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Ensembles of classifiers is a proven approach in machine learning with a wide variety of research
works. The main issue in ensembles of classifiers is not only the selection of the base classifiers, but
also the combination of their outputs. According to the literature, it has been established that much is
to be gained from combining classifiers if those classifiers are accurate and diverse. However, it is still
an open issue how to define the relation between accuracy and diversity in order to define the best
possible ensemble of classifiers. In this paper, we propose a novel approach to evaluate the impact of
the diversity of the learners on the generation of heterogeneous ensembles. We present an exhaustive
study of this approach using 27 different multiclass datasets and analysing their results in detail. In
addition, to determine the performance of the different results, the presence of labelling noise is also
considered.
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1. Introduction

Machine learning uses the theory of statistics in building
athematical models, because the core task is making inferences

rom a sample [1]. Three major branches of machine learning are
upervised, unsupervised and reinforcement learning. The goal of
upervised learning is to create a model of the distribution of class
abels in terms of features. This model is called classifier and it can
e used to assign a class label to those instances in which this
alue is unknown [2]. Despite the variety and number of models
hat have been proposed, including artificial neural networks [3],
ecision trees [4], inductive logic programming [5], and Bayesian
earning algorithms [6], the construction of a perfect classifier for
ny given task remains unobtainable [7].
The strategy of combining different classification models has

ttracted the interest of the Machine Learning Community. This
trategy is known as mixture of experts, ensemble methods or
nsemble of classifiers [8]. An ensemble of classifiers consists
f a set of classifiers, named base learners, whose individual
ecisions are combined in some way to classify new examples [9].
ccording to Sagi [10], the reasons why ensemble methods of-
en improve predictive performance are: avoid the overfitting,
ecrease the risk of obtaining a local minimum, and extend the
ypothesis search space.
Similar to what happens when a human being has to make

n important decision, ensembles of classifiers are based on the
dea that decisions made collectively are more reliable than those
ased on a single opinion. In this sense, an ensemble of classifiers
ombines the results of a set of individual classifiers to obtain a
ore reliable result [9].
Several theoretical studies have demonstrated that the success

f any ensemble of classifiers is related to the accuracy and
iversity of the members of the ensemble [11]. Thus, an ensemble
f classifiers could improve the accuracy of any of its individual
embers if they have a low error rate (are accurate) and their
rrors are not coincident (are diverse). However, obtaining base
earners which satisfy both requirements simultaneously is not
n easy task because the lower the number of errors, the higher
ts correlation is [12,13].

Generating an ensemble involves:
• the selection of a methodology for training and selecting the

members of the ensemble (base learners),
• the choice of a method for combining their outputs.
The techniques used to generate a pool of base learners that

re both accurate and diverse are based on the idea that the hy-
othesis of a classifier depends on both the training data and the
earning algorithm that are used to generate each classifier. When
ase learners are obtained using different learning algorithms,
nsembles are called heterogeneous. On the other hand, when the
ase learners are generated using a single learning algorithm and
herefore the main sources of diversity are the modification of
he training set and/or the use of different versions of the same
earning algorithm, ensembles are called homogeneous.

The homogeneous ensembles include systems such as Bag-
ing [14] or Boosting [15] where the base classifier are generated
sing different training datasets. Other systems categorized as
omogeneous ensembles are the Random Subspace Selection [16]
here each base classifier is created by using different feature
ub-spaces, or systems as the proposed in [17] and [18], where
ach member of the pool is generated using different variants of

he same learning algorithm.

2

On the other hand, the heterogeneous ensembles include sys-
tems as Stacking [19] and most of its variants [20] where the
members of the pool are generated from different inducers, such
as artificial neural networks, decision trees, support vector ma-
chines, Bayesian models, and so on. In this paper, it is studied
the impact of the diversity among the learners in heterogeneous
ensembles.

As was noted before, the second key aspect in the design of
ensembles of classifiers is to define the strategy for combining the
outputs of the base learners into a single output. In this sense,
depending on the policy used to combine these outputs, the
combination strategies proposed in the literature can be grouped
into two techniques: fusion and selection.

• In classifier fusion, the decisions of all base classifiers are
involved in the final ensemble decision. It is therefore a
cooperative and competitive combination strategy, since all
the decisions are involved and some decisions prevail over
others. The decisions from all members can be combined
using simple mathematical functions, such as the average,
majority vote or weighted majority vote, or more complex
techniques, such as meta-classifiers. A meta-classifier is a
classifier trained to combine the outputs of the different
base classifiers. Stacking [21] is perhaps the best known
method that introduces the concept of a meta-classifier.

• In classifier selection, it is assumed that each classifier is
an expert in some local region of the space [22]. Therefore,
a new instance is classified by the decision of a single
classifier. Depending on whether the region of competence
of a classifier is defined during the training phase or during
the qualification phase, selection techniques are divided into
static or dynamic [23].

In light of this background, this paper is focused on the study
of the diversity as method to select base learners of an hetero-
geneous ensemble, and the influence of the combination method
on the accuracy of the ensemble.

2. Related works

Ensembles of classifiers is a proven approach in machine
learning with a wide variety of research works. In this section,
some related research works are described. In addition, since
the combination of the different classifiers is essential in these
methods, several research works about this issue are presented.

2.1. Ensembles of classifiers — applications

The first research works related to ensembles of classifiers
date from several decades ago. In the 1990s, important ensemble
methods such as Bagging [14], Boosting [15,24,25] or Stacking [19]
were proposed. Those research works opened the door to a very
promising approach in machine learning: ensembles of classifiers.
In [26] a complete review of Bagging and Boosting methods and a
arge empirical study comparing several variants are presented. In
997, Dietterich detailed in [27] that machine-learning research
as making great progress in four different directions: (1) the

mprovement of classification accuracy by learning ensembles
f classifiers, (2) methods for scaling up supervised learning al-
orithms, (3) reinforcement learning, and (4) the learning of
omplex stochastic models. It is remarkable that the first of those
irections is related to the ensemble of classifiers. From those
irst research works, the interest in ensembles of classifiers has
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ncreased and nowadays, ensembles of classifiers are used in
wide range of environments and applications, as is detailed
elow.
Imbalance classification is a challenging research task in ma-

hine learning. Imbalanced datasets may negatively impact the
redictive performance of most classical classification algorithms.
n order to tackle this problem, many different methods based on
nsembles of classifiers have been proposed [28]. In this sense,
study proposed in [29] conducts a Bagging based ensemble
ethod to overcome the problem of class imbalance. The purpose
f that research is to see the ability of some Bagging based ensem-
le methods on overcoming the class imbalance problem. In [30]
s proposed a method for classifying five groups of imbalanced
eartbeats. In that work, re-sampling techniques and AdaBoost
nsemble classifier are used. In [31] is presented a method for
he automatic classification of electrocardiograms (ECG) based on
he combination of multiple Support Vector Machines and using
database highly imbalanced. Recently, it is proposed a new

nsemble-based method, named Ensemble of Classifiers based
n Multiobjective Genetic Sampling for Imbalanced Classification
E-MOSAIC), to deal with imbalanced multiclass classification
asks [32].

However, although the application of ensembles can deal with
mbalanced classification problems, there are many other fields in
hich ensembles methods have been applied with good results.
In the intrusion detection field, there are several research

orks which tackle this problem by using different ensemble of
lassifiers and hybrid techniques [33]. In [34] is proposed a novel
nsemble construction method that uses particle swarm opti-
ization generated weights to create an ensemble of classifiers

or intrusion detection. In [35] a novel framework to effectively
nd efficiently detect malicious apps and categorize benign apps
s proposed. This framework is based on ensemble of classi-
iers and the experimental results show that it is more robust
han the five base classifiers in the detection and categorization.
he aim of [36] is to identify the critical features required in
he construction of an intrusion detection model. The proposed
odel utilizes an approach based on ensembles of classifiers
ith minimum complexity to overcome the issues in the existing
nsemble-based intrusion detection model.
In relation with the computerized detection of Alzheimer’s

isease, an approach [37] identifies persons with Alzheimer’s
isease using an ensemble of classifiers with Multi-Layer Percep-
ron (MLP), Support Vector Machine (SVM) and J48. In this field,
n [38] is detailed the ability of an ensemble of machine learn-
ng models to implement classification strategies to discriminate
mong mild cognitive impairment, Alzheimer’s disease and Cog-
itive Unimpaired. In [39] is proposed an ensemble framework
o diagnose diabetes mellitus by optimally employing multiple
lassifiers based on Bagging and random subspace techniques.
ew advanced methods of image description and an ensemble of
lassifiers for recognition of mammograms in breast cancer are
resented in [40].
In addition, ensembles of classifiers have been applied in other

ery different fields. In [41] is presented a sentiment analysis
ystem for automatic recognition of emotions in text, using an
nsemble of classifiers. An Stacking ensemble method is proposed

in [42] for the detection of fake news. In [43] is proposed an
activity recognition model which aim to detect the activities by
employing ensemble of classifiers techniques using the Wireless
Sensor Data Mining (WISDM).

Finally, in [44] visual analytic tools are presented to support
a specialist user in interpreting the behaviour of an ensemble of
classifiers and its underlying models.
3

2.2. Selecting the members of the ensemble

A key point in the design of an ensemble of classifiers is the
generation of the pool of classifiers that make up the ensemble.
As was noted before, a necessary condition to obtain an accurate
ensemble is that the base learners are both accurate and diverse.

Although most of the proposed models ensure diversity among
base classifiers in an implicit way [45], there are some research
works where diversity plays a key role in the design of the
ensemble.

In [46] a method for generating ensembles of classifiers that
emphasizes diversity among the ensemble members is proposed.
In that research, the experimental results prove that accuracy
of those ensembles based on diversity is higher than those en-
sembles based on the error rate. However, unlike our approach,
the diversity in that study derives from using different feature
subsets.

In [47], it is described an approach in which the members of
the ensemble are selected based not only on the accuracy but also
on diversity. For that purpose, the authors use a Multi Objective
Evolutionary Algorithm in which the base learners are generated
using Bagging and manipulating the input features. The results
show that the generated multiple classifier ensembles outperform
single classifiers. In that approach, the diversity is measured
using Coincident Failure Diversity, Disagreement and Hamming
Distance. In the approach proposed in this paper, we are using six
different diversity measures (Section 3.2.1): Q statistic (Q ), Corre-
lation Coefficient (ρ), Double fault measure (DF), Plain Disagreement
measure (dis), Kappa-degree-of-agreement statistic (κ), Ambiguity
(amb).

A method based on genetic algorithms is proposed in [48]
for searching base learners that optimize not only the accuracy
but also the diversity. As previous work, it is concluded that
combinations of measures often resulting in better performance
than a single measure. However, the goal of our proposal is the
use of exhaustive search.

In [49] is analysed the efficiency of five diversity measures
(plain disagreement, fail/non fail disagreement, Q statistic, corre-
lation coefficient and kappa statistic) applied in the selection of
feature subsets that promote the greatest disagreement among
the base classifiers. In that research, it is quantified the corre-
lation between each diversity measure and both the ensemble
accuracy and the average accuracy of the base classifiers. The
best correlations were shown by using the plain disagreement
measure and the fail/non-fail disagreement measure. In our work,
the diversity measures are used to select the subset of classifiers
with the highest diversity value.

Finally, in [50] is studied in detail the relationships between
different classifiers combination methods and several diversity
measures. That proposal concludes the use of diversity measures
in the design of ensemble classifiers is an open question. Our
work is focused on that question.

3. Our approach: Base settings

As it was noted in Section 1, the main aim of this paper is to
nalyse the influence of different diversity measures and different
ntegration methods on the design of heterogeneous ensembles
f classifiers. This is not an easy task since many issues have to
e taken into account. This section details the choices made in
elation to the types of classifiers, the diversity measures and the
ntegration methods used in the study.
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.1. Base learners

In order to obtain a pool of complementary base learners, five
ifferent types of classifiers have been selected. This selection has
een done taking into account that the philosophy and operation
f the classifiers should be as different as possible. The different
ypes of classifiers are listed as follows:

1. Linear Support Vector Machine (LSVM): This is a binary
classifier which finds a hyper-plane such that the mar-
gins between the two classes are maximized. The mul-
ticlass support is handled according to a one-vs-the-rest
scheme [51].

2. Decision Tree: This classifier is a tree in which internal
nodes are labelled by features.

3. Neural Networks (Multi-layer Perceptron classifier): This
model optimizes the log-loss function using stochastic gra-
dient descent.

4. K-Neighbours Classifier: This classifier is an instance-based
classifier.

5. Gaussian Naïve Bayes: This classifier uses a probabilistic
approach.

3.2. Diversity measures

Diversity among the members of a set of classifiers is a key
issue in classifier combination. However, measuring diversity is
not straightforward because there is no generally accepted formal
definition, and the diversity of an ensemble of classifier can be
calculated in many ways [49,52]

In this approach, six different diversity measures have been
selected. As in the selection of learners, this collection has been
chosen in order to get a wide variety of measures that capture
different properties. The selected measures can be divided in
pairwise and non-pairwise measures, and they are listed below:

3.2.1. Pairwise measures
These measures attempt to establish the diversity that exists

between the predictions of two classifiers. Hence, when the set
is made up of three or more base classifiers the total diversity is
given by the average of the measures on all classifier pairs.

Since two classifiers are considered diverse when wrong de-
cisions are made on different examples, it seems clear that the
degree of diversity between two classifiers, Ci and Cj, must be a
function of:

• N: Number of examples.
• Nab: Number of examples correctly classified (a = 1) or er-

roneously classified (a = 0) by the Ci classifier, and correctly
classified (b = 1) or erroneously classified (b = 0) by the Cj
classifier.

Based on this nomenclature, the pairwise measures, that are
sed in our approach, are listed and mathematically defined
elow:

• Q statistic (Q ): This measure quantifies the diversity be-
tween two classifiers analysing if both classifiers tend to
correctly classify the same examples, or to commit errors
on different patterns. This statistic is defined in Eq. (1).

Qik =
N11N00

− N01N10

N11N00 + N01N10 (1)

• Correlation Coefficient (ρ): This measure estimates quanti-
tatively the relationship between the successes and errors
made by two classifiers. Mathematically, this relationship is
computed in Eq. (2).

ρij =
N11N00

− N01N10√
(N11 + N10)(N01 + N00)(N11 + N01)(N10 + N00)

(2)
4

• Double fault measure (DF): This measure, defined in Eq. (3),
quantifies the relation between the wrongly classified ex-
amples by both classifiers and the total number of training
examples.

DFij =
N00

N11 + N00 + N01 + N10 (3)

In addition to this three measures which are based on the
number of hits and errors for each pair of classifiers, two ad-
ditional measures have been selected. These two measures are
described below:

• Plain Disagreement measure (dis): This measure quantifies
the relation between the number of times the base classi-
fiers assign the same class, and the total number of exam-
ples. It is defined in Eq. (4).

dis =
1
N

N∑
k=1

Is(Ci(xk) ̸= Cj(xk)) (4)

where: Ci(xk) is the class assigned by classifier i to the
instance k. Is() is a truth predicate.

• Kappa-degree-of-agreement statistic,(κ): If Nij is the number
of examples to which the first classifier assigns class i and
the second classifier assigns class j and N indicates the total
of examples, then this measure is defined as in Eq. (5).

κ =
Θ1 − Θ2

1 − Θ2
(5)

where: Θ1 =

∑l
i=1 Nii
N is the probability that both classifiers

agree on their decisions, and Θ2 =
∑l

i=1(
Ni∗
N

N∗i
N ) is a correc-

tion factor that estimates the probability of both classifiers
matching in their decisions by chance.

It is worth mentioning that when the ensemble is made up of
three or more base classifiers and diversity quantified using some
pairwise measure, the total ensemble diversity will be calculated
by averaging the dual values, as given in Eq. (6).

DiversityEnsemble =
2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

Diversityi,j (6)

where: l is the number of base learners in the corresponding
ensemble.

3.2.2. Non-pairwise measures
The aim of these measures is to estimate the diversity of

the set of classifiers by considering it as a whole. This category
includes, among others, the following measure:

• Ambiguity (amb): The idea behind this measure is that a clas-
sification problem in which the examples belong to K classes
can be interpreted as K regression problems. Therefore, the
diversity of a set composed of L base classifiers can be
calculated by averaging the ambiguity of each example over
the different regression problems. This measure is defined
in Eq. (7).

amb =
1

LNK

L∑
l=1

N∑
n=1

K∑
k=1

(Is(Cl(xn)) = k) −

(
Nn

k

L

)2

(7)

where: Nn
k is the number of base learners that assign class k

to the example xn, Cl(xn) is the class assigned by the classifier
l to the example xn, and L,N and K are the total amount of
base classifiers, examples and classes, respectively.
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.3. Combination methods

Once the base classifiers that are comprising the ensemble
ave been fixed, the next step is to establish a procedure through
hich the individual decisions are combined to obtain a final
ypothesis. There are several ways of combining the output of
he base classifiers, from simple methods, such as majority voting,
o more complex methods, such as meta-classifiers [19]. Since
he combination method can affect the performance of the en-
emble, in this research we analyse the impact of six different
ombination methods on the ensemble performance.
The selected combination methods can be divided in three

ategories according to the main algorithm used: simple majority
oting, weighted majority voting, or use of a meta-classifier. The
ix combination methods are explained below:

.3.1. Methods based on simple majority voting
Methods based on simple majority voting combine the outputs

f the base classifiers in the simplest possible way, by performing
voting among the base classifiers without using any exter-
al elements or information. From this category, the following
ombination method is used:

• Majority (unweighted) voting (MVOT): The ensemble takes a
decision by counting how many base classifiers vote each
class and selecting the most voted class. In the event of
a tied vote, the ensemble will select randomly one of the
most voted classes. Although this is a very simple method,
according to the literature, unweighted vote is robust [53].

3.3.2. Methods based on weighted majority voting
In this case, the process is similar to the unweighted voting,

ince the ensemble adds the votes of the base classifiers and
hooses the most voted class. However, instead of all votes having
qual value, in a weighted majority voting the votes of each base
lassifier can have different values according to their reliability.
n this work, the weights that modify the value of the votes are
ased on the evaluation measures of accuracy and precision that
re described below:

• Global accuracy (accuracyC ): Samples correctly classified by
the classifier C divided by the total number of samples.

• Accuracy per class (accuracyCi): Samples of the class i cor-
rectly classified by the classifier C divided by the number of
samples of the class i.

• Precision (precisionCi): Samples of the class i correctly clas-
sified by the classifier C divided by the number of samples
that the classifier has classified as class i.

ccording to this definition, the combination methods based on
eighted majority voting that are used in our approach, are listed
elow:

• Weighted voting using global accuracy (WVGA): The value of
the weighted vote of a base classifier C is accuracyC .

• Weighted voting using class accuracy (WVCA): The value of
the weighted vote of a base classifier C is accuracyCi, where
i is the class predicted by C .

• Weighted voting using class precision (WVCP): The value of
the weighted vote of a base classifier C is precisionCi, where
i is the class predicted by C .

.3.3. Methods based on meta-classifiers
In this case, the predictions of the base classifiers are given to

meta-classifier which predicts the final output of the ensemble.
his meta-classifier is trained on the training phase, so that it has
he real class of the samples and it can learn accordingly. There
re two methods based on meta-classifiers that are used in our
5

Fig. 1. Architecture of our approach.

approach, and both of them use a Gaussian Naïve Bayes classifier.
The two meta-classifiers differ in the input that is provided to
them, as explained below:

• Bayesian meta-classifier using predictions (PBAY): The meta-
classifier receives samples formed only by the predictions
of the classifiers.

• Bayesian meta-classifier using original data and predictions
(A+PBAY): The meta-classifier receives samples formed by a
combination of the real sample, with its original attributes,
and the predictions of the classifiers, that are introduced as
new attributes.

4. Our approach: Designing the comparison architecture

In this section, it is explained in detail the proposed archi-
tecture to perform the comparative study. Fig. 1 shows the two
phases in which this approach has been divided:

In the first phase, the selection of the base learners than
make up the ensemble is performed. As it was detailed in the
previous sections, this selection is done according to the diversity
among the implemented classifiers (learners). Given that diver-
sity among learners is quantified using six different diversity
measures, the result of this phase is six different ensembles (one
per measure).
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Fig. 2. Experimental Results. Accuracy of the different ensembles using different diversity measures and combination methods.
Then, in the second phase, it is estimated the quality of each
easure according to the accuracy of all the ensembles. These
hases are detailed in the following subsections.

.1. Phase 1 — learners selection according to different diversity
easures

Phase 1 consists on both the generation of base learners,
nd the selection of the best pool of base learners according to
ifferent diversity measures. The process that will be followed
o achieve these goals is summarized in Algorithm 1, and will
e further explained in this section. To obtain all the different
6

combinations, we use a procedure called GenerateCombinations
(line 11, Algorithm 1), which is explained in Algorithm 2.

As shown in Fig. 1, the input of this phase is the training
data, and it is divided in two different steps that are described
as follows:

4.1.1. Training of all the candidates for base learners (l):
In this step, the five different classifiers that have been defined

in Section 3.1 are trained. As it has been previously explained,
all the classifiers are trained using the same dataset. Thus, the
diversity among learners is obtained by using learners that have

been implemented by applying different learning algorithms.
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Fig. 3. Experimental Results. Friedman and Nemenyi Test — One vs all.
Fig. 4. Noise Injection Process.
7

Once the classifiers have been trained, the diversity among
them will be quantified using the six diversity measures consid-
ered in this research.

4.1.2. Diversity analysis and ensemble generation:
This step is repeated for each of the six diversity measures

used in this proposal and detailed in Section 3.2. The inputs of
this step are the learners trained in the previous step. From these
pool of learners, several ensembles are generated. In this pro-
posal, the number of possible ensembles to be evaluated depends
on to the number of learners (L). In this sense, the number of
created ensembles will be the combinations without repetition
of L elements taken l by l.
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Fig. 5. Experimental Results. Accuracy of the different ensembles using different diversity measures and combination methods — Noise 10%.
Since the minimum number of base learners in an ensemble is
hree and the maximum is L, the value of l will be all the values
rom three to L.

For mathematical reasons, ensembles of two classifiers are not
onsidered since, in most of the cases, the pairwise ensembles
ould be chosen. The equation to define how many combinations
ithout repletion of L elements taken l by l is given in Eq. (8).

L∑(
L
l

)
=

L∑ L!
L!(l − L)!

(8)

l=3 l=3

8

Fig. 1 helps to understand the idea behind the creation of the
different ensembles.

Note that in Fig. 1, the number of learners is five (L=5) so
the number of different ensembles (N_EnsL) can be calculated as
follows:

N_Ens5 =

(
5
3

)
+

(
5
4

)
+

(
5
5

)
= 10 + 5 + 1 = 16 (9)

Once all the possible ensembles have been designed, it is
needed to quantify their diversity. As it was explained in Sec-
tion 3.2, in this study diversity is quantified using six different
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Fig. 6. Experimental Results. Accuracy of the different ensembles using different diversity measures and combination methods — Noise 20%.
easures: Q statistic (Q), Correlation Coefficient(ρ), Double Fault
easure (DF), Plain Disagreement measure (dis), Kappa-degree-
f-agreement statistic(κ) and Ambiguity (amb).
After quantifying the diversity of all the possible ensembles

sing a specific measure, the most diverse ensemble per measure
s selected. Given that we are using six measures, at the end of
his phase six different ensembles will be chosen. As it is observed
n the proposed configuration (Fig. 1), the selected ensemble
ould be formed of three, four, or five base learners.

.2. Phase 2 — quality estimation process

Once the members of the six different ensembles have been
elected, they will be used to classify the new samples (testing
9

data). After this, we will evaluate their accuracy to select the best
ensemble. To do this, we will follow Algorithm 3.

In order to get the final classification, a combination method
needs to be defined. As it was mentioned Section 3.3, in this ap-
proach, six different combination methods are applied and evalu-
ated independently. However, the combination method could be
changed without changing the idea behind this architecture.

The final goal of this phase (and mainly of this research) is
to analyse the relation among the diversity measures and the
combination methods on the accuracy of the ensemble. Thus, it is
needed to determine if any of the diversity measures or any of the
combination methods, are directly related with the generation of
the most accurate ensemble.
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Fig. 7. Experimental Results. Accuracy of the different ensembles using different diversity measures and combination methods — Noise 30%.
With this purpose, the Friedman test will be applied. This non-
arametric test will be used to analyse if the differences among
he different ensembles generated (by applying different diversity
easures and different combination methods) are statistically
ignificant.
In case of statistically significant differences, a post hoc test

ell be applied to identify the ensembles that actually differ.
or this purpose, the Nemenyi test will be applied, which will
llow us to discover if the differences obtained as a result of the
10
Friedman test are, indeed, significant. The formulation of these
tests is detailed in Section 5.2.

5. Experimental setup and results

In this section, a detailed empirical evaluation of the proposed
method is presented. This evaluation is done by using 27 bench-
mark datasets. In addition, an analysis in which training datasets
are affected by labelling noise is presented.
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Fig. 8. Experimental Results. Friedman and Nemenyi Test — One vs all. Noise 10%.
.1. Datasets

For testing the viability of the proposed method, 27 bench-
ark datasets from different repositories have been selected.
able 1 compiles the main characteristics of these datasets.

.2. Experimental setup

To assess the predictive performance of the ensembles, the
valuation of this proposal has been carried out following the
ell-known stratified 10-fold cross validation. The data are ran-
omly shuffled before the cross validation starts and, to prevent
11
biased results, the whole process is performed 10 times. It is
noted that all the models are created by using the same folds.

To compare all the ensembles obtained by applying not only
the six different diversity measure, but also the six combination
methods, a Friedman test [21] is applied. This test is an exten-
sion of the binomial sign test for two dependent samples to a
design involving more than two dependent samples. The goal
is to evaluate if in a set of k dependent samples, there is at
least two samples which represent different populations. In our
experimental study, a sample is composed by the accuracies of
the ensembles obtained by using a specific diversity measure and
a specific combination method.
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Fig. 9. Experimental Results. Friedman and Nemenyi Test — One vs all. Noise 20%.
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In addition, we will analyse the results obtained (i) using the
omplete pool of learners combined with the different six combi-
ation methods and (ii) using the individual learners (‘‘ensemble’’
omposed by a single classifier). Thus, the total number of models
hat are compared in this research is: ((6+1)*6)+5 = 47.

In case of significant differences, a Nemenyi test is applied to
ompare the accuracy of the ensembles pairwise.
According to Friedman test, classification models (ensembles

nd simple classifiers) obtained applying k (((6+1)*6)+5) different
euristics on n (27) different datasets are statistically equivalent if

the value obtained applying Eq. (10), is less than the tabled critical
hi-square value at the pre-specified level of significance with k-1
 i

12
degree of freedom.

χ2
F =

12N
k(k + 1)

⎡⎣∑
j

R2
j −

k(k + 1)2

4

⎤⎦ (10)

here: Rj =
1
N

∑
i r

j
i r

j
i is the rank of the jth classification model

n the ith dataset. A rank of 1 is assigned to the measure of
iversity which generates the highest accurate ensemble. In the
ase of tied scores, the average of the ranks is calculated.
For k = 47 and α = 0.05 the tabled critical chi-square value

s 60.83.
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Fig. 10. Experimental Results. Friedman and Nemenyi Test — One vs all. Noise 30%.
When the null hypothesis (all evaluated models are equiva-
ent) is rejected, the Nemenyi test will be applied. This post-hoc
est will be used to determine if the accuracy differences between
he evaluated classification models are statistically significant. To
erform this statistical analysis, all the classifiers are compared
o each other.

Finally, it is remarkable that all the experimental analyses
ere implemented using Scikit-learn [59], which is a machine

earning library of Python.

.3. Experimental results and discussion

Fig. 2 shows the accuracy rate of the different ensembles
generated using a particular diversity measure and a specific
13
combination method. The accuracy rate of the ensembles formed
by the five base learners (ensemble complete) is also shown.

In addition, all the values of the accuracy rate of the dif-
ferent ensembles are available in http://www.caos.inf.uc3m.es/
complementary-material/.

As we can observe in Fig. 2, some of the ensembles stand out
thanks to their exceptionally good results. Specifically, ensembles
built by using diversity measures Q , ρ and DF reach a high
accuracy, matching or even improving the accuracy obtained by
the combination of all of the individual classifiers, that is by the
complete ensemble.

However, to assert if any of these combinations is actually bet-

ter than the rest of them, we need to apply some statistical tests.

http://www.caos.inf.uc3m.es/complementary-material/
http://www.caos.inf.uc3m.es/complementary-material/
http://www.caos.inf.uc3m.es/complementary-material/
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Algorithm 1 Select diverse ensembles
1: S is the training data
2: BL is the set of candidates to base learners
3: L is an integer that specifies the number of base learners ▷

(L=5)
4: M is the set of measures that will quantify the diversity
5: D is an integer that specifies the number of diversity measures

▷ (D=6)
6: procedure get_ensembles(S, BLi, Mi)
7: for BLi in BL do ▷ (Each type of base learner selected)
8: Train(BLi, S)
9: end for

10: for l=3,4,...,L do ▷ (Gets all combinations of at least 3
elements)

11: C l=GenerateCombinations(l, L)
12: end for
13: for Mi in M do ▷ (M={Q, ρ, DF, dis, κ , amb})
14: for l=3,4,...L do ▷ (Gets ensembles from combinations

of BL)
15: for k=1,2,...,

(L
l

)
do

16: Poollk=φ
17: for j=1,2,...,l do
18: Poollk=Pool

l
k ∪ BLC l

k(j)
where C l

k(j) is the j-th

element of C l
k

19: end for
0: diversityMi

Poollk
=MeasureDiversity(Poollk, Mi)

21: end for
22: end for
23: EMi=maxdiversity(Poollk) ▷ (More diverse ensemble

according to Mi)
24: end for
25: return SCE={EM1 ,EM2 ,...,EMD}
26: end procedure

Algorithm 2 Generate combinations
1: L is an integer that specifies the number of base learners ▷

(L=5)
2: l is an integer that specifies the number of ensemble members
3: procedure gen_combinations(l, L)
4: C l

1 = φ

5: for i=1,2,...,l do
6: si = i
7: end for
8: C l

1 = {s1,s2,...,si}
9: for i=2,3,...,

(L
l

)
do

10: m=l
11: max_val=L
12: while sm=max_val do
13: m=m-1
14: max_val=max_val-1
15: end while
16: sm=sm+1
17: for j=m+1, m+2,...,l do
18: sj = sj−1+1
19: end forC l

1={s1,s2,...,si}
20: end for
21: return C ▷ (All l-combinations for {1,2,...L})
22: end procedure

So, as it was noted in the previous section, to determine whether

there are differences among the analysed models, the Friedman
14
Algorithm 3 Evaluate ensembles
1: TD is the testing data
2: C is the set of combination methods used to generate the final

ensemble decision ▷ (C={MVOT, WVGA, WVCA, WVCP, PBAY,
A+PBAY})

3: K is an integer that specifies the number of combination
methods ▷ (K=6)

4: procedure eval_ensembles(TD, SCE, M , C)
5: for t=1,2,...,T do
6: Select TDt as testing data
7: for i=1,2,...,D do
8: for Ck in C do
9: EMi

Ck
= ApplyCombinationStrategy(Ck,EMi )

0: accikt = GetAccuracy(EMi
Ck
,TDt )

1: end for
2: end for
3: end for
4: if FriedmanTest(acc) is not ‘‘All models are equivalent’’

then
5: for each pair of EMi

Ck
→ (Ea, Eb) do

6: comparison = NemenyiTest(Ea, Eb)
7: if comparison is ‘‘Tied’’ then
8: result tiea = result tiea + 1; result tieb = result tieb + 1;
9: else
0: if comparison is ‘‘A is significantly better’’ then
1: resultwin

a = resultwin
a + 1; result loseb = result loseb +

1;
2: else
3: result losea = result losea + 1; resultwin

b = resultwin
b +

1;
4: end if
5: end if
6: end for
7: end if
8: return result
9: end procedure

test will be applied. If the null hypothesis of this test (i.e. there
is no difference in the performance of the classifiers) is rejected,
the Nemenyi test will be applied to every pair of classification
models. Applying this post hoc test, it will be possible to known
whether the two compared models are equivalent or whether
one of them outperforms the competition. If the models are
equivalent, a tie will be considered. Otherwise, the outperforming
model wins and the other model loses.

This way, all individual classifiers and all ensembles will be
compared with the other 46 classification models, and the num-
ber of wins, losses and ties will be counted to reveal the best
learner. These results are shown in Fig. 3.

According to these statistical values (Fig. 3), we can conclude
that the highest accuracy values are obtained when the ensemble
is composed of all the base learners, and when the base learn-
ers are selected according to the Double fault measure (DF ). In
addition, experimental results show that the accuracy decreases
when the outputs of the base learners are combined using a
meta-classifier.

In conclusion, it is important to remark that both diversity
measures (used to select base learners) and combination methods
(used to obtain the final decision of the ensemble) are related to
the accuracy of the resulting ensemble. However, the experimen-
tal results show that the selection of base classifiers according
to Double Fault measure and their combination using any voting

method generates the most accurate ensembles.
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able 1
escription of the 27 datasets.

Dataset N. of N. of N. of N. classes: Imbalance Source
instances attrib. classes max/min ratio

Iris 150 4 3 50/50 1.0 [54]
Wine 178 13 3 59/48 1.23 [54]
Ionosphere 351 34 2 225/126 1.78 [54]
Letters 20000 16 26 813/734 1.10 [54]
Page Blocks 5473 10 6 4913/28 175.46 [54]
Pen Digits 10992 16 10 1144/1055 1.08 [54,55]
Landsat 6435 36 6 1533/625 2.45 [54]
Segmentation 2310 18 7 330/330 1.0 [54,56]
Shuttle 58000 9 7 45586/10 4558.60 [54,55]
Waveform 5000 21 3 1667/1666 1.00 [54]
Yeast 1472 8 10 462/5 94.20 [54]
Glass 211 9 6 76/9 8.44 [54,55]
Winered 1599 11 6 681/10 68.10 [54]
Vowel 990 12 11 90/90 1.00 [54,56]
Satimage 6435 36 6 1533/626 2.45 [54,56]
Texture 5500 40 11 500/500 1.00 [54,56]
Sensorless 58483 48 11 5319/5314 1.00 [54,55]
Synthetic 600 60 6 100/100 1.00 [54]
OptDigits 5620 64 10 572/554 1.03 [54,56]
Automobile 159 75 6 48/3 3.05 [54,56]
Libras 360 90 15 24/24 1.00 [54,56]
Mfeat-Fac 2000 216 10 200/200 1.00 [54]
Semeion 1592 256 10 162/155 1.04 [54]
Imb. Semeion 1236 256 10 162/40 4.05 [54,57]
Usps 7291 256 10 1194/542 2.20 [54,55]
Mnist 60000 784 10 6742/5421 1.24 [58]
Asistentur 1006 1024 9 478/22 21.73 [54,57]

5.4. Tolerance to noise

One of the most important requirements in any classification
ystem is its tolerance to the noise [60]. For this reason, we
resent a comparison of the labelling noise effect in the ensemble
eneration using the proposed architecture.
Unlike other proposals [17,61], in this research work, the

abelling errors are exclusively induced on the training instances
62]. To clarify this idea, Fig. 4 shows the noise injection process
used in this experimentation.

In this experimental phase, we use the previously mentioned
27 benchmark datasets and three rates of noise: r = 10%, r = 20%
and r = 30%.

5.5. Results and discussion (tolerance to noise)

Figs. 5–7 show the accuracy rate of the generated ensembles
using the six different diversity measures and the six different
combination methods when the training set is corrupted by three
different degrees of labelling noise.1

In addition, as in the previous section, we apply the Friedman
and Nemenyi test in order to statistically analyse all the different
ensembles in comparison to each other. The results are shown in
Figs. 8–10.

According to these experimental results, the most accurate
models are the ensembles obtained using the five base learners
and whose final decision is obtained by using weighted vote by
class precision (WVCP). It is worth mentioned that the ensembles

1 All the values of the accuracy rate of the different ensembles are
vailable in http://www.caos.inf.uc3m.es/impact-of-the-learners-diversity-on-

the-generation-of-heterogeneous-ensembles/.
15
based on learner selection that offer the highest accuracy values
are those which are generated quantifying diversity according to
Double Fault Measure and using Majority voting as combination
method. However, for a noise level of 30% (Fig. 7), the choice of
base classifiers based on Q and ρ values leads to ensembles with
slightly higher accuracy than those obtained using DF.

6. Conclusion and future works

In this paper, we present an architecture for evaluating the
impact of the diversity of the learners and the combination meth-
ods on the generation of heterogeneous classifier ensembles. This
evaluation is done with and without presence of labelling noise.
By exhaustively evaluating this architecture on different datasets,
we apply two well-known statistical methods. According to these
results, when datasets are free of noise, we can conclude that
the best performance is achieved when the base learners are
chosen according to the DF measure and combined using a vote
mechanism. However, the experimental results obtained when
learners are selected according to DF value are similar to those
obtained using the pool of all the learners.

In addition, the ensembles with a worse performance are
those in which the outputs of base learners are combined us-
ing a Bayesian meta-classifier. On the other hand, when the
datasets are affected by labelling noise, the most accurate models
are those ensembles obtained using the five base learners and
combining their outputs using weighted vote by global accuracy
(WVGA) and by class precision (WVCP).

In the light of these experimental results and when the num-
ber of base learners is relatively low, it seems difficult to conclude
that ‘‘many could be better than all’’.

As future work, we will increase the number of learners, and
we will extend the study to homogeneous ensembles where
diversity is achieved by varying the training datasets. With a
different goal, we will focus on the use of criteria that combines
not only the diversity but the accurate of the learners. Finally,
it would be interesting to evaluate the results of our proposal
by taking into consideration not only the impact of the labelling
noise but also the size of the datasets.
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