ucam

Universidad

Carlos|Il -Archivo
de Madrid

© 2021/2022 TIEEE. This work has been submitted to the
IEEE for possible publication in [EEE Communications
Magazine. Copyright may be transferred without notice, after
which this version may no longer be accessible.

Towards Node Liability in Federated Learning:
Computational Cost and Network Overhead

Francesco Malandrino, Carla Fabiana Chiasserini

Abstract—Many machine learning (ML) techniques suf-
fer from the drawback that their output (e.g., a classifi-
cation decision) is not clearly and intuitively connected
to their input (e.g., an image). To cope with this issue,
several explainable ML techniques have been proposed
to, e.g., identify which pixels of an input image had
the strongest influence on its classification. However, in
distributed scenarios, it is often more important to connect
decisions with the information used for the model training
and the nodes supplying such information. To this end, in
this paper we focus on federated learning and present
a new methodology, named node liability in federated
learning (NL-FL), which permits to identify the source
of the training information that most contributed to a
given decision. After discussing NL-FL’s cost in terms
of extra computation, storage, and network latency, we
demonstrate its usefulness in an edge-based scenario. We
find that NL-FL is able to swiftly identify misbehaving
nodes and to exclude them from the training process,
thereby improving learning accuracy.

I. INTRODUCTION

Originally introduced in [1], federated learning
(FL) is one of the most relevant approaches to the
task of distributed machine learning (ML). Its main
advantage is that the participating learning nodes
can cooperatively train a single ML model (usually
a deep neural network, DNN) through an iterative
procedure, without sharing their local data, which
may be private and/or sensitive.

As summarized in Fig. 1, each iteration of the
FL paradigm, also called epoch, consists of the
following main steps. First, each learning node
trains its local model using its own data (step 1
in Fig. 1), and sends the local model parameters
to a learning server (step 2), with the latter being
often located at an edge host in a mobile network
scenario [2], [3]. The learning server averages the
received parameters (step 3), and sends the averaged
model back to the learning nodes (step 4), which use
it in the subsequent epoch.

This work was supported through the EU 5Growth project (Grant
No. 856709).

FL is a very popular option in scenarios where
nodes belong to different individuals and/or admin-
istrative entities, as it is the case for user personal
devices [1] or fog nodes [4], [5]. In such cases,
nodes often exchange the data messages depicted
in Fig. 1 through wireless networks belonging to
a third party. However, limited and/or unreliable
connectivity may negatively impact learning perfor-
mance [4]-]6].

Typically, a decision made through the trained
model during the inference phase, e.g., the classifi-
cation of an image, contains no indication on how
it was obtained, e.g., (i) based on which pixels of
the image itself, and/or (ii) which images from the
training set have most contributed to such decision.
Analyzing the latter aspect allows establishing a link
between decisions (e.g., a self-driving car failing
to recognize a highway barrier, or Microsoft’s Tay
chatbot bringing up conspiracy theories) and the
source of the training data determining such deci-
sions (e.g., which crowd-sourced images or tweets).
The same issue is present in all cooperative learning
scenarios, where it is of paramount importance to
identify the learning nodes that, due to malicious
behavior or simple malfunctioning, inject incorrect
information in the learning process.

In this paper, we tackle this issue by introduc-
ing the methodology of node liability in federated
learning (NL-FL). NL-FL aims at identifying the
learning nodes that provided, during the training
phase, the information that had the strongest influ-
ence over a given decision, e.g., a wrong manuever
by a self-driving car. To this end, NL-FL leverages
results from layer-wise relevance propagation [7]
and techniques from model weighting and client
selection in FL [3]. Once the misbehaving learning
nodes are identified, they can be removed from
the learning process; further action (e.g., a criminal
investigation) can be taken if warranted.

In order to be suitable to fog networking sce-
narios, with fleeting connectivity and energy con-

learning server

node 1 node 2
[—)
=) Q

(1) perform local
training

(1) perform local
training

(2) sen
parameters
(3) average
parameters

(4) global
model

Fig. 1. The main steps performed at each training epoch in FL.

strained nodes, NL-FL neither leads to additional
network overhead compared to traditional FL, nor
requires additional operations at the learning nodes.
Indeed, all tasks are performed by the learning
server, which is best equipped to perform them.

The remainder of this paper is organized as
follows. First, Sec. Il reviews state-of-the-art works
in the areas of FL client selection, explainable
ML, and layer-wise relevance propagation. Then
Sec. III introduces NL-FL, describing its underlying
principles and implementation details. To showcase
the effectiveness of NL-FL, we assess its ability
to identify the misbehaving nodes in a realistic FL
scenario, as detailed in Sec. IV. Finally, in Sec. V
we discuss the outcome of our experiments and
sketch open challenges calling for further research,
before concluding the paper in Sec. VI.

II. CURRENT ISSUES IN FLL MANAGEMENT

Managing a large-scale, distributed learning pro-
cess like FL is challenging for several reasons,
including (i) the need to select the learning nodes
to rely upon and properly weight the information
they provide, (ii) the need to explain the decisions
reached, and (iii) the need to establish the relevance
of different parts of the input on the overall deci-
sions. Below, we discuss how each of these aspects
has been dealt with in the literature.

A. Client selection and model weighting in FL

As DNNs require large datasets to be trained
properly, the ability of individual learning nodes
to contribute to the global learning task strongly
depends upon the quantity of data at their disposal.
To account for this, the learning server can make the
weights assigned to local models in the averaging

phase (step 3 of Fig. 1) proportional to the size of
local datasets, as done in [1], [4].

Along with the quantity of data available to
learning nodes, its quality, e.g., whether or not it
is i.1.d., has a very important impact on the training
performance. Three main approaches exist to tackle
low-quality local data: (i) data augmentation, e.g.,
combining local and remote data samples to obtain
new samples [6], [8]; (ii) selecting i.i.d. subsets
from local datasets [9]; (iii) weighting local models
according to a measure of data quality, e.g., entropy.

Besides their local datasets, learning nodes can
have different computational capabilities and/or dif-
ferent ways to connect to the edge server. One
approach, followed in [4], [5], is to assign more
resources (e.g., radio resource blocks) to the nodes
that need them the most (e.g., experience connectiv-
ity issues), so as to avoid performance bottlenecks.
Another option is simply to drop overly-slow nodes
(“stragglers”) from the learning process, thus mak-
ing individual iterations faster [3], [4], [10].

Finally, not all clients always behave correctly. A
node may create multiple identities to influence the
learning process (Sybil attack), or it may send in-
correct updates to the learning server. As discussed
in [11], such nodes can be identified by leveraging
the notion of distance between local and global
models: consistently high distances suggest mal-
functioning, while too-close local models coming
from different nodes can reveal a Sybil attach. An
alternative approach is presented in [12], leveraging
blockchain technology to build a reputation system
for learning nodes.

B. Explainable ML

The high-level goal of Explainable ML (XML) is
to make the decisions of ML systems understand-
able by humans. This is often achieved by spelling
out which elements of the input have had the most
significant impact on the decision itself, e.g., “the
application for a credit card was denied because the
income was lower than a threshold”.

ML techniques based on decisions trees [13]
naturally lend themselves to XML, and have long
been the most popular option whenever the right
to explanation has to be guaranteed. Similar to
flow charts, the root and intermediate nodes of
decision trees represent conditions against which
input data can be checked (e.g., whether the amount

(1) inputimage

N

(2a) interme-
diate outputs

(4c) layer-wise
4relevance scores

(5) per-pixel
relevance scores

(2c) intermediate outputs

P

T

(2b) interme-
diate outputs 0

| A
(4b) layer-wise (3) decision
relevance scores

‘ Py IAFZ

(4a) layer-wise relevance scores

Fig. 2. Relevance computation during the inference phase: Schematic view of how a simple DNN processes input images to reach a decision
(top, green arrows), and how relevance is propagated across layers (bottom, red arrows). Inputs and outputs of fully-connected layers (right)
are one-dimensional (“flat”) tensors, hence, they are represented by their empirical pdf.

of a transaction is above a threshold); the leaves
correspond to the ML decision, e.g., whether the
transaction is deemed a fraud. Decision tree learning
algorithms seek to optimize the order and content
of the rules, so as to maximize the learning quality.

On the negative side, not all types of data are suit-
able for decision trees, and many ML applications
leverage DNNSs instead. Due to their relevance and
popularity, several techniques have been developed
in order to explain DNN decisions; among such
techniques, the most promising one is layer-wise
relevance propagation, discussed next.

C. Layer-wise relevance propagation

The high-level goal of layer-wise relevance, in-
troduced in [7], is to explain DNN decisions. Con-
sidering as an example the image classification
task exemplified in Fig. 2, we want to associate
a relevance score (step 5) to each pixel of the
original image (step 1), expressing how important
each pixel was in reaching the decision. In the
figure, we can observe that pixels corresponding
to transitions between dark and light parts of the
image tend to have high relevance, while pixels on
the background have low relevance: recalling that
shapes are defined by transitions between light and
dark areas of an image, it makes intuitive sense that
those areas matter the most for shape classification.

Relevance values are computed according to the
rules laid out in [14]: we start from the neuron in the
output layer associated with the highest score (i.e.,
corresponding to the final decision), and traverse the
DNN back towards the input. At each step, layer-
wise relevance values express how strongly each
element of the previous layer has influenced each

element of the current one. Importantly, layer-wise
relevance values (steps 4a—4c in Fig. 2) have the
same shape as the corresponding intermediate out-
puts (steps 2a—2c in Fig. 2). This holds also for the
one-dimensional tensors that are inputs and outputs
of the fully-connected layers on the right, which are
represented by their probability density functions
(pdf). As a result, the final relevance scores (step 5
in Fig. 2) can be mapped to individual pixels of
the input image. Crucially, relevance values are
computed during the inference phase, and do not
require any change to the training phase.

D. Motivation and novelty

NL-FL is a variant of the FL paradigm, and it
works exactly like ordinary FL. when no issues are
present, i.e., when all nodes behave correctly. When
misbehaving nodes are present, NL-FL seeks to
identify and exclude them in a similar way to the
client selection techniques described in Sec. 1I-A;
however, it is able to only focus on a subset of spe-
cific decisions, e.g., racist tweets by Microsoft Tay.
This allows NL-FL to better deal with sophisticate
attackers, aiming to only sway some decisions as
opposed to sabotaging the whole learning process.
At the same time, nodes providing different updates
due to their local datasets are not suspected.

The purpose of NL-FL is similar to the XML
techniques discussed in Sec. II-B, in that both seek
to explain ML decisions. However, XML focuses
on which parts of the input (e.g., which pixels of
an image) influenced a given decision (“this guard-
rail was identified as a road line because of these
white traces on it”). Conversely, NL-FL aims at
identifying the training-time data such decisions are

FL training phase

(1) Local
updates

FL inference phase

ol

(1) Local (3) Distance || (7) Relevance (6) Inference
updates per node,epoch,layel per layer decision
4
(8) RAdist
NL-FL per node,epoch
(10) Liable (9) Compare
nodes with a

Fig. 3. Operations during the training (green) and inference (blue)
phases of the FL paradigm, and of the NL-FL (red).

based upon, and their source (“user CrackMonkey74
tagged these photos of guard-rails as road lanes”).

NL-FL reaches its goal by combining the rele-
vance techniques reviewed in Sec. II-C with infor-
mation on the difference between local and global
models, as set forth next.

III. NODE LIABILITY IN FEDERATED LEARNING

We now introduce the proposed NL-FL technique
that seeks to establish how much influence individ-
ual learning nodes (and their data sets) have on a
given decision during the inference phase.

Fig. 3 summarizes the operations carried out by
the FL paradigm and the additional ones envisioned
by our proposed NL-FL. Specifically, the green
box in Fig. 3 corresponds to the training phase
of FL, where learning nodes send local updates
to the learning server, and the latter computes the
average (global) model (see also Fig. 1). The blue
box denotes the inference phase, where the trained
(global) model is used to make decisions (e.g.,
classification) over individual samples. The red box
includes the operations performed as a part of our
NL-FL methodology. Numbers in the box identify
the chronological order of each step.

During the training phase, the learning server
leverages the information sent by learning nodes
as a part of the FL methodology to keep a log
of how similar the updates coming from learning
nodes at each epoch are to the average model. In
particular, the learning server computes the cosine
distance [11] between the local updates and the
average model for each epoch, node, and layer,
and locally stores such information in a three-
dimensional tensor. Whenever it is necessary to

review an inference-time decision, the server com-
bines distance information with the layer-wise rel-
evance values it can compute as per Sec. II-C, and
uses them to compute a new metric, that we named
relevance-aware distance (RAdist).

More specifically, for each sample processed
through the trained model during the inference
phase, the RAdist metric is obtained by multiply-
ing the aforementioned three-dimensional tensor by
a column vector with as many elements as the num-
ber of layers, containing the layer-wise relevance
corresponding to that sample.

The result is a matrix, containing the RAdist
values for each epoch and node. If the RAdist
metric for a specific node, averaged over the epochs,
is significantly (e.g., by a factor «) larger than the
average computed over the nodes and the epochs,
that node is identified as misbehaving, and addi-
tional action can be taken — e.g., re-training the
model excluding the misbehaving node.

Thanks to the way it is defined and to the fact
that it leverages information from both the training
and inference phases of FL, the RAdist metric
is able to achieve the two main objectives of NL-
FL, namely (i) quantifying the influence of indi-
vidual learners (and their datasets) on the training
process (unlike layer-wise relevance [7], [14]), and
(i) focusing on specific decisions, as opposed to
considering all parameters [11].

We stress that NL-FL differs from XML tech-
niques in that it does not explain the decision in
terms of the present, inference-phase input (step 5
of Fig. 2), but rather in terms of past, training-
phase contributions from learning nodes. At the
same time, an important feature of NL-FL is that
it holds learning nodes liable for specific decisions
concerning individual input samples, e.g., the clas-
sification of a given image. This is in contrast with
similarity-based techniques to identify misbehaving
learning nodes [11], which account for the overall
similarity between parameter updates. Thanks to
this feature, NL-FL can identify misbehaving nodes
also in scenarios where they only mis-label a small
fraction of their local data.

Finally, it is worth highlighting that computing
the RAdist metric — and, in general, achieving the
NL-FL vision — entails a modest cost in terms of
additional data storage and computation. Indeed, we
first need to compute the relevance values during the
inference phase. As per [14], the cost of computing

the relevance values for a sample is similar to
that of performing a round of back-propagation
during training — actually smaller, as there is no
optimization to perform. Then, as per Fig. 3, the
learning server needs to store distance and relevance
information. The former only takes up a small extra
space at the learning server, while the latter can
be quite significant, comparable to the size of the
items being classified. For this reason, as discussed
in Sec. V, it is often preferable to compute relevance
values on an as-needed basis.

Notice that all such extra requirements brought
by NL-FL affect the learning server: no extra load
is placed on the learning nodes, which are often
resource-constrained devices. Also, no additional
operations are necessary during the training phase,
which is usually the most resource-intensive one,
and no additional data is transmitted over the net-
work. In particular, NL-FL does not require learning
nodes to share any additional information, thus the
accountability brought by NL-FL does not come at
the cost of jeopardizing FL’s privacy properties.

IV. EXPERIMENT DESIGN AND RESULTS

We now describe the behavior of the learning
nodes in our experiments, the data at their disposal,
and the DNN they run, and we present our results.

A. Reference scenario and benchmarks

We consider a typical medium-scale edge sce-
nario [15], with 10 learning nodes connected with,
and coordinated by, an edge-based learning server.
Each learning node has a local dataset of 4,000 im-
ages coming from the EMNIST dataset, represent-
ing handwritten digits or letters. Using the EMNIST
dataset allows us to obtain meaningful, easy-to-
generalize results, without the need to implement
overly complex DNNs. To evaluate RAdist in a
more challenging scenario, we make local datasets
non-i.i.d., by assigning to each learning node a
randomly-chosen symbol (digit or letter) that is ten
times more frequent than the others. The learning
nodes perform a classification task, i.e., associating
each image with the character it represents. To this
end, as in the original EMNIST paper, nodes run
a DNN with four layers: two convolutional ones
followed by two fully-connected ones.

Nine out of the ten learning nodes are correct,
i.e., all their local data are truthfully labeled. A

e
©

o
=

I
N

all symbols
B letter x

all nodes
correct

I
o
=)

Classification accuracy

e
wn

misbehaving
node removed

one mis-
behaving node

o
NS

Fig. 4. Accuracy for all symbols (yellow bars) and for the symbol
x (blue bars) when all nodes are correct (left), one node misbehaves
(center), and the misbehaving node is removed (right).

tenth node misbehaves; specifically, it labels all
occurrences of character x as digit 9. Such a pattern
can be observed in two very different and equally
relevant real-world situations: (i) a sophisticate at-
tack, performed by a malicious node interested in
swaying the behavior of the classifier for only some
of the classes, or (ii) a honest but malfunctioning
node, subject to a failure of its equipment. Intu-
itively, we expect a misbehaving node mislabeling
only some of its local data to be harder to detect than
a node sending bogus, e.g., random updates. Indeed,
in our case, the parameters of the misbehaving node
will be very close to those of the correct nodes,
hence, naive distance metrics such as those used
in [11] may not be sufficient.

All nodes participate in a FL task, sending param-
eter updates to the centralized learning server after
each epoch; the training process lasts 50 epochs in
total. The server uses a simple averaging strategy
to determine the global parameters. Further, all
nodes correctly follow the FL protocol, i.e., send
their (true) local parameters and dutifully replace
them with the global ones upon receiving them. We
further set o to 2, leaving further study on the effect
of such a parameter for future work.

B. Experimental results

A first question we seek to answer is to which
extent a single misbehaving node mislabeling a sin-
gle character can affect the overall learning process.
To this end, in Fig. 4 we plot the classification
accuracy for the whole dataset (yellow bars) and
for the symbol = (blue bars) in three scenarios,
namely: (i) when all nodes behave correctly; (ii)
when one node misbehaves as detailed above, and
(iii) when the misbehaving node is removed, and
only the remaining nine take part in the learning.

correct
misbehaving
\ = = = distance

! == = reputation
3 = RAdist

Normalized score

0 10 20 30 40 50
Epoch

Fig. 5. Scores for correct (gray lines) and misbehaving (red lines)
nodes, under three scoring metrics: cosine distance [11] (dotted lines),
reputation [12] (dashed lines), RAdist (solid lines).

The average accuracy is not significantly affected
by the presence of the misbehaving node; after all,
only a small number of images is misclassified.
Focusing instead on the occurrences of letter x (blue
bars) and comparing the first and second groups
of bars, it is possible to see a visible drop in
the accuracy, which is even more serious because
letter = is not very well classified in the first place.
Notice how such a significant effect is obtained by a
single misbehaving node, in spite of the nine correct
ones. Finally, the rightmost group of bars shows that
identifying and removing the misbehaving node is
sufficient to essentially restore the original accuracy.

We now seek to understand the usefulness of the
RAdist metric in identifying such a node. To this
end, Fig. 5 shows the normalized score for correct
(gray) and misbehaving (red) nodes, where “score”
is defined as: (i) cosine distance [11] (dotted lines);
(ii) a reputation system similar to [12] (dashed
lines), where the reputation of a node reflects its
ability to properly classify its local dataset; (iii)
RAdist (solid lines). The difference is very clear:
dotted and dashed lines tend to lie close to each
other, as both cosine distance and reputation tend
to be swayed by the fact that even the misbehaving
node behaves correctly most of the times, and that
even correct nodes may occasionally provide wrong
results. On the other hand, when moving to the
RAdist metric (solid lines), the misbehaving node
emerges as having a significantly score distance than
the others, for all epochs. In other words, relevance
values act like a magnifying glass over the dif-
ferences between parameters coming from correct
and misbehaving nodes, allowing such differences
to clearly emerge and drive decisions about client
selection in FL. This, in turn, allows us to neutralize

TABLE 1
OVERHEAD ASSOCIATED WITH NL-FL

NL-FL

27 ms/sample
130 ps/sample | 153 ps/sample
3.41 MByte
52.5 kbit/s
7.2 kByte/epoch/node
4 kByte/sample

Metric [FL [
Training time
Inference time
Model size

Data transfer rate
Similarity info. size -
Relevance info. size -

the effect of the misbehaving nodes on the resulting
accuracy, as shown in Fig. 4: specifically, leveraging
the RAdist metric we can move from the second
to the third group of bars in Fig. 4.

Last, Tab. I summarizes the overhead of NL-FL
in terms of computational time, additional storage,
and network latency. As discussed in Sec. III, we
can observe that NL-FL comes at a modest cost
in terms of inference time, and the learning server
has to store additional information concerning how
close updates from different nodes are, and rel-
evance values for each sample. The space taken
by similarity information grows linearly with the
number of learning nodes, e.g., a scenario including
1,000 learning nodes executing 100 epochs would
result in 720 MByte of similarity information —
an acceptable overhead for a server with sufficient
capabilities to coordinate 1,000 nodes. The size of
relevance information can become significant for
very large-scale datasets. As discussed later, its
impact can be reduced by activating NL-FL only
when needed. Importantly, relevance and similarity
information are created and stored locally at the
coordinator, hence, neither contributes to the net-
work overhead. In Tab. I, it is also important to
observe the quantities that do notr change across
columns. Specifically, NL-FL changes neither the
training performance (which is usually the most
time-consuming part of learning), nor the network
overhead. Furthermore, it places no additional bur-
den (i.e., no extra computation or storage require-
ments) on the learning nodes.

V. DISCUSSION AND OPEN CHALLENGES

Through the RAdist metric, we have been able
to establish a link between wrong decisions made
during the inference phase and the nodes providing
the wrong information during the training phase
driving such decisions. In other words, we have been
able to hold the misbehaving node liable for the

wrong classification decisions it caused, fulfilling
the basic task of NL-FL. At the same time, several
important challenges remain open before the full
NL-FL vision can be realized.

A first challenge concerns the integration of
NL-FL within the wider task of client selection
and model weighting in FL. As an example, it
is important to study the effect of parameter «
on the performance of NL-FL, balancing the usual
trade-off between false positives and false negatives.
Furthermore, we need to decide how wrong deci-
sions shall be reported, and which wrong decisions
trigger a liability investigation. Once one or more
learning nodes are associated with the decisions
being investigated, it is important to decide what
to do with them. As discussed earlier, removing
those nodes from the learning process and repeating
the training is the default action; however, if the
misbehavior is due to malfunctioning, the affected
nodes can be fixed. At the same time, some forms
of misbehavior may be ground for civil or criminal
liability, and need to be reported accordingly.

Another relevant issue is whether, and how, pa-
rameters coming from nodes that are unintentionally
misbehaving can be recovered and still used for
the training. Consider the scenario of Sec. IV: we
are throwing away all information from the misbe-
having node, which still classifies images correctly
in the vast majority of cases. It is possible that,
using the RAdist metric as a guidance, parameter
updates from misbehaving nodes could be amended
and used in the learning process. Similarly, it would
be highly desirable to remove the influence from
misbehaving nodes on the global model without
repeating the whole training.

Finally, given the modest but nonzero overhead,
there is the issue of deciding when to activate NL-
FL. Specifically, instead of storing relevance values
for all samples being classified, one can: (i) store
such information for a limited time, and/or (ii)
require the misclassified sample when the anomaly
is reported. In the latter case, relevance values can
be obtained as easily and swiftly as needed.

VI. CONCLUSION

This paper introduced the concept of node lia-
bility in federated learning (NL-FL), which allows
classification decisions to be associated with the
information used at training time and their sources.

We evaluated the NL-FL performance and overhead
in an edge-based scenario, finding that NL-FL is
much more effective than state-of-the-art solutions
in identifying misbehaving learning nodes, at the
cost of a modest increase in computational and
storage requirements for the learning server.

REFERENCES

[1] J. Kone¢ny, B. McMahan, and D. Ramage, “Federated op-
timization: Distributed optimization beyond the datacenter,”
arXiv:1511.03575, 2015.

[2] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya,
T. He, and K. Chan, “Adaptive federated learning in resource
constrained edge computing systems,” IEEE JSAC, vol. 37,
no. 6, pp. 1205-1221, 2019.

[3] T. Nishio and R. Yonetani, “Client Selection for Federated
Learning with Heterogeneous Resources in Mobile Edge,” in
IEEE ICC 2019, 2019.

[4] N. H. Tran, W. Bao et al., “Federated learning over wireless
networks: Optimization model design and analysis,” in IEEE
INFOCOM, 2019.

[51 Y. Tu, Y. Ruan, S. Wagle, C. G. Brinton, and C. Joe-Wong,
“Network-Aware Optimization of Distributed Learning for Fog
Computing,” in IEEE INFOCOM, 2020.

[6] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L.
Kim, “Communication-efficient on-device machine learning:
Federated distillation and augmentation under non-iid private
data,” arXiv preprint arXiv:1811.11479, 2018.

[71 S. Bach et al, “On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation,” PloS
one, vol. 10, no. 7, p. e0130140, 2015.

[8] M. Shin, C. Hwang, J. Kim, J. Park, M. Bennis, and S.-L. Kim,
“XOR Mixup: Privacy-Preserving Data Augmentation for One-
Shot Federated Learning,” arXiv:2006.05148, 2020.

[9] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated

learning on non-iid data with reinforcement learning,” in /EEE

INFOCOM, 2020.

G. Neglia et al., “The role of network topology for distributed

machine learning,” in IEEE INFOCOM, 2019.

C. Fung, C. J. Yoon, and I. Beschastnikh, “The limitations of

federated learning in sybil settings,” in USENIX RAID, 2020.

J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and

M. Guizani, “Reliable federated learning for mobile networks,”

IEEE Wireless Communications, vol. 27, no. 2, pp. 72-80, 2020.

J. R. Quinlan, “Decision trees and decision-making,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2,

pp- 339-346, 1990.

G. Montavon et al., “Layer-wise relevance propagation: An

overview,” in Explainable Al: Interpreting, Explaining and

Visualizing Deep Learning. Springer, 2019.

X. Wang, Y. Han er al., “In-Edge Al: Intelligentizing Mobile

Edge Computing, Caching and Communication by Federated

Learning,” IEEE Network, vol. 33, no. 5, pp. 156-165, 2019.

[10]
(11]

[12]

[13]

[14]

[15]

Francesco Malandrino (M’09, SM’19) is a researcher at the Na-
tional Research Council of Italy (CNR-IEIIT). His research interests
include the architecture and management of wireless, cellular, and
vehicular networks.

Carla Fabiana Chiasserini (M’98, SM’09, F’18) is Full Professor
with Politecnico di Torino and a Research Associate with CNR-
IEIIT. Her research interests include architectures, protocols, and
performance analysis of wireless networks.

