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Abstract: We perform a detailed computational study of the recently introduced Sombor indices
on random networks. Specifically, we apply Sombor indices on three models of random networks:
Erdös-Rényi networks, random geometric graphs, and bipartite random networks. Within a statistical
random matrix theory approach, we show that the average values of Sombor indices, normalized
to the order of the network, scale with the average degree. Moreover, we discuss the application
of average Sombor indices as complexity measures of random networks and, as a consequence, we
show that selected normalized Sombor indices are highly correlated with the Shannon entropy of the
eigenvectors of the adjacency matrix.

Keywords: computational analysis of networks; Sombor indices; degree–based topological indices;
random networks

1. Introduction

Given a network G = (V(G), E(G)), the Sombor index of G, introduced by I. Gutman
in [1], is defined as

SO(G) = ∑
uv∈E(G)

√
k2

u + k2
v, (1)

where uv denotes the edge of the network G connecting the vertices u and v and ku is the
degree of the vertex u. Additionally, the modified Sombor index of G was proposed in [2]
as

mSO(G) = ∑
uv∈E(G)

1√
k2

u + k2
v

. (2)

In addition, two other Sombor indices have been introduced: the first Banhatti-Sombor
index [3]

BSO(G) = ∑
uv∈E(G)

√
1
k2

u
+

1
k2

v
(3)

and the α-Sombor index [4]

SOα(G) = ∑
uv∈E(G)

(kα
u + kα

v)
1/α, (4)
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here α ∈ R. In fact, there is a general index that includes all the Sombor indices listed
above: the first (α, β)− KA index of G which was introduced in [5] as

KA1
α,β(G) = ∑

uv∈E(G)

(kα
u + kα

v)
β, (5)

with α, β ∈ R. Please note that SO(G) = KA1
2,1/2(G), mSO(G) = KA1

2,−1/2(G),
BSO(G) = KA1

−2,1/2(G), and SOα(G) = KA1
α,1/α(G). Additionally, we note that KA1

1,β(G)

equals the general sum-connectivity index [6] χβ(G) = ∑uv∈E(G)(ku + kv)β.
Reduced versions of SO(G), mSO(G) and KA1

α,β(G) were also introduced in [1,2,7].
However, when dealing with random networks we use to approximate vertex degrees by
average degrees and since average degrees may be less than one, reduced degree-based
indices are not amenable for us. Thus, we do not consider reduced Sombor indices here.

Even though Sombor indices were introduced very recently, there are already several
works available in the literature where these indices are applied to chemical graphs of
interest, see e.g., [4,5,7–18]. Additionally, bounds for Sombor indices as well as relations
among them and with many other topological indices have been reported in [4,10,19–24].
From the application point of view, they have been shown to be useful to to model entropy
and enthalpy of vaporization of alkanes [25]. In addition, the Sombor matrix was proposed
and studied in [26]. However, to the best of our knowledge, Sombor indices have not been
applied to random networks yet; thus in this work we undertake this task.

Here we consider three models of random networks: Erdös-Rényi (ER) networks,
random geometric (RG) graphs, and bipartite random (BR) networks. ER networks [27–30]
GER(n, p) are formed by n vertices connected independently with probability p ∈ [0, 1],
while RG graphs [31,32] GRG(n, r) consist of n vertices uniformly and independently dis-
tributed on the unit square, where two vertices are connected by an edge if their Euclidean
distance is less or equal than the connection radius r ∈ [0,

√
2]. In addition, we examine

BR networks GBR(n1, n2, p) composed by two disjoint sets, set 1 and set 2, with n1 and n2
vertices each such that there are no adjacent vertices within the same set, being n = n1 + n2
the total number of vertices in the bipartite network. The vertices of the two sets are
connected randomly with probability p ∈ [0, 1].

We stress that the computational study of Sombor indices we perform here is justified
by the random nature of the network models we want to explore. Since a given parameter
set [(n, p), (n, r), or (n1, n2, p)] represents an infinite-size ensemble of random [ER, RG, or
BR] networks, the computation of a Sombor index on a single network is irrelevant. In
contrast, the computation of a Sombor index on a large ensemble of random networks, all
characterized by the same parameter set, may provide useful average information about the
full ensemble. This statistical approach, well known in random matrix theory studies, is not
widespread in studies involving topological indices, mainly because topological indices
are not commonly applied to random networks; for very recent exceptions see [33,34].

Therefore, the purpose of this work is threefold. First, we push forward the statistical
(computational) analysis of topological indices as a generic tool for studying average
properties of random networks; second, we perform for the first time (to our knowledge), a
scaling study of Sombor indices on random networks; and third, we discuss the application
of selected Sombor indices as complexity measures of random networks.

2. Computational Properties of Sombor Indices on Random Networks
2.1. Sombor Indices on Erdös-Rényi Networks

In what follows we present the average values of the indices defined in Equations (1)–(5).
All averages are computed over ensembles of 107/n ER networks characterized by the
parameter pair (n, p).

On the one hand, in Figure 1a–c we present, respectively, the average Sombor index
〈SO(GER)〉, the average modified Sombor index 〈mSO(GER)〉, and the average first Banhatti-
Sombor index 〈BSO(GER)〉 as a function of the probability p of ER networks of sizes
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n = {125, 250, 500, 1000}. On the other hand, in Figure 2 we plot the average α-Sombor
index 〈SOα(GER)〉, see Figure 2a, and the average first (α, β)− KA index

〈
KA1

α,β(GER)
〉

, see
Figure 2c,d, as a function p of ER networks of size n = 1000. In Figure 2 we show curves
for α ∈ [−2, 2] and, in the case of

〈
KA1

α,β(GER)
〉

, we choose to report β = 1/2 and β = 2 as
representative cases.

From this figures we observe that:

(i) The curves of 〈SO(GER)〉 and 〈SOα(GER)〉 are monotonically increasing functions of p.
See Figures 1a and 2a.

(ii) The curves of 〈mSO(GER)〉 and 〈BSO(GER)〉 grow for small p and saturate above a
given value of p. See Figure 1b,c.

(iii) The curves of
〈

KA1
α,β(GER)

〉
show three different behaviors as a function of p de-

pending on the values of α and β: For α < α0, they grow for small p, approach a
maximum value and then decrease when p is further increased. For α > α0, they
are monotonically increasing functions of p. For α = α0 the curves saturate above a
given value of p. For β = 1/2 and β = 2, the cases reported in Figure 2c,d, we found
α0 = −2 and α0 = −1/2, respectively.

(iv) When np� 1, we can approximate ku ≈ kv ≈ 〈k〉 in Equations (1)–(5), with

〈k〉 = (n− 1)p. (6)

Therefore, for np � 1, the average values of the Sombor indices are well
approximated by:

〈SO(GER)〉 ≈
n√
2
[(n− 1)p]2, (7)

〈mSO(GER)〉 ≈
n

2
√

2
, (8)

〈BSO(GER)〉 ≈
n√
2

, (9)

〈SOα(GER)〉 ≈
n

21−1/α
[(n− 1)p]2, (10)〈

KA1
α,β(GER)

〉
≈ n

21−β
[(n− 1)p]1+αβ. (11)

In Figure 1a–c, we show that Equations (7)–(9) (dashed lines) indeed describe well the
data (thick full curves) for large enough p. We also verified that Equations (10) and (11)
describe well the data for np� 1 reported in Figure 2a–c, however we did not include
them to avoid figure saturation.

We note that in Figure 1a–c we present average Sombor indices as a function of the
probability p of ER networks of four different sizes n. It is quite clear from these figures
that the curves, characterized by the different network sizes, are very similar but displaced
on both axes. A similar observation can be made for 〈SOα(GER)〉 and

〈
KAα,β(GER)

〉
(not

shown in Figure 2a–c to avoid figure saturation). This behavior suggests that the average
Sombor indices can be scaled. Then, in what follows we look for the parameters that scale
the average Sombor indices.
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Figure 1. (a) Average Sombor index 〈SO(GER)〉, (b) average modified Sombor index 〈mSO(GER)〉, and (c) average first
Banhatti-Sombor index 〈BSO(GER)〉 as a function of the probability p of Erdös-Rényi networks of size n. (d) 〈SO(GER)〉/n,
(e) 〈mSO(GER)〉/n, and (f) 〈BSO(GER)〉/n as a function of 〈k〉. Dashed lines in panels (a–c) correspond to Equations (7)–(9),
respectively, while dashed lines in panels (d–f) are Equations (13)–(15), respectively. The vertical magenta dashed line in
(b–f) marks 〈k〉 = 10.
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Figure 2. (a) Average α-Sombor index 〈SOα(GER)〉, (b) average first (α, β)− KA index
〈

KAα,β(GER)
〉

, with β = 1/2, and

(c) average first (α, β)− KA index
〈

KAα,β(GER)
〉

, with β = 2, as a function of the probability p of Erdös-Rényi networks

of size n = 1000. In all panels we show curves for α ∈ [−2, 2] in steps of 0.2 (from bottom to top). (d) 〈SOα(GER)〉/n,
(e)
〈
KAα,1/2(GER)

〉
/n, and (f) 〈KAα,2(GER)〉/n as a function of 〈k〉 for ER networks of four different sizes n. The insets in

(e,f) are enlargements of the cyan rectangles.

From Equations (7)–(11) we observe that 〈X(GER)〉 ∝ n f [(n− 1)p)] or

〈X(GER)〉 ∝ n f (〈k〉), (12)

where X and f represent all the Sombor indices studied here and the r.h.s. of
Equations (7)–(11), respectively. Therefore, in Figures 1d–f and 2d–f we plot average
Sombor indices, normalized to n, as a function of 〈k〉 showing that all indices are now
properly scaled; i.e., the curves painted in different colors for different network sizes fall
on top of each other. Moreover, we can rewrite Equations (7)–(11) as

〈SO(GER)〉
n

≈ 1√
2
〈k〉2, (13)

〈mSO(GER)〉
n

≈ 1
2
√

2
, (14)
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〈BSO(GER)〉
n

≈ 1√
2

, (15)

〈SOα(GER)〉
n

≈ 1
21−1/α

〈k〉2, (16)〈
KA1

α,β(GER)
〉

n
≈ 1

21−β
〈k〉1+αβ. (17)

In Figure 1d–f, we show that Equations (13)–(15) (orange-dashed lines) indeed describe
well the data (thick full curves) for 〈k〉 ≥ 10. We also verified that Equations (16) and (17)
describe well the data for 〈k〉 ≥ 10 reported in Figure 2d–f (not shown here to avoid figure
saturation).

It is relevant to stress that even when Equation (12) was deduced form
Equations (7)–(11), expected to be valid in the dense limit (i.e., for 〈k〉 � 1), it is indeed
valid for any 〈k〉 as clearly seen in Figures 1d–f and 2d–f.

2.2. Sombor Indices on Random Geometric Graphs

As in the previous Subsection, here we present the average values of the Sombor
indices listed in Equations (1)–(5). Again, all averages are computed over ensembles of
107/n random graphs, each ensemble characterized by a fixed parameter pair (n, r).

Then, in Figure 3a–c we present, respectively, the average Sombor index 〈SO(GRG)〉, the
average modified Sombor index 〈mSO(GRG)〉, and the average first Banhatti-Sombor index
〈BSO(GRG)〉 as a function of the connection radius r of RG graphs of sizes
n = {125, 250, 500, 1000}. Additionally, in Figure 4 we plot the average α-Sombor in-
dex 〈SOα(GRG)〉, see Figure 4a, and the average first (α, β)− KA index

〈
KA1

α,β(GRG)
〉

, see
Figure 4c,d, as a function r of RG graphs of size n = 1000.

For comparison purposes, Figures 3 and 4 are similar to Figures 1 and 2. In fact, all
the observations (i–iv) made in the previous Subsection for ER networks are also valid for
RG graphs by replacing GER → GRG and p→ g(r), with [35]

g(r) =


r2
[
π − 8

3 r + 1
2 r2
]

0 ≤ r ≤ 1 ,

1
3 − 2r2[1− arcsin(1/r) + arccos(1/r)]

+ 4
3 (2r2 + 1)

√
r2 − 1− 1

2 r4 1 ≤ r ≤
√

2 .

(18)

However, given the fact that this is the first study (to our knowledge) of average Som-
bor indices on RG graphs, we want to stress that when nr � 1, we can approximate
ku ≈ kv ≈ 〈k〉 in Equations (1)–(5), with

〈k〉 = (n− 1)g(r). (19)

Therefore, in the dense limit, the average values of the Sombor indices on RG graphs are
well approximated by:

〈SO(GRG)〉 ≈
n√
2
[(n− 1)g(r)]2, (20)

〈mSO(GRG)〉 ≈
n

2
√

2
, (21)

〈BSO(GRG)〉 ≈
n√
2

, (22)

〈SOα(GRG)〉 ≈
n

21−1/α
[(n− 1)g(r)]2, (23)〈

KA1
α,β(GRG)

〉
≈ n

21−β
[(n− 1)g(r)]1+αβ. (24)
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In Figure 3a–c, we show that Equations (20)–(22) (dashed lines) indeed describe well the
data (thick full curves) for large enough r. We also verified that Equations (23) and (24)
describe well the data reported in Figure 4a–c, for large enough r, however we did not
include them to avoid figure saturation.
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Figure 3. (a) Average Sombor index 〈SO(GRG)〉, (b) average modified Sombor index 〈mSO(GRG)〉, and (c) average first
Banhatti-Sombor index 〈BSO(GRG)〉 as a function of the connection radius r of random geometric graphs of size n.
(d) 〈SO(GRG)〉/n, (e) 〈mSO(GRG)〉/n, and (f) 〈BSO(GRG)〉/n as a function of 〈k〉. Dashed lines in panels (a–c) correspond
to Equations (20)–(22), respectively, while dashed lines in panels (d–f) are Equations (13)–(15), respectively. The vertical
magenta dashed line in (b–f) marks 〈k〉 = 10.

It is quite remarkable to note that by substituting the average degree of Equation (19)
into Equations (20)–(22) we obtain exactly the same expressions listed in Equations (13)–(17).
Therefore, in Figures 3d–f and 4d–f we plot average Sombor indices, on RG graphs, nor-
malized to n, as a function of 〈k〉 showing that all curves are properly scaled. Additionally,
in Figure 3d–f, we show that Equations (13)–(15) (orange-dashed lines) indeed describe
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well the data (thick full curves) for 〈k〉 ≥ 10. We also verified (not shown here) that
Equations (16) and (17) describe well the data for 〈k〉 ≥ 10 reported in Figure 2d–f.
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Figure 4. (a) Average α-Sombor index 〈SOα(GRG)〉, (b) average first (α, β)− KA index
〈

KAα,β(GRG)
〉

, with β = 1/2, and (c)

average first (α, β)− KA index
〈

KAα,β(GRG)
〉

, with β = 2, as a function of the connection radius r of random geometric

graphs of size n = 1000. In all panels we show curves for α ∈ [−2, 2] in steps of 0.2 (from bottom to top). (d) 〈SOα(GRG)〉/n,
(e)
〈
KAα,1/2(GRG)

〉
/n, and (f) 〈KAα,2(GRG)〉/n as a function of 〈k〉 for RG graphs of four different sizes n. The insets in (e,f)

are enlargements of the cyan rectangles.

2.3. Sombor Indices on Bipartite Random Networks

Now we compute average Sombor indices on ensembles of 107/n BR networks. In
contrast to ER and RG networks now the BR network ensembles are characterized by three
parameters: n1, n2, and p. Thus, we consider two cases: n1 = n2 and n1 < n2. We note that
bounds for the Sombor index on bipartite networks have been reported in [21].
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In Figure 5a–c we present, respectively, the average Sombor index 〈SO(GBR)〉, the
average modified Sombor index 〈mSO(GBR)〉, and the average first Banhatti-Sombor index
〈BSO(GBR)〉 as a function of the probability p of BR networks characterized by n1 = n2
with n2 = {125, 250, 500, 1000} (blue lines) and BR networks characterized by n1 < n2 with
n1 = 125 and n2 = {125, 250, 500, 1000} (red lines). Additionally, in Figure 6 we plot the
average α-Sombor index 〈SOα(GBR)〉, see Figure 6a, and the average first (α, β)− KA index〈

KA1
α,β(GBR)

〉
, see Figure 6c,d, as a function p of BR networks of size n1 = n2 = 1000.

It is interesting to notice that all the observations (i–iv) made in Section 2.2 for ER
networks are also valid for BR networks by just replacing GER → GBR. Moreover, we can
also write approximate expressions for the average Sombor indices on BR networks in
the dense limit. However, since edges in a bipartite network join vertices of different sets,
and we are labeling here the sets as set 1 and set 2, we replace du by d1 and dv by d2 in the
expression for the Sombor indices. Thus, when n1 p� 1 and n2 p� 1, we can approximate
ku = k1 ≈ 〈k1〉 and kv = k2 ≈ 〈k2〉 in Equations (1)–(5), with

〈k1,2〉 = n2,1 p. (25)

Therefore, in the dense limit, the average values of the Sombor indices on BR networks are
well approximated by:

〈SO(GBR)〉 ≈
√

n2
1 + n2

2(n1n2)
2 p4, (26)

〈mSO(GBR)〉 ≈
n1n2√
n2

1 + n2
2

, (27)

〈BSO(GBR)〉 ≈
√

n2
1 + n2

2, (28)

〈SOα(GBR)〉 ≈ (nα
1 + nα

2)
1/α(n1n2)

2 p4, (29)〈
KA1

α,β(GBR)
〉
≈ n1n2 p[(n1 p)α + (n2 p)α]β. (30)

Above we used |E(GBR)| = n1n2 p. In Figure 5a–c, we show that Equations (26)–(28)
(black-dashed lines) indeed describe well the data (thick full curves) for large enough p.

As for ER networks, here for BR networks the average modified Sombor index and
the average first Banhatti-Sombor index do not depend on the probability p in the dense
limit, see Equations (27) and (28). Additionally, by recognizing the average degrees 〈k1,2〉 in
Equations (26), (29) and (30), they can be rewritten as

〈SO(GBR)〉 ≈
√

n2
1 + n2

2(〈k1〉〈k2〉)2, (31)

〈SOα(GBR)〉 ≈ (nα
1 + nα

2)
1/α(〈k1〉〈k2〉)2, (32)〈

KA1
α,β(GBR)

〉
≈ |E(GBR)|

(
〈k1〉α + 〈k2〉α

)β. (33)

Therefore, by plotting
〈
SO(GBR)

〉
vs. 〈k1〉〈k2〉,

〈mSO(GBR)
〉

vs. p, and
〈

BSO(GBR)
〉

vs. p

[with
〈
SO(GBR)

〉
= 〈SO(GBR)〉/

√
n2

1 + n2
2,
〈mSO(GBR)

〉
=
√

n2
1 + n2

2〈mSO(GBR)〉/(n1n2),

and
〈

BSO(GBR)
〉
= 〈BSO(GBR)〉/

√
n2

1 + n2
2], see Figure 5d–f, we confirm that the curves of

these average Sombor indices on BR networks coincide in the dense limit, as predicted by
Equations (27), (28) and (31), respectively.
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Figure 5. (a) Average Sombor index 〈SO(GBR)〉, (b) average modified Sombor index 〈mSO(GBR)〉, and (c) average first
Banhatti-Sombor index 〈BSO(GBR)〉 as a function of the probability p of bipartite random networks with sets of seizes n1

and n2. In all panels: n1 = n2 with n2 = {125, 250, 500, 1000} (blue lines, n2 increases from bottom to top) and n1 < n2 with

n1 = 125 and n2 = {250, 500, 1000, 2000} (red lines, n2 increases from bottom to top). (d)
〈
SO(GBR)

〉
= 〈SO(GBR)〉/

√
n2

1 + n2
2

vs. the product 〈k1〉〈k2〉. (e)
〈mSO(GBR)

〉
=
√

n2
1 + n2

2〈mSO(GBR)〉/(n1n2) vs. p. (f)
〈

BSO(GBR)
〉
= 〈BSO(GBR)〉/

√
n2

1 + n2
2

vs. p. Dashed lines in panels (a–c) correspond to Equations (26)–(28), respectively, while dashed lines in panels (d–f) are

Equations (27), (28) and (31) respectively. The inset in (e) shows
〈mSO(GBR)

〉
vs. p = p

√
n2

1 + n2
2. The inset in (f) shows〈

BSO(GBR)
〉

vs. p = pn1n2/
√

n2
1 + n2

2.
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Figure 6. (a) Average α-Sombor index 〈SOα(GBR)〉, (b) average first (α, β)− KA index
〈

KAα,β(GBR)
〉

, with β = 1/2, and

(c) average first (α, β)−KA index
〈

KAα,β(GBR)
〉

, with β = 2, as a function of the probability p of bipartite random networks

with sets of seizes n1 = n2 = 1000. In all panels we show curves for α ∈ [−2, 2] in steps of 0.2 (from bottom to top).
(d) 〈SOα(GBR)〉/n, (e)

〈
KAα,1/2(GBR)

〉
/n, and (f) 〈KAα,2(GBR)〉/n as a function of 〈k〉 for BR networks of four different sizes

n. The insets in (e,f) are enlargements of the cyan rectangles.

It is relevant to stress that, while the curves
〈mSO(GBR)

〉
vs. p and

〈
BSO(GBR)

〉
vs. p

are properly normalized on the vertical axis, they are still not scaled on the p-axis, i.e.,
the curves of the main panels in Figure 5e,f do not coincide. However, through a scaling
approach, it is possible to find the scaling parameter p∗ = p∗(n1, n2) such that the curves〈mSO(GBR)

〉
vs. p and

〈
BSO(GBR)

〉
vs. p, with p ≡ p/p∗, fall on top of each other. The

scaling approach has been successfully used to find universal properties of random graphs
and network models, see e.g., [33,34,36–38]. We can summarize this approach, as applied
to the modified Sombor index and the first Banhatti-Sombor index on BR networks, in
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the following steps: (i) plot 〈mSO(GBR)〉 and 〈BSO(GBR)〉 as a function of the parameter p,
which drives the BR network model from the regime of mostly isolated vertices (MIV) to
the regime of mostly connected networks (MCN), so that the MCN regime can be well
identified (note that this is done in Figure 5b,c); (ii) normalize 〈mSO(GBR)〉 and 〈BSO(GBR)〉
such that

〈mSO(GBR)
〉
= 1 and

〈
BSO(GBR)

〉
= 1 in the MCN regime (note that this is

done in Figure 5e,f); (iii) define the MIV–to–MCN transition point p∗ as the value of
p such that

〈mSO(GBR)
〉
≈ C and

〈
BSO(GBR)

〉
≈ C with C = 0.5 (in fact, any value of

C ∈ (0, 1) could be used; however we prefer to define p∗ at half of the MIV–to–MCN
transition where it can be easily extracted); (iv) extract numerically p∗ from the curves〈mSO(GBR)

〉
vs. p and

〈
BSO(GBR)

〉
vs. p; (v) for several combinations of n1 and n2, plot p∗

vs.
√

n2
1 + n2

2 for
〈mSO(GBR)

〉
and p∗ vs.

√
n2

1 + n2
2/(n1n2) for

〈
BSO(GBR)

〉
(we note that

looking at the dependencies p∗ vs.
√

n2
1 + n2

2 for
〈mSO(GBR)

〉
and p∗ vs.

√
n2

1 + n2
2/(n1n2)

were indeed educated guesses that we were able to make due to our previous experience
on scaling studies, i.e., we used the functions of n1 and n2 that normalized the average
indices 〈mSO(GBR)〉 and 〈BSO(GBR)〉, respectively. In absence of any hint, one should plot
p∗ vs. n1 for fixed n2 and p∗ vs. n2 for fixed n1 and then deduce the function p∗(n1, n2));
and (vi) discover the dependencies p∗ = p∗(n1, n2) through power-law fittings. Indeed, we

found that p∗ = 1/
√

n2
1 + n2

2 for
〈mSO(GBR)

〉
and p∗ =

√
n2

1 + n2
2/(n1n2) for

〈
BSO(GBR)

〉
.

Thus, as can be seen in the instes of Figure 5e,f, the curves of the main panels are now
properly scaled when plotted as a function of p.

It is remarkable to notice that in the case of n1 = n2 = n/2, where
〈k1〉 = 〈k2〉 = 〈k〉 = np/2, we obtain exactly the same expressions listed in
Equations (13)–(17). This is verified in Figure 6d–f where we plot average Sombor in-
dices on RG graphs, normalized to n, as a function of 〈k〉 showing that all curves are
properly scaled.

3. General Scaling of Sombor Indices on Random Networks

In the previous Section we have shown that the average value of Sombor indices, nor-
malized to the network size, scale with the average degree 〈k〉 of the corresponding random
network models; we note that this also applies to BR networks when n1 = n2. This means
that 〈k〉 fixes the average value of any Sombor index for different combinations of network
parameters; i.e., the relevant parameter of the random network models we study here is 〈k〉
and not the specific values of the model parameters. This result highlights the relevance
of 〈k〉 in random network studies. Moreover, the applicability of Equations (13)–(17) to
the three random network models we study here allow us to relate the average value of a
given Sombor index X of the three random network models as

〈X(GER)〉
n

≈ 〈X(GRG)〉
n

≈ 〈X(GBR)〉
n

if 〈kER〉 ≈ 〈kRG〉 ≈ 〈kBR〉, (34)

where 〈kER〉, 〈kRG〉, and 〈kBR〉 are given in Equations (6), (19) and (25), respectively.
Now, to verify Equation (34), in Figure 7 we compare normalized Sombor indices,

〈X(G)〉/n, for ER, RG, and BR networks, as a function of the corresponding 〈k〉. Please
note that to really put Equation (34) to test, we are using networks of different sizes. Indeed,
we observe that Equation (34) is satisfied to a good numerical accuracy; that is, we observe
the coincidence of the curves 〈X(G)〉/n vs. 〈k〉 corresponding to different network models.
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Figure 7. (a) 〈SOα(G)〉/n, (b)
〈
KAα,1/2(G)

〉
/n, and (c) 〈KAα,2(G)〉/n as a function of the average degree 〈k〉 for RG, ER,

and BR networks. In all panels we show curves for α ∈ [−2, 2] in steps of 0.2 (from bottom to top).

4. Sombor Indices as Complexity Mesures for Random Networks

Additionally, we want to recall that in complex systems research there is a continu-
ous search of measures that could serve as complexity indicators. In particular, random
matrix theory (RMT) has provided us with several measures able to distinguish between
(i) integrable and chaotic (i.e., non-integrable) and (ii) ordered and disordered quantum
systems [39,40]. Such measures are computed from the eigenvalues and eigenvectors of
quantum Hamiltonian matrices. Examples of eigenvalue-based measures are the distri-
bution of consecutive eigenvalue spacings, the spectrum rigidity and the ratios between
consecutive eigenvalue spacings; while the inverse participation ratios and Shannon en-
tropies are popular eigenvector-based complexity measures [39,40]. It is interesting to
notice that all these RMT measures have also been successfully applied to study networks
and graphs since they can be computed from the eigenvalues and eigenvectors of adjacency
matrices; see e.g., [36,37,41] and the references therein. Therefore, these measures are
able to distinguish between networks composed by mostly isolated vertices and mostly
connected networks. Additionally, through scaling studies of RMT measures it has been
possible to locate the percolation transition point of random network models [36,37]. It
is worth mentioning that the scaling study of average Sombor indices performed in this
paper has followed a statistical RMT approach; that is, from a detailed computational study
we have been able to identify the average degree as the universal parameter of our random
network models: i.e., the parameter that fixes the average values of the Sombor indices.

Moreover, recently, it was shown for RG graphs that there is a a huge correlation
between the average-scaled Shannon entropy (of the adjacency matrix eigenvectors) and
two average-scaled topological indices [38]: the Randić index R(G) and the harmonic
index H(G). We believe that this is a remarkable result because it validates the use of
average topological indices as RMT complexity measures; already suggested in refs. [33,34]
for ER random networks. Now, it is important to stress that not every index could be
used as a complexity measure. From our experience, we conclude that good candidates
should fulfill a particular requirement: they should obtain well defined values in the
trivial regimes (just as RMT measures are). For example, a useful complexity measure for
random networks should be close to zero in the regime of mostly isolated vertices while it
should become constant above the percolation transition. Indeed, this is a property that
both 〈R(G)〉 and 〈H(G)〉 have: 〈R(G)〉 ≈ 〈H(G)〉 ≈ 0 for mostly isolated vertices while
〈R(G)〉/n ≈ 〈H(G)〉/n ≈ 1/2 once the network is well above the percolation transition.
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Therefore, a straightforward application of our study on Sombor indices is the iden-
tification of specific Sombor indices as complexity measure candidates. Recall that we
particularly require, for an average-scaled Sombor index to work as complexity measure,
that 〈X(G)〉/n ≈ const. for large enough 〈k〉. In fact, from Equations (14) and (15) we can
see that the above condition is fulfilled for 〈mSO(G)〉 and 〈BSO(G)〉, respectively. More
generally, by properly choosing the values of α and β in Equation (17) we could also use〈

KAα,β(G)
〉

as complexity measure. Specifically, for β = −1/α we obtain〈
KA1

α,−1/α(G)
〉

n
≈ 1

21+1/α
. (35)

Please note that
〈

KA1
α,−1/α(G)

〉
reproduces both 〈mSO(G)〉 and 〈BSO(G)〉 when α = 2

and α = −2, respectively. Thus, in Figure 8 we plot 21+1/α
〈

KA1
α,−1/α(G)

〉
/n as a function

of the average degree 〈k〉 for ER, RG, and BR networks. From the behavior of the average-
scaled indices reported in Figure 8 we can identify three regimes: (i) a regime of mostly
isolated vertices when 〈k〉 < 1/10, where 21+1/α

〈
KA1

α,−1/α(G)
〉

/n ≈ 0, (ii) a regime corre-

sponding to mostly connected networks when 〈k〉 > 10, where 21+1/α
〈

KA1
α,−1/α(G)

〉
/n ≈

1, and (iii) a transition regime in the interval 1/10 < 〈k〉 < 10, which is logarithmically
symmetric around the percolation transition point 〈k〉 ≈ 1. Accordingly, we propose the
use of

〈
KA1

α,−1/α(G)
〉

as complexity measure for random network models.

Correlation between the Average KA1
α,−1/α(G) Index and the Average Shannon Entropy

Since we are proposing the use of
〈

KA1
α,−1/α(G)

〉
as a complexity measure for random

networks, it is pertinent to compare it to other standard RMT complexity measure. To this
end we choose the average Shannon entropy 〈S〉 of the adjacency matrix eigenvectors.

In particular we construct randomly weighted adjacency matrices, see e.g., [38], such
that we obtain well-known RMT ensembles in the limits of: (i) isolated vertices (where
we obtain random diagonal adjacency matrices, known in RMT as the Poisson ensemble)
and (ii) complete networks (where the adjacency matrices become members of the Gaus-
sian Orthogonal Ensemble (GOE)). Specifically, for the normalized eigenvector Ψi, i.e.,
∑n

j=1 |Ψi
j|2 = 1, S is defined as

Si = −
n

∑
j=1

∣∣∣Ψi
j

∣∣∣2 ln
∣∣∣Ψi

j

∣∣∣2 . (36)

Then, we use exact numerical diagonalization to obtain the eigenvectors Ψi (i = 1, . . . , n) of
large ensembles of adjacency matrices and compute 〈S〉, where the average is taken over
all the eigenvectors of all the adjacency matrices of the ensemble.

In Figure 8a–c we present 〈S(G)〉, normalized to SGOE ≈ ln(n/2.07), for ER, RG
and BR networks; see the black-dashed lines. From these figures one can observe that〈

KA1
α,−1/α(G)

〉
and 〈S(G)〉 are indeed highly correlated. To quantify the correlation, in

panels Figure 8d–f we report the corresponding Pearson’s correlation coefficient ρ, which
turns out to be approximately equal to one for all the values of α we consider. Finally, to
validate the high correlation reported by ρ, in Figure 8g–i we show two examples of scatter
plots of 21+1/α

〈
KA1

α,−1/α(G)
〉

/n vs. 〈S(G)〉/SGOE.
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Figure 8. 21+1/α
〈

KA1
α,−1/α(G)

〉
/n as a function of the average degree 〈k〉 for (a) ER networks of size n = 500, (b) RG

graphs of size n = 500, and (c) BR networks with n1 = n2 = 250. In all panels we show curves for α ∈ [−2, 2] in steps
of 0.2; except for α = 0. Red (blue) lines correspond to α < 0 (α > 0). Vertical orange dashed-lines mark 〈k〉 = 1/10
and 〈k〉 = 10, see the text. Black-dashed lines in (a–c) correspond to the normalized Shannon entropies 〈S(G)〉/SGOE.

(d–f) Pearson’s correlation coefficient ρ between 21+1/α
〈

KA1
α,−1/α(G)

〉
/n and 〈S(G)〉/SGOE as a function of α. (g–i) Scatter

plots of 21+1/α
〈

KA1
α,−1/α(G)

〉
/n vs. 〈S(G)〉/SGOE for α = −2 and 2.

5. Conclusions

In this paper we have performed a thorough computational study of Sombor indices
on random networks. As models of random networks we have used Erdös-Rényi networks,
random geometric graphs, and bipartite random networks.

Within a statistical random matrix theory (RMT) approach, we show that the average
values of Sombor indices, normalized to the order of the network n, scale with the network
average degree 〈k〉. Thus, we conclude that 〈k〉 is the parameter that fixes the average
values of Sombor indices on random networks; see Equations (13)–(17) and (31)–(33) and
panels (d–f) of Figures 1–7. Moreover, it is remarkable that we were able to state a scaling
law that includes different network models; see Equation (34) and Figure 7. Please note
that Equation (34) underlines the relevance of 〈k〉 in random network studies; that is, we
conclude that 〈k〉 is the relevant parameter of the network models studied here and not the
specific values of the parameters of the models.
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Moreover, we discuss the application of Sombor indices as complexity measures of
random networks and, as a consequence, we show that the average first (α, β)− KA index
(with β = −1/α), normalized to n, is highly correlated with the averaged-scaled Shan-
non entropy of the eigenvectors of the network adjacency matrix; see Equation (35) and
Figure 8a–c, i.e.,

〈
KA1

α,−1/α(G)
〉

/n may serve as complexity measure for random network
models. It is pertinent to mention that the use of Sombor indices as complexity measures
for random networks has two advantages as compared with standard RMT measures: First,
while computing the Shannon entropy of eigenvectors, due to adjacency matrix diago-
nalization, requires a cubic time complexity, O(n3), computing Sombor indices requires
linear time complexity, O(n). Thus, the use of Sombor indices is computationally cheaper
than using eigenvalue- or eigenvector-based RMT measures. Second, the Sombor indices
we selected as complexity measures, see Equation (35), can be interpreted as a variable
descriptor or a general index parametrized by the continuous parameter α ∈ R. Therefore,
in contrast with the standard RMT measures (such as the Shannon entropy), we now have a
complexity measure that can be fitted to assess specific network properties; as the variable
molecular descriptors do. Indeed, the variability as a function of α of the Sombor indices of
Equation (35) can be clearly seen in Figure 8a–c.

We hope that our work may motivate further analytical as well as computational
studies of Sombor indices on random networks.
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Randić index in Erdös–Rényi models. Appl. Math. Comput. 2020, 377, 125137. [CrossRef]
34. Martínez-Martínez, C.T.; Mendez-Bermudez, J.A.; Rodríguez, J.M.; Sigarreta, J.M. Computational and analytical studies of the

harmonic index in Erdös–Rényi models. MATCH Commun. Math. Comput. Chem. 2021, 85, 395–426.
35. Estrada, E.; Sheerin, M. Random rectangular graphs. Phys. Rev. E 2015, 91, 042805. [CrossRef]
36. Mendez-Bermudez, J.A.; Alcazar-Lopez, A.; Martinez-Mendoza, A.J.; Rodrigues, F.A.; Peron, T.K.D. Universality in the spectral

and eigenfunction properties of random networks. Phys. Rev. E 2015, 91, 032122. [CrossRef] [PubMed]
37. Alonso, L.; Mendez-Bermudez, J.A.; Gonzalez-Melendrez, A.; Moreno, Y. Weighted random-geometric and random-rectangular

graphs: Spectral and eigenfunction properties of the adjacency matrix. J. Complex Netw. 2018, 6, 753. [CrossRef]
38. Aguilar-Sanchez, R.; Mendez-Bermudez, J.A.; Rodrigues, F.A.; Sigarreta-Almira, J.M. Topological versus spectral properties of

random geometric graphs. Phys. Rev. E 2020, 102, 042306. [CrossRef] [PubMed]
39. Metha, M.L. Random Matrices; Elsevier: Amsterdam, The Netherlands, 2004.
40. Haake, F. Quantum Signatures of Chaos; Springer: Berlin/Heidelberg, Germany, 2010.
41. Torres-Vargas, G.; Fossion, R.; Mendez-Bermudez, J.A. Normal mode analysis of spectra of random networks. Phys. A

2020, 545, 123298. [CrossRef]

http://dx.doi.org/10.30538/psrp-odam2021.0047
http://dx.doi.org/10.3390/sym13010140
http://dx.doi.org/10.1016/j.dam.2021.04.014
http://dx.doi.org/10.1007/s12190-021-01516-x
http://dx.doi.org/10.2298/JSC201215006R
http://dx.doi.org/10.1007/BF02478357
http://dx.doi.org/10.1007/BF02066689
http://dx.doi.org/10.1103/PhysRevE.66.016121
http://dx.doi.org/10.1016/j.amc.2020.125137
http://dx.doi.org/10.1103/PhysRevE.91.042805
http://dx.doi.org/10.1103/PhysRevE.91.032122
http://www.ncbi.nlm.nih.gov/pubmed/25871069
http://dx.doi.org/10.1093/comnet/cnx053
http://dx.doi.org/10.1103/PhysRevE.102.042306
http://www.ncbi.nlm.nih.gov/pubmed/33212571
http://dx.doi.org/10.1016/j.physa.2019.123298

	Introduction
	Computational Properties of Sombor Indices on Random Networks
	Sombor Indices on Erdös-Rényi Networks
	Sombor Indices on Random Geometric Graphs
	Sombor Indices on Bipartite Random Networks

	General Scaling of Sombor Indices on Random Networks
	Sombor Indices as Complexity Mesures for Random Networks
	Conclusions
	References



