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Abstract—Artificial Neural networks (ANNs) are widely used 

to solve classification problems for many machine learning 
applications. When errors occur in the computational units of an 
ANN implementation due to for example radiation effects, the 
result of an arithmetic operation can be changed, and therefore, 
the predicted classification class may be erroneously affected. 
This is not acceptable when ANNs are used in many safety-critical 
applications, because the incorrect classification may result in a 
system failure. Existing error-tolerant techniques usually rely on 
physically replicating parts of the ANN implementation or 
incurring in a significant computation overhead. Therefore, 
efficient protection schemes are needed for ANNs that are run on 
a processor and used in resource-limited platforms. A technique 
referred to as Selective Neuron Re-Computation (SNRC), is 
proposed in this paper. As per the ANN structure and algorithmic 
properties, SNRC can identify the cases in which the errors have 
no impact on the outcome; therefore, errors only need to be 
handled by re-computation when the classification result is 
detected as unreliable. Compared with existing temporal 
redundancy-based protection schemes, SNRC saves more than 
60% of the re-computation (more than 90% in many cases) 
overhead to achieve complete error protection as assessed over a 
wide range of datasets. Different activation functions are also 
evaluated. 

 
 

Index Terms—Neural networks, machine learning, sigmoid, 
error-tolerance. 
 

I. INTRODUCTION 
RTIFICIAL Neural Networks (ANNs) are used in machine 
learning to perform supervised and unsupervised learning. 

Based on the structure that models the neural networks in the 
human brain, ANNs simulate the brain to perform particular 
tasks; they have been applied in a wide range of areas, such as 
image classification of vehicles and medical diagnosis or 
anomaly detection in networks [1]. 

 ANNs are typically arranged as a number of layers of 
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neurons that connect the inputs (or features) to the outputs. 
Initially, only two layers of neurons (one for the inputs and 
another for the outputs) have been used. This however limits 
the ability of the ANN to discriminate data that is linearly 
separable in the feature space. To deal with more complex 
problems, additional layers of neurons are usually needed; 
these layers are commonly referred to as hidden layers. For 
example, a large number of layers are used in Convolutional 
Neural Networks (CNNs) that are widely used for image 
classification [2], [3]. The Multi-Layer Perceptron (MLP) that 
uses just a single hidden layer can also provide good results for 
many simpler classification problems, while achieving in most 
cases, a higher accuracy than other classifiers, such as the k 
Nearest Neighbors (kNNs) or Support Vector Machines (SVMs) 
[4]. Since the number of layers affects the computational 
complexity of the ANNs and greatly influences the platform 
used for implementation, MLP is very attractive for 
resource-constrained systems, such devices for the Internet of 
Things (IoT).  

ANNs with a small number of neurons (e.g., MLP) can be 
implemented in software running on a processor and achieving 
a reasonable speed. However, ANNs that have many hidden 
layers (e.g., CNN) and thus neurons, are computationally 
expensive, so usually taking a long time for computation when 
implemented in software. In recent years, acceleration of ANNs 
using FPGAs or even dedicated ASICs has been widely 
investigated [5]-[7]. Accelerators are needed in systems in 
which complex ANNs are used to perform many classifications 
per second. However, for simpler ANNs or when the number of 
classifications to be performed is small, software 
implementations are attractive, because they provide additional 
flexibility and do not incur in additional hardware for 
acceleration [8]. 

Reliable operation is an important aspect of ANNs, 
especially when they are used in safety-critical applications [9], 
[10]. Regardless of the platform used for implementation, an 
ANN can be affected by several errors or failures [11]. For 
example, when a radiation particle hits an electronic device, it 
can cause several effects, ranging from permanent damage to 
soft errors. Radiation can come from the environment, but also 
from the material used to manufacture the integrated circuit. 
Environmental radiation is a major issue for devices that 
operate in harsh environments like space, but it also causes soft 
errors on terrestrial systems. So, when a particle strikes the 
device, extra charge is generated; this may modify the voltage 
of a node, upsetting a value stored in the storage units (i.e., the 
single bit upset effect), or introducing an unexpected current 
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pulse in combinational circuits (i.e., the single bit transient 
effect). These errors can lead to data corruption and eventually 
system failure. If errors occur in the inference process of an 
ANN, they can change the value of a neuron, or the stored 
parameters in the memories of the ANN [12]; therefore, errors 
may have an impact on the final result (e.g., the predicted class 
when an ANN is used for classification). To ensure that the 
ANN continues to operate correctly in the presence of errors, an 
error-tolerant design is therefore needed. 

Error/fault tolerance of ANNs has been widely studied; 
critical connections (so, with larger weights) have been shown 
to be more prone to lead to an incorrect output in the event of an 
error, thus modifications for the larger weights have been 
extensively treated in the technical literature. For example, in 
[13], [14] the connections with large weights are replaced by 
duplicated connections, but each with half of the weight to 
reduce the impact of an error. Other schemes try to reduce the 
impact of connections with large weights during the training 
phase, because often they significantly affect the classification 
result [15], [16]. Another approach to achieve error tolerance 
[17] has introduced errors during the training phase, such that 
the ANN has been trained to correct them. Selective hardening 
of critical hardware in ANN implementations (such as latches) 
has also been proposed [9]. However, these protection solutions 
usually need to change either the algorithm, or the 
implementation of the ANN, so not desirable when the ANN 
implementation is fixed and used for inference. An alternative 
that does not need to change the algorithm is based on temporal 
redundancy (TR); it computes the classification result of the 
ANN twice to detect errors and a third time when needed to 
correct them [18]. However, this scheme always incurs in a 
significant computation overhead, because it needs at least to 
double the number of operations. A fault management scheme 
of [19] can reduce the re-execution overheads, but it is applied 
to CNNs used in some applications that can tolerate a specific 
degree of inexactness (e.g., image processing). Another 
technique [9] (implemented in software) detects potential errors 
by checking if the output of the neurons exceeds the maximum 
value observed during error-free operation. This incurs in a low 
protection overhead when applied to deep ANNs, but it cannot 
detect all errors and thus, it only provides partial protection in 
shallow NNs (this aspect will be discussed and assessed in a 
latter section of this paper).  

In this paper, the protection of ANNs implemented in 
software (so running on a processor) is studied; in particular, 
the improvement of a TR-based scheme as baseline is 
considered. The analysis of the ANN and its algorithmic 
properties is utilized to propose Selective Neuron 
Re-Computation (SNRC) as an efficient scheme that can 
reduce the re-computation overhead for error detection, while 
ensuring a reliable result. The scheme has been evaluated on 
several publicly available datasets; the results show that for 
most datasets, a significant reduction in the re-computation 
effort is achieved. 

The rest of this paper is organized as follows. Section II 
introduces Artificial Neural Networks (ANNs); computational 
and storage errors in the implementation and commonly used 
error-tolerant techniques are also reviewed.  In Section III, the 
error model considered in this paper is discussed; then the 
proposed technique, namely Selective Neuron Re-Computation 

(SNRC), is discussed in Section IV to efficiently handle 
computational errors in the inference process of ANNs. The 
effectiveness of the proposed technique is then evaluated and 
compared with traditional solutions in Section V using 
simulation; the extension of SNRC for ANNs with different 
activation functions is discussed in Section VI. Finally, the 
paper ends in Section VII with the conclusion.  

II. PRELIMINARIES 
This section first provides a brief description of ANNs; then 
errors in the computation process for neurons in each layer and 
their impact on the classification result are discussed. 

A. Artificial Neural Networks (ANNs)  
The human brain is composed of neurons that are connected 
through synapses for transferring signals between them to form 
so-called neural networks. Neurons are also modeled in ANNs 
as the basic computation unit. The initial ANNs (i.e., the 
so-called perceptron) were proposed in 1958; they consist of 
two connected layers of neurons: the input and output layers 
[20]. In a perceptron, neurons in the input layer only transfer 
information, while neurons in the output layer perform 
computation on the information received from the input layer 
by considering different importance features (i.e., weights) of 
the information transferred from different neurons. The 
perceptron is also referred to as a single neural network and the 
weights can be trained to achieve good performance in the 
learning process under a simple linear classification. However, 
many types of empirical data are not linearly separable in the 
feature space, then single neural networks have been extended 
by adding a hidden layer between the input and output layers; in 
this scheme, the inputs can be analyzed in a higher dimensional 
space and complex non-linear issues can then be solved. This 
improved network is known as the Multi-Layer Perceptron 
(MLP) [21]; by utilizing a learning algorithm, such as 
Backward Propagation (BP), the computational complexity 
incurred by the extra hidden layer, is significantly reduced, so 
making MLP widely used to perform non-linear classification 
tasks. Although different neural networks with more hidden 
layers have been proposed (e.g., CNNs) to improve 
performance, MLP still remains attractive for many 
applications when taking into account both complexity and 
implementation issues. 

Figure 1 shows an MLP that has the input layer, one hidden 
layer, and the output layer; the neurons in the input (hidden) 

 
 
Figure 1 An MLP with one hidden layer. 
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layer are denoted as {xi} ({hj}), where i = 1, 2, …, m (j = 1, 2, …, 
n), and y is the neuron in the output layer. 𝑤!"#  is the weight of 
neuron xi in the first layer (i.e., the input layer) to neuron hj in 
the second layer (i.e., the hidden layer), and 𝑤"$ is the weight of 
neuron hj in the hidden layer to the output; these weights are 
used to connect the neurons in neighboring layers. A bias unit 
(always storing a “1”) exists in the input and hidden layers and 
its weight is given by bl, where l is 1 (2) for the bias in the input 
(hidden) layer.  

In general, the size of the input layer is equal to the valid 
feature dimension of the dataset, and the inputs are the 
normalized features. For each neuron in the hidden and the 
output layers, its value is calculated in two steps: i) a temporary 
value is calculated based on the neurons in the previous layer 
and the corresponding weights and bias; ii) the value is then 
compressed into a so-called specific scope by using a 
non-linear activation function Φ. There are several activation 
functions for handling different types of data and layers, such as 
the sigmoid function, the tanh function, the rectifier (ReLU) 
function and the softmax function. For binary classification, the 
sigmoid function can be utilized for both the hidden and the 
output layers, mapping any positive value or zero to the result 
in [0.5, 1) and any negative value to (0, 0.5). The sigmoid 
function has been shown to be well suited for MLP [22]. The 
computation process for a neuron in the hidden layer when 
using sigmoid as activation function is illustrated in Figure 2; 
computation in steps i) and ii) is given by Eqs. (1) and (2), 
respectively. The computation for the neuron in the output layer 
is similar; so, by feeding the neurons in the hidden layer, a 
sigmoid mapping is performed on the output neuron to obtain 
the final result (given in Eq. (3)). Since the sigmoid function 
always generates a value from 0 to 1, the output neuron with a 
value that is smaller than 0.5 refers to a class; when it is larger 
than or equal to 0.5, it refers to another class when the NN is 
used to compute a binary classification.   

 𝑧"(𝑥) = ∑ 𝑤!"# ∙ 𝑥!%
!&# + 𝑏# (1) 

 ℎ" = Φ-𝑧". = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑-𝑧". =
#

#'(!"#
 (2) 

 𝑦 = Φ-ℎ". =
#

#'(
!∑ %#

&∙(#
)
#*+ !,&

 (3) 

 

 
 

Figure 2 Computation for a neuron in the hidden layer. 
  

B. Computational Errors and Protection 
In a computing system, data processing and storage are prone to 
suffer different types of errors, such as for example 
radiation-induced soft errors [23], [24]. Errors in the 

computational units (referred to as computational errors in this 
paper) can modify the result of an operation (such as an 
arithmetic calculation), while errors in the memory elements 
(referred to as storage errors in this paper) can flip the stored 
data, causing data corruption; both these types of errors may 
lead to a system failure. Therefore, error-tolerant techniques are 
required to guarantee the integrity of a computing system, 
especially in many safety-critical applications.  

Memories can be efficiently protected by utilizing error 
correction codes (ECCs) against storage errors [25]-[27]; 
through computing several ECC parity bits (as per the ECC 
encoding algorithm) and storing them with the original data, 
errors on each memory word can be detected or corrected as per 
the ECC decoding algorithm. Many memory/System-on-Chip 
products incorporate an appropriate ECC into the chip to 
provide protection against some storage errors [28], [29]; for 
example, Hamming codes, which can correct a single bit error 
at a low cost, are commonly used. 

Redundancy is usually introduced to protect the 
computational units; this can be implemented spatially or 
temporally [30], [31]. In Spatial Redundancy (SR) based 
schemes, the circuit being protected is duplicated and the two 
outcomes are compared to detect errors in one of the replicated 
circuits. If needed, the original circuit is triplicated, then a 
majority voting among the three results is performed to 
guarantee a correct result. However, the hardware overhead 
incurred by SR-based techniques is rather large; it is more than 
100% for error detection and at least 200% for error correction 
(due to the replication and the comparison logic). An 
alternative solution is Reduced Precision Redundancy (RPR) 
[32]. RPR uses multiple replicated copies with reduced 
precision (by truncating some least significant bits) and only 
one circuit with full precision; hence, the overhead can be 
reduced by sacrificing protection against some errors on the 
truncated bits. However, SR-based protection approaches 
cannot be implemented when the program is run on a processor 
or microcontroller, in which the hardware cannot be modified. 
In this case, temporal redundancy is generally utilized. Since 
computational errors are mostly transient and non-frequent, 
they are unlike to occur again when the program is run for a 
second time. Therefore, errors can be detected by 
re-computation of the program and then comparing the two 
output results; the computation is error-free if the two results 
fully match, otherwise an error is detected, and a third 
re-computation must be performed to obtain the correct result 
through majority voting. Similar to the SR-based approaches, 
the additional computational requirements (e.g., total execution 
time and power consumption) are rather severe for error 
detection/correction; these large overheads are unlikely to be 
viable when Machine Learning (ML) algorithms are used in 
resource-limited platforms, such in IoT devices.  

Recently, algorithm-based error tolerance (ABET) has been 
proposed to protect some ML classifiers against computational 
errors; these techniques exploit the intrinsic redundancy of ML 
algorithms to achieve error-tolerance, thus significantly 
reducing the overall protection overhead. For example, the 
so-called Voting-Margin (VM) scheme (presented in [33]) 
protects kNNs against computational errors in the distance 
computation. As the classification result is reliable when voting 
among the set of kNNs has a margin, errors need to be detected 
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only when there is no VM. This scheme has also been 
investigated for kNNs and other ensemble classifiers, in 
particular Random Forests (RFs), when used for multiple 
classification tasks [34]; the work of [34] has shown that RFs 
are intrinsically robust under errors because in such classifiers, 
each single voter (e.g., a decision tree) performs the first round 
classification and then the results of multiple voters are used to 
perform a second round classification, making most errors 
unlikely to change the final result. However, RFs typically 
incur in a significant implementation overhead due to the large 
number of trees. Another ABET scheme known as Result 
Based Re-computation (RBR), has been proposed in [35] to 
protect the Support Vector Machine (SVM) against 
computational errors in the kernel function. RBR determines 
the conditions by which the kernel function for a given support 
vector must be re-computed based on the magnitude of the error; 
therefore, only the errors that introduce a deviation in the final 
result and then modify the predicted class, must be detected and 
corrected by re-computation. A principle similar to RBR is then 
applied in this paper to propose a protection scheme for ANNs; 
it only needs to perform re-computation for some neurons, 
while ensuring that the classification result is correct. This will 
be discussed in the following sections. 

III. ERROR MODEL 
When using the sigmoid function in ANNs for binary 
classification, the proposed error-tolerant scheme is based on 
the observation that when an error occurs, if neuron y in the 
output layer has a value that is in the same range (0, 0.5) or [0.5, 
1) as the original error-free value, then the error has no impact 
on the classification result, i.e.: 

� If y < 0.5 in the error-free case, errors causing y_err < 0.5 
(where y_err is the incorrect output neuron) cannot 
change the predicted class for the input data; 

� If y ≥ 0.5 in the error-free case, the classification result 
is always reliable for errors causing y_err ≥ 0.5. 

The computational errors in the implementation of the 
considered network in this paper are classified in the following 
two types: 

� Type 1 errors that occur during the computation of a 
neuron in the hidden layer; 

� Type 2 errors that occur during the computation of a 
neuron in the output layer. 

Each type of error can be caused by the incorrect 
computation in three possible operations; a Type 1 error is 
illustrated in Figure 3 as an example. In Figure 3, error a) 

occurs in the multiplication by the weight, error b) occurs in the 
sum of the inputs to the neuron, and error c) occurs during the 
sigmoid mapping.  

IV. SELECTIVE NEURON RE-COMPUTATION (SNRC) 
Since the sigmoid function always generates a value from 0 to 1 
(i.e. (0, 1)), the incorrect value of the neuron in the hidden layer 
(caused by computational errors) also belongs to (0, 1) 
(incorrect values exceeding the scope are marked as invalid in 
the processor); this is the case for Type 1 errors occurring from 
all three sources (i.e., errors a), errors b) and errors c)). 
Therefore, a change of the neuron in the hidden layer affected 
by Type 1 errors is limited in the worst case to 1 (but excluding 
1 as value). Define R as the result obtained in step i of the 
computation for the output neuron (i.e., the value of the 
exponential term in Eq. (3) with no sign, so as in Eq. (4)).  

 𝑅 = ∑ 𝑤"$ ∙ ℎ")
"&# + 𝑏$ (4) 

Then, the deviation from the value in the error-free case for 
the incorrect R under Type 1 errors must be limited in 
magnitude to the largest absolute weight of neurons in the 
hidden layer |𝑤%*+$ |; hence, the magnitude of the error is in the 
range (0,	|𝑤%*+$ |). 

Based on this observation, a method similar to the RBR 
scheme of [35] can be applied when computing the output of a 
neuron to determine if either the classification result is reliable, 
or some parts must be selectively recomputed. For example, the 
following constraints can be checked to detect the correctness 
of the classification result in the presence of Type 1 errors: 

1) |𝑅| > |𝑤%*+$ |: since the magnitude change of R due to 
Type 1 errors is limited to (0,	|𝑤%*+$ |), then the value of R 
can be changed bidirectionally with a range from 0 to 
𝑤%*+$ . Therefore, when the condition |𝑅| > |𝑤%*+$ |  is 

 
a)                                                             b) 

 

 
c)                                                             d) 

 
Figure 4 Impact of Type 1 errors that occur during the computation by a neuron 
in the hidden layer in different cases: a) |R| ≥ |wmax|; b) |R| = |wmax|; c) |wmax| ≥ |R| 
≥ |rj| and R ∙ rj ≥ 0; d) |wmax| ≥ |R| ≥ |wj - rj| and R ∙ rj < 0. 

 
Figure 3 Type 1 errors in the computation for a neuron in the hidden layer. 
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met, the value of R always keeps the same sign in the 
presence of Type 1 errors; as illustrated in Figure 4 a), the 
classification result is reliable.  

2) |𝑅| = |𝑤%*+$ |: in this case, the worst-case Type 1 errors 
make the value of R to approach 0 while maintaining the 
same sign; this is illustrated in Figure 4 b). Therefore, the 
classification result is still correct. 

3) |𝑅| < |𝑤%*+$ |: in this case, the worst-case Type 1 errors 
can modify R with a value larger than |𝑅|, changing the 
sign of R; therefore, the classification can be affected by 
errors. However, further checking can be performed to 
identify the correctness of the classification results. 
Similar to the RBR scheme of [35], define r as the sum 
term of R, i.e., 𝑟 = ∑ 𝑤"$ ∙ ℎ")

"&#  and rj as the jth term of 
the sum 𝑟" =	𝑤"$ ∙ ℎ" . For the jth neuron in the hidden 
layer, if R and rj have the same sign (i.e., 𝑅 ∙ 𝑟" ≥ 0) and 

|𝑅| ≥ >𝑟">, then Type 1 errors that change the value of hj 
in the worst case, decrease R with a magnitude of (0, rj) 
and thus they cannot change the sign of R (as illustrated 
in Figure 4 c)). If R and rj have different signs (i.e., 𝑅 ∙
𝑟" < 0) and |𝑅| ≥ >𝑤"$ − 𝑟">, Type 1 errors still have no 
impact on the sign of R, because its value can only be 
changed with a magnitude of (0, 𝑤"$ − 𝑟") in the worst 
case; this is illustrated in Figure 4 d). Therefore, when R 
and rj meet any of these two constraints, the classification 
results can be identified as reliable under Type 1 errors. 

As introduced previously, Type 2 errors occur during the 
mapping from the neurons in the hidden layer to the neuron in 
the output layer; they originate from the three cases of Figure 3 
(but for the output layer neuron), so changing the value of the 
output. These Type 2 errors can be protected by utilizing a 
traditional TR scheme; by implementing Eq. (3) for a second 
(third) time, Type 2 errors can be detected (corrected) based on 
comparison (majority voting). Since the computation for the 
neurons in the hidden layer always accounts for the bulk of the 
implementation of an MLP, then the execution resources 
incurred by TR are reduced (only used for the output layer 
neuron). 

Since there is no need to detect and correct errors when the 
classification result is identified as reliable, the so-called 
Selective Neuron Re-Computation (SNRC) approach is 
proposed by using Algorithm 1. By determining the cases in 
which Type 1 errors may change the classification result, the 
SNRC scheme only introduces re-computation for selective 
neurons in the hidden layer to detect and correct the errors and 
ensure that the inputs to the last neuron in the output layer will 
produce the correct result. Then, the computation for the output 
layer neuron is repeated to handle Type 2 errors, outputting the 
same class predicted by the ANN in absence of errors. This 
significantly reduces the computational overhead compared 
with traditional protection solutions such as TR when applied to 
all neurons. The advantage of the proposed SNRC approach in 
terms of computational resources is evaluated in the next 
section. 

V. EVALUATION 
In this section, different metrics for an ANN are evaluated by 
utilizing several widely used datasets from a public repository 
(details are presented in Table 1) [36]. The datasets have been 
selected to cover a wide range of applications with different 
numbers of elements, features, and classification accuracy, so 
that the results are representative for most scenarios and the 
proposed scheme can be widely used. Initially, the 
classification accuracy by using an ANN is assessed; it is also 
compared with other ML classifiers, in particular, kNNs and 
SVM. Then, the benefits of the proposed SNRC scheme when 
used to protect an ANN against computational errors are 
assessed. Simulations are performed by using Matlab, and 
results are summarized in the following subsections. 

A. Classification Performance 
kNNs is one of the simplest ML classifiers; it is also called lazy 
learning, because no model needs to be trained. When 
performing a classification, the distance from the element being 
classified to every element in the dataset is computed to select 

 
Algorithm 1 Proposed SNRC scheme 
1: Compute Eqs. (1)-(3) to obtain the output y and then the 

classification result C; 
2: Keep h, R and r = w*h; 
3: Find the maximum weight 𝑤!"#$  for neurons in the hidden 

layer; 
4: if |R|≥|𝑤!"#$ | 
5:     Do re-computation for the output neuron to obtain y’ and 

then C’; 
6:     if C = C’  
7:        Output C; 
8:     else 
9:         Do re-computation for the output neuron again to obtain 

y” and C”;  
10:         Do majority voting among C, C’ and C”; 
11:         Output the correct classification result; 
12:     end 
13: else 
14:     for j = 1 to n (# of neurons in the hidden layer) 
15:        if |R|≥|𝑤%$| 
16:            Output hj; 
17:       elseif (𝑅 ∙ 𝑟% > 0 and |𝑅| ≥ )𝑟%)) or (𝑅 ∙ 𝑟% < 0 and   |𝑅| ≥

)𝑤%$ − 𝑟%)) 
18:                Output hj; 
19:        else           
20:              Do re-computation for jth neuron in the hidden layer to 

obtain hj’; 
21:              if hj= hj’; 
22:                   Output hj; 
23:                else 
24:                   Do re-computation for jth neuron in the hidden layer 

again to obtain hj”; 
25:                   Do majority voting among hj, hj’, hj”; 
26:                   Output the correct hj; 
27:                end 
28:       end 
29:     end 
30:     Compute Eq. (3) twice by using the correct h; 
31:     Compare and vote if needed as per steps 6-11 to output the 

correct classification result; 
32: End 
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the neighbors. Once the set of kNNs is determined, a majority 
voting is performed among the classes of the neighbors to 
predict the class for the new element. Instead, the classification 
procedure when using an SVM is more complex; a decision 
hyperplane between the training data with different classes is 
established first and several support vectors are selected to 
pursue a maximum margin in the hyperplane. For the datasets 
that are not linearly separable, kernel functions (e.g, the most 
widely used radial basis function (RBF)) are utilized to map the 
original feature space to a higher dimensional one. Therefore, 
an SVM tends to achieve in most cases a higher classification 
accuracy than a kNNs, because the margin of the hyperplane 

between different classes can tolerate some noisy elements. 
When using an ANN, the features of the element are provided 
as inputs to the network and then activated by using the 
activation function in the next layer; the neurons in the hidden 
layer can be considered as providing a refinement of the 
original features, thus the feature space is also increased, 
leading to a better classification accuracy. 

To compare different classifiers, for each dataset, 70% of the 
elements are selected randomly to generate the classifier (i.e., 
the training) and the remaining 30% are used for testing the 
performance of the classifier (i.e., the testing). Before training 
the model, the commonly used 10-fold cross-validation 

TABLE 1 
 Datasets Evaluated for Classification 

Dataset Application # Elements # Features 

Pima Indians diabetes Medicine 768 8 
EEG eye state Medicine 14980 14 

Sonar [37] Physics 208 60 
Ionosphere [38] Physics 351 34 

Electrical grid stability simulated data [39] Electricity 10000 13 
Banknote authentication Business 1372 4 

Qualitative bankruptcy [40] Business 250 6 
Phishing websites [41] Computer 2456 30 

Climate model simulation crashes [42] Physics 540 17 
Cervical cancer (risk factors) [43] Medicine 858 36 

Statlog (German credit data) Business 1000 20 
 

TABLE 2 
Performance of ANN, SVM, and kNNs for Different Datasets 

Dataset 

ANN SVM kNNs 

n CA AA of 
TP&TN 

F1-score C 𝜸 
# 

SVs 
CA AA of 

TP&TN 
F1-score k CA AA of 

TP&TN 
F1-score 

Pima Indians 
diabetes 17 79.57% 74.18% 77.97% 20.1 2-6.2 322 78.70% 72.91% 77.14% 19 76.52% 70.35% 75.23% 

EEG eye 
state 

37 73.68% 73.10% 74.61% 212.0 2-1.0 3253 63.95% 65.14% 68.99% 3 69.45% 69.20% 69.98% 

Sonar 126 93.55% 93.31% 93.55% 22.2 2-5.1 125 91.94% 91.38% 92.06% 3 85.48% 84.90% 86.15% 
Ionosphere 146 95.28% 91.07% 91.80% 24.5 2-4.0 108 93.40% 95.51% 95.30% 11 87.74% 82.14% 84.85% 

Electrical 
grid stability 

simulated 
data 

30 99.77% 99.72% 99.72% 210.0 2-10 241 99.47% 99.28% 99.28% 19 94.20% 92.62% 93.04% 

Banknote 
authenti- 

cation 
11 100.00% 100.00% 100.00% 20.1 2-3.0 103 100.00% 100.00% 100.00% 7 100.00% 100.00% 100.00% 

Qualitative 
bankruptcy 29 100.00% 100.00% 100.00% 20.1 2-3.4 66 100.00% 100.00% 100.00% 3 98.67% 98.65% 98.67% 

Phishing 
websites 91 95.52% 95.69% 95.64% 25.0 2-5.0 338 94.84% 94.97% 94.93% 5 92.81% 92.91% 92.86% 

Climate 
model 

simulation 
crashes 

84 98.15% 92.21% 92.69% 25.2 2-8.6 72 98.77% 99.35% 99.35% 5 96.30% 77.60% 81.41% 

Cervical 
cancer (risk 

factors) 
139 92.64% 59.37% 70.85% 24.0 2-9.0 120 92.64% 52.50% 67.80% 5 92.25% 50.00% 66.67% 

Statlog 
(German 

credit data) 
61 75.67% 63.11% 71.02% 23.9 2-9.0 382 73.00% 64.39% 70.00% 9 72.00% 59.04% 68.04% 

Average - 91.10% 85.61% 87.99% - - - 89.70% 85.04% 87.71% - 87.77% 79.76% 83.35% 
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methodology is used to select the parameters of the classifiers 
to achieve a good performance, i.e., the number of nearest 
neighbors k in a kNNs, the penalty parameter C and the kernel 
parameter 𝛾 in an SVM, and the number of neurons n in the 
hidden layer in the MLP considered in this paper. The training 
dataset is split into 10 subsets of equal size first and then, 
different values of the parameters are checked to find the best 
cross-validation accuracy. When choosing the parameters, the 
candidate values for k in a kNNs are selected as odd numbers 
from 3 to 19,  for C and 𝛾 in an SVM the various pairs of (C,	𝛾) 
values from C = 2-5, 2-4, …, 215 and	𝛾 = 2-15, 2-14, …, 2-3 or a 

close range as suggested in [44], and for n in the MLP, 2-6 
times the number of features (i.e. the number of neurons in the 
input layer) as proposed in [45].  

For each dataset given in Table 1, three widely used 
classification related metrics, including the classification 
accuracy (CA) found by employing the trained parameters (i.e., 
n, C, 𝛾 , and k), the average accuracy of true-positive and 
true-negative (denoted as AA of TP&TN) and the F1-score, are 
presented in Table 2; the results confirm that on average an 
ANN provides a better classification performance than SVM 
and kNNs as discussed previously.  

 
Figure 6 Percentage of errors that modify the classification results (Percerr) for 
different number of neurons in the hidden layer (results for the optimal number 
of neurons are also included). 
 
 

TABLE 3  
Percentage of Errors that Change the Classification Results 

Dataset Unprotected ANN Unprotected SVM Unprotected kNNs 

Pima Indians diabetes 10.66% 10.12% 1.81% 
EEG eye state 35.02% 49.70% 6.79% 

Sonar 3.19% 17.33% 8.21% 
Ionosphere 1.28% 11.35% 1.90% 

Electrical grid stability simulated data 3.18% 48.44% 0.97% 
Banknote authentication 8.66% 0.82% 0 
Qualitative bankruptcy 2.11% 1.67% 0.77% 

Phishing websites 1.68% 18.59% 1.49% 
Climate model simulation crashes 0.93% 40.96% 2.20% 

Cervical cancer (risk factors) 0.80% 36.54% 0.01% 
Statlog (German credit data) 4.96% 39.95% 2.17% 

Average 6.59% 25.04% 2.39% 
 

 
Figure 5 Classification accuracy for different number of neurons in the hidden 
layer (results for the optimal number of neurons are also included). 
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B. Robustness Under Computational Errors 
Prior to analyzing the effectiveness of the proposed scheme, the 
robustness of the unprotected classifiers in the presence of 
errors is assessed first (where a classifier is said to be robust if 
errors have no impact on the classification result). Since the 
distance computation (kernel computation) accounts for the 
bulk of the kNNs (SVM) implementation, computational errors 
modifying a distance (the kernel result for a support vector) are 
considered; for an ANN, the impact of Type 1 and Type 2 
errors (affecting the value of one neuron in the hidden layer or 
the output layer as discussed in Section III) are studied. Such 
errors are injected in the classifiers as detailed next; the process 
of each error injection is repeated 100,000 times to calculate the 
average value. Furthermore, the following features are 
considered for the errors: 
Error position: errors are assumed to be uniformly distributed, 
i.e., each distance computed in a kNNs, each kernel result 
computed in an SVM, and each neuron value computed in an 
ANN have the same probability of error occurrence.  
Error magnitude: in a kNNs, the value of the incorrect distance 
is set to a random value within the scope range of (0, dmax] 
where dmax denotes the largest value of all computed distances; 
this permits to deal with all possible cases, because an element 
with an incorrect distance larger than dmax has the same impact 
as an element with a distance of dmax. Similarly, the value of the 
incorrect kernel result in an SVM (with the RBF kernel 
considered) is set to a random value within (0, 1], which is the 
valid range of the RBF kernel result; the value of the incorrect 
neuron in an ANN considered in this paper is also set to a 
random value within (0, 1), because it is within the possible 
range of the sigmoid function. 

Table 3 presents the percentage of errors that change the 
classification results in different classifiers; these results show 
that the unprotected kNNs is more robust than the SVM in all 
cases. This occurs, because in an SVM, the classification result 
is determined by the classes of the selected support vectors; if 
the kernel result for one support vector is affected by errors, 
then the final classification result has a specific probability to 
be changed. Instead, the classification result obtained with a 
kNNs depends on the classes of the neighbors. Since the 
number of neighbors k is always significant smaller than the 
number of elements in the datasets, distance modifying errors 
have a low probability of affecting a neighbor. In an ANN, as 
discussed previously, the features of the element are provided 
as inputs to the network and then activated by using the 
activation function in the next layer, thus the neurons in the 
hidden layer can be considered as a refinement of the original 
features. In this case, errors that change the value of a neuron, 
can be considered as a change of a “feature”, so moving the 
element in a dimension of the feature space. Therefore, the 
impact of errors on the classification result is related to the 
number of neurons in the hidden layer, as well as performance 
in terms of accuracy. This has been verified and shown in 
Figures 5 and 6, that plot the classification and the percentage 
of errors that modify the classification results (i.e., Percerr for 
different number of neurons in the hidden layer. As per Figures 
5 and 6, the impact of errors tends to be smaller with a larger 
number of neurons for all cases (i.e, Percerr decreases); 
moreover, for the datasets with a lower classification accuracy 

(e.g, <80%), such as the Pima Indian diabetes, the impact of 
errors shows an additional trend, namely Percerr decreases when 
the accuracy is higher. 

C. Re-computation Overhead 
When employing the proposed SNRC scheme to protect an 
ANN, errors are analyzed to ensure that the predicted class is 
reliably correct. As discussed before, SNRC can detect the 
cases in which the classification result is not changed by errors. 
This makes SNRC more effective compared to a traditional 
TR-based technique, which always repeats the entire 
computation process, so introducing a large overhead such as 
100% re-computation overhead for detection.  

SNRC is assessed for the datasets of Table 1; the percentage 
of elements for which re-computation for some neurons is 
required, is presented in Table 4. As per Table 4, the SNRC 
scheme saves more than 60% re-computation overhead for all 
considered datasets (in particular, more than 90% for most 
datasets); this occurs, because these datasets either have for 
most elements an absolute R (as per Eq. (4)) larger than the 

 
 
Figure 7 Distribution of |𝑅| for the Cervical cancer (risk factors) dataset with 
|𝑤!"#$ | = 1.08 and |𝑤!%&$ | = 4E-4. 
 

 
 
Figure 8 Distribution of |𝑅| for the EEG eye state dataset with |𝑤!"#| = 129.08 
and |𝑤!%&$ | = 0.05. 
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absolute maximum weight in the hidden layer (corresponding 
to steps 4-7 in Algorithm 1 in Section III), or meet the 
constraints for r to determine a reliable neuron (corresponding 
to steps 15-18 in Algorithm 1). For example, for the Cervical 
cancer (risk factors) dataset with |𝑤%*+$ | = 1.08 and |𝑤%!)$ |= 
4E-4, the distribution for |𝑅| is plotted in Figure 7; it has an 
absolute value larger than |𝑤%*+$ | in most cases. Instead, for the 

datasets with a low reduction of re-computation, such as the 
EEG eye state dataset with |𝑤%*+$ | = 129.08 and |𝑤%!)$ |= 0.05, 
the distribution for |𝑅| is given in Figure 8; in this case, the 
savings come only from the smaller weights, because the 
largest weight is always greater than |𝑅|.  

A further observation is that the effectiveness of SNRC is 
related to the robustness of the unprotected ANN; for datasets 

TABLE 4 
Percentage of Elements for which a Re-computation Operation in ANN, SVM and kNNs can be Saved 

Dataset 

ANN with SNRC 
SVM 
with 
RBR 

kNNs 
with 
VM 

|𝑹| ∈ [|𝒘𝒎𝒂𝒙|, +∞) |𝑹| ∈ [|𝒘𝒎𝒊𝒏|, |𝒘𝒎𝒂𝒙|) |𝑹| ∈ (−∞, |𝒘𝒎𝒊𝒏|) Average 
of 

neurons 
% 

elements 
% 

Neurons 
% 

elements 
% 

neurons 
% 

elements 
% 

neurons 
Pima Indians diabetes 13.91% 100.00% 76.09% 76.40% 10.00% 15.69 % 73.61% 70.82% 90.75% 

EEG eye state 0 100.00% 96.97% 65.93% 3.03% 0 63.93% 7.29% 64.89% 
Sonar 53.23% 100.00% 46.77% 82.81% 0 0 91.96% 64.14% 80.10% 

Ionosphere 78.30% 100.00% 21.70% 84.51% 0 0 96.64% 73.80% 91.69% 
Electrical grid stability simulated data 0 100.00% 100.00% 97.79% 0 0 97.79% 12.44% 96.50% 

Banknote authentication 4.85% 100.00% 95.15% 92.74% 0 0 93.09% 95.58% 100.00% 
Qualitative bankruptcy 92.00% 100.00% 8.00% 93.24% 0 0 99.46% 92.16% 97.31% 

Phishing websites 86.02% 100.00% 13.98% 83.43% 0 0 97.68% 55.04% 90.32% 
Climate model simulation crashes 72.84% 100.00% 27.16% 96.21% 0 0 98.97% 21.20% 91.63% 

Cervical 9cancer (risk factors) 95.35% 100.00% 4.65% 87.17% 0 0 99.40% 29.85% 97.66% 
Statlog (German credit data) 44.00% 100.00% 55.67% 84.04% 0.33% 1.64% 90.78% 23.73% 83.20% 

Average - - - - - - 91.21% 49.64% 89.46% 
 

 

TABLE 5  
Comparison in Number of Re-computation Operations and Power Dissipation for Different Schemes 

Dataset 
Traditional TR Proposed SNRC 

Add Mul Div Exp Power 
(mW) Add Sub Abs Mul Div Exp Comp Power 

(mW) 
Pima Indians 

diabetes 131328 131328 13824 13824 
41.10 

(100%) 44831 1343 12814 46175 4213 4213 24334 
14.71 

(35.79%) 
EEG eye 

state 8883140 8883140 569240 569240 2263.06 
(100%) 3567871 0 567426 3567871 214889 214889 1091726 941.91 

(41.62%) 

Sonar 1625104 1625104 26416 26416 
304.17 
(100%) 154947 322 12996 155269 2315 2315 38788 

30.33 
(9.97%) 

Ionosphere 1845207 1845207 51597 51597 375.90 
(100%) 111886 2946 14768 114832 2074 2074 65312 24.11 

(6.41%) 
Electrical 

grid stability 
simulated 

data 

4510000 4510000 310000 310000 1178.63 
(100%) 

402820 0 320000 402820 16630 16630 600000 118.78 
(10.08%) 

Banknote 
authenti- 

cation 
91924 91924 16464 16464 

38.36 
(100%) 21677 0 17104 21677 2415 2415 29452 

8.46 
(22.05%) 

Qualitative 
bankruptcy 

58250 58250 7500 7500 20.16 
(100%) 

7774 93 1173 7868 289 289 7923 1.96 
(9.70%) 

Phishing 
websites 7154328 7154328 225952 225952 1494.06 

(100%) 386447 5443 41599 391890 7633 7633 260183 83.68 
(5.60%) 

Climate 
model 

simulation 
crashes 

862380 862380 45900 45900 206.47 
(100%) 54305 293 13692 54597 1007 1007 57972 12.48 

(6.04%) 

Cervical 
cancer (risk 

factors) 
4532814 4532814 120120 120120 

914.04 
(100%) 146446 0 7262 146446 1570 1570 124808 

29.83 
(3.26%) 

Statlog 
(German 

credit data) 
1343000 1343000 62000 62000 

308.14 
(100%) 179974 4682 40641 184656 6618 6618 99641 

43.98 
(14.27%) 

Average 2821589 2821589 131728 131728 
649.46 
(100%) 461725 1375 95407 463100 23605 23605 218194 

119.11 
(18.34%) 
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with lower percentage of errors that modify the classification 
result (as per Table 3), the SNRC technique achieves larger 
re-computation savings. This is also the case for different 
classifiers; ANN and kNNs are more robust than SVM, and the 
average re-computation savings in an ANN protected by the 
SNRC technique and in a kNNs protected by the VM technique 
[33] are larger than for a SVM protected by the RBR technique 
[35] (as shown in Table 4). 

D. Power Dissipation 
Since computational operations are related to the performance 
of the processor, the power dissipations for re-computation 
required by the traditional TR-based protection and the 
proposed SNRC technique are evaluated and compared next.  

Initially, Table 5 shows the number of operations required by 
the different schemes, including addition, subtraction, absolute 
value, multiplication, division, exponentiation and comparison. 
Then, the power dissipated for performing these operations in 
an open source processor [46] are evaluated by using Synopsys 
PrimeTime and mapping the hardware for these operations to a 
7 nm technology library; the results are given in Table 6.  

 
TABLE 6 

Power dissipation required for Different Operations 

Operation Power (mW) 

Addition 2.26E-5 
Subtraction 2.25E-5 

Absolute value 4.21E-5 
Multiplication 14.16E-5 

Division 22.65E-5 
Exponentiation 118.67E-5 

Comparison 2.61E-5 

 
Next, the power dissipation for the different schemes is 

found by combining the number of operations (as per Table 5) 
with their power dissipation (as per Table 6). Results for each 
dataset considered are also shown in Table 5; even though the 
proposed SNRC technique introduces some operations to 
perform the comparison (as discussed previously), the power 
saving in terms of re-computation is significantly large. This is 
because, the saved operations (for example exponentiation) are 

complex while the introduced operations (mostly comparison 
or subtraction) are simple and thus the savings are significantly 
larger that the incurred overhead. As per Table 5, the SNRC can 
reduce 81.66% power dissipation on average for the datasets 
considered. 

VI. EXTENDING SNRC TO ANNS WITH OTHER FUNCTIONS 
As discussed before, another widely used activation function 
for the hidden layer in an ANN is the tanh function; it is an 
extended version of the sigmoid and is given by Eq. (5).   

 𝑡𝑎𝑛ℎ(𝑥) = (-,(!-

(-'(!-
= 2 ∙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1 (5) 

Since the tanh function generates a similar shape as the 
sigmoid function, then these functions achieve a similar 
classification accuracy; this has been verified in Table 7 by 
utilizing the same datasets, where n is the number of neurons in 
the hidden layer (note that as the activation function has been 
changed, then the number of neurons in the hidden layer 
determined during the training process may be different). 
However, as per Eq. (5), the tanh function generates a larger 
value range of (-1, +1), this makes the network to have a slower 
convergence saturation speed and thus, a higher training 
efficiency when using the BP algorithm.   

The proposed SNRC technique is also applicable for an 
ANN using tanh as activation function. As per similar 
reasoning to one for the sigmoid function, computational errors 
that modify the value of a neuron in the hidden layer, can only 
change the value of R (as Eq. (4)) with a limited magnitude of  
(−|𝑤%*+$ |,+|𝑤%*+$ |). Therefore, the classification result can be 
identified as reliable when any of the following constraints is 
met. 

1) |𝑅| > |𝑤%*+$ |: the reason is the same as for the case in 
which the sigmoid function is used; the sign of R does 
not change by Type 1 errors, so the classification result 
is reliable.  

2) R and 𝑟" =	𝑤"$ ∙ ℎ"  have the same sign and |𝑅| ≥
>𝑤"$> + >𝑟">: in this scenario, the sign of R also remains 
the same as the error-free case, because Type 1 errors 
change the value of a neuron with a worst-case 
magnitude of >𝑤"> + >𝑟">.  

TABLE 7  
Results for ANN with Different Activation Functions 

Dataset 
n Highest accuracy Percerr Re-computation saving 

sigmoid tanh sigmoid tanh sigmoid tanh sigmoid tanh 
Pima Indians diabetes 17 17 79.57% 79.57% 10.66% 14.31% 73.61% 77.34% 

EEG eye state 37 37 73.68% 74.25% 35.02% 27.63% 63.93% 38.02% 
Sonar 126 126 93.55% 91.94% 3.19% 3.69% 91.96% 93.00% 

Ionosphere 146 146 95.28% 96.23% 1.28% 1.10% 96.64% 98.64% 
Electrical grid stability simulated data 30 30 99.77% 99.80% 3.18% 3.62% 97.79% 98.84% 

Banknote authentication 11 11 100.00% 100.00% 8.66% 5.27% 93.09% 95.50% 
Qualitative bankruptcy 29 29 100.00% 100.00% 2.11% 2.77% 99.46% 98.53% 

Phishing websites 91 91 95.52% 95.66% 1.68% 1.94% 97.68% 97.03% 
Climate model simulation crashes 84 84 98.15% 98.15% 0.93% 1.02% 98.97% 98.93% 

Cervical cancer (risk factors) 139 139 92.64% 92.64% 0.80% 0.50% 99.40% 99.85% 
Statlog (German credit data) 61 60 75.67% 75.67% 4.96% 3.65% 90.78% 94.45% 

Average - - 91.26% 91.26% 6.59% 5.95% 91.21% 90.01% 
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3) R and rj have different signs and |𝑅| ≥ >𝑤" − 𝑟">: same 
as the case in which the sigmoid function is used, errors 
in this scenario have no impact on the classification 
result. 

Therefore, to implement the SNRC scheme for an ANN with 
the tanh function, Algorithm 1 can be employed by simply 
modifying step 17 to “elseif (𝑅 ∙ 𝑟" > 0 and |𝑅| ≥ >𝑤"> + >𝑟">) 
or (𝑅 ∙ 𝑟" < 0 and |𝑅| ≥ >𝑤" − 𝑟">)”.  

The robustness of the unprotected ANN with the tanh 
function and the efficiency by employing the SNRC scheme to 
protect the network, are evaluated by using the same error 
injection method as in the previous section, but with an error 
magnitude of (-1, +1). As per the results presented in Table 7, 
the percentage of errors that modify the classification results 
(i.e., Percerr) of the unprotected ANN with the tanh function, is 
on average slightly lower than for the sigmoid function; the 
SNRC scheme also works efficiently by achieving an average 
reduction of re-computation with more than 90%, even if it is 
slight lower than using the sigmoid function. 

It is important to note that the proposed SNRC technique is 
applicable to all activation functions that have bounded values 
(e.g., sigmoid and tanh). However, it cannot be used for 
activation functions that are not bounded, because in such case, 
the classification result cannot be determined to be reliable; this 
occurs, because an error modifying a single neuron 
computation can generate a large deviation in the final result. 
Therefore, SNRC is not applicable for example, to ReLU as an 
activation function that is usually employed for deeper ANNs 
(so having more than one hidden layer) due to its training 
efficiency, because it can take values from zero to positive 
infinity. However, ANNs with a more complex structure tend to 
be more error resilient than an ANN with only one hidden layer, 
because there are more neurons and errors changing a neuron 
tend to have a smaller impact on the classification result. 

A further observation is that complex ANNs can be 
efficiently protected with Symptom-based Error Detection 
(SED) [9]; SED keeps track of the maximum observed value at 
the output of a neuron during training and uses it with some 
margin to trigger error detection when using the ANN. 
Therefore, if the maximum value is exceeded during the 
inference process, a potential error is detected. Interestingly, 
SED is not effective when sigmoid or tanh functions are used, 
because the output values under normal operation tend to be 
close to the maximum due to the saturation of these functions 
for large input values. This has been verified by simulation; the 
results are shown in Table 8. Table 8 gives the percentage of 
detectable errors modifying the classification results when 
using SED to protect an MLP with the sigmoid/tanh function. 
As per Table 8, only less than 20% errors on average can be 
detected; therefore, SED is best suitable for deeper ANNs, but 
not for MLP and the datasets considered in this paper. 

VII. CONCLUSION 
This paper has presented an efficient error-tolerant technique 
for protecting Artificial Neural networks (ANNs) against 
computational errors in the neurons. Errors that modify the 
value of the neurons can change the predicted class when the 
ANN is used to perform a classification task. Therefore, when 

ANNs are used in many safety-critical applications and 
implemented in resource-constrained platforms, efficient 
protection schemes are needed. This has motivated the design 
of the proposed Selective Neuron Re-Computation (SNRC) 
technique by exploiting the inherent redundancy of an ANN.  

As per the magnitude of the errors in an ANN with the 
sigmoid or tanh as activation function, SNRC performs several 
checks on the internal computation results and the weights in 
the ANN implementation to identify the correctness of the 
classification result. In particular, the neurons for which an 
error can affect the final classification outcome, are readily 
identified; then, the re-computation operations are only 
executed for these neurons, so significantly reducing the 
re-computation overhead.  

The impact of computational errors in an ANN with a single 
hidden layer and using sigmoid as activation function has been 
evaluated using a wide range of datasets; results have shown 
that the percentage of errors that modify the classification 
results, is up to 35.02%.  The effectiveness of the SNRC has 
also been assessed for the considered datasets; results have 
shown that compared with the current temporal 
redundancy-based protection, SNRC significantly reduces the 
protection overhead (in particular, saving more than 60% 
re-computation for the neurons in all cases and 90% for most of 
the datasets, which translates to 81.66% saving in power 
dissipation on average). The case of employing SNRC to an 
ANN with the tanh function has also been analyzed and 
evaluated; it can also achieve a significant reduction for 
re-computation.  Overall, the proposed SNRC technique 
efficiently protects ANNs with sigmoid/tanh as activation 
functions (so usually shallow ANNs).  
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