

This is a postprint version of the following published document:

Liu, Shanshan; Reviriego, Pedro; Lombardi, Fabrizio (2022).
Selective Neuron Re-Computation (SNRC) for Error-Tolerant
Neural Networks. IEEE Transactions on Computers, 71(3), pp.:
684-695.

DOI: https://doi.org/10.1109/TC.2021.3056992

©2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.
See https://www.ieee.org/publications/rights/index.html for more
information.

https://doi.org/10.1109/TC.2021.3056992
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.ieee.org/publications/rights/index.html

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Artificial Neural networks (ANNs) are widely used

to solve classification problems for many machine learning
applications. When errors occur in the computational units of an
ANN implementation due to for example radiation effects, the
result of an arithmetic operation can be changed, and therefore,
the predicted classification class may be erroneously affected.
This is not acceptable when ANNs are used in many safety-critical
applications, because the incorrect classification may result in a
system failure. Existing error-tolerant techniques usually rely on
physically replicating parts of the ANN implementation or
incurring in a significant computation overhead. Therefore,
efficient protection schemes are needed for ANNs that are run on
a processor and used in resource-limited platforms. A technique
referred to as Selective Neuron Re-Computation (SNRC), is
proposed in this paper. As per the ANN structure and algorithmic
properties, SNRC can identify the cases in which the errors have
no impact on the outcome; therefore, errors only need to be
handled by re-computation when the classification result is
detected as unreliable. Compared with existing temporal
redundancy-based protection schemes, SNRC saves more than
60% of the re-computation (more than 90% in many cases)
overhead to achieve complete error protection as assessed over a
wide range of datasets. Different activation functions are also
evaluated.

Index Terms—Neural networks, machine learning, sigmoid,
error-tolerance.

I. INTRODUCTION
RTIFICIAL Neural Networks (ANNs) are used in machine
learning to perform supervised and unsupervised learning.

Based on the structure that models the neural networks in the
human brain, ANNs simulate the brain to perform particular
tasks; they have been applied in a wide range of areas, such as
image classification of vehicles and medical diagnosis or
anomaly detection in networks [1].

 ANNs are typically arranged as a number of layers of

Manuscript received October 6, 2020, revised December 23, 2020 and

January 27, 2021, and accepted January 31, 2021. This research was supported
by NSF grants CCF-1953961 and 1812467, by the ACHILLES project
PID2019-104207RB-I00 and the Go2Edge network RED2018-102585-T
funded by the Spanish Ministry of Science and Innovation and by the Madrid
Community research project TAPIR-CM P2018/TCS-4496.

S. Liu and F. Lombardi are with Northeastern University, Dept. of ECE,
Boston, MA 02115, USA (email: ssliu@coe.neu.edu, lombardi@ece.neu.edu).

P. Reviriego is with Universidad Carlos III de Madrid, Av. De la
Universidad 30, 28911 Leganés, Madrid, Spain (email: revirieg@it.uc3m.es).

neurons that connect the inputs (or features) to the outputs.
Initially, only two layers of neurons (one for the inputs and
another for the outputs) have been used. This however limits
the ability of the ANN to discriminate data that is linearly
separable in the feature space. To deal with more complex
problems, additional layers of neurons are usually needed;
these layers are commonly referred to as hidden layers. For
example, a large number of layers are used in Convolutional
Neural Networks (CNNs) that are widely used for image
classification [2], [3]. The Multi-Layer Perceptron (MLP) that
uses just a single hidden layer can also provide good results for
many simpler classification problems, while achieving in most
cases, a higher accuracy than other classifiers, such as the k
Nearest Neighbors (kNNs) or Support Vector Machines (SVMs)
[4]. Since the number of layers affects the computational
complexity of the ANNs and greatly influences the platform
used for implementation, MLP is very attractive for
resource-constrained systems, such devices for the Internet of
Things (IoT).

ANNs with a small number of neurons (e.g., MLP) can be
implemented in software running on a processor and achieving
a reasonable speed. However, ANNs that have many hidden
layers (e.g., CNN) and thus neurons, are computationally
expensive, so usually taking a long time for computation when
implemented in software. In recent years, acceleration of ANNs
using FPGAs or even dedicated ASICs has been widely
investigated [5]-[7]. Accelerators are needed in systems in
which complex ANNs are used to perform many classifications
per second. However, for simpler ANNs or when the number of
classifications to be performed is small, software
implementations are attractive, because they provide additional
flexibility and do not incur in additional hardware for
acceleration [8].

Reliable operation is an important aspect of ANNs,
especially when they are used in safety-critical applications [9],
[10]. Regardless of the platform used for implementation, an
ANN can be affected by several errors or failures [11]. For
example, when a radiation particle hits an electronic device, it
can cause several effects, ranging from permanent damage to
soft errors. Radiation can come from the environment, but also
from the material used to manufacture the integrated circuit.
Environmental radiation is a major issue for devices that
operate in harsh environments like space, but it also causes soft
errors on terrestrial systems. So, when a particle strikes the
device, extra charge is generated; this may modify the voltage
of a node, upsetting a value stored in the storage units (i.e., the
single bit upset effect), or introducing an unexpected current

Selective Neuron Re-Computation (SNRC) for
Error-Tolerant Neural Networks

 Shanshan Liu, Member, IEEE, Pedro Reviriego, Senior Member, IEEE and Fabrizio
Lombardi, Fellow, IEEE

A

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

pulse in combinational circuits (i.e., the single bit transient
effect). These errors can lead to data corruption and eventually
system failure. If errors occur in the inference process of an
ANN, they can change the value of a neuron, or the stored
parameters in the memories of the ANN [12]; therefore, errors
may have an impact on the final result (e.g., the predicted class
when an ANN is used for classification). To ensure that the
ANN continues to operate correctly in the presence of errors, an
error-tolerant design is therefore needed.

Error/fault tolerance of ANNs has been widely studied;
critical connections (so, with larger weights) have been shown
to be more prone to lead to an incorrect output in the event of an
error, thus modifications for the larger weights have been
extensively treated in the technical literature. For example, in
[13], [14] the connections with large weights are replaced by
duplicated connections, but each with half of the weight to
reduce the impact of an error. Other schemes try to reduce the
impact of connections with large weights during the training
phase, because often they significantly affect the classification
result [15], [16]. Another approach to achieve error tolerance
[17] has introduced errors during the training phase, such that
the ANN has been trained to correct them. Selective hardening
of critical hardware in ANN implementations (such as latches)
has also been proposed [9]. However, these protection solutions
usually need to change either the algorithm, or the
implementation of the ANN, so not desirable when the ANN
implementation is fixed and used for inference. An alternative
that does not need to change the algorithm is based on temporal
redundancy (TR); it computes the classification result of the
ANN twice to detect errors and a third time when needed to
correct them [18]. However, this scheme always incurs in a
significant computation overhead, because it needs at least to
double the number of operations. A fault management scheme
of [19] can reduce the re-execution overheads, but it is applied
to CNNs used in some applications that can tolerate a specific
degree of inexactness (e.g., image processing). Another
technique [9] (implemented in software) detects potential errors
by checking if the output of the neurons exceeds the maximum
value observed during error-free operation. This incurs in a low
protection overhead when applied to deep ANNs, but it cannot
detect all errors and thus, it only provides partial protection in
shallow NNs (this aspect will be discussed and assessed in a
latter section of this paper).

In this paper, the protection of ANNs implemented in
software (so running on a processor) is studied; in particular,
the improvement of a TR-based scheme as baseline is
considered. The analysis of the ANN and its algorithmic
properties is utilized to propose Selective Neuron
Re-Computation (SNRC) as an efficient scheme that can
reduce the re-computation overhead for error detection, while
ensuring a reliable result. The scheme has been evaluated on
several publicly available datasets; the results show that for
most datasets, a significant reduction in the re-computation
effort is achieved.

The rest of this paper is organized as follows. Section II
introduces Artificial Neural Networks (ANNs); computational
and storage errors in the implementation and commonly used
error-tolerant techniques are also reviewed. In Section III, the
error model considered in this paper is discussed; then the
proposed technique, namely Selective Neuron Re-Computation

(SNRC), is discussed in Section IV to efficiently handle
computational errors in the inference process of ANNs. The
effectiveness of the proposed technique is then evaluated and
compared with traditional solutions in Section V using
simulation; the extension of SNRC for ANNs with different
activation functions is discussed in Section VI. Finally, the
paper ends in Section VII with the conclusion.

II. PRELIMINARIES
This section first provides a brief description of ANNs; then
errors in the computation process for neurons in each layer and
their impact on the classification result are discussed.

A. Artificial Neural Networks (ANNs)
The human brain is composed of neurons that are connected
through synapses for transferring signals between them to form
so-called neural networks. Neurons are also modeled in ANNs
as the basic computation unit. The initial ANNs (i.e., the
so-called perceptron) were proposed in 1958; they consist of
two connected layers of neurons: the input and output layers
[20]. In a perceptron, neurons in the input layer only transfer
information, while neurons in the output layer perform
computation on the information received from the input layer
by considering different importance features (i.e., weights) of
the information transferred from different neurons. The
perceptron is also referred to as a single neural network and the
weights can be trained to achieve good performance in the
learning process under a simple linear classification. However,
many types of empirical data are not linearly separable in the
feature space, then single neural networks have been extended
by adding a hidden layer between the input and output layers; in
this scheme, the inputs can be analyzed in a higher dimensional
space and complex non-linear issues can then be solved. This
improved network is known as the Multi-Layer Perceptron
(MLP) [21]; by utilizing a learning algorithm, such as
Backward Propagation (BP), the computational complexity
incurred by the extra hidden layer, is significantly reduced, so
making MLP widely used to perform non-linear classification
tasks. Although different neural networks with more hidden
layers have been proposed (e.g., CNNs) to improve
performance, MLP still remains attractive for many
applications when taking into account both complexity and
implementation issues.

Figure 1 shows an MLP that has the input layer, one hidden
layer, and the output layer; the neurons in the input (hidden)

Figure 1 An MLP with one hidden layer.

x1

x2

xm

h1

h2

h3

hn

y... ...

Input layer Hidden layer Output layer

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

layer are denoted as {xi} ({hj}), where i = 1, 2, …, m (j = 1, 2, …,
n), and y is the neuron in the output layer. 𝑤!"# is the weight of
neuron xi in the first layer (i.e., the input layer) to neuron hj in
the second layer (i.e., the hidden layer), and 𝑤"$ is the weight of
neuron hj in the hidden layer to the output; these weights are
used to connect the neurons in neighboring layers. A bias unit
(always storing a “1”) exists in the input and hidden layers and
its weight is given by bl, where l is 1 (2) for the bias in the input
(hidden) layer.

In general, the size of the input layer is equal to the valid
feature dimension of the dataset, and the inputs are the
normalized features. For each neuron in the hidden and the
output layers, its value is calculated in two steps: i) a temporary
value is calculated based on the neurons in the previous layer
and the corresponding weights and bias; ii) the value is then
compressed into a so-called specific scope by using a
non-linear activation function Φ. There are several activation
functions for handling different types of data and layers, such as
the sigmoid function, the tanh function, the rectifier (ReLU)
function and the softmax function. For binary classification, the
sigmoid function can be utilized for both the hidden and the
output layers, mapping any positive value or zero to the result
in [0.5, 1) and any negative value to (0, 0.5). The sigmoid
function has been shown to be well suited for MLP [22]. The
computation process for a neuron in the hidden layer when
using sigmoid as activation function is illustrated in Figure 2;
computation in steps i) and ii) is given by Eqs. (1) and (2),
respectively. The computation for the neuron in the output layer
is similar; so, by feeding the neurons in the hidden layer, a
sigmoid mapping is performed on the output neuron to obtain
the final result (given in Eq. (3)). Since the sigmoid function
always generates a value from 0 to 1, the output neuron with a
value that is smaller than 0.5 refers to a class; when it is larger
than or equal to 0.5, it refers to another class when the NN is
used to compute a binary classification.

 𝑧"(𝑥) = ∑ 𝑤!"# ∙ 𝑥!%
!&# + 𝑏# (1)

 ℎ" = Φ-𝑧". = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑-𝑧". =
#

#'(!"#
 (2)

 𝑦 = Φ-ℎ". =
#

#'(
!∑ %#

&∙(#
)
#*+ !,&

 (3)

Figure 2 Computation for a neuron in the hidden layer.

B. Computational Errors and Protection
In a computing system, data processing and storage are prone to
suffer different types of errors, such as for example
radiation-induced soft errors [23], [24]. Errors in the

computational units (referred to as computational errors in this
paper) can modify the result of an operation (such as an
arithmetic calculation), while errors in the memory elements
(referred to as storage errors in this paper) can flip the stored
data, causing data corruption; both these types of errors may
lead to a system failure. Therefore, error-tolerant techniques are
required to guarantee the integrity of a computing system,
especially in many safety-critical applications.

Memories can be efficiently protected by utilizing error
correction codes (ECCs) against storage errors [25]-[27];
through computing several ECC parity bits (as per the ECC
encoding algorithm) and storing them with the original data,
errors on each memory word can be detected or corrected as per
the ECC decoding algorithm. Many memory/System-on-Chip
products incorporate an appropriate ECC into the chip to
provide protection against some storage errors [28], [29]; for
example, Hamming codes, which can correct a single bit error
at a low cost, are commonly used.

Redundancy is usually introduced to protect the
computational units; this can be implemented spatially or
temporally [30], [31]. In Spatial Redundancy (SR) based
schemes, the circuit being protected is duplicated and the two
outcomes are compared to detect errors in one of the replicated
circuits. If needed, the original circuit is triplicated, then a
majority voting among the three results is performed to
guarantee a correct result. However, the hardware overhead
incurred by SR-based techniques is rather large; it is more than
100% for error detection and at least 200% for error correction
(due to the replication and the comparison logic). An
alternative solution is Reduced Precision Redundancy (RPR)
[32]. RPR uses multiple replicated copies with reduced
precision (by truncating some least significant bits) and only
one circuit with full precision; hence, the overhead can be
reduced by sacrificing protection against some errors on the
truncated bits. However, SR-based protection approaches
cannot be implemented when the program is run on a processor
or microcontroller, in which the hardware cannot be modified.
In this case, temporal redundancy is generally utilized. Since
computational errors are mostly transient and non-frequent,
they are unlike to occur again when the program is run for a
second time. Therefore, errors can be detected by
re-computation of the program and then comparing the two
output results; the computation is error-free if the two results
fully match, otherwise an error is detected, and a third
re-computation must be performed to obtain the correct result
through majority voting. Similar to the SR-based approaches,
the additional computational requirements (e.g., total execution
time and power consumption) are rather severe for error
detection/correction; these large overheads are unlikely to be
viable when Machine Learning (ML) algorithms are used in
resource-limited platforms, such in IoT devices.

Recently, algorithm-based error tolerance (ABET) has been
proposed to protect some ML classifiers against computational
errors; these techniques exploit the intrinsic redundancy of ML
algorithms to achieve error-tolerance, thus significantly
reducing the overall protection overhead. For example, the
so-called Voting-Margin (VM) scheme (presented in [33])
protects kNNs against computational errors in the distance
computation. As the classification result is reliable when voting
among the set of kNNs has a margin, errors need to be detected

Σ

x1

x2

xm

w1j
1

w2j
1

wmj
1

... Φ hj

1
b1

Step i Step ii

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

only when there is no VM. This scheme has also been
investigated for kNNs and other ensemble classifiers, in
particular Random Forests (RFs), when used for multiple
classification tasks [34]; the work of [34] has shown that RFs
are intrinsically robust under errors because in such classifiers,
each single voter (e.g., a decision tree) performs the first round
classification and then the results of multiple voters are used to
perform a second round classification, making most errors
unlikely to change the final result. However, RFs typically
incur in a significant implementation overhead due to the large
number of trees. Another ABET scheme known as Result
Based Re-computation (RBR), has been proposed in [35] to
protect the Support Vector Machine (SVM) against
computational errors in the kernel function. RBR determines
the conditions by which the kernel function for a given support
vector must be re-computed based on the magnitude of the error;
therefore, only the errors that introduce a deviation in the final
result and then modify the predicted class, must be detected and
corrected by re-computation. A principle similar to RBR is then
applied in this paper to propose a protection scheme for ANNs;
it only needs to perform re-computation for some neurons,
while ensuring that the classification result is correct. This will
be discussed in the following sections.

III. ERROR MODEL
When using the sigmoid function in ANNs for binary
classification, the proposed error-tolerant scheme is based on
the observation that when an error occurs, if neuron y in the
output layer has a value that is in the same range (0, 0.5) or [0.5,
1) as the original error-free value, then the error has no impact
on the classification result, i.e.:

� If y < 0.5 in the error-free case, errors causing y_err < 0.5
(where y_err is the incorrect output neuron) cannot
change the predicted class for the input data;

� If y ≥ 0.5 in the error-free case, the classification result
is always reliable for errors causing y_err ≥ 0.5.

The computational errors in the implementation of the
considered network in this paper are classified in the following
two types:

� Type 1 errors that occur during the computation of a
neuron in the hidden layer;

� Type 2 errors that occur during the computation of a
neuron in the output layer.

Each type of error can be caused by the incorrect
computation in three possible operations; a Type 1 error is
illustrated in Figure 3 as an example. In Figure 3, error a)

occurs in the multiplication by the weight, error b) occurs in the
sum of the inputs to the neuron, and error c) occurs during the
sigmoid mapping.

IV. SELECTIVE NEURON RE-COMPUTATION (SNRC)
Since the sigmoid function always generates a value from 0 to 1
(i.e. (0, 1)), the incorrect value of the neuron in the hidden layer
(caused by computational errors) also belongs to (0, 1)
(incorrect values exceeding the scope are marked as invalid in
the processor); this is the case for Type 1 errors occurring from
all three sources (i.e., errors a), errors b) and errors c)).
Therefore, a change of the neuron in the hidden layer affected
by Type 1 errors is limited in the worst case to 1 (but excluding
1 as value). Define R as the result obtained in step i of the
computation for the output neuron (i.e., the value of the
exponential term in Eq. (3) with no sign, so as in Eq. (4)).

 𝑅 = ∑ 𝑤"$ ∙ ℎ")
"&# + 𝑏$ (4)

Then, the deviation from the value in the error-free case for
the incorrect R under Type 1 errors must be limited in
magnitude to the largest absolute weight of neurons in the
hidden layer |𝑤%*+$ |; hence, the magnitude of the error is in the
range (0,	|𝑤%*+$ |).

Based on this observation, a method similar to the RBR
scheme of [35] can be applied when computing the output of a
neuron to determine if either the classification result is reliable,
or some parts must be selectively recomputed. For example, the
following constraints can be checked to detect the correctness
of the classification result in the presence of Type 1 errors:

1) |𝑅| > |𝑤%*+$ |: since the magnitude change of R due to
Type 1 errors is limited to (0,	|𝑤%*+$ |), then the value of R
can be changed bidirectionally with a range from 0 to
𝑤%*+$. Therefore, when the condition |𝑅| > |𝑤%*+$ | is

a) b)

c) d)

Figure 4 Impact of Type 1 errors that occur during the computation by a neuron
in the hidden layer in different cases: a) |R| ≥ |wmax|; b) |R| = |wmax|; c) |wmax| ≥ |R|
≥ |rj| and R ∙ rj ≥ 0; d) |wmax| ≥ |R| ≥ |wj - rj| and R ∙ rj < 0.

Figure 3 Type 1 errors in the computation for a neuron in the hidden layer.

R0

0.5

1

wmax2

wmax2

y

y_err

R=0

0.5

1

wmax2

wmax2

y

y_err

R0

0.5

1

wmax2

y

y_err

0

0.5

1

wmax2

y

y_err

rj

r

Rrj wj

wj-rj

*
x1

w1j
1

+

*
x2

w2j
1

...

*
xm

wmj
1

*
1

b1

*-1 exp +1 ^-1 hj

Sigmoid gate

Error a)

Error b) Error c)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

met, the value of R always keeps the same sign in the
presence of Type 1 errors; as illustrated in Figure 4 a), the
classification result is reliable.

2) |𝑅| = |𝑤%*+$ |: in this case, the worst-case Type 1 errors
make the value of R to approach 0 while maintaining the
same sign; this is illustrated in Figure 4 b). Therefore, the
classification result is still correct.

3) |𝑅| < |𝑤%*+$ |: in this case, the worst-case Type 1 errors
can modify R with a value larger than |𝑅|, changing the
sign of R; therefore, the classification can be affected by
errors. However, further checking can be performed to
identify the correctness of the classification results.
Similar to the RBR scheme of [35], define r as the sum
term of R, i.e., 𝑟 = ∑ 𝑤"$ ∙ ℎ")

"&# and rj as the jth term of
the sum 𝑟" =	𝑤"$ ∙ ℎ" . For the jth neuron in the hidden
layer, if R and rj have the same sign (i.e., 𝑅 ∙ 𝑟" ≥ 0) and

|𝑅| ≥ >𝑟">, then Type 1 errors that change the value of hj
in the worst case, decrease R with a magnitude of (0, rj)
and thus they cannot change the sign of R (as illustrated
in Figure 4 c)). If R and rj have different signs (i.e., 𝑅 ∙
𝑟" < 0) and |𝑅| ≥ >𝑤"$ − 𝑟">, Type 1 errors still have no
impact on the sign of R, because its value can only be
changed with a magnitude of (0, 𝑤"$ − 𝑟") in the worst
case; this is illustrated in Figure 4 d). Therefore, when R
and rj meet any of these two constraints, the classification
results can be identified as reliable under Type 1 errors.

As introduced previously, Type 2 errors occur during the
mapping from the neurons in the hidden layer to the neuron in
the output layer; they originate from the three cases of Figure 3
(but for the output layer neuron), so changing the value of the
output. These Type 2 errors can be protected by utilizing a
traditional TR scheme; by implementing Eq. (3) for a second
(third) time, Type 2 errors can be detected (corrected) based on
comparison (majority voting). Since the computation for the
neurons in the hidden layer always accounts for the bulk of the
implementation of an MLP, then the execution resources
incurred by TR are reduced (only used for the output layer
neuron).

Since there is no need to detect and correct errors when the
classification result is identified as reliable, the so-called
Selective Neuron Re-Computation (SNRC) approach is
proposed by using Algorithm 1. By determining the cases in
which Type 1 errors may change the classification result, the
SNRC scheme only introduces re-computation for selective
neurons in the hidden layer to detect and correct the errors and
ensure that the inputs to the last neuron in the output layer will
produce the correct result. Then, the computation for the output
layer neuron is repeated to handle Type 2 errors, outputting the
same class predicted by the ANN in absence of errors. This
significantly reduces the computational overhead compared
with traditional protection solutions such as TR when applied to
all neurons. The advantage of the proposed SNRC approach in
terms of computational resources is evaluated in the next
section.

V. EVALUATION
In this section, different metrics for an ANN are evaluated by
utilizing several widely used datasets from a public repository
(details are presented in Table 1) [36]. The datasets have been
selected to cover a wide range of applications with different
numbers of elements, features, and classification accuracy, so
that the results are representative for most scenarios and the
proposed scheme can be widely used. Initially, the
classification accuracy by using an ANN is assessed; it is also
compared with other ML classifiers, in particular, kNNs and
SVM. Then, the benefits of the proposed SNRC scheme when
used to protect an ANN against computational errors are
assessed. Simulations are performed by using Matlab, and
results are summarized in the following subsections.

A. Classification Performance
kNNs is one of the simplest ML classifiers; it is also called lazy
learning, because no model needs to be trained. When
performing a classification, the distance from the element being
classified to every element in the dataset is computed to select

Algorithm 1 Proposed SNRC scheme
1: Compute Eqs. (1)-(3) to obtain the output y and then the

classification result C;
2: Keep h, R and r = w*h;
3: Find the maximum weight 𝑤!"#$ for neurons in the hidden

layer;
4: if |R|≥|𝑤!"#$ |
5: Do re-computation for the output neuron to obtain y’ and

then C’;
6: if C = C’
7: Output C;
8: else
9: Do re-computation for the output neuron again to obtain

y” and C”;
10: Do majority voting among C, C’ and C”;
11: Output the correct classification result;
12: end
13: else
14: for j = 1 to n (# of neurons in the hidden layer)
15: if |R|≥|𝑤%$|
16: Output hj;
17: elseif (𝑅 ∙ 𝑟% > 0 and |𝑅| ≥)𝑟%)) or (𝑅 ∙ 𝑟% < 0 and |𝑅| ≥

)𝑤%$ − 𝑟%))
18: Output hj;
19: else
20: Do re-computation for jth neuron in the hidden layer to

obtain hj’;
21: if hj= hj’;
22: Output hj;
23: else
24: Do re-computation for jth neuron in the hidden layer

again to obtain hj”;
25: Do majority voting among hj, hj’, hj”;
26: Output the correct hj;
27: end
28: end
29: end
30: Compute Eq. (3) twice by using the correct h;
31: Compare and vote if needed as per steps 6-11 to output the

correct classification result;
32: End

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

the neighbors. Once the set of kNNs is determined, a majority
voting is performed among the classes of the neighbors to
predict the class for the new element. Instead, the classification
procedure when using an SVM is more complex; a decision
hyperplane between the training data with different classes is
established first and several support vectors are selected to
pursue a maximum margin in the hyperplane. For the datasets
that are not linearly separable, kernel functions (e.g, the most
widely used radial basis function (RBF)) are utilized to map the
original feature space to a higher dimensional one. Therefore,
an SVM tends to achieve in most cases a higher classification
accuracy than a kNNs, because the margin of the hyperplane

between different classes can tolerate some noisy elements.
When using an ANN, the features of the element are provided
as inputs to the network and then activated by using the
activation function in the next layer; the neurons in the hidden
layer can be considered as providing a refinement of the
original features, thus the feature space is also increased,
leading to a better classification accuracy.

To compare different classifiers, for each dataset, 70% of the
elements are selected randomly to generate the classifier (i.e.,
the training) and the remaining 30% are used for testing the
performance of the classifier (i.e., the testing). Before training
the model, the commonly used 10-fold cross-validation

TABLE 1
 Datasets Evaluated for Classification

Dataset Application # Elements # Features

Pima Indians diabetes Medicine 768 8
EEG eye state Medicine 14980 14

Sonar [37] Physics 208 60
Ionosphere [38] Physics 351 34

Electrical grid stability simulated data [39] Electricity 10000 13
Banknote authentication Business 1372 4

Qualitative bankruptcy [40] Business 250 6
Phishing websites [41] Computer 2456 30

Climate model simulation crashes [42] Physics 540 17
Cervical cancer (risk factors) [43] Medicine 858 36

Statlog (German credit data) Business 1000 20

TABLE 2
Performance of ANN, SVM, and kNNs for Different Datasets

Dataset

ANN SVM kNNs

n CA AA of
TP&TN

F1-score C 𝜸

SVs
CA AA of

TP&TN
F1-score k CA AA of

TP&TN
F1-score

Pima Indians
diabetes 17 79.57% 74.18% 77.97% 20.1 2-6.2 322 78.70% 72.91% 77.14% 19 76.52% 70.35% 75.23%

EEG eye
state

37 73.68% 73.10% 74.61% 212.0 2-1.0 3253 63.95% 65.14% 68.99% 3 69.45% 69.20% 69.98%

Sonar 126 93.55% 93.31% 93.55% 22.2 2-5.1 125 91.94% 91.38% 92.06% 3 85.48% 84.90% 86.15%
Ionosphere 146 95.28% 91.07% 91.80% 24.5 2-4.0 108 93.40% 95.51% 95.30% 11 87.74% 82.14% 84.85%

Electrical
grid stability

simulated
data

30 99.77% 99.72% 99.72% 210.0 2-10 241 99.47% 99.28% 99.28% 19 94.20% 92.62% 93.04%

Banknote
authenti-

cation
11 100.00% 100.00% 100.00% 20.1 2-3.0 103 100.00% 100.00% 100.00% 7 100.00% 100.00% 100.00%

Qualitative
bankruptcy 29 100.00% 100.00% 100.00% 20.1 2-3.4 66 100.00% 100.00% 100.00% 3 98.67% 98.65% 98.67%

Phishing
websites 91 95.52% 95.69% 95.64% 25.0 2-5.0 338 94.84% 94.97% 94.93% 5 92.81% 92.91% 92.86%

Climate
model

simulation
crashes

84 98.15% 92.21% 92.69% 25.2 2-8.6 72 98.77% 99.35% 99.35% 5 96.30% 77.60% 81.41%

Cervical
cancer (risk

factors)
139 92.64% 59.37% 70.85% 24.0 2-9.0 120 92.64% 52.50% 67.80% 5 92.25% 50.00% 66.67%

Statlog
(German

credit data)
61 75.67% 63.11% 71.02% 23.9 2-9.0 382 73.00% 64.39% 70.00% 9 72.00% 59.04% 68.04%

Average - 91.10% 85.61% 87.99% - - - 89.70% 85.04% 87.71% - 87.77% 79.76% 83.35%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

methodology is used to select the parameters of the classifiers
to achieve a good performance, i.e., the number of nearest
neighbors k in a kNNs, the penalty parameter C and the kernel
parameter 𝛾 in an SVM, and the number of neurons n in the
hidden layer in the MLP considered in this paper. The training
dataset is split into 10 subsets of equal size first and then,
different values of the parameters are checked to find the best
cross-validation accuracy. When choosing the parameters, the
candidate values for k in a kNNs are selected as odd numbers
from 3 to 19, for C and 𝛾 in an SVM the various pairs of (C,	𝛾)
values from C = 2-5, 2-4, …, 215 and	𝛾 = 2-15, 2-14, …, 2-3 or a

close range as suggested in [44], and for n in the MLP, 2-6
times the number of features (i.e. the number of neurons in the
input layer) as proposed in [45].

For each dataset given in Table 1, three widely used
classification related metrics, including the classification
accuracy (CA) found by employing the trained parameters (i.e.,
n, C, 𝛾 , and k), the average accuracy of true-positive and
true-negative (denoted as AA of TP&TN) and the F1-score, are
presented in Table 2; the results confirm that on average an
ANN provides a better classification performance than SVM
and kNNs as discussed previously.

Figure 6 Percentage of errors that modify the classification results (Percerr) for
different number of neurons in the hidden layer (results for the optimal number
of neurons are also included).

TABLE 3
Percentage of Errors that Change the Classification Results

Dataset Unprotected ANN Unprotected SVM Unprotected kNNs

Pima Indians diabetes 10.66% 10.12% 1.81%
EEG eye state 35.02% 49.70% 6.79%

Sonar 3.19% 17.33% 8.21%
Ionosphere 1.28% 11.35% 1.90%

Electrical grid stability simulated data 3.18% 48.44% 0.97%
Banknote authentication 8.66% 0.82% 0
Qualitative bankruptcy 2.11% 1.67% 0.77%

Phishing websites 1.68% 18.59% 1.49%
Climate model simulation crashes 0.93% 40.96% 2.20%

Cervical cancer (risk factors) 0.80% 36.54% 0.01%
Statlog (German credit data) 4.96% 39.95% 2.17%

Average 6.59% 25.04% 2.39%

Figure 5 Classification accuracy for different number of neurons in the hidden
layer (results for the optimal number of neurons are also included).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

B. Robustness Under Computational Errors
Prior to analyzing the effectiveness of the proposed scheme, the
robustness of the unprotected classifiers in the presence of
errors is assessed first (where a classifier is said to be robust if
errors have no impact on the classification result). Since the
distance computation (kernel computation) accounts for the
bulk of the kNNs (SVM) implementation, computational errors
modifying a distance (the kernel result for a support vector) are
considered; for an ANN, the impact of Type 1 and Type 2
errors (affecting the value of one neuron in the hidden layer or
the output layer as discussed in Section III) are studied. Such
errors are injected in the classifiers as detailed next; the process
of each error injection is repeated 100,000 times to calculate the
average value. Furthermore, the following features are
considered for the errors:
Error position: errors are assumed to be uniformly distributed,
i.e., each distance computed in a kNNs, each kernel result
computed in an SVM, and each neuron value computed in an
ANN have the same probability of error occurrence.
Error magnitude: in a kNNs, the value of the incorrect distance
is set to a random value within the scope range of (0, dmax]
where dmax denotes the largest value of all computed distances;
this permits to deal with all possible cases, because an element
with an incorrect distance larger than dmax has the same impact
as an element with a distance of dmax. Similarly, the value of the
incorrect kernel result in an SVM (with the RBF kernel
considered) is set to a random value within (0, 1], which is the
valid range of the RBF kernel result; the value of the incorrect
neuron in an ANN considered in this paper is also set to a
random value within (0, 1), because it is within the possible
range of the sigmoid function.

Table 3 presents the percentage of errors that change the
classification results in different classifiers; these results show
that the unprotected kNNs is more robust than the SVM in all
cases. This occurs, because in an SVM, the classification result
is determined by the classes of the selected support vectors; if
the kernel result for one support vector is affected by errors,
then the final classification result has a specific probability to
be changed. Instead, the classification result obtained with a
kNNs depends on the classes of the neighbors. Since the
number of neighbors k is always significant smaller than the
number of elements in the datasets, distance modifying errors
have a low probability of affecting a neighbor. In an ANN, as
discussed previously, the features of the element are provided
as inputs to the network and then activated by using the
activation function in the next layer, thus the neurons in the
hidden layer can be considered as a refinement of the original
features. In this case, errors that change the value of a neuron,
can be considered as a change of a “feature”, so moving the
element in a dimension of the feature space. Therefore, the
impact of errors on the classification result is related to the
number of neurons in the hidden layer, as well as performance
in terms of accuracy. This has been verified and shown in
Figures 5 and 6, that plot the classification and the percentage
of errors that modify the classification results (i.e., Percerr for
different number of neurons in the hidden layer. As per Figures
5 and 6, the impact of errors tends to be smaller with a larger
number of neurons for all cases (i.e, Percerr decreases);
moreover, for the datasets with a lower classification accuracy

(e.g, <80%), such as the Pima Indian diabetes, the impact of
errors shows an additional trend, namely Percerr decreases when
the accuracy is higher.

C. Re-computation Overhead
When employing the proposed SNRC scheme to protect an
ANN, errors are analyzed to ensure that the predicted class is
reliably correct. As discussed before, SNRC can detect the
cases in which the classification result is not changed by errors.
This makes SNRC more effective compared to a traditional
TR-based technique, which always repeats the entire
computation process, so introducing a large overhead such as
100% re-computation overhead for detection.

SNRC is assessed for the datasets of Table 1; the percentage
of elements for which re-computation for some neurons is
required, is presented in Table 4. As per Table 4, the SNRC
scheme saves more than 60% re-computation overhead for all
considered datasets (in particular, more than 90% for most
datasets); this occurs, because these datasets either have for
most elements an absolute R (as per Eq. (4)) larger than the

Figure 7 Distribution of |𝑅| for the Cervical cancer (risk factors) dataset with
|𝑤!"#$ | = 1.08 and |𝑤!%&$ | = 4E-4.

Figure 8 Distribution of |𝑅| for the EEG eye state dataset with |𝑤!"#| = 129.08
and |𝑤!%&$ | = 0.05.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

absolute maximum weight in the hidden layer (corresponding
to steps 4-7 in Algorithm 1 in Section III), or meet the
constraints for r to determine a reliable neuron (corresponding
to steps 15-18 in Algorithm 1). For example, for the Cervical
cancer (risk factors) dataset with |𝑤%*+$ | = 1.08 and |𝑤%!)$ |=
4E-4, the distribution for |𝑅| is plotted in Figure 7; it has an
absolute value larger than |𝑤%*+$ | in most cases. Instead, for the

datasets with a low reduction of re-computation, such as the
EEG eye state dataset with |𝑤%*+$ | = 129.08 and |𝑤%!)$ |= 0.05,
the distribution for |𝑅| is given in Figure 8; in this case, the
savings come only from the smaller weights, because the
largest weight is always greater than |𝑅|.

A further observation is that the effectiveness of SNRC is
related to the robustness of the unprotected ANN; for datasets

TABLE 4
Percentage of Elements for which a Re-computation Operation in ANN, SVM and kNNs can be Saved

Dataset

ANN with SNRC
SVM
with
RBR

kNNs
with
VM

|𝑹| ∈ [|𝒘𝒎𝒂𝒙|, +∞) |𝑹| ∈ [|𝒘𝒎𝒊𝒏|, |𝒘𝒎𝒂𝒙|) |𝑹| ∈ (−∞, |𝒘𝒎𝒊𝒏|) Average
of

neurons
%

elements
%

Neurons
%

elements
%

neurons
%

elements
%

neurons
Pima Indians diabetes 13.91% 100.00% 76.09% 76.40% 10.00% 15.69 % 73.61% 70.82% 90.75%

EEG eye state 0 100.00% 96.97% 65.93% 3.03% 0 63.93% 7.29% 64.89%
Sonar 53.23% 100.00% 46.77% 82.81% 0 0 91.96% 64.14% 80.10%

Ionosphere 78.30% 100.00% 21.70% 84.51% 0 0 96.64% 73.80% 91.69%
Electrical grid stability simulated data 0 100.00% 100.00% 97.79% 0 0 97.79% 12.44% 96.50%

Banknote authentication 4.85% 100.00% 95.15% 92.74% 0 0 93.09% 95.58% 100.00%
Qualitative bankruptcy 92.00% 100.00% 8.00% 93.24% 0 0 99.46% 92.16% 97.31%

Phishing websites 86.02% 100.00% 13.98% 83.43% 0 0 97.68% 55.04% 90.32%
Climate model simulation crashes 72.84% 100.00% 27.16% 96.21% 0 0 98.97% 21.20% 91.63%

Cervical 9cancer (risk factors) 95.35% 100.00% 4.65% 87.17% 0 0 99.40% 29.85% 97.66%
Statlog (German credit data) 44.00% 100.00% 55.67% 84.04% 0.33% 1.64% 90.78% 23.73% 83.20%

Average - - - - - - 91.21% 49.64% 89.46%

TABLE 5
Comparison in Number of Re-computation Operations and Power Dissipation for Different Schemes

Dataset
Traditional TR Proposed SNRC

Add Mul Div Exp Power
(mW) Add Sub Abs Mul Div Exp Comp Power

(mW)
Pima Indians

diabetes 131328 131328 13824 13824
41.10

(100%) 44831 1343 12814 46175 4213 4213 24334
14.71

(35.79%)
EEG eye

state 8883140 8883140 569240 569240 2263.06
(100%) 3567871 0 567426 3567871 214889 214889 1091726 941.91

(41.62%)

Sonar 1625104 1625104 26416 26416
304.17
(100%) 154947 322 12996 155269 2315 2315 38788

30.33
(9.97%)

Ionosphere 1845207 1845207 51597 51597 375.90
(100%) 111886 2946 14768 114832 2074 2074 65312 24.11

(6.41%)
Electrical

grid stability
simulated

data

4510000 4510000 310000 310000 1178.63
(100%)

402820 0 320000 402820 16630 16630 600000 118.78
(10.08%)

Banknote
authenti-

cation
91924 91924 16464 16464

38.36
(100%) 21677 0 17104 21677 2415 2415 29452

8.46
(22.05%)

Qualitative
bankruptcy

58250 58250 7500 7500 20.16
(100%)

7774 93 1173 7868 289 289 7923 1.96
(9.70%)

Phishing
websites 7154328 7154328 225952 225952 1494.06

(100%) 386447 5443 41599 391890 7633 7633 260183 83.68
(5.60%)

Climate
model

simulation
crashes

862380 862380 45900 45900 206.47
(100%) 54305 293 13692 54597 1007 1007 57972 12.48

(6.04%)

Cervical
cancer (risk

factors)
4532814 4532814 120120 120120

914.04
(100%) 146446 0 7262 146446 1570 1570 124808

29.83
(3.26%)

Statlog
(German

credit data)
1343000 1343000 62000 62000

308.14
(100%) 179974 4682 40641 184656 6618 6618 99641

43.98
(14.27%)

Average 2821589 2821589 131728 131728
649.46
(100%) 461725 1375 95407 463100 23605 23605 218194

119.11
(18.34%)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

with lower percentage of errors that modify the classification
result (as per Table 3), the SNRC technique achieves larger
re-computation savings. This is also the case for different
classifiers; ANN and kNNs are more robust than SVM, and the
average re-computation savings in an ANN protected by the
SNRC technique and in a kNNs protected by the VM technique
[33] are larger than for a SVM protected by the RBR technique
[35] (as shown in Table 4).

D. Power Dissipation
Since computational operations are related to the performance
of the processor, the power dissipations for re-computation
required by the traditional TR-based protection and the
proposed SNRC technique are evaluated and compared next.

Initially, Table 5 shows the number of operations required by
the different schemes, including addition, subtraction, absolute
value, multiplication, division, exponentiation and comparison.
Then, the power dissipated for performing these operations in
an open source processor [46] are evaluated by using Synopsys
PrimeTime and mapping the hardware for these operations to a
7 nm technology library; the results are given in Table 6.

TABLE 6

Power dissipation required for Different Operations

Operation Power (mW)

Addition 2.26E-5
Subtraction 2.25E-5

Absolute value 4.21E-5
Multiplication 14.16E-5

Division 22.65E-5
Exponentiation 118.67E-5

Comparison 2.61E-5

Next, the power dissipation for the different schemes is

found by combining the number of operations (as per Table 5)
with their power dissipation (as per Table 6). Results for each
dataset considered are also shown in Table 5; even though the
proposed SNRC technique introduces some operations to
perform the comparison (as discussed previously), the power
saving in terms of re-computation is significantly large. This is
because, the saved operations (for example exponentiation) are

complex while the introduced operations (mostly comparison
or subtraction) are simple and thus the savings are significantly
larger that the incurred overhead. As per Table 5, the SNRC can
reduce 81.66% power dissipation on average for the datasets
considered.

VI. EXTENDING SNRC TO ANNS WITH OTHER FUNCTIONS
As discussed before, another widely used activation function
for the hidden layer in an ANN is the tanh function; it is an
extended version of the sigmoid and is given by Eq. (5).

 𝑡𝑎𝑛ℎ(𝑥) = (-,(!-

(-'(!-
= 2 ∙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1 (5)

Since the tanh function generates a similar shape as the
sigmoid function, then these functions achieve a similar
classification accuracy; this has been verified in Table 7 by
utilizing the same datasets, where n is the number of neurons in
the hidden layer (note that as the activation function has been
changed, then the number of neurons in the hidden layer
determined during the training process may be different).
However, as per Eq. (5), the tanh function generates a larger
value range of (-1, +1), this makes the network to have a slower
convergence saturation speed and thus, a higher training
efficiency when using the BP algorithm.

The proposed SNRC technique is also applicable for an
ANN using tanh as activation function. As per similar
reasoning to one for the sigmoid function, computational errors
that modify the value of a neuron in the hidden layer, can only
change the value of R (as Eq. (4)) with a limited magnitude of
(−|𝑤%*+$ |,+|𝑤%*+$ |). Therefore, the classification result can be
identified as reliable when any of the following constraints is
met.

1) |𝑅| > |𝑤%*+$ |: the reason is the same as for the case in
which the sigmoid function is used; the sign of R does
not change by Type 1 errors, so the classification result
is reliable.

2) R and 𝑟" =	𝑤"$ ∙ ℎ" have the same sign and |𝑅| ≥
>𝑤"$> + >𝑟">: in this scenario, the sign of R also remains
the same as the error-free case, because Type 1 errors
change the value of a neuron with a worst-case
magnitude of >𝑤"> + >𝑟">.

TABLE 7
Results for ANN with Different Activation Functions

Dataset
n Highest accuracy Percerr Re-computation saving

sigmoid tanh sigmoid tanh sigmoid tanh sigmoid tanh
Pima Indians diabetes 17 17 79.57% 79.57% 10.66% 14.31% 73.61% 77.34%

EEG eye state 37 37 73.68% 74.25% 35.02% 27.63% 63.93% 38.02%
Sonar 126 126 93.55% 91.94% 3.19% 3.69% 91.96% 93.00%

Ionosphere 146 146 95.28% 96.23% 1.28% 1.10% 96.64% 98.64%
Electrical grid stability simulated data 30 30 99.77% 99.80% 3.18% 3.62% 97.79% 98.84%

Banknote authentication 11 11 100.00% 100.00% 8.66% 5.27% 93.09% 95.50%
Qualitative bankruptcy 29 29 100.00% 100.00% 2.11% 2.77% 99.46% 98.53%

Phishing websites 91 91 95.52% 95.66% 1.68% 1.94% 97.68% 97.03%
Climate model simulation crashes 84 84 98.15% 98.15% 0.93% 1.02% 98.97% 98.93%

Cervical cancer (risk factors) 139 139 92.64% 92.64% 0.80% 0.50% 99.40% 99.85%
Statlog (German credit data) 61 60 75.67% 75.67% 4.96% 3.65% 90.78% 94.45%

Average - - 91.26% 91.26% 6.59% 5.95% 91.21% 90.01%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

3) R and rj have different signs and |𝑅| ≥ >𝑤" − 𝑟">: same
as the case in which the sigmoid function is used, errors
in this scenario have no impact on the classification
result.

Therefore, to implement the SNRC scheme for an ANN with
the tanh function, Algorithm 1 can be employed by simply
modifying step 17 to “elseif (𝑅 ∙ 𝑟" > 0 and |𝑅| ≥ >𝑤"> + >𝑟">)
or (𝑅 ∙ 𝑟" < 0 and |𝑅| ≥ >𝑤" − 𝑟">)”.

The robustness of the unprotected ANN with the tanh
function and the efficiency by employing the SNRC scheme to
protect the network, are evaluated by using the same error
injection method as in the previous section, but with an error
magnitude of (-1, +1). As per the results presented in Table 7,
the percentage of errors that modify the classification results
(i.e., Percerr) of the unprotected ANN with the tanh function, is
on average slightly lower than for the sigmoid function; the
SNRC scheme also works efficiently by achieving an average
reduction of re-computation with more than 90%, even if it is
slight lower than using the sigmoid function.

It is important to note that the proposed SNRC technique is
applicable to all activation functions that have bounded values
(e.g., sigmoid and tanh). However, it cannot be used for
activation functions that are not bounded, because in such case,
the classification result cannot be determined to be reliable; this
occurs, because an error modifying a single neuron
computation can generate a large deviation in the final result.
Therefore, SNRC is not applicable for example, to ReLU as an
activation function that is usually employed for deeper ANNs
(so having more than one hidden layer) due to its training
efficiency, because it can take values from zero to positive
infinity. However, ANNs with a more complex structure tend to
be more error resilient than an ANN with only one hidden layer,
because there are more neurons and errors changing a neuron
tend to have a smaller impact on the classification result.

A further observation is that complex ANNs can be
efficiently protected with Symptom-based Error Detection
(SED) [9]; SED keeps track of the maximum observed value at
the output of a neuron during training and uses it with some
margin to trigger error detection when using the ANN.
Therefore, if the maximum value is exceeded during the
inference process, a potential error is detected. Interestingly,
SED is not effective when sigmoid or tanh functions are used,
because the output values under normal operation tend to be
close to the maximum due to the saturation of these functions
for large input values. This has been verified by simulation; the
results are shown in Table 8. Table 8 gives the percentage of
detectable errors modifying the classification results when
using SED to protect an MLP with the sigmoid/tanh function.
As per Table 8, only less than 20% errors on average can be
detected; therefore, SED is best suitable for deeper ANNs, but
not for MLP and the datasets considered in this paper.

VII. CONCLUSION
This paper has presented an efficient error-tolerant technique
for protecting Artificial Neural networks (ANNs) against
computational errors in the neurons. Errors that modify the
value of the neurons can change the predicted class when the
ANN is used to perform a classification task. Therefore, when

ANNs are used in many safety-critical applications and
implemented in resource-constrained platforms, efficient
protection schemes are needed. This has motivated the design
of the proposed Selective Neuron Re-Computation (SNRC)
technique by exploiting the inherent redundancy of an ANN.

As per the magnitude of the errors in an ANN with the
sigmoid or tanh as activation function, SNRC performs several
checks on the internal computation results and the weights in
the ANN implementation to identify the correctness of the
classification result. In particular, the neurons for which an
error can affect the final classification outcome, are readily
identified; then, the re-computation operations are only
executed for these neurons, so significantly reducing the
re-computation overhead.

The impact of computational errors in an ANN with a single
hidden layer and using sigmoid as activation function has been
evaluated using a wide range of datasets; results have shown
that the percentage of errors that modify the classification
results, is up to 35.02%. The effectiveness of the SNRC has
also been assessed for the considered datasets; results have
shown that compared with the current temporal
redundancy-based protection, SNRC significantly reduces the
protection overhead (in particular, saving more than 60%
re-computation for the neurons in all cases and 90% for most of
the datasets, which translates to 81.66% saving in power
dissipation on average). The case of employing SNRC to an
ANN with the tanh function has also been analyzed and
evaluated; it can also achieve a significant reduction for
re-computation. Overall, the proposed SNRC technique
efficiently protects ANNs with sigmoid/tanh as activation
functions (so usually shallow ANNs).

REFERENCES
[1] S. Das, A. Dey, A. Pal, et al., “Applications of Artificial Intelligence in

Machine Learning: Review and Prospect”, International Journal of
Computer Applications, vol.115, no.9, pp.31-41, 2015.

[2] C. Szegedy, W. Liu and Y. Jia, “Going Deeper with Convolutions,
Computing Research Repository,” in Proc of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proc of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770-778. 2016.

TABLE 8
Percentage of Errors Modifying the Classification Results that can be

Detected by Using Symptom-based Error Detection (SED)

Dataset sigmoid Tanh

Pima Indians diabetes 16.10% 36.04%
EEG eye state 15.20% 25.24%

Sonar 20.85% 34.62%
Ionosphere 10.32% 10.33%

Electrical grid stability simulated data 0 0.04%
Banknote authentication 0.06% 1.65%
Qualitative bankruptcy 0.07% 5.94%

Phishing websites 0.99% 0.75%
Climate model simulation crashes 1.42% 4.97%

Cervical cancer (risk factors) 40.00% 79.78%
Statlog (German credit data) 8.21% 10.04%

Average 10.29% 19.04%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

[4] E. Khadangi, A. Bagheri, “Comparing MLP, SVM and KNN for
Predicting Trust Between Users in Facebook”, in ICCKE, pp. 466-470,
2013.

[5] C. Deng, S. Liao, B. Yuan, “PERMCNN: Energy-Efficient Convolutional
Neural Network Hardware Architecture with Permuted Diagonal
Structure”, IEEE Transactions on Computers, 2020 (Early Access).

[6] E. Nurvitadhi, D. Sheffield, J. Sim, et al, “Accelerating Binarized Neural
Networks: Comparison of FPGA, CPU, GPU, and ASIC”, in IEEE
International Conference on Field-Programmable Technology (FPT), pp.
77-84, 2016.

[7] C. Wang, L. Gong. X. Ma, et al, “WooKong: A Ubiquitous Accelerator
for Recommendation Algorithms with Custom Instruction Sets on FPGA”,
IEEE Transactions on Computers, vol. 69, no. 7, pp. 1071-1082, 2020.

[8] X. Wang, M. Magno, L. Cavigelli, et al, "FANN-on-MCU: An
Open-Source Toolkit for Energy-Efficient Neural Network Inference at
the Edge of the Internet of Things," in IEEE Internet of Things Journal,
vol. 7, no. 5, pp. 4403-4417, 2020.

[9] G. Li, H. Siva and S. Michael, “Understanding Error Propagation in Deep
Learning Neural Network (DNN) Accelerators and Applications,” in Proc
of the International Conference for High-Performance Computing,
Networking, Storage and Analysis (SC), 2017.

[10] P. Koopman, M. Wagner, “Autonomous Vehicle Safety: An
Interdisciplinary Challenge”, IEEE Intelligent Transportation Systems
Magazine, vol. 9, no. 1, pp. 90-96, 2017.

[11] N. Kanekawa, E.H. Ibe, T. Suge, et al., “Dependability in Electronic
Systems”, Springer Science & Business Media, New York, 2011.

[12] J. Marques, J. Andrade and G. Falcao, “Unreliable Memory Operation on
a Convolutional Neural Network Processor,” in Proc of the IEEE
International Workshop on Signal Processing Systems. Lorient. France,
2017.

[13] D. S. Phatak and I. Koren, “Complete and Partial Fault Tolerance of
Feedforward Neural Nets,” IEEE Transactions on Neural Networks, vol.
6, no. 2, pp. 446-456, 1995.

[14] M. D. Emmerson and R. I. Damper, “Determining and Improving the
Fault Tolerance of Multilayer Perceptrons in a Pattern-Recognition
Application,” IEEE Transactions on Neural Networks, vol. 4, no. 5, pp.
788-793, 1993.

[15] J. L. Bernier, J. Ortega and I. Rojas, “Improving the Tolerance of
Multilayer Perceptrons by Minimizing the Statistical Sensitivity to
Weight Deviations," Neurocomputing, vol. 31, pp. 87-103, 2000.

[16] S. Cavalieri and O. Mirabella, “A Novel Learning Algorithm Which
Improves the Partial Fault Tolerance of Multilayer Neural Networks,”
Neural Networks, vol. 12, no. 1, pp. 91-106, 1999.

[17] B. S. Arad and A. El-Amawy, “On Fault Tolerant Training of
Feedforward Neural Networks,” Neural Networks, vol. 10, no. 3, pp.
539-553, 1997.

[18] I. Oz and S. Arslan, "A Survey on Multithreading Alternatives for Soft
Error Fault Tolerance", in ACM Computing Surveys, vol. 52, 2019.

[19] M. Biasielli, C. Bolchini, L. Cassano, et al, “A Neural Network Based
Fault Management Scheme for Reliable Image Processing”, IEEE
Transactions on Computers, vol. 69, no. 5, pp. 764-776, 2020.

[20] F. Rosenblatt, “The Perceptron: A probabilistic Model for Information
Storage and Organization in the Brain”, Psychological Review, vol. 65,
no. 6, pp. 386-408, 1958.

[21] Y. Liu, S. Liu, Y. Wang, et al, “A Stochastic Computational Multi-Layer
Perceptron with Backward Propagation”, IEEE Transactions on
Computers, vol. 67, no. 9, pp. 1273-1286, 2018.

[22] E. A. M. Shenouda, “A Quantitative Comparison of Different MLP
Activation Functions in Classification”, in Proceedings of the Third
international conference on Advances in Neural Networks” pp. 849–857,
2006.

[23] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo and T. Toba, “Impact of
Scaling on Neutron-Induced Soft Error in SRAMs from a 250 nm to a 22
nm Design Rule”, IEEE Transactions on Electron Devices, vol. 57, no. 7,
pp. 1527-1538, 2010.

[24] I. Chatterjee, B. Narasimham, N. N. Mahatme, et al, “Impact of
Technology Scaling on SRAM Soft Error Rates”, IEEE Transactions on
Nuclear Science, vol. 61, no. 6, pp. 3512-3518, 2014.

[25] C. L. Chen and M. Y. Hsiao, “Error-Correcting Codes for Semiconductor
Memory Applications: A State-of-the-Art Review,” in IBM Journal of
Research and Development, vol. 28, no. 2, pp. 124-134, 1984.

[26] G. Umanesan, E. Fujiwara, “A Class of Random Multiple Bits in a Byte
Error Correcting and Single Byte Error Detecting (S/sub t/b/EC-S/sub
b/ED) codes, IEEE Transactions on Computers, vol. 52, vol. 7, pp.
835-847, 2003.

[27] H. Farbeh, L. Delshadtehrani, H. Kim, et al, “ECC-United Cache:
Maximizing Efficiency of Error Detection/Correction Codes in
Associative Cache Memories”, IEEE Transactions on Computers, 2020
(Early Access).

[28] Intel, “Intel Stratix 10 Embedded Memory User Guide”, [Online]
available: https://www.intel.com/content/dam/www/programmable/us/en
/pdfs/literature/hb/stratix-10/ug-s10-memory.pdf, pp. 1-120, 2019.

[29] Texas Instruments, “DDR ECC Reference Design to Improve Memory
Reliability in 66AK2Gx-Based Systems”, [Online] available:
http://www.ti.com/lit/ug/tidubo4b/tidubo4b.pdf?ts=1588313107130, pp.
1-13, 2018.

[30] M. Nicolaidis, “Design for Soft Error Mitigation”, IEEE Transactions on
Device and Materials Reliability, vol. 5, no. 3, pp. 405-418, 2005.

[31] Y. Ma and H. Zhou, “Efficient Transient-Fault Tolerance for
Multithreaded Processors Using Dual-Thread Execution”, in Proceedings
of the International Conference on Computer Design, pp. 120-126, 2006.

[32] K. Chen, L. Chen, P. Reviriego and F. Lombardi, “Efficient
Implementations of Reduced Precision Redundancy (RPR) Multiply and
Accumulate (MAC),” in IEEE Transactions on Computers, vol. 68, no. 5,
pp. 784-790, 2019.

[33] S. Liu, P. Reviriego, J.A. Hernández, et al., “Voting Margin: A Scheme
for Error-Tolerant k Nearest Neighbors Classifiers”, IEEE Transactions
on Emerging Topics in Computing, 2019 (Early Access).

[34] S. Liu, P. Reviriego, P. Montuschi, et al, "Error-Tolerant Computation for
Voting Classifiers with Multiple Classes," IEEE Transactions on
Vehicular Technology, vol. 69, no. 11, pp. 13718-13727, 2020.

[35] S. Liu, P. Reviriego, X. Tang, et al, “Result-Based Re-Computation (RBR)
for Error-Tolerant Classification by a Support Vector Machine (SVM)”,
IEEE Transactions on Artificial Intelligence, vol.1, no.1, pp. 62-73, 2020.

[36] D. Dua and C. Graff “UCI Machine Learning Repository”, Irvine, CA:
University of California, School of Information and Computer Science,
2019.

[37] R. P. Gorman, T.J. Sejnowski, “Analysis of Hidden Units in a Layered
Network Trained to Classify Sonar Targets. Neural networks, vol. 1, no. 1,
pp.75-89, 1988.

[38] V. G. Sigillito, S. P. Wing, L.V. Hutton, et al., “Classification of Radar
Returns from the Ionosphere Using Neural Networks”, Johns Hopkins
APL Technical Digest, vol. 10, no. 3, pp.262-266, 1989.

[39] V. Arzamasov, K. Bohm, P. Jochem, “Towards Concise Models of Grid
Stability”, in IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (Smart Grid
Comm), pp. 1-6, 2018.

[40] M. J. Kim, I. Han, “The Discovery of Experts' Decision Rules from
Qualitative Bankruptcy Data Using Genetic Algorithms. Expert Systems
with Applications, vol. 25, no. 4, pp. 637-646, 2003.

[41] R. M. Mohammad, F. Thabtah, L. McCluskey, “Intelligent Rule-based
Phishing Websites Classification”, IET Information Security, vol. 8, no. 3,
pp. 153-160, 2014.

[42] D. D. Lucas, R. Klein, J. Tannahill, et al., “Failure Analysis of
Parameter-Induced Simulation Crashes in Climate Models”, in Geosci.
Model Dev. Discuss., vol. 6, pp. 585-623, 2013.

[43] K. Fernandes, J.S. Cardoso and J. Fernandes, “Transfer Learning with
Partial Observability Applied to Cervical Cancer Screening”, Iberian
Conference on Pattern Recognition and Image Analysis, Springer, Cham,
2017.

[44] C. W. Hsu, C. C. Chang and C. J. Lin, “A Practical Guide to Support
Vector Classification” pp.1-16, 2016.

[45] Q. Hu, X. Tang, W. Tang, “A Smart Chair Sitting Posture Recognition
System Using Flex Sensors and FPGA Implemented Artificial Neural
Network”, IEEE Sensors Journal, vol. 20, no. 14, pp. 8007-8016, 2020.

[46] OpenRisc 1200 HP, Hyper Pipelined OR1200 Core, [Online], available:
https://opencores.org/projects/or1200_hp, 2018.

