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Abstract— Network management is achieved through a large 
number of disparate solutions for different technologies and 
parts of the end-to-end network. Gaining an overall view, and 
especially predicting the impact on a service user, is difficult. 
Recently a number of proprietary platforms have emerged to 
conduct end-to-end testing from user premises, however, these 
are limited in scale, interoperability and the ability to compare 
like-for-like results. In this paper we show that these platforms 
share similar architectures and can benefit from the 
standardisation of key interfaces, test definitions, information 
model and protocols. We take the SamKnows platform as a use 
case and we propose an evolution from its current proprietary 
protocols to standardized protocols and tests. In particular we 
propose to use extensions of the IETF’s IPFIX and 
NETCONF/YANG in the platform.  Standardisation will allow 
measurement capabilities to be included on many more network 
elements and user devices, providing a much more 
comprehensive view of user experience and enabling problems 
and performance bottlenecks to be identified and addressed. 

 
Index Terms—Multi-domain measurement platforms, 

network management, standardization. 

I. INTRODUCTION 

Network management has always been the Cinderella 

child: remembered only reluctantly and after dealing with the 
more exciting business of adding new applications and link 
layer technologies. This has led to network management 
comprising a whole series of more-or-less independent 
solutions cobbled together to tackle what are seen as more-or-
less independent problems. From a technical point of view, 
this approach becomes harder to sustain with the ever 
increasing scale, scope and rate of change of the Internet: the 
tens of thousands of autonomously administered networks; 
the move from centralized client-server applications to fully 
distributed cloud computing; the proliferation of super-fast 
access speeds. From a socio-economic perspective, the 
problem is even more urgent because the Internet is now vital 
infrastructure; whilst the technical expert knows that the 
underlying technology is best effort, from a user’s 
perspective the Internet is a critical utility – in fact, in a UK 
survey in 2011 of “things you couldn’t live without”, the 
Internet was rated second, ahead of water, a cooker and a 

mobile phone, and behind only sunshine! 
In order to gain deeper insight about Internet performance, 

several large-scale measurement platforms - such as 
SamKnows1, RIPE Atlas2 and Netalyzr[11] - have been 
deployed over the last few years. They encompass several 
thousands probes distributed across the Internet. Most of 
these probes are located in homes and can perform active 
tests against measurement servers located in the core of the 
Internet, and they are used to assess the performance of the 
Internet access from the perspective of an end user. 
Currently, these measurement platforms are mainly used for 
benchmarking ISPs.   

While these platforms have been proven useful, we believe 
they have not realized their full potential due to their 
proprietary and by consequence closed nature. All the current 
platforms use proprietary protocols and proprietary 
metrics/tests, which has negative side effects, including: 
• The platforms cannot interact with each other. 

Measurement platforms clearly benefit from the so-
called network effect, meaning that a platform is more 
useful as more probes it has. Because of that, platforms 
would benefit from some form of interaction that would 
allow the pooling of the probes from multiple platforms. 
There are different levels of interaction that can be 
envisioned, ranging from enabling one platform to use 
the probes of another platform, to supporting coordinated 
tests that are executed in parallel on different platforms. 
This is not possible today as deployed platforms are 
bespoke systems that cannot interact with other systems 
through standard interfaces. 

• The deployment of platforms is expensive. Since each 
platform uses proprietary protocols, whenever a new 
party wants to deploy probes to perform its own 
measurements it cannot buy off-the-shelf components 
that natively interact to form a measurement platform. 
Instead it should be possible to have components from 
multiple vendors.  

• Because the tests and the metrics themselves are 
proprietary, it is not safe to compare results of 

                                                           
1 http://www.samknows.com/ 
2 https://atlas.ripe.net/ 
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supposedly the same metric, since their definitions may 
differ. This also implies that the results obtained from 
different platforms cannot be aggregated to obtain a 
larger data set, severely reducing the usefulness of the 
obtained results. 

The result is that the community has invested a large 
amount of resources deploying these platforms, but it is not 
possible to take the full advantage such infrastructure could 
provide.  

In this paper, we propose to extend a set of standard 
protocols to build a large-scale measurement platform. As a 
consequence, it would be possible to build a measurement 
platform using standard off-the-shelf components and build 
federations of measurement platforms. The context of this 
work is the efforts being carried out in several standards 
development organizations (SDOs): at the IETF’s LMAP and 
IPPM working groups; at the Broadband Forum’s WT-304 
activity; and at the IEEE’s project P802.16.3.  

In this paper we follow an evolutionary approach. We 
examine the state of the art in measurement platforms, 
focusing on the SamKnows platform as a case study and we 
propose an evolution of the platform towards open standards. 
We start by describing the current architecture of existing 
platforms in section II and then we describe how to evolve to 
a standard architecture in section III, the information model 
in section IV, standard metrics in section V and standard 
protocols in sections VI and VII. 

II. STATE OF THE ART IN MEASUREMENT PLATFORMS 
Here we examine three current active network measurement 
platforms, RIPE Atlas, perfSONAR, and SamKnows, as 
background for identifying the requirements for a standard 
measurement platform. 

A. RIPE Atlas 
Atlas (http://atlas.ripe.net) is an active Internet measurement 
network developed and run by the RIPE NCC.  Small 
hardware probes, produced by RIPE, perform basic active 
measurements: ICMP ping, traceroute, and DNS, HTTP, and 
SSL certificate retrieval queries. It is aimed at engineers with 
some networking expertise, for whom its primary advantage 
is that it provides multiple vantage points from which these 
measurements can be run. Data collected from these probes 
are also available for research purposes, and provide a data 
source for RIPE Labs research studies. Users build up credit 
by hosting RIPE probes, and can use this credit to run their 
own measurements, as well. 
 
Currently, slightly fewer than 4,000 probes are connected to 
the network at any given time; basic tests include ping and 
traceroute to a selection of DNS servers, as well as ping 
measurements to the first two hops to the Internet, via IPv4 
and IPv6.  
 

Control is distributed among a set of RIPE Atlas controllers, 
running a proprietary control and reporting protocols 
designed by RIPE running over SSH making use of multiple 
SSH channels to logically separate different traffic types. 
Results are centralized at the controllers, and are available via 
a web interface as well as a RESTful API. 
 

B. perfSONAR 
perfSONAR [10] is a service-based platform for distributed 
passive and active measurements. It features a three-layer 
architecture, including a user interface layer and a services 
layer backed up by a measurement point layer. The 
controllers and collectors reside in the services layer. 
 
The basic services provided include: 

• a measurement point (MP) service, which performs 
measurements and is a service wrapper around an 
entity in the measurement point layer;  

• a measurement archive (MA) service, providing 
access to historical monitoring data and/or storing 
the results produced by an MP; 

• a transformation service (TS), which provides 
transformation of data (e.g. aggregation, correlation, 
filtering) provided by other services; 

• a lookup service (LS), which provides discovery of 
other services; 

• an authentication service (AS), which works with 
the lookup service to provide access control 
restrictions to measurement services; and 

• a resource protector service (RP), which avoids 
overload of shared measurement resources. 

 
The measurements supported include ping and traceroute, as 
with RIPE Atlas, as well as one-way delay via OWAMP [12] 
and achievable bandwidth testing. perfSONAR can also 
integrate passive observation of network flows and SNMP 
counters. Multiple user interfaces and data analysis tools run 
atop the perfSONAR service, which is itself concerned 
primarily with providing distributed access to measurement 
data and capabilities. 
The protocols used between the different components of 
perfSONAR use NMWG3 messages, with the XML schema 
defined by the Open Grid Forum. These messages are carried 
in a SOAP message, carried over HTTP. 
 
The network is aimed at larger network operators, primarily 
those associated with research networks connected to 
Internet2 and/or GEANT, to support performance 
troubleshooting by their network engineering staffs. 

C. SamKnows 
Currently the SamKnows platform consists of three distinct 

components: measurement probes, measurement servers and 

                                                           
3 http://nmwg.internet2.edu/ 



management infrastructure as depicted in Figure 1.a. 
The measurement probes are small Linux-based hardware 

devices. The SamKnows platform currently accounts for over 
40.000 probes. These are deployed into volunteers’ homes, 
inline with their existing home network (the probes can 
operate as Ethernet bridges or routers). The probes run 
measurements against measurement servers and real 
endpoints on the Internet when the end user is not actively 
using their connection. Cross-traffic is identified on both the 
wired and wireless interfaces. Probes pull their configuration 
from the management infrastructure upon start-up and check 
for updates periodically thereafter. The testing configuration, 
frequency and other associated parameters are all configured 
remotely. 

Measurement servers are Linux servers running a set of 
custom server applications to support the tests discussed 
below. These applications on the measurement servers are 
relatively trivial; almost all of the measurement logic is 
performed on the client-side (at the probe). Measurement 
servers can be deployed anywhere, and probes can be 
configured to test against them in any desired combination 
and frequency.  

The probes support a wide range of measurements, 
including: 
• UDP round-trip latency and packet loss (long-lived test, 

sampled periodically) 
• UDP one-way jitter (singleton) 
• DNS resolution time and failure rate 
• Web browsing (measures transaction time to download a 

page) 
• ICMP round-trip latency and packet loss 
• Video streaming (measuring buffer under-runs using a 

fixed streaming rate) 
• Latency and packet loss under load 
• TCP throughput, downstream and upstream, using one or 

multiple concurrent TCP connections.  
The management infrastructure consists of three key 

components: 
1) The Data Collection Server: This handles all management 
interaction with the probes. All communications are 
conducted over HTTPS (TLS). The communications protocol 
is a simple but proprietary one. Requests for configuration 
updates use GET requests, with the current configuration 
version in the query string, and the response is the tuple 
<latest_version, package_url>. If the client determines an 
upgrade is required, it fetches the configuration package (a 
tar.gz) from the package_url. Measurement results are 
uploaded by the probes using the POST method, with a 
comma-delimited body containing the measurement results 
(one row per result). Each row contains at a minimum the 
tuple <probe_id, metric_id, timestamp_utc>. Additional 
fields are determined by the metric type. Measurement results 
are written locally to disk on the data collection server and 

queued for import into the database. 
2) The database: This stores all probe metadata, recent raw 
measurement data, and summarised historical data. Raw 
measurement data is imported in bulk from the Data 
Collection Server frequently (once per minute). This raw data 
is kept in the database for approximately 3 months, after 
which time it is archived to flat files. During this time, 
summaries of the raw data are generated (at reduced 
resolution) for presentation to end-users. Multiple database 
servers are typically deployed (some operating with master-
master replication, others as read-only slaves) for redundancy 
and throughput. 
3) Web reporting portal and web services: This presents the 
summarised results (stored in the database) to end-users and 
client-side applications. 

Note that only the probe initiates all communications. No 
results are collected or stored on the measurement servers; 
that is all handled by the probes. 

III. A STANDARD ARCHITECTURE FOR MEASUREMENT 
PLATFORMS 

A reference architecture provides a common framework 
and helps identify the protocols that are needed between the 
different elements of the architecture. In order to hint how the 
SamKnows platform could evolve towards our reference 
architecture, Figure 1.b shows them overlaid. The reference 
architecture contains the following elements: 
• Measurement agents perform network measurements. 

They are pieces of code that can be executed in 
specialized hardware (hardware probe, like the case of 
SamKnows) or on a general-purpose device (like a PC or 
mobile phone). Measurements may be active (the agents 
generate test traffic), passive (agents observe user 
traffic), or some hybrid form of the two. A measurement 
agent can perform two distinct roles: either a 
Measurement Client (hereafter MC) or a Measurement 
Server (hereafter MS). They correspond to the 
SamKnows measurement probes and measurement 
servers respectively. Note that the MC initiates a test 
whilst the MS simply responds to the MC. 

• A Controller manages MCs by informing them which 
tests they should perform and when, and also where to 
report the measurement results and when. We refer to 
them as the Test and Report Schedules. This is a 
fundamental component since it is in charge of 
scheduling measurement activities performed by the 
MCs.  

• A Collector accepts measurement results from the MCs, 
once their tests are complete. The Controller and 
Collector functions are both performed by the 
SamKnows Data Collection Server.  

We believe these are the main components that it is critical 
to standardise, although a measurement platform may include 



other components such as: a results database, which receives 
results from Collector(s) and processes and stores them; and 
data analysis tools, which use the data to isolate faults, 
present results (similar to the SamKnows Web portal) and 
interact with an operator’s OAM systems.  

Having identified the components of the reference 
architecture, we can easily identify the protocols involved: 
• Protocols between the MCs and the MSs. These are the 

actual tests performed by the platforms and will be 
covered in section V. 

• The protocol between the MC and the Controller. We 
will call this the Control protocol and we will cover it in 
section VI. 

• The protocol between the MC and the Collector. We will 
call this the Report protocol and we will cover it in 
section VII. 

An additional component that is relevant and useful to be 
standardized is an API to retrieve measurement results data 
from the platform. This would enable a number of 
applications. For example in the case of an ISP that is using 
the measurement platform to monitor its network, it would 
allow it to export the measurement data into its Operation and 
Management systems in a standard way. While we 
acknowledge that is a key component it is out of the scope of 
any standardization work at this point in time and this is why 
we do not cover this in any detail in this paper. 
 

IV. INFORMATION MODEL 
Before defining the Control and Report protocols, it is 

sensible first to define the information model: an abstract, 
protocol-neutral definition of the data to be transferred. Later 
we present proposals for protocols and associated data 
models that implement the information model: NETCONF-
YANG for the Control protocol and IPFIX for the Report 
protocol (Section VI and VII respectively).  

We believe this is a powerful approach that will prove 
useful. While in this paper we argue for a standardized 
measurement platform, we also believe that some 
deployments will use other protocols due to environmental 
constraints. For example, some of the already deployed DSL 
access networks may decide to use a transport based on the 
Broadband Forum protocol TR069 [1] based transport. 
Defining a protocol-independent information model allows 
these platforms to use different protocols while still 
exchanging the same information with the same control and 
reporting capabilities (for example, the Controller could 
specify the same calendar-based schedule of the same test 
with the same configuration parameters). Thus a single 
information model ensures a very high level interoperability 
between different control and reporting protocols.  

The information model encompasses the elements 
described next. 

The Control protocol carries information about the Test 
and Report Schedules. 

The Test Schedule defines which tests a MC has to 
perform and with what test parameters (including the MSs to 
test against). It also covers how to reschedule tests in case 
connectivity is temporarily lost (e.g., a device turned off) or 
in situations where there is too much cross traffic to execute a 
test. Finally, it contains information about when the tests 
should be performed.  

The Report Schedule defines when test results are reported 
(how often), where to (the Collector’s address) and in what 
format, and what to do if reporting fails.  

The structure for the information model of the Test and 
Report Schedule is presented in UML in Figure 2. In this 
proposal the schedule specifies which pre-configured tests to 
conduct and which reports the results should be included in. 
It allows for the test and report configuration to be done 
irregularly and the test schedule to be updated separately. 
Schedule timing options include periodic, calendar-based and 
one-off scheduled or instantaneous tests. The multiple timing 
options allow for different measuring purposes, for example, 
calendar based timing allows to target a specific time (for 
example perform measurement while night-time that are 
unlikely to disturb the users or peak time, to observe the 
highest load on the network) while instantaneous tests allows 
to schedule a tests as soon as possible to troubleshoot an 
ongoing event. 

The information model for the Report protocol includes the 
MC’s identifier; the time of the report; a description of the 
test (essentially an ‘echo’ of the Test Schedule, which may be 
done by reference to a Template, see Section VII); and the 
actual measurement results (which are highly test-specific). 

 

V. IPPM BASED TESTS 
The test protocols are executed between a MC and a MS. 

The SamKnows platform performs proprietary tests based on 
standard Internet protocols (e.g. TCP, UDP, ICMP, DNS, 
etc). For example, in order to measure UDP latency, the 
SamKnows probes send UDP packets, of a certain length, 
from a set of ports and use a periodic schedule with a certain 
rate. When reporting the results, they exclude the outliers 
using a specific statistical method (e.g. providing the 95th 
percentile mean or interval). However, another platform 
measuring UDP latency would most likely make different 
choices for the above, and so it would not be safe to compare 
the results obtained from the different platforms.  

The IPPM working group at the IETF has defined a large 
set of metrics for delay, packet loss, jitter and many others. A 
natural approach would be to use these metrics as the tests in 
a standard measurement platform. However, if we try to map 
the tests that are actually performed by the SamKnows 
platform to the defined IPPM metrics, we find that the IPPM 



metrics are not well-defined enough to be useful as test 
descriptors. The problem is that the IPPM metrics leave too 
many degrees of freedom to the actual implementation. For 
example, all the IPPM metrics leave the packet type as an 
open parameter. This means that referencing a particular 
IPPM metric does not define whether the packets are TCP, 
UDP, ICMP or something else. There seems to be a clear gap 
where further standards could help. 

In order to close that gap, we propose to complement the 
IPPM metric definition by specifying the open parameters 
that fundamentally affect the test (like the packet type) and 
leaving open only a few parameters that do not change the 
nature of the test (like the source or destination address). 

We can map some of the tests available in the SamKnows 
platform to existing IPPM metrics plus additional 
specification. As a few examples to illustrate this operation: 
• SamKnows defines a UDP latency test. IPPM defines a 

Round-Trip Delay metric in [2]. In order to bridge the 
gap between the two of them, we need to specify the 
packet type (UDP packet, payload length and content), 
the scheduling types (Periodic in this case), the output 
type (raw or 95th percentile mean). The source and 
destination ports and addresses are parameters as well as 
the time of execution. 

• SamKnows defines an ICMP packet loss test. IPPM 
defines a Round Trip Loss metric in [3]. To use the 
IPPM specification we need to specify the packet type 
(ICMP echo request and reply messages), the scheduling 
and the output type, as above. The input parameters are 
the source and destination addresses as well as the time 
of execution are open parameters. 

By extending the IPPM specifications we create 
standardized metrics, so that different implementations and 
platforms produce measurement results that are comparable. 
We have specified several other tests in [4]. 

Once there are well defined standard tests then they can be 
referred to in the Control and Report protocols, so that a MC 
can unambiguously understand from the Controller what test 
to perform (and later the Collector knows what test the MC 
has done).  

VI. A NETCONF/YANG BASED CONTROL PROTOCOL 
The Control protocol is executed between the Controller 

and a MC to configure test and report schedules, which was 
defined in a protocol-neutral fashion in section IV.  In this 
section we propose to use the IETF standard protocol 
NETCONF and the IETF standard data modelling language 
YANG. This would be an alternative to the proprietary 
protocol currently used in the SamKnows platform (section 
II). 

During the last 10 years, the IETF has developed a generic 
protocol to support device configuration called NETCONF 
and an associated data modelling language called YANG [5]. 

The NETCONF protocol provides a remote procedure call 
mechanism running over a secure transport (SSH or TLS). On 
top of the generic RPC layer, a number of specific operations 
are defined to retrieve and edit a device's configuration (e.g., 
get-config, edit-config, copy-config, delete-config). In 
addition, there are standard operations to support coarse and 
fine-grained locking or to implement configuration change 
transactions over a number of devices. The configuration data 
manipulated by NETCONF is a structured document 
conceptually stored in a configuration datastore and serialized 
using XML. The structure and semantics of the configuration 
data manipulated by NETCONF is defined using the YANG 
data modelling language. YANG in addition allows a data 
modeller to define (i) new operations that extend the core set 
of generic configuration management operations provided by 
NETCONF and (ii) notifications that can be emitted by a 
device when certain events occur. 

The NETCONF protocol was originally targeted at devices 
such as routers or switches in provider backbone networks 
and large enterprise networks. In these environments, 
configuration changes are usually pushed to the devices by a 
management application that can initiate NETCONF sessions 
as needed. In large-scale measurement platforms, however, 
the MCs are behind a network address translator and so must 
establish the communication session and (periodically) pull 
their configuration from the Controller. The usage of 
NETCONF, therefore, requires the provision of a 'call home' 
mechanism allowing devices to initiate the establishment of a 
NETCONF session. While this is currently not supported by 
the standardized NETCONF transports, it seems relatively 
easy to add this feature to the NETCONF over TLS transport: 
the NETCONF client is configured with a schedule indicating 
when to establish a TCP connection to a NETCONF 
configuration server. The NETCONF server then acts as a 
TCP client establishing the TCP connection and as a TLS 
client establishing a TLS session. At this point, client and 
server roles are swapped, such that the MC takes the role of a 
NETCONF server and the Controller takes the role of a 
NETCONF client, pushing any pending configuration 
changes to the device. 

   Consider the following example. Suppose a Controller 
wants to request a MC with the IP address 192.0.2.1 (say) to 
perform a UDP latency test to a destination IP address 
203.0.113.1, using source port 23677 and destination port 
34567. The test is a singleton test performed at 08:00 UTC.  
The test is to be performed without cross-traffic and the 
output type is raw. The use of NETCONF/YANG to send the 
information in this example is depicted in Figure 3. 
While NETCONF can, in principle, also be used to push 
measurement results to a Collector, it seems that IPFIX is a 
much better fit for this task as described below. The 
configuration parameters needed by an IPFIX exporter can 
easily be configured via NETCONF since there is already a 



standard IPFIX configuration data model [6], as described in 
the next section. 

VII. AN IPFIX BASED REPORT PROTOCOL 
As mentioned earlier, the SamKnows platform uses HTTP 
with a proprietary protocol on top of it to convey test results 
data from the MCs to the Collector. In this section, we 
propose the use of the IETF standard IPFIX protocol for that 
purpose. 

IPFIX [7] is a unidirectional, transport-independent export 
protocol for binary data records, with a focus on network 
measurement and operations applications.  The structure of 
the data records is described in-band by Templates, which 
refer to Information Elements (IEs) from a common data 
model managed by the Internet Assigned Numbers Authority.  
The basic IEs cover most Layer 3 and Layer 4 measurement 
needs, and the information elements can be extended [8].  

IPFIX organizes data records into Messages.  A Message is 
a sequence of Sets preceded by a Message Header which, 
among other things, includes an Observation Domain ID 
(identifying where the records in the Message were 
measured) and an Export Time (when the Message was 
originally sent). 

   A Set contains Records preceded by a Set Header, which 
contains a Set ID identifying the type of the records the Set 
contains.  Template Sets, identified by a special Set ID, 
contain Templates, which are sequences of IE identifiers and 
lengths; these define the fields of the records they describe.  
A Template's ID matches the Set ID of the Sets containing 
records described by the Template. Since many records may 
be described by a single Template, IPFIX's data 
representation is more efficient than those based on inline 
record structures (e.g.  XML, JSON).   

 In IPFIX terminology [9], the MC encompasses both the 
Metering Process (MP) and the Exporting Process (EP), 
while the Collector is the Collecting Process (CP).  IPFIX is 
used between the EP/MC and the Collector/CP. 

   We next explore how to use IPFIX to report 
measurement results by defining a Template. 

 Part of the information can be conveyed using the fields in 
the IPFIX header, namely: 
• Information about the MA: The MA identifier can be 

sent in the Observation Domain field of the IPFIX 
header. 

• Information about the time of the report: The Export 
Time field that can be used to convey this information. 

The information describing the test is included in a 
Template set that contains multiple IEs for each of the 
different pieces of information we need to convey.  This 
includes: 
• An identifier of the metric used for the test.  In order 

to convey that we need to define a new IE, let's call it 
metricIdentifier. 

• An identifier of the scheduling strategy used to 
perform the test. Again, this will be a new IE, called 
testSchedule.  

• An identifier of the output format.  A new IE 
outputType is needed. 

• An identifier of the environment, notably, whether 
cross traffic was present during the execution of the 
test.  A new IE is needed for this testEnvironment.  

• The input parameters for the test.  Most of these can 
be expressed using existing IEs, such as 
sourceIPv4Address, destinationIPv4Address, etc. 

The information describing the test results widely varies 
with each test, but can include the time each packet was sent 
and received, the number of sent and lost packets and other 
information.  Again most of these can be expressed using 
existing IEs, and some new ones can be defined if needed for 
a particular test. 

As an example, suppose a MC wants to report the result 
from the UDP latency test requested by the Controller in the 
previous section using IPFIX. The IPFIX report message for 
this test is depicted in figure 4. 

VIII. CONCLUSIONS 
Network operators have many disparate technology and 

network management tools, but few that provide an overall 
assessment of what user experience might be like. Growing 
interest has led to a number of over-the-top measurement 
platforms. While these platforms all differ, we have shown 
that it would be possible to abstract common architectural 
components and could share some common standard 
interfaces and data models that would enable a degree of 
interoperability.  

Standardisation discussions have already commenced in 
the IETF and Broadband Forum. In this paper we have taken 
the SamKnows platform as a case study and we have 
proposed an evolution of the platform towards standard 
protocols. In particular, we have shown how this can be done 
by using NETCONF and IPFIX for the control and report 
protocols respectively. We presented other two platforms, 
RIPE Atlas and perfSONAR to illustrate that several 
deployed platforms share a similar architecture, which hints 
that it would be feasible for the different platforms to adopt 
the proposed standard solution. 

While traditional network management tools are applied 
across the breadth of the network, the emerging end-user 
premise tools are currently limited to selective deployments 
on user devices and dedicated measurement boxes. 
Standardisation will allow these approaches to break through 
into mainstream network and service management. We can 
imagine that network operators can embed measurement 
capabilities in a wide range of network and CPE devices 
(such as Home Gateways) as well as on internal network 
elements. All of these devices can be controlled by a single 



framework and the measurement results can be collected 
together to provide a comprehensive end-to-end view, as well 
as between known network locations. Tests can be operated 
continuously across all lines or on a randomly selected subset 
of lines for purposes such as capacity planning and network 
design. Problems can be investigated through adapting the 
test configurations, schedules and selection of lines tested. 
This can help identify problems in the network and with 
equipment or suppliers, and to isolate whether the issue is in 
the shared part of the network, a vendor hardware problem 
affecting many users, unique to a single user line, in the home 
network or an over-the-top service. Comparable data can also 
be shared between horizontal or vertically arranged network 
operators, with service providers and with other parties such 
as regulators. 
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                                               a)                                                                                                                    b) 
Figure 1: Measurement platform architecture. Figure 1.a) shows the current SamKnows architecture, whilst in Figure 1.b) the proposed 
reference architecture is overlaid on top of the SamKnows architecture. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Proposed Information model for the control protocol, in UML 
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Figure 3: Example of a NETCONF/YANG control message 
for a UDP Latency test  

 
 
Figure 4: Example of an IPFIX report message for a UDP 
Latency test  


