
This is a postprint version of the following published document:

H. G. Reyes-Anastacio, J. L. Gonzalez-Compean, M.
Morales-Sandoval and J. Carretero, "A data integrity
verification service for cloud storage based on building
blocks," 2018 8th International Conference on
Computer Science and Information Technology (CSIT),
2018, pp. 201-206

DOI: 10.1109/CSIT.2018.8486274

 ©2018 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Universidad
uc3m Carlos Ill

de Madrid
0 -Archivo

https://doi.org/10.1109/CSIT.2018.8486274

PREPRINT

 201

A data integrity verification service for cloud
storage based on building blocks

 Hugo G. Reyes-Anastacio
Cinvestav Tamaulipas
Cd. Victoria, Mexico

hreyes@tamps.cinvestav.mx

J.L. Gonzalez-Compean
Cinvestav Tamaulipas
Cd. Victoria, Mexico

jgonzalez@tamps.cinvestav.mx
Miguel Morales-Sandoval

Cinvestav Tamaulipas
Cd. Victoria, Mexico
mmorales@tamps.cinvestav.mx

 Jesus Carretero
Arcos-UC3M

Madrid, Spain
jcarrete@inf.uc3m.es

Abstract—Cloud storage is a popular solution for organizations and
users to store data in ubiquitous and cost-effective manner. However,
violations of confidentiality and integrity are still issues associated to
this technology. In this context, there is a need for tools that enable
organizations/users to verify the integrity of their information stored
in cloud services. In this paper, we present the design and
implementation of an efficient service based on provable data
possession cryptographic model, which enables organizations to
verify, on-demand, the data integrity without retrieving files from the
cloud. The storage and cryptographic components have been
developed in the form of building blocks, which are deployed on the
user-side using the Manager/Worker pattern that favors exploiting
parallelism when executing data possession challenges. An
experimental evaluation in a private cloud revealed the efficacy of
launching integrity verification challenges to cloud storage services
and the feasibility of applying containerized task parallel scheme that
significantly improves the performance of the data possession proof
service in real-world scenarios in comparison with the
implementation of the original possession data proof scheme.

Index Terms—Virtual containers, Data Integrity, Task parallelism,
Cloud storage, proof of possession.

I. INTRODUCTION

The production of new data has dramatically grown over
few last years [1], [2]. Studies predict that, between 2005 and
2020, the digitized data will grow by a factor of 300, from 130
exabytes (EB) to 40,000 EB [3]. This growth produces a data
accumulation effect that represents a critical issue for
organizations in terms of management and costs. In this
context, the cloud has become an outsourcing popular
solution for organization to delegate the manage/store of their
data to a public provider [4]. The pay-as-you-go model
associated to this technology enables organization to manage
large data volumes in a cost-effective manner.

Nevertheless, delegating the management and storage of
data to a cloud provider also means delegating control over
the data [5], which results in security risky situations such as
events of violations of confidentiality and integrity of data [6],
[7] as well as incidents of temporal [5] and permanent [5]
outages affecting the cloud service reliability.

The violations of data integrity are issues particularly critical
for organizations when managing sensitive contents.
For instance, in health domain, bit errors in images are not
admissible by both specialists and applications performing
automatic processing of images. In remote sensing and earth
observation domains, the integrity of satellite images is critical
for producing earth observation products (thematic maps,
climate maps, etc.), which are considered as a heritage for the
scientific community. Moreover, governments establish
regulation to be applied to this type of content including the
conservation for large periods of time (five years for the case
of medical images) through infrastructures meeting reliability
and integrity requirements.

The integrity verification of data stored in the cloud using
the Provable Data Possession (PDP) scheme has been
evaluated in literature [8], [9]. This type of scheme prevents
the owner from having to store a local copy DL	of its content D	
stored in the cloud, download D	 and verify if it has been
modified in the cloud using DL	 as reference. PDP is a
mechanism that is based on zero knowledge proof and
implemented using arithmetic in finite fields and groups,
particularly in the additive group of an elliptic curve defined on
the prime field Fp	[10].

However, in this type of scenarios, the end-users oversee
performing the challenges and to adapt their storage clients to
include a PDP service. In real scenarios, for instance, the
management of any of clinical files, organizational documents,
government data or satellite images could come with high and
possibly unfeasible performance costs. In this context, there is
a need for tools that enables organizations/users not only to
verify the integrity of their information but also to perform it
in an efficient and flexible manner in real-world scenarios.

In this paper, we present an efficient a data integrity
verification service based on building blocks for organizations
that use cloud storage services. This service enables
organizations to verify, on-demand, the data integrity without
retrieving files from the cloud. To improve the deployment of

PREPRINT

 202

this service on real-world scenarios, the design of this service
is based on building blocks, which enables organizations to
implement Manager/Worker patterns to explore parallel
realizations thus improving the service performance. A
prototype of the proposed PDP service was developed, tested,
and evaluated using a federated cloud storage, created by a
space agency [11], for the verification of satellite images.

The rest of the document is organized as follows: Section II
describes the PDP service design. Section III describes the
experimental PDP prototype. Section IV presents the results of
the prototype implementation. Finally, the conclusions and
final comments derived from this work are presented in
Section V.

II. A DATA INTEGRITY VERIFICATION SERVICE FOR CLOUD STORAGE BASED
ON BUILDING BLOCKS

This service has been built by using building block (BB)
structure [12]. In this service, a BB represents an application
and I/O interfaces encapsulated into a virtual container. Three
types of BBs were created in this service, the first one
(PDPClient) includes a PDP Client, the second one (PDPServer)
includes a PDP Server application and the last one
(PDPDispatcher) includes a sub-service that creates
Manager/Worker patterns launching BBs (either PDPServer BB
or PDPClient). The PDPDispatcher BB includes a load balancing
module to distribute tasks to the Workers (PDPClient BBs); as
a results, the verification operations in this service are
performed in parallel.

A. Components of the PDP scheme
The concepts of PDP were introduced by [9]. A PDP scheme

includes a client and a server where the client is the user of the
storage and performs the verification service, whereas the
server is in charge of performing the challenges to the cloud
services. This scheme is composed of a collection of the
following polynomial time complexity algorithms:

• KeyGen: KeyGen(λ)	 →	 (pk,sk)	 is a probabilistic key
generator algorithm executed by the client. It takes a
security parameter λ	as input, and return an elliptic curve
cryptography key pair {pk,sk}, where pk is public and sk
private. The key pair is generated using Algorithm 1. The
security parameter λ	defines the security strength of the
scheme, generally expressed as the size of the keys.

• TagBlock: TagBlock(pk,sk,m)	→	Tm	is an algorithm
(Possibly probabilistic) executed by the client to generate
the metadata that is used for verification. It takes as input
the public key pk, the secret key sk and a block m	of a file
F. It returns the metadata of verification Tm	
corresponding to the block m.

• GenProof: GenProof(pk,F,chal,T)	→	V	is executed by the
server in order to generate the possession test. It takes as

input parameters the public key pk, an ordered collection
of data blocks F, a challenge chal of the client and an
ordered collection T	which are the verification metadata
corresponding to the blocks in F.

• CheckProof: CheckProof(pk,sk,chal,v)	 →	
{”success”,”failure”}	is executed by the client in order to
validate the possession test. It takes as input the public
key pk, the secret key sk, a challenge chal, and its
corresponding proof of possession V. It returns ”success”
if V	is a correct proof of possession associated with chal,
otherwise it returns ”failure”.

Algorithm 1: KeyGen algorithm

Input: System security parameter λ
Output: Key pair {pk,sk}
Construct an elliptic curve E	over the prime finite field Fp,

with prime order n.
Select a point P	in E;
Use a safe deterministic pseudo-random number
generator to generate d	∈	[1,n]; sk	←	d;
pk	←	d	×	P	 (elliptic curve scalar multiplication); return
{pk,sk}

A PDP system can be built in the following phases (see [8]
for details):

• Setup: The client (C) has the data F	 in n	 blocks
(m1,m2,...mn) and executes (pk,sk)	←	KeyGen(λ), followed
by TMi	←	TagBlock(pk,sk,mi)	for all 1	≤	i	≤	n. C	then sends
pk, F	and T	=	{TM1,...,TMn}	to the server S	for storage and
removes F	and T	from your local storage.
Given a data file D	∈{0,1}	and the public key pk, the setup
algorithm generates the identifier of D	 (IDF) and its
corresponding public elements (σ1,σ2).

• Challenge: C	 generates a challenge chal that, among
other things, indicates the specific blocks for which C	
requires a proof of possession. C	then sends chal to the
server (S), S	executes ←	GenProof(pk,F,chal,T)	and sends
the returned value V	to C	for test possession.

• GenChal algorithm generates a random challenge chal.
Given a challenge chal, and the D	 version of the data
stored on the server, the ChalProof algorithm produces a
possession test PT	=	(y1,y2)	of D.

• Verify: Given a test PT, the public elements of D	and sk of
the data owner, this algorithm executed by C	performs
the verification test and returns as result ”accept”	 or
”reject”.

Figure 1 depicts the utilization of the components of this
scheme in the context of Cloud storage; PDPClient deployed

PREPRINT

 203

on the end-user side, whereas PDPServer deployed on the
cloud side.

Fig. 1. Uploading and verification process using the PDP scheme

Notice that, in the setup phase, C	calculates labels for each
block file and stores them together with the file in S. In the
challenge phase, C	 requests possession tests for a subset of
blocks in F. This phase can be executed an unlimited number
of times in order to verify if S	still contains the selected blocks.

B. Proposed task-parallel scheme for PDP service
A task-parallel scheme for integrity verification was

designed to create Manager/Worker pattern. As previously
commented, the applications of the PDP scheme were
encapsulated into three BBs: a manager called PDPDispatcher
BB, a worker called PDPClient BB and a Service called
PDPServer BB.

PDPDispatcher BB includes an initialization module that
prepares Manager/Worker pattern by launching as many
PDPClient BBs and PDPServer BBs as configured in the service
by the end-user. Configurations such as 1-PDPClient to
1PDPServer, 1 to N, N	 to 1 and N	 to N	 can be chosen by
endusers to configure this BB. When the BBs have been
launched in Cloud/Cluster/Server/PC, the initialization
modules invoke a load balancing module that oversees reading
the list of files arriving in the source folder and to determine
the worker best suitable to perform a given task. This is key for
the performance of this solution as a heterogeneous and
unknown load is expected to reach at the folder source. The
decisions taken by the load balancing module are sent to an
assignation module, which is in charge of preparing the task
distribution to the workers (PDPClient BB).

Figure 2 shows an example of lists produced by the
dispatcher and the files in the list are balanced using a two
choices algorithm [13], which produces two random numbers
between 0	and the number of available workers minus one
(w−1) and chooses the one with the smaller load included the
previously load assigned to these workers. The algorithm
updates the load counter of the chosen worker and processes
the next request as this task is performed by each file in the
list.

Fig. 2. Task distribution performed by the Dispatcher BB.

The PDPClient BB includes an application that listens for
PDPDispatcher messages through TCP sockets. The messages
include the paths for this BB to read the files to be processed.
It also includes the client of PDP previously defined for sending
integrity verification operations to PDPServer BBs. This type of
BB completes each operation sent by the dispatcher when a
PDPServer BB responses to its requests.

The PDPServer BB is a virtual container running on a virtual
machine in the cloud/cluster, which receives the files sent by
PDPClient BB and stores them in a cloud storage service by
using a file system tool. It includes a module including the
previously described PDPServer BB, which performs the
possession tests requested by PDPClient to verify the data
integrity.

C. Integrity verification operations
A private data verification is considered in this service as

only the data owner can request the integrity test. This
verification is invoked on the client side and the generation of
integrity tests are performed on the server side, which avoids
retrieving files to the end-user’s device to perform the
integrity verification.

The PDPDispatcher BB can deploy Manager/Worker pattern
on the end-user side to perform operations such as Upload
(Including data transfer and setup securing integrity),
Verify/Download (Including an integrity verification before
downloading files) and Verify (only sending verification to the
servers running in the cloud).

For Upload operations, the PDPDispatcher BB defines an
elliptic curve (E) and a generator point P	 to be used in
Algorithm 1 for all workers (PDPClient BBs) that execute
KeyGen. The PDPDispatcher BB invokes multiple PDPClient BBs
to process the load, each PDPClient BBs first store a list of t	
data files Dt	in the cloud by decomposing each file Di	(0	≤	i	<	t)
into two blocks s	and n, which represents the quotient and the
remainder respectively by applying the Euclidean Division
(ED)	to the Di. It is the integer value of the hash obtained from
Di	with a divisor b. Note that the value b	is kept secret by the
PDPClient BB and is used to process different files. This b	
represents the only secret information that the PDPClient BB
must store to carry out the data possession tests. As such, the
definition of several data divisors can extend our proposal. This

Dispatcher

Worker1

Worker1

WorkerN
Complete List

Reduced Lists

PREPRINT

 204

means the data owner can rely on different secrets regarding
the sensitivity of the data shared in the cloud. In Upload
operations, the KeyGen is executed by each PDPClient BB for
the generation of its public and private keys, whereas Setup	is
executed by each worker when storing a data set D	 in the
cloud, its corresponding public elements are generated.

For Verify operations, each PDPClient BB executes the
protocol for the generation of the challenge-response with its
corresponding PDPServer BB. In this operation, each PDPClient
BB executes GenChal by generating a challenge for a PDPServer
BB, which executes ChalProof to generate a valid proof of the
possession of the data Di	and sends the results to the PDPClient
BB (Worker invoking the verify operation). The PDPClient BB
executes Verify by using data sent by PDPServer BB to perform
the verification of the possession test.

For Download operations, the PDPClient BB can be
configured to perform secure acquisition of files by invoking a
verify operation before to the execution of the download of
the files included in the list sent by the PDPDispatcher BB.
PDPClient BB also can be configured to only download files
without previous verification.
D. PDP Service prototype: Implementation details

The applications of the PDP modules were performed in
Java by using jPBC library [14] for managing elliptic curves and
bilinear pairings.

TABLE I
VIRTUAL CONTAINERS IMAGES (CI) AND BUILDING BLOCKS (BBS) OF

THE VERIFICATION SERVICE
CI/BB Containers Interface(In/Out:ports)

PDPDispatcher dispatcher

workers:4
Output:4500
Output:4501
Output:4502
Output:4503

PDPClient
Worker1

services:1
input:4500
Output:4600

Worker2
services:1
Input:4501
Output:4601

Worker3
services:1
Input:4502
Output:4602

Worker4
services:1
Input:4503
Output:4603

PDPDispatcher
Server1 storage:1

Input:4600

Server2 storage:1
Input:4601

Server3 storage:1
Input:4602

Server4 storage:1
Input:4603

To create Manager/Worker patterns, the three BB types
were implemented by using container images (CI) and Docker

CE platform [15] was used for the deployment of container
images. The generated images can be executed multiple times
in different infrastructures using a different configuration files.
In the case of PDPServer BB only the port of the container must
be enabled before executing its applications. The
PDPDispatcher BB configuration file includes the configuration
of the Manager/Worker pattern (any of 1-1, 1-N N-1 or N-N).
This configuration file also includes the number of PDPClient
BBs (workers) and PDPServer BBs (storage services) and the list
of IPs addresses and ports connecting PDPClient BBs with
PDPServer BBs considered in the configuration of the
Manager/Worker pattern.

Table 1 shows the CI used to launch the BBs, the name of
the containers that were launched using that BB, and the ports
used by the input/output interfaces of each BB. As it can be
seen, the interconnection of the PDPDispatcher BB and
PDPClient BBs can be established by following input and
output ports of these BBs, whereas the PDPServer BB always
listening by the same port.

Figure 3 shows the BBs used to build the prototype of the
PDP service as well as the operation performed by these BBs
(Upload, verification and download). As it can be seen, the BBs
of the verification service were deployed on five machines of a
private cloud. Please notice that the PDPDispatcher BB (1) and
the PDPClient BBs (4) are running in the same physical machine
(labeled as Disys0), whereas he PDPServer BBs were deployed
on different physical machines (Disys1-4).
All the physical machines have 6 cores, 12 GB RAM and 500 GB
HD.

III. EVALUATION METHODOLOGY

The performance of the PDP service prototype was
evaluated in two phases. In the first one, controlled
experiments were conducted to identify the performance of
each component of this service, whereas in the last one a study
case based on satellite imagery was conducted to evaluate the
functionality of the whole service.

A. Metrics, data source and experiments

The metrics of interest are the service time, which
represents the time spent by a given BB or component of a
given BB and the response time, which is measured from the
file is read from the data source to this file is either uploaded
or downloaded.

The controlled experimentation was performed by varying
the size of the files in 10 MB form 1MB to 100MB.

For the evaluation of the study case, a sample of 70 satellite
images from a repository of satellite imagery produced by the
Soil Moisture Ocean Salinity [16] mission of the European
Space Astronomy Center (ESAC). (Figure 4 shows a histogram
with the different sizes of these images). These images were
processed and stored in the cloud by using the PDP prototype

PREPRINT

 205

by using multiple workers (1, 2, 4) to evaluate the impact of
the task parallelism on the service performance.

For each experiment in the study case, three different
operations were evaluated: the first one is the upload of the
images where the PDPDispatcher BB generates the lists of
satellite images that the PDPClient BBs must process, each
PDPClient BB (worker) performs the generation of its keys and
transfers the data to its corresponding PDPServer BB in the
cloud. The second one is the Integrity Verification where each
PDPClient BB with its keys and the identifiers of the images
that it uploaded, executes verification operations of

Fig. 3. The BBs of the PDP service prototype and the workflows of the upload,
verification and download operations

Fig. 4. Histogram of the 70 satellite image size

Fig. 5. Service time of PDP algorithms

these files. The last one is the download of the images, where
each PDPClient BB downloads the files from its list that have
not been modified (previously verified by a PDPServer).

IV. RESULTS

In this section, the results are described in the two phases
described in the methodology section: a controlled
experimentation and a study case.

A. Controlled experimentation
The service and response times of the service with one

single container (no parallel pattern is created in this
experiment) are presented in this section.

Figure 5 shows the service times (vertical axis) produced by
all the algorithms executed in PDPClient BB (horizontal axis).
As it can be seen, the performance of V	 erify	 and KeyGen	
algorithms does not depend on the file size, which is the case
for the rest of algorithms. Moreover, as expected, the major
portion of the time of this service is spent in the uploading of
the files.

Figure 6 shows the response times (vertical axis) produced
by the challenges performed by PDPServer BB (horizontal axis).
As expected, the file size impacts on the response time of this
service: the more file size, the more response time.

B. Controlled experimentation
In this section, the prototype was evaluated in a scenario

where a bot automatically sends operations of upload,
verification and download by using the Manager/Worker
pattern

Fig. 6. Response time of verification operations

 0.1

 1

 10

GenProof

Ti
m

e
in

 s
ec

Algorithm

10 MB
20 MB
30 MB

 MB 40
 MB 50
 MB 60
 MB 70

80 MB
90 MB

100 MB

PREPRINT

 206

Fig. 7. Times obtained when loading, checking and downloading the data.

of 1,2 and 4 PDPClient-PDPServer containers (We recall the
Figure 3 where the deployment of service is depicted).

Figure 7 shows the running times obtained when performing
the different operations in logarithmic scale (Y axis) when
using a different number of workers (X axis). As it can be
observed, the data loading is the most expensive process, for
example, the sending of 70 satellite images consumes 103.23
min (median). However, by increasing the number of workers
the files can be loaded in a faster way. For example, when two
workers are used, the time to load the files is 1.8X faster and
3.2X times faster when using 4 workers than the original
algorithm (when using only one worker).

V. CONCLUSIONS

This paper presented the design and implementation of an
efficient service based on provable data possession
cryptographic model, which enables organizations to verify,
ondemand, the data integrity without retrieving files from the
cloud. The storage and cryptographic components have been
developed in the form of building blocks, which are deployed
on the user-side using the Manager/Worker pattern that
favors exploiting parallelism when executing data possession
challenges. An experimental evaluation in a private cloud
revealed the efficacy of launching integrity verification
challenges to cloud storage services and the feasibility of
applying containerized task parallel scheme that significantly
improves the performance of the data possession proof
service in real-world scenarios in comparison with the
implementation of the original algorithm. An important
contribution of this paper, as shown in the study case, is the
feasibility to apply building block model to adapt the patterns
to the resources available in a given infrastructure. This
prototype is used in on-going project for the conservation of
satellite images captured by an antenna managed by a space
agency.

ACKNOWLEDGMENT

This work has been partially funded by
https://doi.org/10.13039/501100003141 GRANT Fondo

Sectorial Mexican Space Agency-CONACYT Num. 262891 and
by EU under the COST programme Action IC1305,
Network for Sustainable Ultrascale Computing (NESUS).

REFERENCES
[1] John Gantz and David Reinsel. Extracting value from chaos. IDC iview,

1142(2011):1–12, 2011.
[2] TJ Bittman and L Leong. Worldwide archival storage solutions 20112015

forecast: Archiving needs thrive in an information-thirsty world. IDC.
Market Analysis, pages 1–21, 2011.

[3] John Gantz and David Reinsel. The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east. IDC iView:
IDC Analyze the future, 2007(2012):1–16, 2012.

[4] Peter Mell, Tim Grance, et al. The nist definition of cloud computing.
2011.

[5] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica
Staddon, Ryusuke Masuoka, and Jesus Molina. Controlling data in the
cloud: Outsourcing computation without outsourcing control. In
Proceedings of the 2009 ACM Workshop on Cloud Computing Security,
CCSW ’09, pages 85–90. ACM, 2009.

[6] Amit Sangroya, Saurabh Kumar, Jaideep Dhok, and Vasudeva Varma.
Towards analyzing data security risks in cloud computing
environments. In International Conference on Information Systems,
Technology and Management, pages 255–265. Springer, 2010.

[7] Zhifeng Xiao and Yang Xiao. Security and privacy in cloud computing.
IEEE Communications Surveys & Tutorials, 15(2):843–859, 2013.

[8] Nesrine Kaaniche, Ethmane El Moustaine, and Maryline Laurent. A
novel zero-knowledge scheme for proof of data possession in cloud
storage applications. In Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on, pages 522–531. IEEE,
2014.

[9] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea
Kissner, Zachary Peterson, and Dawn Song. Provable data possession at
untrusted stores. In Proceedings of the 14th ACM conference on
Computer and communications security, pages 598–609. Acm, 2007.

[10] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to
elliptic curve cryptography. Springer Science & Business Media, 2006.

[11] JL Gonzalez-Compean, Victor J Sosa-Sosa, Arturo Diaz-Perez, Jesus
Carretero, and Ricardo Marcelin-Jimenez. Fedids: a federated cloud
storage architecture and satellite image delivery service for building
dependable geospatial platforms. International Journal of Digital Earth,
pages 1–22, 2017.

[12] Jose Luis Gonzalez, Arturo Diaz-Perez, Victor Sosa-Sosa, Jesus Carretero
Perez, and Jedidiah Yanez-Sierra. Sacbe: A modular software
architecture for secure, reliable and flexible end-to-end cloud storage
(sin publicar). 2016.

[13] Michael Mitzenmacher. The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems,
12(10):1094–1104, 2001.

[14] Angelo De Caro and Vincenzo Iovino. jpbc: Java pairing based
cryptography. In Proceedings of the 16th IEEE Symposium on Computers
and Communications, ISCC 2011, pages 850–855, Kerkyra, Corfu,
Greece, June 28 - July 1, 2011.

[15] Docker inc. Docker Community Edition., 2016. [Online; accessed May
01, 2018].

[16] Pierluiggi Silvestrin, Michael Berger, Yann Kerr, and Jordi Font. Esas
second earth explorer opportunity mission: The soil moisture and
ocean salinity mission-smos. IEEE Geoscience and Remote Sensing
Newsletter, 118:11–14, 2001.

 0.1

 1

 10

 100

 1000

1 2 4

Ti
m

e
in

 m
in

ut
s

Number of workers

Upload
Verification
Download

