
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This document is published at:

Torres, J., Resendiz, J., Aedo, I., Dodero, J.M. (2014).
A model-driven development approach for learning
design using the LPCEL Editor. Journal of King Saud
University-Computer and Information Sciences, 26(1)
supplement, pp. 17-27.

DOI: 10.1016/j.jksuci.2013.10.004

© 2013 King Saud University. Production and hosting by Elsevier
B.V.

https://doi.org/10.1016/j.jksuci.2013.10.004
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of King Saud University – Computer and Information Sciences (2014) 26, 17–27
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
A model-driven development approach for learning

design using the LPCEL Editor
Jorge Torres a,*, Jesús Resendiz a, Ignacio Aedo b, Juan Manuel Dodero c
a Departamento de Computación, Tecnológico de Monterrey, Querétaro, Mexico
b Departamento de Informática, Universidad Carlos III de Madrid, Madrid, Spain
c Escuela Superior de Ingenierı́a, Universidad de Cádiz, Cádiz, Spain

Available online 22 October 2013
*

E

(J

(J

Pe

13

ht
KEYWORDS

Learning design;

Web services;

Model-driven development;

Learning patterns;

Collaboration
Corresponding author.

-mail addresses: jtorresj@ite

. Resendiz), aedo@ia.uc3m.

.M. Dodero).

er review under responsibilit

Production an

19-1578 ª 2013 King Saud U

tp://dx.doi.org/10.1016/j.jksu
sm.mx (J

es (I. A

y of King

d hostin

niversity

ci.2013.1
Abstract Complex learning scenarios are represented using Educational Modeling Languages

(EMLs). Different people with specific skills usually design these scenarios. The IMS LD is a com-

monly used EML for which some visual editors are being created in order to assist the authoring

process. However, these editors have a limited level of expressiveness and do not provide the facil-

ities for designers to collaborate in the design process. The LPCEL Editor provides a broad level of

expressiveness and facilitates the authoring process with an editor that includes: (1) Visual Ele-

ments, (2) Intermediate Representation, (3) Learning Patterns, (4) Collaboration tools and (5)

Web Services. In order to verify that the components are sufficient, we conducted a user evaluation

to analyze their perspective regarding the level of functionality of the tools.
ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Learning Design is concerned with the creation and delivery of

activities and resources that represent a learning scenario in
which a learning experience takes place. Educational Modeling
Languages (EMLs) provide the framework to design learning

scenarios, including the tools needed to represent the activities,
resources, services, and user roles (Koper, 2001). EMLs are in-
tended to represent Complex Learning Processes (CLP) by

means of the dynamic integration of teaching methods and
. Torres), jresenzp@itesm.mx

edo), juanma.dodero@uca.es

Saud University.

g by Elsevier

. Production and hosting by Elsev

0.004
resources, based on the collaboration between instructors
and students in a learning process (Dodero et al., 2010). A

Unit of Learning (UoL) is the smallest unit of work of a
CLP and is formed by a set of activities that students need
to complete in order to achieve specific learning objectives.

The IMS LD (Koper and Tattersall, 2005) is a commonly

used EML designed to fulfill a wide spectrum of learning situ-
ations (Torres et al., 2012). However, some situations cannot
be properly represented with IMS LD due to its level of expres-

siveness (Torres et al., 2009a) and the lack of functionality of
the authoring tools (Martı́nez-Ortiz et al., 2009). To overcome
the former issues, the Learning Process Composition and Exe-

cution Language (LPCEL) is proposed. The LPCEL (Torres
et al., 2006) describes complex learning scenarios using
dynamic flow structures, resources and services, as well as

the definition of the execution stage for the learning scenario.
The objective of this paper is to describe the components in-
cluded in the LPCEL Editor and their capabilities to facilitate
different aspects of the authoring process and to define and
ier B.V. All rights reserved.

mailto:jtorresj@itesm.mx
mailto:jresenzp@itesm.mx
mailto:aedo@ia.uc3m.es
mailto:juanma.dodero@uca.es
http://dx.doi.org/10.1016/j.jksuci.2013.10.004
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2013.10.004

18 J. Torres et al.
deploy effective e-learning scenarios that must be seamlessly
integrated with the overall design of the CLP.

Representing learning scenarios requires a deep under-

standing of the low-level details of a given EML and is more
complicated when using its advanced functionality (Martı́-
nez-Ortiz et al., 2008). The IMS LD has three levels to describe

a learning scenario: Level A describes the primitives that rep-
resent the static part of the course (activities, roles, resources,
etc.). Level B adds properties that allow some degree of dyna-

mism for the learning flow when certain conditions are met.
Level C provides the ability to use notifications for the level
B to enable certain level of dynamism.

To prevent users from having to use XML elements for an

EML, visual authoring editors for Learning Design have been
created. They provide a set of tools and iconographic represen-
tations of the primitives of an EML (Paquette et al., 2006).

Some visual tools are IMS LD compliant so they are also re-
stricted by the level of expressiveness provided by the IMSLD.

Although visual editors have representations of the primi-

tives for some EMLs, they also include other mechanisms that
offer a better support for the authoring process, e.g. the collab-
orative design of learning objects (Padrón et al., 2005), which

involves several users in the creation of complex scenarios.
There are several approaches to create learning patterns for
the IMSLD specification, particularly for collaborative learn-
ing (Hernández-Leo et al., 2004). The objective of the collabo-

rative learning patterns is to reuse the solutions found for
certain problems during the design of a course. Generic ser-
vice-based approaches (De la Fuente et al., 2008) can be used

to integrate third party web services in the CLP. However, this
task is complicated because it requires knowledge about the
protocol in which the service is being described.
2. Related work

Creating learning scenarios requires users with a deep knowl-

edge about the low-level details (XML tags and structure) of
the EML they are using to describe the learning process. How-
ever, it is recommended for them to use a tool that facilitates

the authoring of CLPs via graphical abstractions for the
low-level primitives of a given EML (Martı́nez-Ortiz et al.,
2008).

A number of visual authoring tools have simplified the de-

sign of CLPs, which are delivered often as IMS LD-compliant
UoLs. The ReCourse editor (Griffiths et al., 2009) can display
the flow of activities of a UoL, but it has no visual support for

the level B of the IMS LD specification. CompendiumLD
(Atkinson and Kuhne, 2003) resembles a mind-mapping tool
where sequences of tasks can be designed, but it does not trans-

late designs to any standard EML. Other tools such as MOT+
(Paquette et al., 2005) and ASK LDT (Sampson et al., 2005)
enable to visually edit IMS LD level A and B compliant UoLs.
The UML4LD (Laforcade, 2007) can reverse-engineer an

IMS-LD compliant XML file but it does not allow editing or
creating learning scenarios. The FlexoLD visual editor
(Dodero et al., 2010) manages the IMS LD level B properties

through high-level abstractions (e.g. branches and loops) that
generate a UoL ready to run in an IMS LD engine or in a
specific learning scenario, but has no visual facilities for editing

the web service interactions. The COLLAGE tool (Hernández-
Leo et al., 2004) provides patterns for collaborative learning
environments, but the creation or modification of patterns is
complicated since it requires programing skills. The LAMS
system (Dalziel, 2003) provides a group of tools to design,

manage and deploy learning scenarios, using its own graphical
representation and EML, but it does not include mechanisms
for administrating patterns or web services.

These tools are useful for designing learning scenarios, but
they do not necessarily facilitate the process where several
users are working at the same time (as it normally occurs).

The CASLO infrastructure (Padrón et al., 2005) provides a
version control system to manage the changes done in the
learning scenario and includes also an agreement system; how-
ever, the collaboration is done through an XML file. The

Odyssey VCS (Murta et al., 2008) provides a UML versioning
system where models are updated automatically when a change
is made, but it does not give a complex management of users

(roles and permissions).
Because of the limitations of these approaches, a tool that

can describe a more expressive EML is needed so the represen-

tation of CLPs can be facilitated. The tool must be based on an
expressive language, such as the LPCEL.
3. Design of virtual learning experiences

The authoring process of a Virtual Learning Experience (VLE)
can be done using visual instructional design languages (Caeiro

Rodrı́guez et al., 2010). The LPCEL Editor not only provides
visual components for the authoring process, but it also incor-
porates other elements that support the authoring of VLEs.
The architecture of the LPCEL Editor has five main compo-

nents as depicted in Fig. 1: (1) The Visual Editor, (2) Interme-
diate Representation, (3) Learning Patterns, (4) The
Collaboration scheme and (5) Use of web services. The

LPCEL Editor has been described before (Torres et al.,
2012), however this work presents an improvement over the
last version although some similarities can be found between

these publications.

3.1. Visual editor

Model Driven Development (MDD) is a software engineering
approach consisting of techniques to produce models rather
than computer programs (Atkinson and Kuhne, 2003). The
MDD uses models that are less bound to a target implementa-

tion and are closer to the problem and its specific domain, en-
abling users to focus on solving problems rather than
implementation issues. The Model-Driven Learning Design

(MDLD) Dodero et al. (2012) proposes a set of visual abstrac-
tions for the authoring process and the mechanisms to gener-
ate XML files compliant with an EML.

The LPCEL Editor uses a subset of the Business Process
Modeling Notation (BPMN) 2.0 Murta et al. (2008) as the vi-
sual layer to create an abstraction for the LPCEL primitives.

The BPMN is a graph-oriented language where the flow of
nodes can be specified in a simple fashion. The subset used
by the LPCEL Editor can be divided into three groups as de-
picted in Fig. 2: (1) Basic Elements, (2) Complex elements and

(3) Artefacts.
Group number one is composed by the (1) Basic Activity,

(2) Start, (3) End, (4) Gateway, (5) Intermediate and the (6)

Variable; they are used to represent simple tasks and the flow

Figure 1 LPCEL editor architecture.

Figure 2 Visual elements of the LPCEL editor.

 {
 "id": 1,
 "elementType": "basicElement",
 "complexType": "basic",
 "name": "New element",
 "description": "A new element",
 "educationalAims": [],
 "position": {
 "x": 145,
"y": 50,
 "width": 50,
"height": 50
 },
 "incomingConnections": [],
 "outgoingConnections": []
 }

Figure 3 Example of a basic activity in the intermediate

representation.

A model-driven development approach for learning design using the LPCEL Editor 19
control for a learning process. The second group is composed
by the (7) Sequence Activity, (8) Parallel Activity, (9) Group,
(10) Role and the (11) Subprocess elements; they are used to

represent the Complex Learning Process of a course, matching
the high level of expressiveness provided by the LPCEL. The
last group is composed by the (12) Data Object, (13) Text

Annotation, (14) Lanes and (15) Connectors; that provide spe-
cific behavior for the VLE.

Using these elements, the user can be more focused on the
pedagogical intention and the learning objectives of a given

learning course, without being aware of the XML implementa-
tion details for the same scenario, nor the appropriate XML
structure.

3.2. Intermediate representation

The Intermediate representation language for the LPCEL vi-

sual abstraction is created in plain text using the JavaScript
Object Notation (JSON) (Crockford, 2006) which is a light-
weight, text-based, human-readable, language-independent

data interchange format. The JSON structure created to save
the selected state of the visual abstraction is set to map the
overall composition presented by the LPCEL. An example of
the shared attributes for all the visual elements is depicted in
Fig. 3.

Each group of the visual elements has its own structure and
required fields, although some elements have their own set of
attributes, for example, the (12) Data Object has attributes
to store local resources or web services.

3.3. Learning patterns

When a good solution to a recurrent design problem is found,

then it can be used as a pattern. Patterns must be abstract en-
ough to avoid implementation details and must provide suffi-
cient information about their potential uses. Patterns must

be formally documented, and correctly applied to create a fea-
sible solution to a problem (McAndrew et al., 2006).

The use of patterns for educational purposes has been

widely studied and some tools have proposed basic approaches
to manage patterns (e.g. LAMS editor allows the creation of
files that contain design solutions). However, there is a need
for a formal specification to store, use and manage patterns

in educational environments, which may lead to one of the

20 J. Torres et al.
main advantages of using patterns: the non-expert users can
learn from expert instructional designers or highly skilled
teachers.

In the software engineering field, patterns have been di-
vided into different categories (e.g. creational, structural, and
behavioral) according to the need the pattern is intended to

solve. However, for educational purposes, we propose only
two different levels to help users to have a better control over
the patterns they create: High-level detail and Low-level detail.

The main difference between these groups is the level of de-
tail they offer. The high-level patterns provide the overall set of
activities that are yet to be fully described by the user, gener-
ally, this kind of pattern includes the complex elements de-

picted in Fig. 2. The low-level patterns are the more detailed
sequences of activities, which are represented by the basic ele-
ments with already defined sequences and resources. For

example, a high-level pattern could be the POL (Project-Ori-
ented Learning) method applied for a midterm assessment,
while the low-level detail could be the sequences of activities

for each element in that method.
Based on the classification proposed for the software engi-

neering patterns (Gamma et al., 1993), we suggest a structure

for describing learning patterns. The objective of the structure
depicted in Table 1, is to provide the required formalization in
order to achieve a good administration and use of patterns.

3.4. Collaborative design of learning scenarios

The LPCEL Editor provides the mechanism for the users to
participate actively in the collaborative design of learning sce-

narios. The collaboration scheme in the LPCEL is divided into
three levels.

3.4.1. Level 1

Introduces the basic mechanisms for the collaboration process
where the users are able to change every element of the sce-
nario without restrictions. Each modification is updated for

all of the connected users. In this level, the version control is
in charge of: (1) the conflict management for situations in which
two or more users modify the same element at the same time

and (2) the base line supervision which submits a properly
merged version of the scenario to the repository.

This level is rather chaotic for learning design because there
is no control on the changes that are done to the scenario;

everyone can add, modify and delete elements at will.
Table 1 Learning pattern example.

Field Example

Name Weekly evaluation

Intent Create a simple sequence of tasks to impleme

Alias Quick quiz, quiz, weekly review

Motivation This pattern can be used when there is a need

Applicability If there is a need to create a simple sequence

Structure Visual representation of the pattern

Participants Start, end and intermediate activities

Contributors This pattern is executed exclusively in a seque

Consequences Measures the students’ level of comprehension

Implementation Is recommended to make other learning techn

Code Intermediate representation using the JSON s

Applications The timing can be adjusted to apply monthly

See other Monthly evaluation, final evaluation, quick as
However, this basic scheme is necessary to support the follow-
ing and more complex levels of collaboration.

3.4.2. Level 2

Includes level 1 and introduces the per-element restrictions,
which are set during the lifetime of the design process. The
owner of the learning scenario defines the elements that are

going to be submitted to an agreement when modified, e.g.
the owners decide that all users must agree on all the modifica-
tions on parallel-type elements. This could be useful to avoid

changes on critical parts of the scenario.
Users have their own local version to which they can submit

changes. This local version is an interesting component be-

cause it can partially merge with the baseline on the elements
or tasks that do not have restrictions. The local version can
only be fully merged with the baseline until other users ap-

prove all the changes.
The users invoke the agreement system, depicted in Fig. 4

when they need to authorize some changes in the learning sce-
nario, i.e. it requires the approval of all the users before sub-

mitting a new baseline. The objective is to have a better
control over the stable version of the scenario. When the agree-
ment system is activated, the involved users review the current

version and agree on which changes are applied or discarded.
When the agreement is over, the approved version is sent to the
control system, which merges the baseline and the new version.

Finally, the new version is updated to all users.

3.4.3. Level 3

This level includes Level 1 and 2 and introduces role-based

restrictions to improve consistency of versions and to avoid
modification from non-authorized users. These restrictions al-
low users to modify only some elements, or parts of the sce-

nario that are linked to their profile, for example, a web
designer may only change the Resources of the scenario (web
pages containing a topic explanation) but cannot modify the
sequence of activities related to those resources.

Users are able to choose from the basic configurations of
roles and privileges, or to create a configuration of their
own. The relationship between roles and rules a reset by ele-

ment type or actions that can be done with these elements.
Those three levels incorporated in the editor allow users to

participate in a collaborative authoring process. The collabo-

ration is highly customizable to meet user needs. The LPCEL
Editor also serves as a repository of learning scenarios, where
nt a weekly review of topics

to evaluate the progress of a student once a week

of activities related to the weekly roundup, use this pattern

ntial order

, but is not guaranteed that they will perform the readings in depth

iques in case the students do not like reading

tructure

or final assessments

sessment

Figure 4 Agreement protocol.

<LPCELxsi:noNamespaceSchemaLocation="lpcel.xsd">...
<!-- Define the roles for the students-->
<Roles><Roleid="ROLE_1"><Title>Student</Title>
<RoleHierarchy>
<Roleid="ROLE_2"><Title>Leader</Title></Role>
<Roleid="ROLE_3"><Title>Programmer</Title></Role>
<Roleid="ROLE_4"><Title>Tester</Title></Role>
<Roleid="ROLE_5"><Title>Documenter</Title></Role>
</RoleHierarchy></Role></Roles>...
<!-- Define the activities -->
<Complex-Learning-Process><Component-CLPid="ID_1">
<Basic-Component><Action>
<Component-Activityid="ID_2"><Context-Activity>
<Title>Manage Requirements</Title>
</Context-Activity></Component-Activity>
</Action></Basic-Component>
<Basic-Component><Action>
<Component-Activityid="ID_3"><Context-Activity>
<Title>Implement requirements</Title>
</Context-Activity></Component-Activity>
</Action></Basic-Component>...
</Component-CLP></Complex-Learning-Process> ... <!--more activities->
<!-- Define the activity-role relationship -->
<Assignments>
<AssignmentexecuteOnComponentActivity="ID_2"

roleAssignment="ROL_2"/>
<AssignmentexecuteOnComponentActivity="ID_3"

roleAssignment="ROL_3"/>...
</Assignments>...
</LPCEL>

Figure 5 Part of an XML representation of the case study.

A model-driven development approach for learning design using the LPCEL Editor 21
users can store several versions of the same scenario in order to

roll back to a version when required.

3.5. Use of web services

A web service is a software system designed to support interop-
erable machine-to-machine interaction over a network and is
normally described using the WSDL standard (Vogten et al.,

2006).
The LPCEL Editor supports the integration and testing of

web services. It provides the tools needed to include and test
educational web services for learning scenarios. Basically, the

user only makes use of a wizard where some of the key compo-
nents of the web services are requested (the URL, port, service,
operation, etc.) while the remaining information is gathered

automatically. Before the process is completed, the editor pro-
vides the mechanism to test the web service so the user can be
sure that the selected web service is still functional. The objec-

tive of testing a web service during the design stage is to verify
if a particular web service or operation is still available, this
way the user can check if the service is still operational in order

to avoid runtime errors in the execution stage of the learning
scenario.

4. A case study of using the LPCEL Editor

The LPCEL Editor has been subject to a case study evaluation
(Hevner et al., 2004) in a course that follows a Project-Ori-
ented Learning method (Martı́n, 2005). In the Monterrey Insti-

tute of Technology, Mexico, inside the B.S. Computer Systems
Engineering, there is a modality in which some courses are
gathered together so the students are able to deliver a complex

project. The objective is to simulate real life scenarios in which
they will make decisions in order to deliver what the clients
demand.

During the course, the students must deliver an incremental
version of the system that must be assessed; each milestone
consists of the following tasks: the leader manages the require-
ments and assigns them to the other teammates; the program-
mer implements the requirements as planned; the tester verifies

the work done by the programmer; and the documenting one
writes the software documentation. Once these stages are done,
it is evaluated first by the client and later by teachers, who as-

sess students according to the specific criteria of an evaluation
instrument (i.e. a rubric). Finally the teachers decide the final
grade for each one of the students in their respective course.

The following steps describe the method of authoring a CLP
that uses an external web service to assess the students’ work.

4.1. Visually editing the learning process

If users designing this course had to choose a specific EML, it
would be rather complicated to use the low-level XML details
of the chosen specification. However, this task can be facili-

tated by using the visual elements provided by the LPCEL Edi-
tor. For example, Fig. 5 presents only a small part of the XML
low-level details of the LPCEL representing the activities of

the case study; it focuses on the set of roles and the first two
activities for the students (Manage Requirements and Imple-
ment requirements), the definition of the roles (leader, pro-

grammer, tester and documenter), as well as relationship
between the task and the student who will perform it.

Creating the XML representation could be a difficult task
for non-expert users, since it requires a deep understanding

of the LPCEL specification in terms of the XML tags and
structure, and how to link each component, i.e. which student
must perform which task.

Using the visual elements provided by the LPCEL Editor
can facilitate the authoring task. The same course design and

Figure 7 Example of a POL high-level detail pattern.

22 J. Torres et al.
sequence of activities mentioned in the case study can be rep-
resented using the LPCEL Editor visual approach as depicted
in Fig. 6. One of the main properties of the visual representa-

tion is how easy it presents the pedagogical intention of the se-
quence of tasks, and how intuitive and understandable it can
be for the teacher. It is important to notice how the learning

scenario structure (sequence of activities, the roles and which
tasks every role performs) can be understood just by analyzing
the visual representation.

The intermediate representation, which is based on JSON,
can be read and understood by the user. This human-readable
property becomes important when the user only needs to do
minor adjustments to the course design. Using the intermedi-

ate representation is possible to generate courses compliant
with a specific EML. The transformations are yet to be imple-
mented in the LPCEL editor, as they have been tested in the

model-driven LDDSL approach (Dodero et al., 2012).
Although that is out of the scope of this work, it must be noted
that a one-to-one mapping between two different EMLs is not

always possible without losing expressiveness.
4.2. Use of learning patterns

The LPCEL Editor proposes a structure based on two levels of
classification for patterns: The high-level and low-level detail.
To illustrate the different levels, we make use of the same case
study. The modality presented in the case study is based on the

Project-Oriented Learning (POL) method. The POL method
consists of a set of high-level sequence of activities and roles
(Martı́n, 2005). This high-level detail of activities can be seen

in Fig. 7, and it presents a set of complex activities such as
the parallel, sequence, and sub-process. Notice that this is only
a part of the complete POL process, but is a good example of

the nature of the high-level classification for patterns; it only
presents some high-level activities but not the specific tasks.

In the same scenario, if the users needed a more specific

arrangement of tasks for the sequence activity, the low-level
classification should be used. For example, a low-level descrip-
tion for the individual activity could be a sequence of tasks
that can be executed depending on the result of a test (Activity

A). The low-level detail category stores complex sequences that
have specific names, resources, structures and flows, yet such a
Figure 6 Visual represent
structure can be easily adjusted to meet the needs found in

other design scenarios if needed.
If the complex sequence described above is a good solution

for a recurrent problem, then the user can set the complete
structure as a low-level pattern as depicted in Fig. 8. It must

be saved as low-level detail pattern since this complex sequence
contains specific names, flows and resources.

4.3. Collaborating authoring

The level of complexity in the course requires the knowledge of
several people to properly design this scenario, e.g. several

instructional designers, graphic designers and teachers. All of
them would have specific tasks:

� Instructional designers: They design the structure of the
course, such as the learning technique, the sequence of
activities, the roles and other elements. They adjust the gen-
eral learning process and apply the best practices that guar-

antee a quality course.
� Teachers: This group of people designs the overall content
of the activities (learning objectives, learning content, exer-

cises, etc.) in terms of the required resources that each activ-
ity needs.
ation of the case study.

Figure 8 Low-level detail pattern example.

A model-driven development approach for learning design using the LPCEL Editor 23
� Graphical designers: These people are responsible for
designing all the educational content, e.g. the presentations,

animations, videos and the appearance of the content gen-
erated by the teachers.

In level 1, all users are able to modify the structure of the
scenario without any restrictions. Fig. 9 presents an example
in which different users (1–3) move some elements of the sce-

nario, and then those changes are updated automatically to
all users, generating a new version (baseline). Although this
is a basic and uncontrolled behavior, it is necessary to support
the advanced levels.

Level 2 allows the owner of the course to set restrictions
over some elements and the types of changes that require an
agreement to be accepted. For example, assume the owner

has set restrictions on any modification done in the parallel
and sequence elements, meaning that any changes done in
those elements requires an agreement and that any other

changes would be automatically updated to the users (as in le-
vel 1).

Fig. 10 presents an example of (a) a scenario that is being

modified, (b) changes done by a particular user (green lines
represent new elements and red lines represent deleted ele-
ments) and (c) the result of the scenario following the criteria
set by in level 2. The result shows how the elements with no

restrictions (the basic elements) are automatically updated,
Figure 9 Collabor
while the changes done in the parallel and sequence elements
are not yet updated since they require the agreement of all
users. In this case, the changes done in those elements are up-

dated until the agreement process is done.
Agreements can also occur at the level of actions performed

on the elements, for example, when renaming the element,

changing some of its properties or changing its predecessors
or ancestors. This ensures that elements considered as impor-
tant cannot be modified without restraint.

The level 3 is similar to the level 2, but it adds restrictions
based on users’ roles, for instance, setting the proper privileges
to represent the role descriptions mentioned earlier. The
restrictions provide a better control over the generated ver-

sions of the learning scenarios because they avoid changes in
the elements by non-authorized users, e.g. it has no sense to al-
low graphical designers to modify the sequence of activities if

they are not experts in the subject.
Roles are also used when a deadlock occurs during the

agreement process, for example, if there is no consensus about

the changes done in the scenario, then the user with the highest
level of authority can accept or discard changes at will.

4.4. Web services

In Fig. 8 an external resource was specified for the Activity A
using the resource element. However, the LPCEL specification
requires some information about the web service that is being

set for the activity. Using the XML tags, the process of assign-
ing web services to activities can be very difficult for two rea-
sons. One is that there is some information that the user needs

to get from the WSDL file describing the web service, and a
non-expert user might not know where to get such informa-
tion. Two, the user must place this information in the right

structure using the appropriate LPCEL XML tags. Of course,
the same task is just as difficult when it comes to writing the
same web service description for other EMLs (if the specifica-

tion supports this characteristic).
ation in level 1.

Figure 10 Collaboration in level 2.

24 J. Torres et al.
Fig. 11 presents only the critical information (URL, Service
name, port, namespace etc.) that has to be set to describe a web

service in LPCEL.
The JSON structure is used as an alternative to the regular

XML-based representation. It is important to highlight how

easy it is for the user to attach an external web service to an
activity using the LPCEL Editor. In this case, such a process
can be accomplished using the Web Services Wizard as pre-
sented in Fig. 12.

In the wizard, the user selects the web service and the de-
sired operation, configures the web service client (web forms)
and optionally is able to test the web service. All the work

needed to complete the XML description of the web service
can be summarized in three simple steps where the user only
selects the same basic information, but in an intuitive and

easy-to-use manner. After completing the steps of the wizard,
the LPCEL editor gathers automatically all the relevant infor-
mation about the web service and a web client is automatically

generated.
Using the wizard, users set all of the information about the

web services that will be used by the activities in the execution
stage. There is no need for the user to write XML tags to de-
{
"id": 1,
"elementType": "dataElement",
"complexType": "basic",
"name": "Web Service Test",
"description": "Testing",
"position": {

"x": 223, "y": 280,
"width": 50, "height": 60

},
"resource": {

"type": "remote",
"url": "http://footballpool.dataaccess.eu/data/info.wso?wsdl",
"port": "InfoSoap",
"operation": "StadiumInfo"

}
}

Figure 11 Intermediate representation of a web service.
scribe the service. Also, the user can verify the correct func-
tionality of the web service or even if it is still functional.

5. Survey on user experience

The survey of user experience with the tool has been proposed
to corroborate if the tool not only meets the functional

requirements, but also serves to facilitate the design of scenar-
ios from the view point of those who would use it (teachers,
instructional designers, graphic designers, etc.).

The survey is focused on three main elements of the editor:
(1) Visual elements, (2) Patterns and (3) Collaboration. The
survey was answered by 55 people who are experts on the de-

sign of learning scenarios. Although the population is rather
small, their level of experience and knowledge represent a good
opportunity to determine which aspects of the editor are most

relevant in terms of instructional design.

5.1. Visual elements

The objective is to measure the user’s perception in terms of

how they interact with the visual elements and their potential
to represent learning scenarios. The scale goes from 1 to 5,
where the first is the lowest grade possible, and the later means

users are completely satisfied or agree. The results are pre-
sented in Fig. 13.

The first and second questions (1. How intuitive are the vi-

sual elements? 2. Do you think some training is needed to learn
the proper use of the visual elements?) show that while the ele-
ments are fairly intuitive, training is still required to make a
good use of the elements. The third and fourth questions (3.

How simple was it to represent a learning scenario? 4. Are
the visual elements enough to represent them?) show the level
of simplicity provided by the visual elements to represent sce-

narios; is evident that some level of knowledge about the ele-
ments is required and there’s room for improvement in terms
of the iconography used. Finally, the fifth and sixth questions

(5. Is it simple to understand the learning scenario using the vi-
sual elements? 6. In brief, how useful it is to use the visual ele-
ments to represent learning scenarios in comparison to

traditional methods?) provide an insight about the overall sim-
plicity of the visual elements to describe learning scenarios in
comparison to the traditional methods they use, emphasizing
how simple it is for the user to understand the scenarios pre-

sented in the editor.

5.2. Learning patterns

This section of the survey is focused on the use of patterns for
the creation of learning scenarios and the need of users for
having tools to manage patterns in a simple fashion. The scale

is yes or no for question one; and goes from 1 to 5 for question
number two and three, where the first is the lowest grade pos-
sible, and the later means users are completely satisfied or

agree.
The first part of this section, presented in Fig. 14, inquires

into the need of users to use best practices to solve recurrent
problems. The answers to questions (1) Do you think it is

important to create a course using best practices? (2) To what
extent do you think it facilitates the creation of full courses?
and (3) How useful it would be to have a tool which manages

Figure 12 Web service wizard.

Figure 13 Section for visual elements.

Figure 14 Section for learning patterns.

A model-driven development approach for learning design using the LPCEL Editor 25
educational patterns? These questions show that course cre-
ators use patterns in regular basis to build learning scenarios
and they need a tool to assist this process.

The second part of this section explores the elements that
should be kept and improved into the pattern manager tool
from the point of view of users. In Fig. 15, we present some

of the highest rated components of the tool that users catego-
rized as very important or mandatory. Users evaluated various
components that were included in the pattern management

tool, however, we only show those components that were well
evaluated by the users in terms of usability, user experience
and usefulness. The specific components are: (1) Pattern Clas-
sification, (2) Pattern search engine, (3) Formal structure and
(4) Pattern personalization and usage. Users commented that

these components would be helpful for most of the tasks re-
lated with the usage of patterns.

Given the need of users for a mechanism to manage learn-

ing patterns and the capabilities of the tool, we consider that
this part of the editor was well received, since it covers the ba-
sic functionality demanded by the users, while it makes the

task of reusing patterns very simple.

5.3. Collaborative learning design

This collaboration among users during the design of learning
scenarios is one of the main components of the editor. In this
part of the survey, users are asked about how they collaborate
and their experience with the editor in this regard.

Fig. 16 presents the results for questions (1) How often do
you require from collaborators to design learning activities?

Figure 15 Highest rated components for the pattern manager.

Figure 16 Section for collaborative learning design.

26 J. Torres et al.
and (2) How necessary it is to design a course between several

people with different profiles? and (3) How useful it is to design
a course using the tool for the collaboration process? The scale
is the same as in previous sections, from 1 being the lowest
grade, to 5 meaning that users agree.

Question number one and two are interesting since both
show that users are collaborating, but the methods they use
are rather complicated and ineffective, e.g. they design the sce-

narios using text files and each change is notified via e-mail,
resulting in conflicts. These results were a clear indication that
an automated tool for real-time collaboration is needed among

users designing learning scenarios.
Given these results, users worked in a collaborative way in

the design of a complex learning scenario using all the other

mentioned tools and the components for collaboration. Ques-
tion number 3, represents the summary of the user experience
and feedback about the collaboration tool, in which it is clear
that most users found the tool easy to use and better for real-

time collaboration purposes than their traditional methods.
An important aspect of highlighting is that most users were
able to make a good use of the tool with little to no

explanation.
6. Conclusions

In this work, we have developed a visual authoring tool com-
pliant with the LPCEL specification. The objective of creating
the tool is to ease the authoring process of learning scenarios.

It was a key reason for us to choose the LPCEL as the target
EML because its level of expressiveness is broader than IMS
LD or LAMS LD.

Using a visual approach for the authoring process allows

the user to generate a learning scenario in a simple way. This
process can also be facilitated through collaboration among
several users. In most cases, several people create a learning

scenario, each one focusing on different parts of the scenario.
Therefore, authoring tools should also aim for a collaborative
authoring process capable of handling the user requirements.

User experience with the tool, suggests that the features in-
cluded are necessary to perform an instructional design simpler
and more closely to the requirements of users. Although a dee-

per analysis is still needed, these preliminary results indicate
that the editor can serve its purpose.

There are some characteristics that need to be improved,
such as the EML-specific converter which are yet to be imple-

mented and because a 1–1 transformation is not possible,
there are some issues that must be handled accordingly in
such a process. There is also the need for an LPCEL player

within the editor so the user can test or simulate the learning
scenario.
References

Atkinson, C., Kuhne, T., 2003. Model-driven development: a meta-

modeling foundation. Software, IEEE 20 (5), 36–41.

Caeiro Rodrı́guez, M., Derntl, M., Botturi, L., 2010. Visual instruc-

tional design languages. Journal of Visual Languages & Computing

21 (6), 311–312.

http://refhub.elsevier.com/S1319-1578(13)00033-5/h0005
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0005
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0015
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0015
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0015

A model-driven development approach for learning design using the LPCEL Editor 27
Crockford, D., 2006. The Application/Json Media Type for JavaScript

Object Notation (JSON). The Internet Engineering Task Force.

Dalziel, J.R., 2003. Implementing learning design: the learning activity

management system (LAMS). In: Crisp, G., Thiele, D., Scholten,

I., Barker, S., Baron, J. (Eds.), Proceedings of the 20th Annual

Conference of the Australasian Society for Computers in Learning

in Tertiary Education (ASCILITE), pp. 593–596..

De la Fuente, L., Miao, Y., Pardo, A., 2008. A supporting architecture

for generic service integration in IMS learning design. In: European

Conference on Technology-Enhanced Learning 5192, Springer

Verlag, pp. 467–473.

Dodero, J.M., Martı́nez del Val, Á, Torres, J., 2010. An extensible

approach to visually editing adaptive learning activities and designs

based on services. Journal of Visual Languages & Computing 21

(6), 332–346.

Dodero, J.M., Ruiz-Rube, I., Palomo-Duarte, M., Cabot, J., 2012.

Model-driven learning design. International Journal of Research

and Practice in Information Technology 44 (3), 61–82.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1993. Design

patterns: abstraction and reuse of object-oriented design. In: Proc.

of ECOOP, Springer Verlag, pp. 406–431.

Griffiths, D., Beauvoir, P., Liber, O., Barrett-Baxendale, M., 2009.

From reload to ReCourse: learning from IMS learning design

implementations. Distance Education 30 (2), 201–222.

Hernández-Leo, D., Pérez, J., Dimitriadis, Y., 2004. IMS learning

design support for the formalization of collaborative learning

patterns. In: Proc. of the fourth International Conference on

Advanced Learning Technologies IEEE, IEEE Computer Society,

pp. 350–354.

Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Design science in

information systems research. MIS Quarterly 28 (1), 75–105.

Koper, R., 2001. Modeling Units of Study from a Pedagogical

Perspective: The Pedagogical Metamodel Behind EML. Open

University of the Netherlands. Educational Technology Expertise

Center, Heerleen.

Koper, R., Tattersall, C., 2005. The learning design specification. In: A

Handbook on Modelling and Delivering Networked Education and

Training. Springer, pp. 21–40.

Laforcade, P., 2007. Visualization of learning scenarios with

UML4LD. Journal of Learning Design 2 (2), 31–42.

Martı́n, M., ITESM (Eds.), 2005. El modelo educativo del Tecnológico

de Monterrey. Tecnológico de Monterrey.

Martı́nez-Ortiz, I., Moreno-Ger, P., Sierra-Rodrı́guez, J., Fernández-

Manjón, B., 2008. A flow-oriented visual language for learning

designs. Advances in Web Based Learning (ICWL) 1, 486–496.
Martı́nez-Ortiz, I., Sierra, J.L., Fernández-Manjón, B., 2009. Author-

ing and reengineering of IMS learning design units of learning.

IEEE Transactions on Learning Technologies 2 (3), 189–202.

McAndrew, P., Goodyear, P., Dalziel, J., 2006. Patterns, designs and

activities: unifying descriptions of learning structures. International

Journal of Learning Technology 2 (2), 216–242.

Murta, L., Corrra, C., Prudrncio, J., Werner, C., 2008. Towards

odyssey-VCS 2: improvements over a UML-based version control

system. In: Proceedings of the 2008 International Workshop on

Comparison and Versioning of Software Models, ACMNew York,

NY, USA, pp. 25–30.

Padrón, C., Dodero, J., Lanchas, J., 2005. CASLO: collaborative

annotation service for learning objects. IEEE TCLT Learning

Technology Newsletter 1 (ISSN 1438-0625).

Paquette, G., Marino, O., De la Teja, I., Lonard, M., Lundgren-

Cayrol, K., Contamines, J., 2005. Implementation and deployment

of the IMS learning design specification. Canadian Journal of

Learning and Technology 31 (2).

Paquette, G., Léonard, M., Lundgren-Cayrol, K., Mihaila, S., Gareau,

D., et al, 2006. Learning design based on graphical knowledge-

modeling. Journal of Educational Technology and Society Special

issue on Learning Design 9 (1), 97–112.

Sampson, D., Karampiperis, P., Zervas, P., 2005. ASK-LDT: a web-

based learning scenarios authoring environment based on IMS

learning design. International Journal on Advanced Technology

for Learning (ATL) 2 (4), 207–215.

Torres, J., Dodero, J., Aedo, I., Diaz, P., 2006. Designing the

execution of learning activities in complex learning processes using

LPCEL. In: Advanced Learning Technologies, 2006. Sixth Inter-

national, IEEE Computer Society, pp. 415–419.

Torres, J., Juarez, E., Dodero, J., Aedo, I., 2009a. EML learning flow

expressiveness evaluation. In: Advanced Learning Technologies,

2009. ICALT 2009. Ninth IEEE International, IEEE Computer

Society, pp. 298–300.

Torres, J., Reséndiz, J., Dodero, J.M., Aedo, I., 2012. LPCEL Editor:

a web-based visual authoring tool for learning design. In: Proc. of

the 12th IEEE International Conference on Advanced Learning

Technologies (ICALT 2012). IEEE Computer Society, Rome, Italy,

pp. 141–142.

Vogten, H., Martens, H., Nadolski, R., Tattersall, C., van Rosmalen,

P., Koper, R., 2006. CopperCore service integration – integrating

IMS learning design and IMS question and test interoperability. In:

6th International Conference on Advanced Learning Technologies,

IEEE Computer Society, pp. 378–382.

http://refhub.elsevier.com/S1319-1578(13)00033-5/h0020
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0020
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0025
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0025
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0025
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0025
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0030
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0030
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0030
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0035
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0035
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0035
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0040
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0040
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0045
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0045
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0045
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0045
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0125
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0125
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0125
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0055
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0055
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0060
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0060
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0065
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0065
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0065
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0070
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0070
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0070
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0075
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0075
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0075
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0085
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0085
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0085
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0090
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0090
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0090
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0090
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0095
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0095
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0095
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0095
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0100
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0100
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0100
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0100
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0110
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0110
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0110
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0110
http://refhub.elsevier.com/S1319-1578(13)00033-5/h0110

	A model-driven development approach for learning design using the LPCEL Editor
	1 Introduction
	2 Related work
	3 Design of virtual learning experiences
	3.1 Visual editor
	3.2 Intermediate representation
	3.3 Learning patterns
	3.4 Collaborative design of learning scenarios
	3.4.1 Level 1
	3.4.2 Level 2
	3.4.3 Level 3

	3.5 Use of web services

	4 A case study of using the LPCEL Editor
	4.1 Visually editing the learning process
	4.2 Use of learning patterns
	4.3 Collaborating authoring
	4.4 Web services

	5 Survey on user experience
	5.1 Visual elements
	5.2 Learning patterns
	5.3 Collaborative learning design

	6 Conclusions
	References

