the noise
reduction would not impact the results.

For the three algorithms, reducing the data with IFS does not result in improvements,
reaching the worst results in two of the three cases.

Table 10.3: Best models with Exhaustive Grid with d = 0.8 for the three peak detection algorithms
and possible feature transformations.

Transformations Peak detection Hidden layers Activation Alpha Tolerance Mean EER (%)

FD
Manual 500

ReLU
0.0005

0.01
1.979

Custom 350 0.005 1.289
Pan-Tompkins 300 0.0001 0.538

Manual 700 ReLU 0.0001
0.01

0.782
FD + SWT Custom 700 Tanh 0.0001 1.750

Pan-Tompkins 400 ReLU 0.001 0.392
Manual 700

ReLU
0.0001

0.01
1.395

FD + SWT + IFS Custom 400 0.0001 2.198
Pan-Tompkins 500 0.001 0.952

Recognition with different enrollment sizes

Even though the tuning has been achieved using the 80% of the data, the three enrollment
sizes are applied independently with the hyperparameters specified in Table 10.3.

In this case, the graphic representation is left out as results show a clear trend and
drastic differences. Therefore, both EER and accuracy are represented in Table 10.4
considering the FD + SWT transformations after the Pan-Tompkins detection.

The rest scenario results in desirable EER values, but reaching the best one with d =
0.7. However, when looking at the identification accuracy, these results do not map to
the good results in verification. Using this metric as the evaluation metric in the tuning
process would impact performances in verification. The accuracy evaluates sample per
sample and classifies based on the maximum score. However, the implemented EER
considers more than one sample.

Regarding the recognition process with exercise scenarios, the results change
dramatically. The performances for both verification and identification drop dramatically.
From almost ideal EER results up to almost 14%. The change in the accuracy is more
significant, reaching a little over 20% of correct classification in the best case scenario.
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Table 10.4: Results for accuracy and EER with the BMSIL-SB database and different enrollment
sizes. The complexes have the FD + SWT feature transformation and Pan-Tompkins peak detec-
tion.

Scenario Rest Exercise
denr 0.5 0.7 0.9 0.5 0.7 0.9

EER (%) 0.142 0.078 0.485 12.035 13.530 13.445
Accuracy (%) 72.930 78.243 78.139 18.455 21.734 22.244

10.4.3. Verification with GUTI

Hyperparameter tuning

Following the scheme for the BMSIL-SB database, the best model in the Exhaustive Grid
and the corresponding mean EER are summarized in Table 10.5 for the two available peak
detection algorithms.

When considering the custom algorithm, 255 complexes are deleted from the initial
detected ones, as a result of not considering signals with less than 5 samples. In the
elimination of these samples, the final number of users goes from 72 to 67 in the D1V1
sitting experiment. In the two-days tuning, the D2V1 sitting scenario also gets 121
samples deleted under this criteria.

Table 10.5: Best models with Exhaustive Grid with d = 0.8 for the possible peak detection algo-
rithms and feature transformations.

Transformations Peak detection Hidden layers Activation Alpha Tolerance Mean EER (%)
FD Custom 400

ReLU
0.01 0.01 4.590

Pan-Tompkins 700 0.01 0.05 9.695
FD + SWT Custom 700

ReLU
0.01

0.01
4.512

Pan-Tompkins 350 0.05 8.522
FD + SWT + IFS Custom 700

ReLU
0.01

0.01
6.189

Pan-Tompkins 450 0.001 13.347

For easier observation the results are plotted graphically in Figure 10.12. In this
database, the Pan-Tompkins database clearly performs worse than the custom algorithm.
This might be a result of wrong R peak detection given the data present in the GUTI
database. The BMSIL-SB database could be more similar to professional collected ECG
present in the data used to develop the Pan-Tompkins algorithm.

As it happened in the BMSIL-SB database, the best mean EER comes after the FD
+ SWT transformation, as reducing data with IFS could be getting rid of more valuable
than misleading information.

Considering these transformations and peak detection criteria, another tuning process
is achieved using two days, and applying two types of proportion. The final values for the
different enrollments and proportions are referred in Table 10.6. Doubling the number of
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samples in two-days enrollment clearly lower the mean EER in training, therefore this is
the chosen proportion in two-days enrollment.

Table 10.6: Final hyperparameters and the mean EER for the different types of development sets
and proportions for GUTI database. 255 and 121 samples are deleted from D1V1 and D2V1 sit
scenarios, respectively.

Type d Hidden layers Activation Alpha Tolerance Mean EER (%)
One-day 0.8 700 ReLU 0.01 0.01 4.512

Two-days
0.4 500

Tanh
0.0005

0.01
10.935

0.8 450 0.001 7.737

Recognition with different enrollment sizes

Considering the best performing peak detection approach, the custom algorithm, three
models are trained with different enrollment sizes for one-day and two-days enrollments.
The verification for the remaining data in both sets is summarized in Table 10.7. The
higher the value of d, the lower number of samples used for recognition.

These results show that the GUTI database is clearly not suitable for identification
purposes. We can observe that the accuracy results even for the same scenario as in
training, are just coincidences. This observation exposes that the classifier is incapable
of distinguishing the user with only one sample. Regarding the EER results, even though
they are higher than those in BMSIL-SB, are still suitable for verification purposes.

Considering that the two-days experiment implies using the double amount of
information, the results do not improve as it could be expected. This could be a
consequence of overfitting or distortion when including more samples in the verification
process. In addition, it could be also a product related to the lower data available in the
same scenario experiment, as we con only use those samples that were not included in the
enrollment set.

In the case of one-day experiments, the best EER is obtained with 0.7, as this happens
using 0.9 in two-days enrollment.

Table 10.7: Results for accuracy and EER with the GUTI database and different enrollment sizes.
The complexes have the FD + SWT feature transformation and custom peak detection.

Type One-day Two-days
denr 0.5 0.7 0.9 0.5 0.7 0.9

EER (%) 3.586 2.510 4.568 7.465 5.970 5.925
Accuracy (%) 1.106 0.877 0.526 1.211 0.789 1.316

As the selection of scenarios and different collection dates in the GUTI database is
larger, we need to observe the results based on the criteria specified in section 10.3.2.
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Given the initial results in accuracy, this metric is not consider in the following verification
experiments.

Verification in sitting scenario

In Figure 10.13 the different EER results are represented with their corresponding
numerical values. Two things need to be considering when interpreting these results:
D2V1 has representation in enrollment when using two-days, so it should result in better
generalization, and the proportion is also higher than the one in one-day enrollment.

In general, two-days enrollment result in better EER. In general, the more different
the visits are from the enrollment, the higher the EER results.

For one-day enrollment, the results are clearly impacted when the visit is not the
same in enrollment. However, we do not observe that those observations are worse when
changing the day of acquisition, which could imply that it does not really matter how
much time passes by between the enrollment and the verification process.

It is a noticeable result for D2V1 in the case of two-days enrollment. This could be a
consequence of overfitting or using too many samples from that visit in training, i.e.: the
proportion was 90% for enrollment in this case. We can assume is a bad generalization,
as in D2V2 the results skyrocket to 30%.

In general, we can assume the bad signal quality in D2V2, as none of the enrollments
consider this scenario and both models are not capable of separating users in verification.

Verification in walking scenario

Similarly, results for walking scenarios are represented in Figure 10.14. Generally, all the
results are worse than those in the sitting experiment, so we can assume the smartband
collection and data modeling is negatively affected by this change of scenario.

Again, the two-days enrollment is the best approach in all the visits. D2V1 is
noticeably less than the result with one-day due to the representation of that visit in
enrollment. In general, it helps with better generalization throughout all the scenarios.

Verification in exercise scenario

Finally, the results under exercise are plotted in Figure 10.15. This scenario is also better
generalized using two-days enrollment, but the trend is coherent with all the observations
throughout this thesis: both types of enrollment have an increase in their EER when
considering exercise.

This scenario also shows noticeable differences in D2V2, which happened for sitting
and walking experiments too. It allows to confirm that this specific visit may have had
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present additional issues while collecting or detecting the R peaks.

10.4.4. Final system for smartband recognition

BMSIL-SB

Selecting the best enrollment proportion as 0.7, the final system results in the FNMR
and FMR curves that correspond to both rest and exercise scenarios are plotted in Figure
10.16. The estimated EER are 0.078% in the rest scenario, and 13.530% in exercise. The
graphic representation of the EER is greater than the estimated result, yielding in more
than 16%.

The FNMR and FMR curves show the differences between the final thresholds for both
scenarios, and their evolution throughout this variable. In the case of exercise, the model
struggles to clearly distinguish the user to verify, most of the mated users are contained
in lower scores. This is not what happens in the rest scenario, where most of the mated
users have a score higher than 0.1, which does not happen in non mated data.

The final system in the BMSIL-SB database uses the Pan-Tompkins algorithm resulted
in an average 62.5 samples per user. Only 70% of those samples were required for
enrollment, resulting in 43.75 samples for enrollment. Depending on the heart-rate,
considering a minimum of 60 bpm in resting state, this would only imply less than a
minute for enrollment.

GUTI

This database has not been found suitable for identification purposes, as the accuracy
results are around or less than 1%. However, the final system’s performance related
to verification is represented based on the different scenarios in Figure 10.17. The
enrollment is done throughout two days.

In the case of the sitting scenario in Figure 10.17a, results in the highest thresholds and
lowest EER among all the possible scenarios. However, there are clear differences in the
evolution of the FNMR curves between visits. The two visits that take part in enrollment,
D1V1 and D2V1, have the lowest EER being D2V1 almost ideal, which could imply
overfitting. Second visits result in higher EER, as they have not taken part in enrollment,
which could be interpreted as the most realistic situation.

The EER results, as previously referred, increase when changing the scenario to
walking as observed in Figure 10.17b. The pattern of obtaining lower EER with those
visits that took part in enrollment is repeated in this case. However, in this case, D1V1
and D2V1 have very similar behaviors as the threshold increases. In this case, the second
visits also turn out different, where D2V2 is still the one with worst results.

The observed trends in walking are reproduced similarly in the case of the exercise but
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with higher values in terms of EER. As expected, it is a result of lower quality data given
after exercise. Again, D1V1 and D2V1 have similar tendencies, with worse performances
of D1V2 and D2V2.

10.5. Conclusions

In this chapter we have studied the potential of implementing ECG recognition using a low
cost smartband prototype. The most successful tools and techniques have been applied to
this case, but also some adaptation was required given the database characteristics.

The collected data with this prototype are very susceptible to bad positioning or
collection. The BMSIL-SB has showed that the data has chances of being used as an
identification tool, which could probably improve when the number of enrolled users
is lowered. However, for this purpose, the data needs to be collected carefully and the
probability of mistakes in identification is high, reaching 78.2% of accuracy in a database
of 206 users. In terms of verification, this approach is viable when the recognition
scenario is consistent to the one in enrollment, reaching almost an ideal EER. These
results are altered if the user presents an increased heart rate, reaching an EER of 13%.

A more realistic acquisition is achieved in the GUTI database, proving that precision
in this process is key considering the used prototype. This database has shown that
user-friendly collection is not appropriate if the system’s goal is identification. The
one-day enrollment resulted in a system with a range of 2.510%–40.678% EER. The
addition of a two-days enrollment has been showed to improve the general verification
results. Nonetheless, these values are still high for a commercial use, ranging between
0.068% to 31.669% in the worst case scenario.

To achieve a successful ECG verification using this smartband prototype, the user
must have some expertise using the device. In addition, the environment in which this
system is applied to, must be constraint and ensure of having users with similar conditions
as those in a sitting scenario.
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(a) User A.

(b) User B.

Figure 10.2: The circles represent the maxima (red) and minima (blue) locations in the scaled
signal.
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(a) User A.

(b) User B.

Figure 10.3: The red crosses represent those peaks that were discarded after pattern confirmation.
The blue filled circles are the valid maximum-minimum.
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(a) User A.

(b) User B.

Figure 10.4: The red crosses represent those peaks that were discarded as they were part of an
abrupt change in the signal. The blue filled points belong to those that remain valid for the next
block.
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(a) User A.

(b) User B.

Figure 10.5: Red crosses represent the discarded peaks. Red filled dots are the corresponding new
peak assignation. Remaining blue circles belong to the peaks that remained the same in this stage.
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(a) User A.

(b) User B.

Figure 10.6: R peaks in their correct position.
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(a) User A.

(b) User B.

Figure 10.7: Windows of 0.4 s for GUTI database in sitting scenario. The signals centers corre-
spond to the detected R peaks and their mean signal in black.
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(a) User C.

(b) User D.

Figure 10.8: Windows of 0.4 s for BMSIL-SB database in resting scenario. The signals centers
correspond to the detected R peaks and their mean signal in black.

123



CHAPTER 10. VIABILITY OF HUMAN VERIFICATION WITH A SMARTBAND
PROTOTYPE

(a) Manual peak detection: rest. (b) Manual peak detection: exercise.

(c) Custom peak detection: rest. (d) Custom peak detection: exercise.

(e) Pan-Tompkins peak detection: rest. (f) Pan-Tompkins peak detection: exercise.

Figure 10.9: Mean normalized SWT for all detected complexes for the different peak detection
algorithms and experiments in BMSIL-SB database in black. The normalized weight of each
feature from the IFS algorithm is represented in red.
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(a) Custom peak detection: sit. (b) Pan-Tompkins peak detection: sit.

(c) Custom peak detection: walking. (d) Pan-Tompkins peak detection: walking.

(e) Custom peak detection: exercise. (f) Pan-Tompkins peak detection: exercise.

Figure 10.10: Mean normalized SWT for all detected complexes for the different peak detection
algorithms and experiments in GUTI database in black. The normalized weight of each feature
from the IFS algorithm is represented in red.
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Figure 10.11: Mean EER for the best result in the Exhaustive Grid for all peak detection algo-
rithms and feature transformations in BMSIL-SB database.

Figure 10.12: Mean EER for the best result in the exhaustive grid for all peak detection algorithms
and feature transformations in GUTI database.
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Figure 10.13: EER results for the sitting scenario with GUTI database, considering one-day and
two-days enrollment.

Figure 10.14: EER results for walking with GUTI database, considering one-day and two-days
enrollment.
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Figure 10.15: EER results for exercise with GUTI database, considering one-day and two-days
enrollment.

Figure 10.16: FNMR and FMR graphs for both rest and exercise scenarios in BMSIL-SB
database.
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(a) Sit. (b) Walking.

(c) Exercise.

Figure 10.17: FNMR and FMR curves for the final configuration of the GUTI database in different
scenarios with two-days enrollment.
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11. CONCLUSIONS AND FUTURE WORK

11.1. Conclusions

This thesis has observed the viability of using ECG as a biometric signal while getting
close to a real case scenario. Through this process, we have obtained the following
conclusions:

• ECG can improve the verification performance of fingerprint biometrics, where the
best choice is using it in PAD.

• The MLP algorithm can achieve acceptable results under changes of scenario,
proving the viability of the modality only using basic transformations.

• Using two days of enrollment clearly enhances the system’s performance when
considering neural networks, being the best approach.

• Good quality data does not clearly differentiate between changes of position. This
situation is the same when considering recognition with data collected a few hours
and a few days after the enrollment.

• The way the verification is achieved highly impacts the functionality, which implies
a specific design for the number of attempts and samples that are required.

• Low fidelity sensors are very susceptible to position and heart rate changes,
requiring very controlled acquisitions and extra noise removal.

The main focus was put into achieving good verification results without the
requirements of transforming fiducial data at the expenses of high computational costs.
Different classification algorithms have been tested from low to more complexity to
achieve this goal. All the different approaches showed the impact of changing the heart
rate after exercise, which complicates the fiducial detection and the model generalization.

The consideration of using one model per user was limited and only achieved with
DCT features GMM, resulting in 11.26% of EER and problems in convergence, not being
suitable for any implementation. In terms of training one model for all the users, results
with k-NN and SVM did not perform appropriately, resulting in high processing time and
memories or poor performances. The LDA algorithm was successfully tested and was
barely affected by the increment of data in enrollment. The obtained verification results
of 7.465%–8.906% in EER proved the viability of using ECG as a biometric trait under
different scenarios. This improvement in comparison to simpler characteristics proves
that increasing complexity in the classification, helps generalizing with ECG data.
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Results obtained with LDA showed the potential of this biometric trait even
considering various physical scenarios. However, they cannot compete with conventional
modalities. Nonetheless we have proven that combining ECG with fingerprint improves
the verification in 70.64%. Moreover, when approaching it as a PAD solution, the system
fell into an ideal EER.

In the process of improving the performances, we have tested more algorithms,
proving them as good solutions. However, they need to be evaluated based on the
conditions and requirements of the biometric application. These algorithms have allowed
to assess the trade-off between results, hardware and time requirements. We have
observed that even the Deep Learning approach, BioECG, is more complex than MLP,
the optimization of the latter is a simpler yet successful classification with only one
day of enrollment. In addition, through MLP optimization process, we have proven
the first differentiation to be the best transformation when trying to enhance the features
of a QRS complex.This result is a consequence of enhancing the abrupt changes in the
waveform, and making it easier to generalize.This transformation concluded in a range of
0%–6.324% in EER, which improves to 0–0.247% by changing the verification approach.

BioECG, on the contrary, presented hardware and time limitations when the
optimization had to be done without cross-validation. This fact interferes in
the assessment of the differentiation performance. As a consequence, only the
non-differentiated QRS is used, resulting in struggles when generalizing in the most
complex scenarios in both verification and identification. However, once the two-days
enrollment was introduced, the BioECG system has showed results of 1.352%, getting
closer to conventional and commercial biometric traits. This second day of enrollment
also impacts the performances with data from the first day, which proves the variation
in the second day added extra information that can be extrapolated to other scenarios.
Depending on the application and the security demands of the system, this approach is
significantly better even considering the complications added in enrollment and training.

In the pursuit of results that relate to a real scenario, we have also implemented
extended verification alternatives. These extra approaches in verification have showed
how they can change the outcome of the system, based on the number of attempts and
the number of samples per attempt: MLP results drop to 0–0.247% and BioECG gets an
ideal EER result. This happens with a single attempt with lower samples or grouping
the samples in attempts. These improvements are not only numerical, but we can also
consider them more realistic, as it is more probable and convenient to be verified when
using a single attempt with few samples.

Even considering the various characteristics of all the achieved experiments, there are
general trends based on the different scenarios. When the enrollment is done while sitting
down and relaxed, the standing position does not significantly affect if we compare them
to the same experiment in another day. We can assume that verifying while standing has
the same impact as doing the verification another day in the same enrollment scenario.
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On the contrary, the heart rate increase clearly impacts the verification, which could be a
consequence of a bad data collection or lack of generalization.

The final stage of trying to recreate a real scenario was reached when the device
was substituted by a prototype smartband. By comparing two databases collected
with different protocols, we have showed how the supervision impacts the system’s
verification. Even considering the same device, the same R peak detection algorithms,
Pan-Tompkins’ and a custom algorithm, have opposite behaviors, which shows the
different nature of both acquisitions.

The database with more supervised and guided collections, resulted in accuracy up
to 78.243%, and EER up to 13.530%, despite of having a greater number of enrolled
users. However, the less strict and user-based collection was not even considered
for identification due to its poor results, and summarized in an EER ranging from
0.068%–31.669% under exercise. These smartband verification results were the result
of improving them with an extra SWT, and considering MLP classifier. with a two-days
enrollment. Even considering the similarities with the initial database,there is a clear
correlation between the device quality, collection quality and data quantity.

In conclusion, the potential of ECG as a biometric signal has been deeply assessed
in this thesis, while avoiding over complicated transformations that could affect the
extrapolation to a portable device. We have observed that the heart rate increase is a
drawback in this modality but it can be overcome while contemplating alternatives and
including extra enrollments. In addition, the expertise of the user in recognition can be
key when using a portable device, due to its lower fidelity. Even though this field has
more challenges, the research community would probably success in this task.

11.2. Future work

The comparison among works related to ECG biometrics is complicated due to the lack
of standardization of this modality. One of the most relevant works that could be achieved
in the future should be directed towards this problem, in order to provide some guidelines
and feasibility. These requirements should treat issues related to data collection, signal
quality and performance assessment.

The lack of public databases that consider different scenarios, users and conditions
is also a big initial barrier when researching in this field. Successful experiments in
public databases cannot be extrapolated to real case scenarios, and those applied to
private databases cannot be evaluated by the research community. The publication of
new databases that consider realistic biometric conditions is also a big pending task to
improve future works.

The creation of new databases is also limited by the lack of commercial, functional
devices that allow to obtain and manipulate raw data. The problem of using prototypes or
commercial but non-portable devices always makes difficult the task of trying to replicate
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real environments. The data that is collected by prototypes cannot be ensured to have
constant quality, and the results in classification are always depending on that. The
development of smartband or general portable devices is key for successful research.

Finally, given that a healthy ECG pattern is already a challenge in human recognition,
there are not researches that focus on proceeding with data from users with cardiovascular
diseases. This fact avoids the research to be universal, and it is heavily related to the lack
of public databases and an issue to consider in standardization.
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