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Abstract
The first part of this paper complements previous results on characterization of poly-
nomials of least deviation from zero in Sobolev p-norm (1 < p < ∞) for the case
p = 1. Some relevant examples are indicated. The second part deals with the location
of zeros of polynomials of least deviation in discrete Sobolev p-norm. The asymptotic
distribution of zeros is established on general conditions. Under some order restriction
in the discrete part, we prove that the n-th polynomial of least deviation has at least
n − d∗ zeros on the convex hull of the support of the measure, where d∗ denotes the
number of terms in the discrete part.

Keywords Polynomials of least deviation from zero · Extremal polynomials ·
Sobolev norm · Zero location

Mathematics Subject Classification 30C10 · 30C15 · 33C47 · 41A10 · 41A50 ·
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1 Introduction

Let P be the linear space of polynomials, ‖ · ‖ be a norm defined on P and P1
n be the

subset of all polynomials of degree n ∈ Z+ whose leading coefficient is equal to one
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(monic).A classic problem in analysis is the existence, uniqueness and characterization
of the monic polynomial of degree n ∈ Z+ with minimum deviation from zero with
respect to the norm ‖ · ‖, i.e., the polynomial Pn(z) = zn + . . . such that

‖Pn‖ = inf
Qn∈P1

n

‖Qn‖. (1)

A polynomial Pn ∈ P1
n that satisfies (1) is called polynomial of least deviation from

zero with respect to ‖ · ‖, for brevity, a n-th minimal (or extremal) polynomial with
respect to ‖ · ‖. This problem has its origin in the study carried out by P. L. Chebyshev
on the decrease in the friction in the joints of the Watt parallelogram that converts the
movement of the piston of the steam engine into wheel rotation. As a consequence,
what we know today as Chebyshev polynomials were discovered (c.f. [3, Ch. 1]).
It is well-known that Chebyshev monic polynomials of the first kind are minimal
with respect to the uniform norm at [−1, 1] and that those of the second kind are
minimal with respect to the usual norm at L1[−1, 1] (c.f. [5, §6.6] or [6, §3.3] ). Let us
mention that theseworks constituted a starting point of the general theory of orthogonal
polynomials. Today, minimal polynomials are of great interest in various areas such
as approximation theory, potential theory, optimization of numerical algorithms, and
signal processing.

Note that, any polynomial Q ∈ P1
n could be written as Q(z) = zn − q(z) with

q ∈ Pn−1. Let q0 be a fixed element of Pn−1 and define the associated subset

An,0 = {q ∈ Pn−1 : ‖xn − q‖ ≤ ‖xn − q0‖}.

As An,0 is a compact subset of Pn−1, there exists q1 ∈ Pn such that
‖xn − q1‖ ≤ ‖xn − q‖ for all q ∈ Pn−1, in virtue of the arbitrariness of q0. Hence,
the existence of a minimal polynomial is guaranteed. However, the uniqueness of the
minimal polynomial with respect to (2) is not always ensured, as we will show in some
of our case studies.

Nevertheless, it is straightforward to prove that Mn (the set of all monic minimal
polynomials with respect to ‖ · ‖ of degree n) is a convex set. Indeed, if Qn, Rn ∈ Mn

and λ ∈ [0, 1], then Pn(x) = λQn + (1 − λ)Rn(x) is also an element of Mn since

‖Pn‖ = ‖λQn + (1 − λ)Rn(x)‖ ≤ λ‖Qn‖ + (1 − λ)‖Rn‖ = ‖Qn‖.

In this paper, we are interested in the case in which the norm ‖ · ‖ is as we define
below. Let 1 ≤ p < ∞ and consider the vector of measures μ = (μ0, μ1, . . . , μm),
for m ∈ Z+, where μk is a positive finite Borel measure with suppμk ⊂ R and
P ⊂ L1 (μk) for k = 0, 1, . . . ,m. Denote by �k the convex hull of suppμk , that
is, the smallest interval containing suppμk . Let f (k) denote the k-th derivative of a
function f . If �0 contains infinite elements, the expression
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Polynomials of Least Deviation from Zero in Sobolev p-Norm 891

‖ f ‖p,μ =
(

m∑
k=0

‖ f (k)‖p
k,p

)1/p
=
(

m∑
k=0

∫
�k

∣∣∣ f (k)
∣∣∣p dμk

)1/p
, (2)

defines a norm over P known as the Sobolev p-norm and the vector of measures μ is
called standard. If each measure μk , 0 ≤ k ≤ m satisfies μk({x}) = 0 for all x ∈ R,
we say that the vector of measures μ is continuous.

First, observe that for m = 0, this norm reduces to the usual L p (μ0) norm. We
will call n-th Sobolev minimal polynomial with respect to ‖ · ‖p,μ, to any polynomial
Pn ∈ P1

n that is a solution of the minimal problem (1).
For the norm (2) with μ standard, we consider two different cases:

Continuous Sobolev norms, if μ is continuous.
Discrete Sobolev norms, if for every k = 1, . . . ,m the measure μk is supported

on a finite number of points.

It is said that a Sobolev p-norm is sequentially dominated if suppμk ⊂ suppμk−1
and dμk = fk−1dμk−1 where fk−1 ∈ L∞(μk−1) and k = 1, . . . ,m. Furthermore,
the norm (2) on P is said to be essentially sequentially dominated, if there exists a
sequentially dominated norm that is equivalent to (2). As usual, two norms ‖ · ‖1 and
‖ · ‖2 on a given normed space X are said to be equivalent if there exist positive
constants c1, c2 such that c1‖x‖ ≤ ‖x‖ ≤ c2‖x‖ for all x ∈ X.

The notions of sequentially dominated norm and essentially sequentially dominated
norm were introduced in [15,20], respectively. Both notions are closely related to the
uniform boundedness of the distance between the zeros of sequences of minimal
polynomials and the support of the measures involved in (2). For more details on this
aspect in the continuous case, we refer the reader to [11,16] for p = 2, [17,18] for
1 < p < ∞ and [8,9,13] for p = 2 and measures with unbounded support.

Let N ∈ Z+, � = {c1, . . . , cN } ⊂ C, {m0, . . . ,mN } ⊂ Z+ and m =
max{m0, . . . ,mN }. In the discrete case, we will restrict our attention to Sobolev p-
norm under the following assumptions:

– μ0 = μ +
∑N

j=1
A j,0δc j , where A j,0 ≥ 0, μ is a finite positive Borel measure,

suppμ ⊂ R with infinitely many points, P ⊂ L1(μ) and δx denotes the Dirac
measure with mass one at the point x .

– For k = 1, . . . ,m; μk =
∑N

j=1
A j,kδc j where A j,k ≥ 0, A j,m j > 0, and

A j,k = 0 if m j < k ≤ m.

We say that a discrete Sobolev p-norm is non-lacunary if A j,k > 0 for all 0 ≤
k ≤ m j and 0 ≤ j ≤ N . In any other case, we say that the discrete Sobolev p-norm
is lacunary. Obviously, a discrete Sobolev p-norm is non-lacunary if and only if is
sequentially dominated. A discrete Sobolev p-norm is essentially non-lacunary if it
is equivalent to a non-lacunary norm.

It is known that the minimal polynomial in L p(μ0) spaces (m = 0) satisfies the
following characterization (see [4, Sec.2.2 and Ex 7-h]). A monic polynomial Pn is
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the n-th minimal polynomial in L p(μ0) if and only if

〈Pn, q〉p,μ0 =
∫

�0

q sgn (Pn) |Pn|p−1 dμ0 = 0 for all q ∈ Pn−1,

where sgn(y) =
{
y/|y|, if y �= 0;
0, if y = 0.

In [10, Th.4], the authors provide the following extension of this characterization
to the Sobolev case when 1 < p < ∞.

Theorem 1 Consider the Sobolev p-norm (2) for 1 < p < ∞. Then, the monic
polynomial Pn is the n-th Sobolev minimal polynomial if and only if

〈Pn, q〉p,μ =
m∑

k=0

∫
�k

q(k) sgn
(
P(k)
n

) ∣∣∣P(k)
n

∣∣∣p−1
dμk = 0, (3)

for every polynomial q ∈ Pn−1.

The results in this work complement previous ones in [10, §2]. There, for 1 < p <

∞, Theorem 1, Proposition 1, and Corollary 1 were proved.
The aim of Sect. 2 is to extend Theorem 1 to the case p = 1. In Theorem 2,

we give a general sufficient condition for existence of a minimal polynomial with
respect to (2) (1 ≤ p < ∞). For p = 1, this condition is not necessary, as we
show in Examples 2 and 3. Furthermore, Example 1 shows that it does not guarantee
uniqueness either. Theorem 3 establishes a necessary and sufficient condition under
which (3) characterizes minimality with respect to (2) when p = 1.

The last two sections deal with discrete Sobolev norms. In Sect. 3, for essentially
non-lacunary Sobolev norms, we give a sufficient condition for the uniform bounded-
ness of the set of zeros of a sequence on minimal polynomials {Pn} (see Theorem 4).
Moreover, the asymptotic distribution of zeros is established in Theorem 5. Finally,
in Sect. 4, we introduce the notion of sequentially ordered Sobolev p-norm. Under
this assumption, we prove Theorem 7, which generalizes several known results on the
number of zeros of the n-th polynomial of least deviation inside the convex hull of the
support of the measure μ.

2 Polynomials of Least Deviation from ZeroWhen p = 1

Let us first recall a basic property of the Sobolev norm (2). Let R be amonic polynomial
with complex coefficients, and let us write R = R1 + i R2, where R1 and R2 are
polynomials with real coefficients. Note that R1 is also a monic polynomial with the
same degree of R and satisfying
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‖R‖p
p,μ =

m∑
k=0

∫
�k

|R(k)
1 + i R(k)

2 |pdμk =
m∑

k=0

∫
�k

((
R(k)
1

)2 +
(
R(k)
2

)2)p/2

dμk

>

m∑
k=0

∫
�k

∣∣∣R(k)
1

∣∣∣p dμk = ‖R1‖p
p,μ.

Therefore, any n-th Sobolev minimal polynomial with respect to ‖ · ‖p,μ has real
coefficients.

Proposition 1 ([10, Prop. 1]) Let ‖ · ‖p,μ be the Sobolev-type norm defined by (2),
with 1 < p < ∞. Then, there exists a unique Pn ∈ P1

n such that ‖Pn‖p,μ =
inf

Qn∈P1
n

‖Qn‖p,μ.

Theorem 2 (Sufficient condition) Consider the Sobolev p-norm (2) for 1 ≤ p < ∞,
when μ = (μ0, . . . , μm) is a standard vector measure. If Pn ∈ P1

n is such that for all
q ∈ Pn−1

〈Pn, q〉p,μ =
m∑

k=0

∫
�k

q(k)(x) sgn
(
P(k)
n (x)

) ∣∣∣P(k)
n (x)

∣∣∣p−1
dμk(x) = 0, (4)

then Pn is a minimal polynomial with respect to ‖ · ‖p,μ.

Proof If 1 < p < ∞ the proof is carried out as the proof of the sufficiency in [10, Th.
4], step by step.

Hence, in what follows, we consider p = 1. Write Pn(z) = zn − q0(z) where
q0 ∈ Pn−1, let q ∈ Pn−1 arbitrary and assume that (4) holds, then

‖Pn‖1,μ =
m∑

k=0

∫
�k

((
xn
)(k) − q(k)

0 (x)
)
sgn
(
P(k)
n (x)

)
dμk(x) = 〈Pn, xn − q0〉1,μ

= 〈Pn, xn − q + q − q0〉1,μ = 〈Pn, xn − q〉1,μ + 〈Pn, q − q0〉1,μ
= 〈Pn, xn − q〉1,μ

and taking absolute value, we have

‖Pn‖1,μ ≤
m∑

k=0

∫
�k

∣∣∣(xn − q
)(k)∣∣∣ dμk = ‖xn − q‖1,μ, ∀q ∈ Pn−1,

which is equivalent to the assertion of the theorem for p = 1. �
In [10, Th. 4], it was proved that if 1 < p < ∞, condition (4) is also necessary,

i.e., Theorem 2 is a characterization of the extremality in this case.
With the same arguments as in [10, Cor. 1 and Cor. 2], we have the following

corollary.
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894 A. Díaz-González et al.

Corollary 1 Under the assumptions of Theorem 2, if Pn ∈ P1
n satisfies condition (4),

then

1. For all n ≥ 1, Pn has at least one zero of odd multiplicity on Co(suppμ0)
o.

2. For all n≥2, P ′
n has at least one zeroof oddmultiplicity onCo(suppμ0 ∪ suppμ1)

o.

where Co(A) and Aodenote the convex hull and the interior of a set A, respectively.

Observe that if p = 1, the condition (4) only depends on the sign of Pn and its
derivatives on the support of the corresponding measure and not on the values of the
polynomial itself. Consequently, unlike what happens in the case 1 < p < ∞, if
p = 1, we lose the uniqueness of the minimal polynomial, as can be seen in the
following examples. Furthermore, in Example 2, we obtain a minimal polynomial that
does not satisfy the condition (4).

Example 1 (Continuous case)
Consider the Sobolev norm associated with the vector of measures μ =

(ν|[−2,0], ν|[0,1]), where ν|[a,b] denotes the Lebesgue measure over the real interval
[a.b],

‖ f ‖1,μ =
∫ 0

−2
| f |dx +

∫ 1

0
| f ′|dx . (5)

Let Pa,2(x) = (x + 1)(x − a), with a ∈ [0, 1], a family of monic polynomials of
degree 2. Note that

〈Pa,2, 1〉1,μ =
∫ 0

−2
sgn((x + 1)(x − a)) dx =

∫ −1

−2
dx −

∫ 0

−1
dx = 0.

〈Pa,2, x〉1,μ =
∫ 0

−2
x sgn((x + 1)(x − a)) dx +

∫ 1

0
sgn(2x + 1 − a) dx

=
∫ −1

−2
x dx −

∫ 0

−1
x dx +

∫ 1

0
dx = 0.

Then, from Theorem 2, the polynomials Pa,2 with 0 ≤ a ≤ 1 are all minimal with
respect to (5).

Furthermore, note that the minimal polynomials Pa,2(x) = (x + 1)(x − a) for all
0 ≤ a ≤ 1 are the convex combinations of the minimal polynomials x2−1 and x2+x .

Example 2 (Discrete case)
Consider the Sobolev norm associated with μ = (ν|[−2,0], δ0), where δ0 is the

Dirac measure with mass one at x = 0,

‖ f ‖1,μ =
∫ 0

−2
| f |dx + | f ′(0)|. (6)
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Let Pb,2(x) = (x + 1)(x − b), with b ∈ [0, 1), a family of monic polynomials of
degree 2. Note that

〈Pb,2, 1〉1,μ =
∫ 0

−2
sgn((x + 1)(x − b)) dx =

∫ −1

−2
dx −

∫ 0

−1
dx = 0.

〈Pb,2, x〉1,μ =
∫ 0

−2
x sgn((x + 1)(x − b)) dx + 1 · sgn(P ′

b,2(0)
)

=
∫ −1

−2
xdx −

∫ 0

−1
xdx + sgn(1 − b) = 0.

Then, from Theorem 2, the polynomials Pb,2 with 0 ≤ b < 1 are all minimal with
respect to (6) and ‖Pb,2‖1,μ = 2.

Furthermore, if b = 1, the polynomials P1,2(x) = x2 − 1 is minimal and does not
satisfy condition (4). Indeed,

‖P1,2‖1,μ = 2 = ‖Pb,2‖1,μ when 0 ≤ b < 1.

〈P1,2, x〉1,μ =
∫ 0

−2
x sgn

(
x2 − 1

)
dx = −1 �= 0.

If 1 < p < ∞, from [10, Th. 4], we know that all minimal polynomials with respect
to (2) (continuous or discrete case) satisfy the condition (4). But as seen in Example
2, this statement is not true when p = 1. It can even happen that there is no minimal
polynomial satisfying (4).

Example 3
Consider the following discrete Sobolev norm,

‖ f (x)‖1,μ =
∫ 1

−1
| f (x)|dx + | f ′(0)|. (7)

Then, P3(x) = x3 is the only thirdminimal Sobolev polynomial with respect to ‖·‖1,μ
and does not satisfy the sufficient condition (4).

1. Note that for every polynomial Qn , we have

‖(−1)nQn(−x)‖1,μ =
∫ 1

−1
|Qn(−x)|dx + |Q′

n(0)| = ‖Qn‖1,μ.

2. Then, if Sn is a minimal polynomial of degree n, the monic polynomial
(−1)n Sn(−x) is also extremal. From the convexity of the set of minimal poly-
nomials,

Pn(x) = 1

2
Sn(x) + (−1)n

2
Sn(−x)

is an odd or even polynomial, according to the parity of n, and a monic minimal
polynomial too.
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896 A. Díaz-González et al.

3. For n = 3, let P3(x) = x3 + cx where c ∈ R a monic odd polynomial and

F(c) = ‖x3 + cx‖1,μ =
∫ 1

−1
|x3 + cx |dx + |c| =

⎧⎪⎨
⎪⎩

−2c − 1
2 , c ≤ −1;

c2 + 1
2 , −1 < c < 0;

2c + 1
2 , 0 ≤ c.

It is straightforward to see that the global minimum of F is attained at c = 0.
Therefore, P3(x) = x3 is a minimal polynomial.

4. The polynomial P3(x) = x3 does not satisfy (4). Indeed,

〈P3, x〉1,μ =
∫ 1

−1
x sgn

(
x3
)
dx =

∫ 1

−1
|x |dx = 1 �= 0.

5. Finally, we will prove the uniqueness. As P3 ∈ P1
3 is the only odd minimal poly-

nomial of degree 3, and that any minimal Sobolev polynomial S3 ∈ P1
3 is such

that

x3 = 1

2
S3(x) − 1

2
S3(−x).

Since ‖x3‖1,μ = 1

2
‖S3‖1,μ + 1

2
‖ − S3(−x)‖1,μ, we get

0 ≥
∫ 1

−1

(
|x3| − 1

2
|S3(x)| − 1

2
|S3(−x)|

)
dx =|S′

3(0)| ≥ 0,

which implies that |x3| = 1
2 |S3(x)| + 1

2 |S3(−x)| and |S′
3(0)| = 0. Consequently,

S3(0) = S′
3(0) = 0 and S3 takes the form S3(x) = x3 + cx2, with c ∈ R. Since

c �= 0, we arrive at the contradiction

‖S3‖1,μ =
∫ 1

−1
|x3 + cx2|dx =

{
1
2 + 1

6 c
4, |c| < 1;

2
3 |c|, |c| ≥ 1.

>
1

2
= ‖x3‖1,μ.

So, P3(x) = x3 is the only minimal Sobolev polynomial of degree 3.

Note that in this example, we have obtained the only monic minimal polynomial
of degree 3 with respect to (7), and it does not satisfy the sufficient condition. This
is exclusive to the discrete case. If the vector measure μ is continuous, the sufficient
condition (4) is also necessary.

Theorem 3 Let μ = (μ0, μ1, . . . , μm) be a continuous standard vector measure.
Then, Pn is an n-th Sobolev minimal polynomial with respect to ‖ · ‖1,μ if and only if

〈Pn, q〉1,μ =
m∑

k=0

∫
�k

q(k)sgn
(
P(k)
n

)
dμk = 0, ∀q ∈ Pn−1. (8)
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Proof From Theorem 2, it only remains to prove that the condition (8) is necessary
for the extremality. Without loss of generality, we can assume that deg Pn ≥ m, since
if n < m we have

‖Pn‖1,μ =
n∑

k=0

∫
�k

∣∣∣P(k)
n

∣∣∣ dμk, and the proof works the same.

Suppose that Pn ∈ P1
n is a minimal polynomial with respect to ‖ · ‖1,μ and (8) does

not hold. Then there exists h ∈ Pn−1 such that 〈Pn, h〉1,μ �= 0. Multiplying h by a
constant, we can assume 〈Pn, h〉1,μ > 0, without loss of generality.

Let xk,1 < xk,2 < · · · < xk,nk be the zeros of P
(k)
n which lie on �k

o = (ak, bk). For
each � ∈ N and k = 0, . . . ,m, denote

Ak,� =
[
ak + 1

�
, xk,1 − 1

�

]
∪
[
xk,1 + 1

�
, xk,2 − 1

�

]
∪ · · · ∪

[
xk,nk + 1

�
, bk − 1

�

]
.

Note that
{
Ak,�
}
�
is a sequence of compact subsets of�k

o, such that Ak := lim
�→∞ Ak,� =

�k
o\�k , where�k = {xk,1, xk,2, . . . , xk,nk }. Let Bk,� = �k

o\Ak,�, so lim
�→∞ Bk,� = �k .

As μ is a vector of continuous measures, for every k = 0, 1, . . . ,m, we have

lim
�→∞

∫
Ak,�

h(k)sgn
(
P(k)
n

)
dμk =

∫
Ak

h(k)sgn
(
P(k)
n

)
dμk =

∫
�k

h(k)sgn
(
P(k)
n

)
dμk,

lim
�→∞

∫
Bk,�

|h(k)|dμk =
∫

�k

|h(k)|dμk = 0.

Therefore,

lim
�→∞

m∑
k=0

∫
Ak,�

h(k)sgn
(
P(k)
n

)
dμk = 〈Pn, h〉1,μ > 0,

lim
�→∞

m∑
k=0

∫
Bk,�

|h(k)|dμk = 0.

Hence, for �0 ∈ N sufficiently large,

m∑
k=0

∫
Ak,�0

h(k)sgn
(
P(k)
n

)
dμk >

m∑
k=0

∫
Bk,�0

|h(k)|dμk .·

Since every set Ak,�0 , k = 0, 1, . . . ,m is compact and �k ∩ Ak,�0 = ∅, we get

δ = min
k=0,1,...,m

{
min

x∈Ak,�0

{|P(k)
n (x)|}

}
> 0.
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From the compactness of Ak,�0 , we also obtain that

δh = max
k=0,1,...,m

{
max

x∈Ak,�0

{
|h(k)(x)|

}}

is finite and positive. Then, we can choose λ > 0 such that 0 < λ <
δ

δh
.

Therefore, for each k = 0, 1, . . . ,m, we have |λh(k)(x)| < δ ≤ |P(k)
n (x)| for all

x ∈ Ak,�0 and

sgn
(
P(k)
n (x) − λh(k)(x)

)
= sgn

(
P(k)
n (x)

)
, for all x ∈ Ak,�0 .

Finally,

‖Pn − λh‖1,μ =
m∑

k=0

∫
�k

|P(k)
n − λh(k)|dμk

=
m∑

k=0

(∫
Bk,�0

|P(k)
n − λh(k)|dμk +

∫
Ak,�0

|P(k)
n − λh(k)|dμk

)

=
m∑

k=0

(∫
Bk,�0

|P(k)
n −λh(k)|dμk+

∫
Ak,�0

sgn
(
P(k)
n −λh(k)

) (
P(k)
n −λh(k)

)
dμk

)

=
m∑

k=0

(∫
Bk,�0

|P(k)
n − λh(k)|dμk +

∫
Ak,�0

sgn
(
P(k)
n

)(
P(k)
n − λh(k)

)
dμk

)

≤
m∑

k=0

(∫
Bk,�0

|P(k)
n |dμk + λ

∫
Bk,�0

|h(k)|dμk

+
∫
Ak,�0

|P(k)
n |dμk − λ

∫
Ak,�0

sgn
(
P(k)
n

)
h(k)dμk

)

=
m∑

k=0

∫
�k

|P(k)
n |dμk+λ

⎛
⎝ m∑
k=0

∫
Bk,�0

|h(k)|dμk−
m∑

k=0

∫
Ak,�0

sgn
(
P(k)
n

)
h(k)dμk

⎞
⎠

<‖Pn‖1,μ,

which is a contradiction with the extremality of Pn . �

3 Lacunary and Non-lacunary Discrete Sobolev Norms

Most of the formulas given here are known to the specialist, although precise references
may be hard to find in the literature. Therefore, we include this section with full proofs
for completeness, except when an exact reference is available.

Consider a finite positive Borel measure μ, being suppμ a subset of the real
line with infinitely many points such that P ⊂ L1(μ). In the remainder, we
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assume that N ∈ Z+, � = {c1, c2, . . . , cN } ⊂ R, {m0,m1, . . . ,mN } ⊂ Z+ and
m = max{m0,m1, . . . ,mN }. Let μ = (μ0, μ1, . . . , μm) be the standard vector mea-
sure. For each 1 ≤ p < ∞, let us consider the general discrete Sobolev norm

‖ f ‖p,μ =
⎛
⎝ m∑
k=0

∫
�k

∣∣∣ f (k)
∣∣∣p dμk

⎞
⎠
1/p

=
⎛
⎝∫

�
| f |p dμ +

N∑
j=1

m j∑
k=0

A j,k

∣∣∣ f (k)(c j )
∣∣∣p
⎞
⎠
1/p

,

(9)

where � is the convex hull of the support of the measure μ. Notice that unlike (2), the
representation (9) of ‖ · ‖p,μ is not unique, but depends on how many Dirac measures,
of the discrete part of μ0, are included in the measure μ. In general, the representation
(9) is unique once the measure μ is fixed, so this dependence will be omitted for
brevity.

If there exists a constant M such that

‖xq‖p,μ ≤ M‖q‖p,μ, for all q ∈ P, (10)

we say that the multiplication operator is bounded on P with respect to ‖ · ‖p,μ.
The close relation between (10) and the uniform boundedness of the set of zeros of
sequences of minimal polynomials was established in [15]. Since then, several studies
have been published on this subject.

Proposition 2 Assume that the discrete Sobolev norm (9) is non-lacunary and � is
bounded, then for each q ∈ P, we have

‖xq‖p,μ ≤ M‖q‖p,μ,

where M = max
{
M1, 2

p−1(M1 + mM2)
}1/p

, M1 = sup
x∈K

|x |p, K = � ∪ {c1, . . . , cm},

M2 = max

{
A j,k+1

A j,k
: 1 ≤ j ≤ N and 0 ≤ k ≤ m j − 1

}
.

Proof Notice that (xq)(k) = xq(k) + kq(k−1), k ∈ N. Therefore,

	 :=
N∑
j=1

m j∑
k=0

A j,k

∣∣∣c jq(k)(c j ) + kq(k−1)(c j )
∣∣∣p

≤ 2p−1

⎛
⎝ N∑

j=1

m j∑
k=0

A j,k

∣∣∣c jq(k)(c j )
∣∣∣p +

N∑
j=1

m j∑
k=1

A j,k

∣∣∣kq(k−1)(c j )
∣∣∣p
⎞
⎠

≤ 2p−1

⎛
⎝M1

N∑
j=1

m j∑
k=0

A j,k

∣∣∣q(k)(c j )
∣∣∣p + m

N∑
j=1

m j∑
k=1

A j,k

∣∣∣q(k−1)(c j )
∣∣∣p
⎞
⎠
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= 2p−1

⎛
⎝M1

N∑
j=1

m j∑
k=0

A j,k

∣∣∣q(k)(c j )
∣∣∣p + m

N∑
j=1

m j−1∑
k=0

A j,k+1

∣∣∣q(k)(c j )
∣∣∣p
⎞
⎠

≤ 2p−1

⎛
⎝M1

N∑
j=1

m j∑
k=0

A j,k

∣∣∣q(k)(c j )
∣∣∣p + mM2

N∑
j=1

m j−1∑
k=0

A j,k

∣∣∣q(k)(c j )
∣∣∣p
⎞
⎠

≤ 2p−1

⎛
⎝(M1 + mM2)

N∑
j=1

m j∑
k=0

A j,k

∣∣∣q(k)(c j )
∣∣∣p
⎞
⎠ .

‖xq‖p
p,μ =

∫
�

|xq|pdμ + 	

≤ M1

∫
�

|q|pdμ + 2p−1

⎛
⎝(M1 + mM2)

N∑
j=1

m j∑
k=0

A j,k

∣∣∣q(k)(c j )
∣∣∣p
⎞
⎠

≤ Mp‖q‖p
p,μ.

�

If ‖ · ‖p,μ is a lacunary Sobolev norm defined as in (9), we define the associated
non-lacunary norm as ‖ · ‖p,μ∗

‖ f ‖p,μ∗ =
⎛
⎝∫

�

| f |p dμ +
N∑
j=1

m j∑
k=0

A∗
j,k

∣∣∣ f (k)(c j )
∣∣∣p
⎞
⎠

1/p

, (11)

where A∗
j,k =

{
A j,k, if A j,k > 0 or m j < k ≤ m;
1, in other case.

Proposition 3 Let ‖ · ‖p,μ be a lacunary Sobolev norm defined as in (9), with Δ

bounded. Then, there exists a constant M such that ‖xq‖p,μ ≤ M‖q‖p,μ for all
q ∈ P if and only if the lacunary norm (9) and the associated non-lacunary norm (11)
are equivalents (i.e., ‖ · ‖p,μ is essentially non-lacunary).

Proof Assume that a lacunary norm defined as in (9) is equivalent to its associated
non-lacunary norm (11). From Proposition 2, it is straightforward that there exists a
constant M such that ‖xq‖p,μ ≤ M‖q‖p,μ.

Now, suppose that the multiplication operator is bounded on P with respect to the
lacunary norm ‖ · ‖p,μ, then there exist M > 0 : ‖xq‖p,μ ≤ ‖q‖p,μ, q ∈ P. From
(11), obviously ‖q‖p,μ ≤ ‖q‖p,μ∗ . Furthermore, from definition

‖q‖p,μ∗ =
⎛
⎝‖q‖p

p,μ+
N∑
j=1

∑
k∈I j

∣∣∣q(k)(c j )
∣∣∣p
⎞
⎠

1/p

≤‖q‖p,μ +
⎛
⎝ N∑

j=1

∑
k∈I j

∣∣∣q(k)(c j )
∣∣∣p
⎞
⎠

1/p

,
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where I j = {k : A j,k = 0 and 0 ≤ k < m j }. Therefore, the remainder of the proof is
devoted to find a constant K ∗ such that

⎛
⎝ N∑

j=1

∑
k∈I j

∣∣∣q(k)(c j )
∣∣∣p
⎞
⎠

1/p

≤ K ∗ ‖q‖p,μ q ∈ P . (12)

To achieve this purpose, it is sufficient to prove that for every j and 0 ≤ k < m j , there
exists a constant K j,k > 0 satisfying

∣∣∣q(k)(c j )
∣∣∣ ≤ K j,k‖q‖p,μ q ∈ P . (13)

In this case, taking K ∗ =
⎛
⎝ N∑

j=1

∑
k∈I j

K p
j,k

⎞
⎠

1/p

, we get (12).

To prove the inequality (13), note that

∣∣∣(k + 1)q(k)(c j )
∣∣∣− ∣∣∣c j q(k+1)(c j )

∣∣∣ ≤ ∣∣∣(k + 1)q(k)(c j ) + c j q
(k+1)(c j )

∣∣∣ = ∣∣∣(xq)(k+1)(c j )
∣∣∣ ,∣∣∣q(k)(c j )

∣∣∣ ≤ ∣∣∣(k + 1)q(k)(c j )
∣∣∣ ≤ ∣∣∣(xq)(k+1)(c j )

∣∣∣+ ∣∣∣c j q(k+1)(c j )
∣∣∣

≤
∣∣∣(xq)(k+1)(c j )

∣∣∣+ |c∗|
∣∣∣q(k+1)(c j )

∣∣∣ , (14)

where c∗ = max
1≤ j≤N

|c j |. If m j − k = 1, and q ∈ P

∣∣∣q(m j−1)(c j )
∣∣∣ ≤ 1

A j,m j

∣∣∣A j,m j (xq)(m j )(c j )
∣∣∣+ |c∗|

A j,m j

∣∣∣A j,m j q
(m j )(c j )

∣∣∣ .
≤ 1

A j,m j

‖xq‖p,μ + |c∗|
A j,m j

‖q‖p,μ ≤ K j,m j−1 ‖q‖p,μ.

where K j,m j−1 = M + |c∗|
A j,m j

�= 0 and we get (13) for k = m j − 1.

We now proceed by induction.

1. [m j − k = �] Assume that (13) holds for k = m j − �, i.e., there exists a constant
K j,m j−� �= 0 such that

∣∣∣q(m j−�)(c j )
∣∣∣ ≤ K j,m j−� ‖q‖p,μ.

2. [m j − k = � + 1] If k = m j − � − 1, from (14) and the induction hypothesis

∣∣∣q(m j−�−1)(c j )
∣∣∣ ≤ ∣∣∣(xq)(m j−�)(c j )

∣∣∣+ |c∗|
∣∣∣q(m j−�)(c j )

∣∣∣
≤K j,m j−� ‖xq‖p,μ + K j,m j−� |c∗| ‖q‖p,μ ≤ K j,m j−�−1 ‖q‖p,μ,
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where K j,m j−�−1 = (M + |c∗|)K j,m j−�. �
Theorem 4 If (9) is essentially non-lacunary, then the set of zeros of a minimal poly-
nomial sequence is uniformly bounded.

Proof Let (9) be an essentially non-lacunary Sobolev norm and (11) its associated non-
lacunary Sobolev norm. From Proposition 3, there exist constants C1,C2 > 0 such
that C1 ‖q‖p,μ∗ ≤ ‖q‖p,μ ≤ C2 ‖q‖p,μ∗ for all q ∈ P. Moreover, from Proposition
2, there exists another constant C3 > 0 such that ‖z q‖p,μ∗ ≤ C3 ‖q‖p,μ∗ .

If Pn is a minimal polynomial of degree n and Pn(z0) = 0, there exists a monic
polynomial q of degree n − 1 such that Pn(z) = (z − z0)q(z). As Pn is minimal

|z0| ‖q‖p,μ − ‖zq‖p,μ ≤ ‖z0q − zq‖p,μ = ‖Pn‖p,μ ≤ ‖zq‖p,μ.

Then,

|z0|C1‖q‖p,μ∗ ≤ |z0| ‖q‖p,μ ≤ 2‖zq‖p,μ ≤ 2C2‖zq‖p,μ∗ ≤ 2C2C3‖q‖p,μ∗ ,

which completes the proof. �

3.1 Asymptotic Distribution of Zeros

To state the result on the zero distribution of minimal polynomials with respect to an
essentially non-lacunary norm, we need to introduce some concepts and notations.

– For any polynomial q of exact degree n, we denote ϑ(q) = 1

n

∑n

j=1
δz j , where

z1, . . . , zn are the zeros of q repeated according to their multiplicity. This is the
so called normalized counting measure associated with q.

– If � = suppμ is regular (a compact subset of the complex plane is said to be
regular if the unbounded connected component of its complement is regular with
respect to the Dirichlet problem), the measure μ ∈ Reg if and only if

lim
n→∞

( ‖qn‖�

‖qn‖p,μ

)1/n
= 1, (15)

for every sequence of polynomials {qn}, deg qn ≤ n, qn �≡ 0 (cf. [21, Th 3.4.3]),
where ‖ · ‖A denotes the supremum norm on A ⊂ C.

– Given a compact setA ⊂ C, cap(A ) denotes the logarithmic capacity ofA , ωA
the equilibriummeasure onA andGA (z;∞) the corresponding Green’s function
with singularity at infinity (cf. [19,21]).

– Let Tn be the n-th monic minimal polynomial with respect to ‖ · ‖�, i.e., the n-th
Chebyshev polynomial with respecto to �. It is known that

lim
n→∞ ‖Tn‖1/n� = cap(�) . [19,Cor. 5.5.5] (16)
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To determine the asymptotic distribution of zeros of sequences of minimal polyno-
mials in this section, we need the following lemma.

Lemma 1 [15, Lemma 3] Let E be a compact regular subset of the complex plane
and {qn} a sequence of polynomials such that deg qn ≤ n and qn �≡ 0. Then, for all
k ∈ Z+,

limn→∞
n

√
‖q(k)

n ‖E
‖qn‖E ≤ 1. (17)

The following theorem is the main result of this section and is valid for discrete
Sobolev norms, whether lacunary or not. For p = 2, the theorem was proved in [15,
Th. 5], and for continuous Sobolev norms in [17, Th. 2]. The scheme of the proof is
quite similar to the previous ones.

Theorem 5 Consider a discrete Sobolev p-norm (9), such that μ ∈ Reg and � is
a bounded real interval. If {Pn} is the sequence of monic minimal polynomials with
respect to (9), then for all j ≥ 0

lim
n→∞ ‖P( j)

n ‖1/n� = cap(�) , and (18)

w-lim
n→∞ ϑ

(
P( j)
n

)
= ω�, in the weak topology of measures. (19)

Proof Firstly, the compact set � has empty interior and connected complement, and
under these conditions (see [2, Th. 2.1]), we have that (18) implies (19).

Let Tn be the n-th monic minimal polynomial with respect to ‖ · ‖�, i.e., the n-th
Chebyshev polynomial with respecto to �. From (16), it is straightforward to see that
for all sequence {Qn}n∈Z+ of monic polynomials Qn of degree n

limn→∞ ‖Q( j)
n ‖1/n� ≥ limn→∞ ‖Tn− j‖1/n� = cap(�) . (20)

If ρ(z) =∏N
j=1(z − c j )m j+1 and n ≥ d := N +∑N

j=1m j , we get

‖Pn‖p
p,μ ≤ ‖Pn‖p

p,μ ≤ ‖ρ Tn−d‖p
p,μ =

∫
�

|ρ Tn−d|p dμ ≤ μ (�) ‖ρ‖p
�‖Tn−d‖p

�.

From (15)–(16), limn→∞ ‖Pn‖1/n� ≤ cap(�). Therefore, as � is a compact regular
set, from (17), we have for every j ≥ 0

limn→∞ ‖P( j)
n ‖1/n� ≤ cap(�) . (21)

Finally, from (20)–(21), we get (18). �
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If the norm (9) is essentially non-lacunary, from Theorem 4, we know that there
exists a constant M such that

{z ∈ C : Pn(z) = 0 for some n ∈ Z+} ⊂ DM = {z ∈ C : |z| ≤ M},

where {Pn} is a sequence of minimal polynomials with respect to (9) (deg(Pn) = n).
Under this consideration, we have the following asymptotic results.

Corollary 2 Assume that {Pn} is the sequence of minimal polynomials with respect to
an essentially non-lacunary norm (9), where � is regular and μ ∈ Reg. Then, for all
j ∈ Z+

1. limn→∞
∣∣∣P( j)

n (z)
∣∣∣1/n = cap(�) eG�(z;∞), for every z ∈ C except for a set of

capacity zero,

2. limn→∞
∣∣∣P( j)

n (z)
∣∣∣1/n = cap(�) eG�(z;∞), uniformly on compact subsets of � =

C\DM.

3. limn→∞
P( j+1)
n (z)

nP( j)
n (z)

=
∫

�

dω�(x)

z − x
, uniformly on compact subsets of �.

Proof FromProposition 3, it is sufficient to prove the corollary for non-lacunary norms.
As it was commented for the case p = 2 in the last paragraph of [15], the proof here
follows [17, Th. 6] point by point to get the desired result. �

4 Sequentially Ordered Discrete Sobolev Norm

If the discrete Sobolev norm (9) is non-lacunary, it is easy to prove that the n-thminimal
Sobolev polynomial has all its the zeros located on �, except a number of them equal
to the amount of nonzero values A j,k in the discrete part of (9); see Proposition 4. In
this section, we extend this result to lacunary Sobolev norms when the discrete part
of (9) satisfies certain order condition.

Fix 1 < p < ∞ and a standard vector measure μ such that ‖ · ‖p,μ is a discrete
Sobolev norm defined by (9) and satisfying c j /∈ �

o= (a, b) for j = 1, 2, . . . , N . As
in the previous section, consider the polynomial

ρ(x) =
∏
c j≤a

(
x − c j

)m j+1∏
c j≥b

(
c j − x

)m j+1

of degree d = N +∑N
j=1m j and positive on (a, b). If n > d and Pn is the n-th

minimal polynomial with respect to (9), from Theorem 1

∫ b

a
q sgn(Pn) |Pn|p−1ρ dμ = 〈Pn, qρ〉p,μ = 0, (22)
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for every q ∈ Pn−d−1. Hence, the polynomial Pn has at least n − d changes of sign
on �

o, otherwise (22) lead us to a contradiction with

∫ b

a
q sgn(Pn) |Pn|p−1ρdμ > 0,

where q is the polynomial having a simple zero on each change of sign of Pn on
(a, b). So, we have proved the following proposition, which is the extension of [12,
Proposition 2.1] to the minimal case, 1 < p < ∞.

Proposition 4 Let Pn be the n-th Sobolev minimal polynomial with respect to (9)
(1 < p < ∞), which satisfies c j /∈ �

o for j = 1, 2, . . . , N, and n > d, then Pn has
at least (n − d) changes of sign on �

o.

Proposition 4 can also be seen as a generalization of the zero location theorem for
standard orthogonal polynomials (p = 2 andm = 0). However, a result proved by M.
G. Bruin already in 1993, see [7, Th. 4.1], seems to suggest that the number of zeros
of Pn in �

odoes not depend only on the higher-order derivatives m j of each point c j ,
but on the number of terms in the discrete part of (9)

d∗ := ∣∣{A j,k > 0 : j = 1, 2, . . . , N , k = 0, 1, . . . ,m j }
∣∣ ,

where |A| denotes the cardinality of a set A.
This assumption became even stronger when the relative asymptotic of discrete

Sobolev orthogonal polynomials [14, Theorem4]was found. Finally, in [1], the authors
proved it for the case when (9) has only one mass point (N = 1).

Theorem 6 ([1, Th. 2.2]) Let μ be a standard measure such that c ∈ R\�o. If Pn
denotes the n-th Sobolev minimal polynomial with respect to

‖ f ‖2,μ =
(∫

�

| f |2dμ +
m∑

k=0

Ak | f (k)(c)|2
)1/2

,

then Pn has at least n − d∗ changes of sign in �
o.

The next examples show that this theorem is not longer true if we consider arbitrary
mass point configurations with more than one point (i.e., N ≥ 2 in (9)), at least not
for every value of n.

Example 4 (bounded case) Set

‖ f ‖2,μ =
(∫ 1

−1
| f |2dx + 8| f ′(4)|2 + 6| f ′′(2)|2

)1/2
,

then

P4(x) = k4

(
x4 − 2595

803
x3 − 5232

539
x2 − 837735

39347
x + 8181

2695

)
,
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whose zeros are approximately ξ1 ≈ 0.13, ξ2 ≈ −5.62, ξ3 ≈ −1.26 + 1.56i and
ξ4 ≈ −1.26 − 1.56i .

Example 5 (unbounded case) Set

‖ f ‖2,μ =
(∫ ∞

0
| f (x)|2e−xdx + 3| f ′(−4)|2 + 8| f ′′(0)|2

)1/2
,

then

P4(x) = k4

(
x4 − 128

97
x3 − 2536

97
x2 + 8800

97
x − 5288

97

)
,

whose zeros are approximately ξ1 ≈ 0.78, ξ2 ≈ −5.93, ξ3 ≈ 3.24 + 1.16i and
ξ4 ≈ 3.24 − 1.16i .

Note that in both cases, three zeros of P4 are out of�
oand two of them are non-real.

The first result treating the case N ≥ 2 in a general way is [12, Theorem 1]. Here,
the authors give a result similar to Theorem 6 for N ≥ 2 in the case p = 2, and the
discrete part of (9) satisfies certain order condition. The condition was called by the
authors the sequentially order condition. Although the condition was enough for the
purposes of the paper, it does not include the case of Theorem 6, when there is more
than one order derivative at the same mass point c j . Following the same technique,
we expand this condition a little bit more, in such a way that the case of Theorem
6 is included. We will remain calling it the sequentially order condition or we will
simply say that the discrete Sobolev norm is sequentially ordered. The result is also
generalized for the minimal case 1 < p < ∞.

Definition 1 (Sequentially ordered Sobolev norm)We say that a discrete Sobolev norm
‖ · ‖p,μ defined by (9) is sequentially ordered if the conditions

�k ∩ Co
(
∪k−1
i=0�i

)
o = ∅, k = 1, 2, . . . ,m, hold.

We recall that �k := Co(suppμk), so in the discrete case they can be rewritten as

�k =
{
Co
(
� ∪ {c j : A j,0 > 0}) , if k = 0;

Co
({c j : A j,k > 0}) , if 1 ≤ k ≤ m.

Example 6 The following Sobolev discrete norms are sequentially ordered for any
p ∈ [1,∞) and a standard measure μ
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‖ f ‖p,μ =
(∫ 1

−1
| f |pdμ+4| f ′(−1)|p + | f ′(−3)|p+3| f ′′(2)|p + 5| f (5)(−3)|p

)1/p
.

‖ f ‖p,μ =
⎛
⎝∫ 1

−1
| f |pdμ +

�1∑
k=0

A1,k | f (k)(−1)|p +
�2∑
k=0

A2,k | f (k)(1)|p
⎞
⎠
1/p

.

where A1,k A2,k = 0 for k = 0, 1, . . . ,min{�1, �2}.
Theorem 7 Let μ be a standard vector measure and 1 < p < ∞. If ‖ · ‖p,μ is a
sequentially ordered Sobolev norm written as (9), where μ is taken in such a way
c j /∈ �

o, then Pn has at least n − d∗ changes of sign on �
o.

It is worth noting that although the theorem is enunciated depending on which
representation (9) of the Sobolev norm is considered, the definition of sequentially
ordered Sobolev norm is independent of this representation. If what we are after is
to locate the largest possible number of zeros, we should calculate d∗ in the theorem
considering the representation (2), rather than (9). However, in this case, we would
have the zeros located in the bigger set �0 ⊃ �. Because of the assumption c j /∈ �

o,
this inclusion is strict except for the trivial case of (2) and (9) agree (μ ≡ μ0).

Notice that both Examples 4 and 5 are not sequentially ordered. So, this order
restriction in the discrete part seems to be optimal to have the most number of zeros
simple and located on �

o, at least for every value of n.

4.1 Proof of Theorem 7

Given a polynomial Qwith real coefficients and a real set A, we introduce the following
notations:

– No(Q; A) denotes the number of values on A where the polynomial Q vanishes,
(i.e., zeros of Q on A without counting multiplicities).

– Nz(Q; A) denotes the total number of zeros (counting multiplicities) of Q on A.

The next lemma is an extension of [16, Lem. 2.1] and [12, Lem. 3.1].

Lemma 2 Let {Ik}mk=0 be a set of intervals on the real line with m ∈ Z+ and let Q be
a polynomial with real coefficients of degree ≥ m. If

Ik ∩ Co
(
∪k−1
i=0 Ii

)
o = ∅, k = 1, 2, . . . ,m, (23)

then

Nz(Q; J ) + No(Q; I0\J ) +
m∑
i=1

No

(
Q(i); Ii

)

≤ Nz

(
Q(m); J

)
+ No

(
Q(m);Co(∪m

i=0 Ii
) \J)+ m, (24)
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for every closed subinterval J of I0
o (both empty set and unitary sets are assumed to

be intervals).

Proof First, we are going to point out the following consequence of Rolle’s Theorem.
If I is a real interval and J is a closed subinterval of I o, then

Nz(Q; J ) + No(Q; I\J ) ≤ Nz
(
Q′; J)+ No

(
Q′; I o\J)+ 1. (25)

For m = 0 (24) trivially holds. We now proceed by induction on m. Suppose that we
havem+1 intervals {Ii }mi=0 satisfying (23), and that (24) is true for the firstm intervals
{Ik}m−1

k=0 . From (25), we obtain

Nz(Q; J ) + No(Q; I0\J ) +
m∑
i=1

No

(
Q(i); Ii

)

≤ Nz

(
Q(m−1); J

)
+ No

(
Q(m−1);Co

(
∪m−1
i=0 Ii

)
\J
)

+ m − 1 + No

(
Q(m); Im

)
≤ Nz

(
Q(m); J

)
+ No

(
Q(m);Co

(
∪m−1
i=0 Ii

)
o\J
)

+ m + No

(
Q(m); Im

)
≤ Nz

(
Q(m); J

)
+ No

(
Q(m);Co(∪m

i=0 Ii
) \J)+ m.

�
Corollary 3 Under the hypotheses of the above lemma, we have

Nz(Q; J ) + No(Q; I0\J ) +
m∑
i=1

No

(
Q(i); Ii

)
≤ deg Q (26)

for every J closed subinterval of I0
o. In particular for J = ∅, we get

m∑
i=0

No

(
Q(i); Ii

)
≤ deg Q. (27)

Definition 2 We say that a sequence of ordered pairs {(ri , νi )}Mi=1⊂ R×Z+ is sequen-
tially ordered, if ν1 ≤ ν2 ≤ · · · ≤ νM and the set of intervals Ik = Co({ri : νi = k}),
k = 0, 1, . . . , νM , satisfy conditions (23).

Lemma 3 Let {(ri , νi )}Mi=1 ⊂ R × Z+ be a sequence of M ordered pairs, then there
exists a unique monic polynomial UM of minimal degree (≤ M), such that

U (νi )
M (ri ) = 0, i = 1, 2, . . . , M . (28)

Furthermore, if {(ri , νi )}Mi=1 is sequentially ordered, then the degree of UM is uM =
min IM − 1, where

IM = {i : 1 ≤ i ≤ M and νi ≥ i} ∪ {M + 1}.
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Proof The existence of a non-identically zero polynomial with degree ≤ M satisfying
(28) reduces to solving a homogeneous linear system of M equations with M + 1
unknowns (its coefficients). Thus, a non trivial solution always exists. In addition,
if we suppose that there exist two different minimal monic polynomials UM and
ŨM , then the polynomial ÛM = UM − ŨM is not identically zero, it satisfies (28),
and deg ÛM < degUM . So, if we divide ÛM by its leading coefficient, we reach a
contradiction.

The rest of the proof runs by induction on the number of points M . For M = 1, the
result follows taking

U1(x) =
{
x − r1, if ν1 = 0;
1, if ν1 ≥ 1.

Suppose that for each sequentially ordered sequence of M − 1 ordered pairs, the
corresponding minimal polynomial UM−1 has degree uM−1.

Let {(ri , νi )}Mi=1 be a sequentially ordered sequence of M ordered pairs. Obviously,
{(ri , νi )}M−1

i=1 is a sequence of M − 1 ordered pairs which is sequentially ordered,
degUM ≥ degUM−1, and from the induction hypothesis degUM−1 = uM−1. Now,
we shall split the proof in two cases:

1. If uM = M , then for all 1 ≤ i ≤ M , we have νi < i , which yields

degUM ≥ degUM−1 = uM−1 = M − 1 ≥ νM .

Since {(ri , νi )}Mi=1 is sequentially ordered, from (27), we get

M ≤
νM∑
i=0

No

(
U (i)

M ; Ii
)

≤ degUM ,

which implies that degUM = M = uM .
2. If uM ≤ M − 1, then there exists a minimal j (1 ≤ j ≤ M), such that ν j ≥ j , and

νi < i for all 1 ≤ i ≤ j − 1. Therefore, uM = j − 1 = uM−1. From the induction
hypothesis,

degUM−1 = uM−1 = j − 1 ≤ ν j − 1 ≤ νM − 1,

which gives U (νM )
M−1 ≡ 0. Hence, UM ≡ UM−1 and, consequently, we get

degUM = degUM−1 = uM−1 = uM .

�
Note that in Lemma 3, the assumption of {(ri , νi )}Mi=1 being sequentially ordered is

necessary for asserting that the polynomialUM has degree uM . In fact, if we consider
{(−1, 0), (1, 0), (0, 1)}, which is no sequentially ordered, we get U3 = x2 − 1 and
u3 = 3 �= degU3.
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Proof of Theorem 7 Let ξ1 < ξ2 < · · · < ξη be the points on �
o where Pn changes

sign and suppose that η < n−d∗. Since ‖ · ‖p,μ is sequentially ordered, the sequence
of d∗ + η ordered pairs

{(ri , νi )}d
∗+η

i=1 = {(ξi , 0)}ηi=1 ∪ {(c j , k) : A j,k > 0, j = 1, . . . , N , k = 0, . . . ,m j }

is sequentially ordered. (We can assume without loss of generality that ν1 ≤ ν2 ≤
· · · ≤ νd∗+η.) Consequently, from Lemma 3, there exists a unique monic polynomial
Ud∗+η of minimal degree, such that

Ud∗+η(ξi ) = 0, for i = 1, . . . , η;
U (k)
d∗+η(c j ) = 0, for ( j, k) : A j,k > 0; (29)

and degUd∗+η = min Id∗+η − 1 ≤ d∗ + η, where

Id∗+η = {i : 1 ≤ i ≤ d∗ + η and νi ≥ i} ∪ {d∗ + η + 1}. (30)

Now, we need to consider the following two cases.

1. If degUd∗+η = d∗ +η, from (30), we get degUd∗+η = d∗ +η ≥ νη+d∗ +1. Thus,
taking Ii = �i , i = 0, 1, . . . ,m and the closed interval J = [ξ1, ξη] ⊂ �

o⊂ �0
o

in (26), we get

d∗ + η ≤
νd∗+η∑
k=0

No

(
U (k)
d∗+η;�k

)
≤ Nz

(
Ud∗+η; J

)+ No
(
Ud∗+η;�0\J

)

+
νd∗+η∑
k=1

No

(
U (k)
d∗+η;�k

)
≤ degUd∗+η = d∗ + η.

2. If degUd∗+η < d∗ + η, from (30), there exists 1 ≤ j ≤ d∗ + η such that
degUd∗+η = j − 1, ν j ≥ j and νi ≤ i − 1 for i = 1, 2, . . . , j − 1. Hence,

ν j−1 + 1 ≤ j − 1 = degUd∗+η

and, again, from (26), we have

j − 1 ≤
ν j−1∑
k=0

No

(
U (k)
d∗+η;�k

)
≤ Nz

(
Ud∗+η; J

)+ No
(
Ud∗+η;�0\J

)

+
ν j−1∑
k=1

No

(
U (k)
d∗+η;�k

)
≤ degUd∗+η = j − 1.

In both cases, we obtain that Ud∗+η has no other zeros in �0 than those given by
construction and from No

(
Ud∗+η; J

) = Nz
(
Ud∗+η; J

)
we obtain that all the zeros on
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�
oare simple. Thus, in addition to (29), we get that PnUd∗+η does not change sign on

�
o. So we have

〈Pn,Ud∗+η〉p,μ =
∫

�

Ud∗+η sgn(Pn) |Pn|p−1dμ

+
N∑
j=1

m j∑
k=0

A j,kU
(k)
d∗+η(c j ) sgn

(
P(k)
n (c j )

)
|P(k)

n (c j )|p−1

=
∫

�

Ud∗+η sgn(Pn) |Pn|p−1dμ �= 0.

Since degUd∗+η ≤ d∗ + η < n, we arrive at a contradiction with Theorem 1. �
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