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Abstract—A rigorous analysis of the effect of spatial corre-
lation for non-coherent (NC) massive multiple-input-multiple-
output (MIMO) in Rician channels is important to determine
its applicability in these scenarios. We conduct such analysis
for a single base station (BS) and a more general case of
several BSs, all of them showing correlation among their own
antennas but with uncorrelated channels with respect to each
other. We first perform an analysis of the distribution of the
received symbols, then propose some approximations to give a
closed form expression of the symbol error probability (SER) and
the signal-to-interference-and-noise-ratio (SINR) as performance
measures. Finally, we extract some conclusions from this analysis
to show how the combined use of several BSs and larger Rician
components can be beneficial in this scenario. Some numerical
results are added to confirm the accuracy of the analysis.

Index Terms—Non-coherent, massive MIMO, differential mod-
ulation, spatial correlation, C-RAN.

I. INTRODUCTION

MASSIVE multiple-input-multiple-output (MIMO) is a
technology where a base station (BS) is equipped

with several antennas [1]. In these systems, the channel is
estimated and compensated to perform coherent detection.
Several reference signals (pilots) must be used to estimate
the channel state information (CSI). In high mobility, high
frequency selectivity and/or low SNR scenarios, the use of
CSI is problematic, since many pilots may be needed [2], [3],
thus making the coherent processing potentially unfeasible.

Non-coherent (NC) massive MIMO allows to receive data
without using CSI while benefiting from using many antennas
at the BS and also reducing the complexity of the receivers.
Reference [2] showed that NC detection can perform well in
extremely time-varying channel scenarios, while the coherent
scheme fails. A widely used NC technique is based on
differential "-ary phase shift keying (DMPSK) [4], combined
with differential detection. The NC performance superiority
in complicated scenarios makes it a good option in future
communication systems [2], [3].

Furthermore, BS antenna arrays suffer from spatial cor-
relation caused by the antenna elements coupling, the array
geometry and the propagation channel [5], [6], which reduces

This work has received funding from the European Union Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie ETN
TeamUp5G, grant agreement No. 813391, and the Spanish National Project
TERESA-ADA (TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE).

the spatial diversity in the receiver. For the NC massive
MIMO, most of the literature considers uncorrelated channels
[4], [7], while [8] made use of a geometric wide-band channel
model, but did not perform a rigorous theoretical analysis of
the effects of spatial correlation. Such analysis has not been
done in the literature to the best knowledge of the authors.

The contribution of this paper is a mathematical analysis
of the effect of the spatial correlation for a single-user NC
massive MIMO system based on DMPSK. We consider Rician
channels and derive the SER and the SINR for a single
BS and for several BSs that may cooperate, for the same
number of total antennas. Since the BSs are distant from
each other, their channels will not be correlated, even though
locally experiencing spatial correlation among the antennas of
each of them. Thus, it is expected that the multi-BS scenario
performs better. We also show that the NC massive MIMO
can benefit from the presence of a strong Rician component.
Furthermore, we show that NC massive MIMO can improve its
performance when a coordinated detection is done over several
BSs. These same effects happen for coherent massive MIMO,
which reinforces the validity of NC schemes. Since practical
implementations of massive MIMO have low hundreds anten-
nas for the largest commercial arrays, a coordinated detection
over several BSs is of interest to have a larger spatial diversity.
This model is typical, for instance, in classical coherent ultra-
dense networks (UDN) based on cloud-RAN and cell-free
massive MIMO [9], [10]. These systems may suffer from
high computational complexity and a large training overhead
for CSI estimation. Thus, a non-coherent approach can take
advantage of the uncorrelated channel among BSs and can
overcome the limitations of UDN deployments, while making
them feasible in scenarios of high mobility, high frequency
selectivity and low SNR [2], [3].

The remainder of this paper is organized as follows. We
first introduce the system model in Sec. II. We derive the
statistical distribution of the received symbol in a Rician
spatially correlated channel for non-coherent massive MIMO,
we compute the expressions of the SER and SINR and we
extract some remarks from the analysis of the distribution and
the expressions in Sec. III. Some numerical results in Sec.
IV confirm our theoretical derivations. Some conclusions and
future work are pointed out in Sec. V.

Notation: matrices, vectors and scalar quantities are denoted
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by boldface uppercase, boldface lowercase, and normal letters,
respectively. [A]<,= denotes the element in the <-th row
and =-th column of A. [a]= represents the =-th element of
vector a. The superscripts (·)� , (·)∗ and ∗ denote Hermitian
complex conjugate and convolution, respectively. E {· } repre-
sents the expected value. CN(0, f2) represents the circularly-
symmetric and zero-mean complex normal distribution with
variance f2. ℜ{(·)} and ℑ{(·)} refer, respectively, to the real
and imaginary parts of a complex number. | |G | |2 denotes the
euclidean norm of G. 1 and 0 indicate a column vector of all
ones and all zeros, respectively. &(·) indicates the Q-function.

II. SYSTEM MODEL

We consider a generic massive MIMO system with � BSs,
with '0 antennas in BS 0, and we focus on a particular single-
user with one antenna. When � = 1 we have a classical
massive MIMO with non-cooperative BSs and for � > 1 we
have the case of network MIMO, cell-free massive MIMO and
related works [9]–[11]. In case of cooperation, it is assumed
that the BSs are connected to a central processing unit (CPU)
by means of a fronthaul. In this paper, we do not take into
account fronthaul constraints and suppose the fronthaul to
be ideal. We focus on the particular case of uplink (UL),
where the user transmits a differentially encoded signal in the
following manner at time instant =

G= = G=−1B= 1 ≤ = ≤ #, (1)

where B= belongs to a DMPSK constellation and G0 is a
reference symbol known at the receiver side and necessary
to perform the differential reception. Because the information
is only encoded in the phase, we know that G∗=G=−1 = B=.

The propagation channel between the user and the BS 0 at
time instant = is represented by g=,0 ('0 × 1). In detail,

g=,0 = h̄=,0 + ĥ=,0, (2)

where g=,0 ('0 × 1) represents small-scale fading g=,0 ∼(
h̄=,0, f2

ℎ,0
R=,0

)
, h̄=,0 is a vector of size ('0 × 1) that

remains constant over several coherence intervals and where
all elements are equal to | ℎ̄=,0 |4 9 \=,0 , with

| ℎ̄=,0 |2 =
 0

 0 + 1
and f2

ℎ,0 =
1

 0 + 1
, (3)

where  0 is the Rician factor, which characterizes the fading
model. For  0 = 0, the model collapses to Rayleigh. R=,0 is a
normalized Hermitian matrix of size ('0 ×'0). For correlated
fading and to obtain a closed-form expression in Section III,
we use a classical correlation model [12] found often in the
literature for R=,0 as, with |A−A ′ | the distance between antenna
A and A ′ [

R=,0
]
A ,A ′ = X

|A−A ′ | with 0 ≤ X ≤ 1. (4)

Using this model, we give some insights on the effects of the
spatial correlation in Section III-C. For X = 0, the Hermitian
matrix collapses to R=,0 = I'0

which represents uncorrelated
fading. We assume that the channel in two consecutive time

instants can be regarded as equal g=−1 = g=, for any antenna.
The channel coefficients between BSs are uncorrelated as

E
{
g�=,0g=,0′

}
= 0 ∀0 ≠ 0′ (5)

and the received signal at BS 0 and =-th time instant is

y=,0 = g=,0G= + .=,0, (6)

where G= denotes the transmitted symbol at time = by the
user of interest and .=,0 ('0 ×1) represents the additive white
Gaussian noise according to .=,0 ∼ CN(0, f2

0I'0
). Finally,

the signal-to-noise-ratio (SNR) in access point 0 is defined as
d0 = f−2

0 , where we set the power of the transmitted symbols
to one and the SINR is referred as d.

In reception at each BS 0, two contiguous differential
symbols in the time domain are non-coherently combined as

I=,0 = y�=−1,0y=,0 . (7)

In a scenario with � > 1 BSs (multi-BS), the variables I0
in each BS are sent to the CPU and combined as

I= =

∑�
0=1 I=,0∑�
0=1 '0

, (8)

which is the variable over which the transmitted symbols are
estimated according to [4] as

B̂= = arg min
B=
{|B= − I= | , B= ∈ M} , (9)

where M indicates the DMPSK constellation set.

III. EFFECT OF THE SPATIAL CORRELATION FOR
NON-COHERENT MASSIVE MIMO BASED ON DMSPK

In this section we perform the analysis of the distribution of
the received symbol I. With the knowledge of that distribution,
we give closed-form expressions of the SER and the SINR for
the received symbol I. Last, we provide some remarks about
the distribution of the received symbol.

A. Distribution of the received symbol I

With some derivations, (7) can be expanded as

I0 =
(
g=−1,0G=−1

)� g=,0G=︸                      ︷︷                      ︸
I
(1)
0

+ (.=−1,0)� .=,0︸            ︷︷            ︸
I
(2)
0

+

+ (.=−1,0)�g=,0G=︸               ︷︷               ︸
I
(3)
0

+
(
g=−1,0G=−1

)�
.=,0︸                  ︷︷                  ︸

I
(4)
0

(10)

where (and since g=−1,0 = g=,0, h̄=,0 = h̄=−1,0 and ĥ=,0 =

ĥ=−1,0) each element expands as

I
(1)
0 =

(
g=−1,0G=−1

)� g=,0G= =

=

(
h̄=−1,0 + ĥ=−1,0

)� (
h̄=,0 + ĥ=,0

)
B= =

=

( ����h̄=,0����22︸  ︷︷  ︸
I
(1,1)
0

+ 2ℜ{h̄�=,0ĥ=,0}︸           ︷︷           ︸
I
(1,2)
0

+
����ĥ=,0����22︸  ︷︷  ︸
I
(1,3)
0

)
B=,

(11)

I
(2)
0 = .�=−1,0.=,0, (12)
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I
(3)
0 = .�=−1,0g=G= = .�=−1,0h̄=,0G=︸          ︷︷          ︸

I
(3,1)
0

+ .�=−1ĥ=,0G=︸       ︷︷       ︸
I
(3,2)
0

, (13)

I
(4)
0 = (g=−1G=−1)� .= = h̄�=−1,0.=G

∗
=−1︸          ︷︷          ︸

I
(4,1)
0

+ ĥ�=−1,0.=G
∗
=−1︸          ︷︷          ︸

I
(4,2)
0

. (14)

Using the properties of the product of normal variables [13],
and variance-gamma distributions [14], [15] for

∑
0 '0 →∞,

I
(2)
0 , I (3,1)0 , I (4,1)0 , I (3,2)0 and I (4,2)0 are distributed as

I
(2)
0 ∼ CN

(
0, '0f4

a,0

)
, (15)

I
(3,1)
0 , I

(4,1)
0 ∼ CN

(
0, '0 | ℎ̄0 |2f2

a,0

)
, (16)

I
(3,2)
0 , I

(4,2)
0 ∼ CN

(
0, '0f2

ℎ,0f
2
a,0

)
. (17)

The term I
(1,1)
0 is the line-of-sight (LoS) component which

is assumed to vary slowly with respect to the coherence time
of the channel, so it can be regarded as deterministic in our
statistical analysis. Taking into account that each element of
ĥ is a zero-mean circularly symmetric Gaussian variable, the
phase rotation produced by the phase of h̄ does not change
its distribution so ℜ{h̄� ĥ} = | ℎ̄|ℜ{1) ĥ}. Following [16], the
mean of the sum of normal variables scaled by any constant
is the sum of all the means scaled by that constant. The
variance is the sum of all the elements in the covariance
matrix, scaled by the square of the constant. Also, since
the real operation keeps half of the total variance when the
distribution is circularly symmetric complex Gaussian, then

I
(1,2)
0 ∼ N

(
0, 2| ℎ̄0 |2f2

ℎ,01)R=,01
)
, (18)

where 1)R=,01 is strictly positive and represents the sum of all
the elements in the Hermitian matrix R=,0. Last, in

����ĥ����2
2, each

element follows a Gamma distribution, and the elements are
correlated among them, with a covariance matrix following
[17], so according to the properties of Gamma distributions
[18], I (1,3)0 is distributed as

I
(1,3)
0 ∼ N

(
'0f

2
ℎ,0, f

4
ℎ,0

����R=,0����22) . (19)

B. Derivation of the SER and SINR

Due to the symmetry of DMPSK constellations, the SER
and SINR of the constellation can be calculated using any
symbol of the constellation. In this case we particularize for
the symbol B = 1, without loss of generality. To compute the
probability density function (PDF) of the decision variable I in
(8), we have to take into account that it is the summation of �
independent Gaussian distributed random variables. Applying
straightforward manipulations and properties, the distribution
of the real and imaginary parts of I for B = 1 is

ℜ{I} ∼ N
(
`ℜ, f

2
ℜ

)
= N

©­­«1,

∑�
0=1 f

2
ℜ{I0 }(∑�

0=1 '0

)2

ª®®¬ (20)

2f2
ℜ{I0 } = 2f2

ℎ,0

(
f2
ℎ,0

����R=,0����22 + 2| ℎ̄0 |21)R=,01
)
+

+ '0
(
f4
a,0 + 2f2

a,0

)
,

(21)

and

ℑ{I} ∼ N
(
`ℑ, f

2
ℑ

)
= N

©­­«0,
∑�
0=1 '0 (f4

a,0 + 2f2
a,0)

2
(∑�

0=1 '0

)2

ª®®¬ . (22)

The SER can be approximated by following the approach
in Appendix A of [2] as

%B ≈ 1 −

∫ c/"
−c/"

∫ ∞
0 4

−
(
A cos(W)−`ℜ√

2fℜ

)2

4
−
(
A sin(W)−`ℑ√

2fℑ

)2

A3A3W

2cf2
ℜ
f2
ℑ

. (23)

A closed-form expression of (23) is mathematically in-
tractable, although the integral can be solved numerically.
The SINR can be calculated as the inverse of the sum of
the variances of the real and imaginary parts as shown in
(24). It can be seen that the numerator of the SINR grows
with the square of the sum of the total amount of antennas
while the denominator grows with the sum of the square of
the antennas in each BS. Then, the numerator grows faster
than the denominator when several BSs are used, showing
that multi-BS processing benefits the NC scheme.

Eq. (23) can be further approximated to a closed-form
expression that does not require a numerical evaluation by as-
suming a circularly symmetric complex Gaussian distribution
and using the expression for PSK error of [19] as

%B ≈ 2&
(√

2d sin
( c
"

))
. (26)

C. Remarks about the effects of spatial correlation

It is worth noting that the previous expressions can be
particularized for different scenarios. For instance, for � = 1
and uncorrelated Rayleigh fading

(
h̄0, f2

ℎ,0
R=,0

)
=

(
00, I=,0

)
,

we obtain the results of Appendix A of [2].
Following the model defined in (4), the terms

����R=,0����22 and
1)R=,01 are simplified to

'0 (X = 0) ≤
����R=,0����22 = '0

1 − X2'0

1 − X2 ≤ '2
0 (X = 1), (27)

'0 (X = 0) ≤ 1)R=,01 = '0
1 − X'0

1 − X ≤ '
2
0 (X = 1). (28)

If correlation increases, both (27) and (28) increase, thus
increasing f2

ℜ
, which is the variance of (20). Therefore,

the SER increases and the SINR decreases, degrading the
performance of the system. Eq. (25) shows the SINR for the
extreme cases of X = 0 and X = 1. It can be observed an '0
term in the second summand in the case X = 1 that multiplies
the variance of the real part, while for X = 0 that term is not
present. Besides that, in both cases, it can be observed that the
second summand of the denominator tends to 0 with increasing
 , so a strong Rician component benefits the performance.
Interestingly, these conclusions are similar to those obtained
for coherent cell-free schemes in [20].
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d =

(∑�
0=1 '0

)2

∑�
0=1

(
'0 (f4

a,0 + 2f2
a,0) + f2

ℎ,0
(f2
ℎ,0

����R=,0����22 + 2| ℎ̄0 |21)R=,01)
) (24)

d
X=0

=

(∑�
0=1 '0

)2

∑�
0=1 '0

(
f4
a,0 + 2f2

a,0 + f2
ℎ,0
(1 + | ℎ̄0 |2)

) d
X=1

=

(∑�
0=1 '0

)2

∑�
0=1 '0

(
f4
a,0 + 2f2

a,0 + '0f2
ℎ,0
(1 + | ℎ̄0 |2)

) (25)

Last but not least, it can be observed that the performance
improves with the square of the sum of the number of antennas
in each BS while it worsens with the sum of the square of the
number of antennas in each BS (for the worst case of X = 1),
so the performance always improves more when several BSs
are used instead of just one.

IV. NUMERICAL RESULTS

In this section, we aim at checking that our analysis is
correct and getting some insights on the effect of spatial
correlation on the performance of NC massive MIMO. We
show both the theoretical and the Monte-Carlo (obtained via
simulations) results of the SER and SINR for the correlation
model defined in (4). Different scenarios are simulated, with
� = 1 and '0 = 100, � = 10 and '0 = 10, � = 10 and
'0 = 5, � = 1 and '0 = 50, � = 1 and '0 = 1000 and
� = 1000 and '0 = 1. The values of d0,  0 and X0 belong
to a range depending on the shown results.

We have first performed a Kolmogorov-Smirnov (KS) test to
check if both the theoretical and the Monte-Carlo distributions
obtained for I can be regarded as the same. When X < 0.9,
values that can be regarded as representative of realistic
channels, the theoretical and Monte-Carlo distributions were
regarded as the same for a standard significance value of 5%,
confirming our analysis. On the contrary, for X > 0.9, the test
for the real part of the distribution fails, which indicates that
the distributions cannot be regarded as the same. Nevertheless,
the goal is to check whether the analysis is valid for the
SER and the SINR and to check if there is a discrepancy
between the theoretical and Monte-Carlo results. Figs. 1 and
2 show that even though the discrepancy between the SER
and SINR obtained by simulations and with the analysis in
Section III is greater for high values of X, the approximations
still provide accurate results for those extreme values. The
small discrepancy is due to the fact that the approximation
of Gamma to Gaussian distributions is less valid with greater
spatial correlation.

Fig. 1 shows the SER for SNR=0dB, against X from 0.85
to 1. Both simulations and theoretical values are shown. We
can observe how the SER increases with X, which comes
from the fact that the channel hardening is reduced. For the
scenario with 10 BSs and 10 antennas per BS, the effect of X
is lower, which makes sense since the channels between BSs
are uncorrelated. In Fig. 2, we can observe the SINR from
the analysis and the simulated SINR for different SNR values,
for  = 0, with two scenarios, one with � = 1 and ' = 100

0 0.2 0.4 0.6 0.8 1

10−2

10−1

X

%
B

Analysis - 1 BS, R=100
Analysis - 10 BS, R=10
Simulation - 1 BS, R=100
Simulation - 10 BS, R=10

Fig. 1. SER vs X for " = 8,  = 0 and d0 = 0dB.

−4 −2 0 2 4 6 8 10

20

40

60

80

100

d0 (dB)

d
(l

in
)

Analysis - 1 BS, R=100
Analysis - 10 BS, R=10
Simulation - 1 BS, R=100
Simulation - 10 BS, R=10

Fig. 2. SINR vs SNR for " = 8,  = 0 and X = 0.99.

and one with � = 10 and ' = 10. It can be observed that
the analytical and the simulated SINR are very close to each
other, confirming again the validity of the theoretical analysis,
even for delta values approaching 1.

In Fig. 3, we can see the SER versus the SNR for X =

0, X = 0.7, X = 0.9 and X = 0.99. We can see, again, that
the greater the X the greater the SER, but the effect is lower
in the multi-BS scenario, which confirms the interest in the
use of a coordinated massive MIMO network also for the NC
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−4 −2 0 2 4 6 810−7

10−6

10−5

10−4

10−3

10−2

10−1

100

d0 (dB)

%
B

1 BS, R=100
10 BS, R=10
X = 0.99
X = 0.9
X = 0.7
X = 0

Fig. 3. SER vs SNR for " = 8 and  = 0, for different X.

0 2 4 6 8 10

10−8

10−6

10−4

10−2

d0 (dB)

%
B

1 BS, R=50
10 BS, R=5
X = 0.999
X = 0.9
X = 0

Fig. 4. SER vs SNR for " = 8 and  = 30, for different X.

DMPSK. Furthermore, if we consider a channel with a high
deterministic component (Rician with strong LoS component),
the non-coherent processing greatly benefits from the multi-
BS scenario, as also shown in Fig. 4. In, fact the reduction in
performance is almost negligible for  = 30 for high values
of X with respect to X = 0 in the case of A=10.

Fig. 5 shows the SER for different values of  for
SNR=10dB. It can be seen how a high channel correlation
(big X values) greatly reduces (up to 9 orders of magnitude
for  = 30) the performance for the scenario with 1 BS
with respect to lower channel correlation (lower X values).
For the scenario with 10 BSs, that reduction in performance
is lower (up to 4 orders of magnitude for  = 0), showing that
the scenario with coordinated BSs is more resilient against a
higher channel correlation than the scenario with a single BS.
Besides this, a great improvement can be observed for the
channels with a very strong deterministic component (high
values of K). Fig. 6 and Fig. 7 show the SINR for different
SNR and X values. We can see that the multi-BS scenario
has a lower reduction in SINR with respect to the single-BS

0.75 0.8 0.85 0.9 0.95 1

10−10

10−8

10−6

10−4

10−2

100

X

%
B

1 BS, R=100
10 BS, R=10
K=0
K=10
K=30

Fig. 5. SER vs X for " = 8 and SNR=10dB for different K.

0.8 0.85 0.9 0.95 1
0

10

20

30

40

X

d
(l

in
)

1 BS, R=100
10 BS, R=10
d0 = −6
d0 = 0
d0 = 10

Fig. 6. SINR vs X for " = 8 and  = 0, for different SNR.

scenario, which agrees with the results obtained for the SER.

0 2 4 6 8 10
0

50

100

150

d0 (dB)

d
(l

in
)

1 BS, R=100
10 BS, R=10
X = 1
X = 0.9
X = 0

Fig. 7. SINR vs SNR for " = 8 and  = 0, for different X.

Fig. 8 shows the SINR in dB for X = 0.9 for two cases, one
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with � = 1 and '0 = 100 and one with � = 100 and '0 = 1.
For low SNR, there is no increment in performance since the
noise is the limiting factor. For  = 0,  = 6 and  = 30, an
improvement can be observed for medium and high SNR of
around 7.2dB, 9.8dB and 10dB, respectively. The improvement
is greater for larger  .

For a better understanding of the relationship of the theo-
retical model with a realistic model, we simulated a geometric
wide-band channel whose angular spread of the clusters is 25
degrees as the one simulated in [8]. The aim was to obtain the
numerical results for

����R=,0����22 and 1)R=,01, which are very
similar to those obtained for the theoretical model particu-
larized for X = 0.9. Therefore, lower angular spreads, which
are realistic for certain scenarios, would result in greater X
values. Furthermore, no antenna correlation caused by antenna
coupling was considered, which would be equivalent to greater
values of X. Nevertheless, we have shown that a non-coherent
coordinated processing would be beneficial from X = 0.5,
which then indicates that a benefit can be obtained for more
general cases.

V. CONCLUSIONS

In this paper, we performed a theoretical analysis of the
effect of Rician channels with correlation on the perfor-
mance of single user uplink NC massive MIMO systems.
We demonstrated that the greater the LOS component of the
Rice channel, the better the performance. On the contrary,
the greater the correlation between channels, the worse the
performance. We showed how this detriment in performance is
lower when several uncorrelated BSs with fewer antennas are
coordinated instead of using a single BS with many antennas.
Coherent massive MIMO has the same conclusions, which
reinforces the validity of the NC approach.

As part of future work we aim at extending the analysis to a
multiuser scenario. We also aim at analyzing the performance
difference between selecting the BS with the strongest Rician
factor and all the BSs. Last, we aim at providing a framework
for the selection of the right BSs to cooperate for a particular
user given the parameters of each BS (pathloss, number of
antennas, etc.).

REFERENCES

[1] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral
efficiency of very large multiuser mimo systems,” IEEE Transactions
on Communications, vol. 61, no. 4, pp. 1436–1449, 2013.

[2] M. J. Lopez-Morales, K. Chen-Hu, and A. Garcia-Armada, “Differential
Data-aided Channel Estimation for Up-link Massive SIMO-OFDM,”
IEEE Open Journal of the Communications Society, vol. 1, pp. 976–
989, 2020.

[3] M. Chowdhury, A. Manolakos, and A. J. Goldsmith, “Coherent versus
noncoherent massive simo systems: Which has better performance?” in
2015 IEEE International Conference on Communications (ICC), 2015,
pp. 1691–1696.

[4] A. G. Armada and L. Hanzo, “A Non-Coherent Multi-User Large Scale
SIMO System Relaying on M-ary DPSK,” in 2015 IEEE International
Conference on Communications (ICC), June 2015, pp. 2517–2522.

[5] L. Sanguinetti, E. Björnson, and J. Hoydis, “Towards massive mimo 2.0:
Understanding spatial correlation, interference suppression, and pilot
contamination,” 2019.

−10 0 10 20 30
0

10

20

30

da (dB)

d
(d

B
)

1 BS, R=100 K=0 K=6
100 BS, R=1 K=30

Fig. 8. SINR vs SNR for " = 64 and X = 0.5, for different  .

[6] C. He and R. D. Gitlin, “Limiting performance of massive mimo down-
link cellular systems,” in 2016 Information Theory and Applications
Workshop (ITA), 2016, pp. 1–6.

[7] V. M. Baeza, A. G. Armada, W. Zhang, M. El-Hajjar, and L. Hanzo,
“A Noncoherent Multiuser Large-Scale SIMO System Relying on M-
ary DPSK and BICM-ID,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 2, pp. 1809–1814, Feb 2018.

[8] K. Chen-Hu, Y. Liu, and A. Garcia Armada, “Non-Coherent Massive
MIMO-OFDM Down-Link based on Differential Modulation,” IEEE
Transactions on Vehicular Technology, pp. 1–1, 2020.

[9] C. Pan, M. Elkashlan, J. Wang, J. Yuan, and L. Hanzo, “User-centric
c-ran architecture for ultra-dense 5g networks: Challenges and method-
ologies,” IEEE Communications Magazine, vol. 56, no. 6, pp. 14–20,
2018.

[10] J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free
massive mimo: A new next-generation paradigm,” IEEE Access, vol. 7,
pp. 99 878–99 888, 2019.

[11] W. Zirwas, “Opportunistic comp for 5g massive mimo multilayer
networks,” in WSA 2015; 19th International ITG Workshop on Smart
Antennas, 2015, pp. 1–7.

[12] T. . Chu and L. J. Greenstein, “A semi-empirical representation of an-
tenna diversity gain at cellular and pcs base stations,” IEEE Transactions
on Communications, vol. 45, no. 6, pp. 644–646, 1997.

[13] G. W. Bohrnstedt and A. S. Goldberger, “On the exact covariance
of products of random variables,” Journal of the American Statistical
Association, vol. 64, no. 328, pp. 1439–1442, 1969. [Online]. Available:
http://www.jstor.org/stable/2286081

[14] R. Gaunt, “Variance-gamma approximation via stein’s method,”
Electron. J. Probab., vol. 19, p. 33 pp., 2014. [Online]. Available:
https://doi.org/10.1214/EJP.v19-3020

[15] R. E. Gaunt, “A note on the distribution of the product of zero mean
correlated normal random variables,” 2018.

[16] R. A. Johnson, D. W. Wichern et al., Applied multivariate statistical
analysis. Prentice hall Upper Saddle River, NJ, 2002, vol. 5, no. 8.

[17] Y. Feng, M. Wen, J. Zhang, F. Ji, and G. Ning, “Sum of arbitrarily
correlated gamma random variables with unequal parameters and its ap-
plication in wireless communications,” in 2016 International Conference
on Computing, Networking and Communications (ICNC), 2016, pp. 1–5.

[18] L. M. Leemis and J. T. McQueston, “Univariate distribution relation-
ships,” The American Statistician, vol. 62, no. 1, pp. 45–53, 2008.

[19] Proakis, Digital Communications 5th Edition. McGraw Hill, 2007.
[20] A. A. Polegre, F. Riera-Palou, G. Femenias, and A. G. Armada, “Channel

hardening in cell-free and user-centric massive mimo networks with
spatially correlated ricean fading,” IEEE Access, vol. 8, pp. 139 827–
139 845, 2020.

6


	Páginas desdeEffect_GLOBECOM_2021_ps
	Effect_GLOBECOM_2021_ps.pdf



