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Abstract—In the era of Industrial Internet of Things (IIoT)
and Industry 4.0, an immense volume of heterogeneous network
devices will coexist and contend for shared network resources, in
order to satisfy the very challenging IloT applications, requiring
ultra-reliable and ultra-low latency communications. Although
novel key enablers, such as Network Slicing, Software Defined
Networking (SDN) and Network Function Virtualization (NFV)
have already offered significant advantages towards more efficient
and flexible network and resource management approaches, the
particular characteristics of IIoT applications pose additional
burdens, mainly due to the complex wireless environments,
high number of heterogeneous network devices, sensors, user
equipments (UEs), etc., which may stochastically demand and
contend for the - often scarce - computing and communication
resources of industrial environments. To this end, this paper
introduces PRIMATE, a novel, Artificial Intelligence (AI)-driven
framework for the profiling of the networking behavior of such
UEs, devices, users and things, which is able to operate in
conjunction with already standardized or forthcoming, AI-based
network resource management processes towards further gains.
The novelty and potential of the proposed work lies on the
fact that instead of attempting to either predict raw network
metrics in a reactive manner, or predict the behavior of specific
network entities/devices in an isolated manner, a big data-driven
classification approach is introduced, which models the behavior
of any network device/user from both a macroscopic, as well as
service-specific perspective. The extended evaluation at the last
part of this work shows the validity and viability of the proposed
framework.

Index Terms—context-aware profiling; machine learning; Al-
driven networking; 5G; resource allocation

I. INTRODUCTION

HE Internet of Things (IoT) has become one of the key

concepts in the evolution towards the next generations of
networks and communication systems offering a fertile ground
for innovation, disruptive business models and novel ways of
engaging diverse industries with other businesses, as well as
end-customers. [oT can be applied in almost any sector of
the economy, with often diverse participating stakeholders and
numerous business applications and operations. Although the
initial concept of IoT firstly appeared almost 20 years ago by
Auto-Id Labs [1], the actual transition towards a true “Internet”
of Things, where all devices will be part of a globally
integrated system was introduced around a decade later [2];
the initial architectural principles and service requirements for
specific types of applications -potentially involving multiple
devices, types of equipment, sensors, actuators, etc.-, started
emerging; nevertheless, the first attempts, mainly operated in
an almost disconnected manner, due to the obstacles posed by
the maturity of the available communication technologies.

Recently, IoT architectures began further evolving into
smart, interconnected ecosystems with the adoption of novel
communication enablers and technologies, primarily referring
to the 5th generation of wireless and mobile networks (5G).
Specifically, the Industrial IoT, -also in the context of the In-
dustry 4.0, otherwise known as the fourth industrial revolution-
, assumes the interconnection of massively deployed smart
devices, network and/or computing elements, in industrial
production environments, targeting high automation and con-
trol, as well as ultra-high reliability. Such complex industrial
production environments examples comprise smart factories,
smart plants, or business supply chains.

From the communication perspective, 5G networks have
largely integrated the notions of Edge and Fog computing -
i.e., distributed computing paradigms in the vicinity of the
end users-, which gradually prove to be of utmost significance
to the business and technical requirements of IIoT use cases.
3GPP in Release 16 [3] already provides a detailed overview
of the support for Edge Computing, which enables the operator
and third party services to be hosted close to the UE’s access
point of attachment, so as to achieve an efficient service
delivery; this is realized on the one hand through the reduced
load on the transport network, while on the other hand, on
the reduced distance of the physical link -and as a result of
the link propagation delays-, which is crucial for time-critical
services. Additionally, ETSI has released a white paper on
MEC for 5G Networks [4]; in this work, one of the described
use cases focuses on MEC for Industrial IoT. The same work
identifies the significance of both the Edge Cloud -as one of
the key components for (Massive) IoT-, as well as Network
Slicing, which allows offering dedicated resources for service
tenants specifically tailored to their needs.

On top of the aforementioned technology enablers, solutions
that exploit Artificial Intelligence (AI), Machine Learning
(ML) and Data Analytics (DA) are very promising towards
providing further gains in 5G and beyond complex network
environments. In the context of 5G networks and beyond,
ML and DA are already considered as structural entities
and enablers towards the amelioration of numerous network
operations. 3GPP has recently introduced a new core network
function [3], namely the NetWork Data Analytics Function
(NWDAF), which is responsible for providing network anal-
ysis information upon request from network functions (NFs),
e.g., assisting the Policy Control Function (PCF) in selecting
traffic steering and resource allocation policies. According to
the literature, NWDAF is still very limited concerning its
functionalities and capabilities.



Although AI and ML are considered vast domains, numer-
ous applications and algorithms can be tailored to the needs
of the Industrial IoT use cases such as predictive maintenance,
Quality 4.0 - a term that references the future of quality
and organizational excellence within the context of Industry
4.0 -, human-robot collaboration and predictive network and
computing resource management, also in the context of 5G
networking and Edge Computing mentioned earlier.

The last use case is the focus of this work, namely
the predictive network and computing resource management.
More specifically, the framework that is presented in this
paper, namely PRIMATE (PRofillng MechAnism Based on
ConTEXxt), provides a detailed overview of a novel mechanism,
which monitors and combines (processes) big volumes of
diverse network- and user/device- oriented data and extracts
profiles for UE and Things, based on past behavior in terms of
device type, mobility patterns, service consumption, etc. PRI-
MATE’s proposed framework advances the field of research
by extending the functionality of the NWDAF by introducing
complementary NFs (e.g Cluster & Profile Forecasting) capa-
ble of proactively providing new network analysis information.
Industry 4.0 introduces numerous use cases with a plethora of
diverse device types, such as sensors, smart monitors, remotely
managed or autonomous robotic equipment, smart grid sys-
tems, embedded Al devices, tracking systems, etc., - referred
to as “’things” in the context of IIoT - all of which participate
in complex manufacturing processes. It becomes, thus, a major
challenge to efficiently differentiate and manage the resources
allocated to those devices. The profiles that are extracted by the
proposed framework are used for device behavior prediction
and - as a result - can be used for the prediction of forthcoming
network and/or computing resource requirements. This predic-
tion can ultimately be exploited by network domain experts
and administrators towards efficient and proactive resource
planning. In order to achieve the latter, PRIMATE could be
integrated with different resource allocation strategies such
as Virtual Network Function (VNF) placement/(auto)scaling,
mobility management algorithms by proactively predicting
handover requests, etc. Finally, in latency-critical services —
focused but not limited in the context of IIoT -, the forecasted
profiles can be exploited for proactive resource allocation/cell
association, towards ensuring that the respective challenging
service demands are satisfied.

The novelty and high potential of the proposed approach
lies on the fact that it departs from mainstream approaches
that attempt to either predict raw network metrics in a reactive
manner, or predict the behavior of specific network enti-
ties/devices according to individual network service requests
in an isolated manner. Instead, a big data-driven classification
approach is introduced by the proposed framework, which
categorizes the behavior of any network user/device from
both a macroscopic, as well as service-specific perspective.
All devices/users are assigned a respective profile proactively,
upon entering a specific domain. This assignment is based on
a behavioral forecasting process -as it will be shown in the
following sections - whose accuracy - in turn - increases the
potential to efficiently manage the allocation of resources in
a holistic manner, from an end-to-end perspective and for all

participating users/devices of a specific domain.

The structure of the rest of the paper is as follows: Section
II presents an overview of the existing work on profiling
for networks and predictive behavior analysis of users and/or
devices. Afterwards, Section III provides the details of the
design, methodology, data model and ML algorithms used in
the proposed framework. The following Section, IV presents
the results of the evaluation of PRIMATE, while Section V
concludes this paper and discusses the findings, next steps, as
well as open research questions of the domain.

II. RELATED WORK

This chapter discusses the recent studies concerning AI/ML
techniques for Industry 4.0, as well as studies that propose
innovative mechanisms for analysing and predicting network
behavioral patterns. Diez-Olivan et al. in [5] provide a com-
prehensive survey of the recent developments in data fusion
and machine learning for industrial prognosis, placing an
emphasis on the identification of research trends, niches of
opportunity and unexplored challenges. Additionally, the au-
thors provide a principled categorization of the utilized feature
extraction techniques and machine learning methods for root
cause analysis (descriptive), determine when the monitored
asset will fail (predictive) or decide what to do in order to
minimize the impact on the process at hand (prescriptive). In
[6] Paolanti et al. describe a Machine Learning architecture
for Predictive Maintenance, based on the Random Forest
algorithm, which was tested on a real industry use case.
The presented preliminary results showed a proper behavior
of the approach on predicting different machine states with
high accuracy. The study in [7] proposes a big data analysis
framework for extracting network behaviors in cellular net-
works for Industry 4.0 applications providing novel insights
into call usage and network utility. Apart from Industry 4.0-
specific studies, there are numerous proposals that attempt
to analyze and exploit user and network behavioral patterns,
as well as introduce innovative mechanisms based on both
supervised and unsupervised approaches [8] [9] [10] [11] [12].
In [8], a Context Extraction and Profiling Engine (CEPE)
is introduced, which builds upon a Knowledge discovery
in databases (KDD) framework catering for the extraction
and exploitation of user behavioral patterns from network
and service information. The methodology followed for the
implementation of this mechanism is based on k-Means Clus-
tering, Spectral Clustering, Naive Bayes and Decision Tree
learning algorithms. Extended evaluation results provided in
this work prove the validity of the proposed solution. Valtorta
et al. in [9], propose a methodology to process LoRaWAN
packets in order to perform profiling of the IoT devices
based on radio and network behavior. K-means clustering was
chosen as a method for the implementation of the mecha-
nism. The results showed remarkable clustering performance
according to validation indices such as Silhouette and Devies-
Bouldin indices. The authors in [10] introduce a framework
for clustering, forecasting and managing traffic behaviors for
large numbers of heterogeneous cells, with different statistical
traffic characteristics. The methodology followed in this study



comprises k-Means algorithm for traffic clustering and Auto
Regressive (AR), Neural Networks and Gaussian Process for
traffic forecasting. In [11], the authors propose algorithms
for clustering cell towers based on their location, as well as
for defining Baseband Units (BBUs) clusters, based on the
prediction of mobility and traffic patterns. For the clustering of
the cell towers, the authors propose Hierarchical Clustering, as
well as an improved version of the Affinity Propagation with
Traffic Awareness. As for the BBU clustering, Karneyenka
et al. introduced three different Location Aware algorithms
enhanced with mobility and handovers. Another work [12]
utilizes mobile network data in order to analyze anomalous
behavior of mobile wireless network based on k-Means and
Hierarchical Clustering Techniques. Additionally, Parwez et
al. discussed the effect of anomalous and anomaly-free data
by experimenting on a prediction model where results showed
that the error in prediction, - while training the model with
anomaly-free data - largely decreases as compared to the
case when the model was trained with anomalous data. Apart
from the well-established and improved machine learning
techniques there are numerous studies that introduce new
and innovative solutions in order to exploit the aggregated
traffic data from the network and perform context-based re-
source management policies [13], [14], [15], [16]. The work
presented by Barmpounakis et al. in [13] provides a holis-
tic context-based framework comprised of three individual
mechanisms named Compass, CEPE and CIP that optimize
in a complementary manner the radio access technology
(RAT) selection and access traffic steering/switching/splitting
(ATSSS) operations in 5G network environments. The ex-
tended evaluation results show the effectiveness of the pro-
posed framework, while the architectural aspects of the same
work discuss the viability of the framework in forthcoming
5G - and beyond - systems. In [14], the authors propose an
implementation for distributing traffic flows across different
network interfaces based on the characteristics of the flow.
Xu et al. have evaluated two different approaches based on
static and dynamic network selection clustering algorithms
in a simplified MIMO scenario, with LoRa, WiFi and LTE
network interfaces available. The dynamic clustering approach
achieved an even better load balancing between two network
interfaces (Wi-Fi, LTE). In [15], an SDN-enabled 5G VANET
is introduced, where neighboring vehicles are clustered in an
adaptive manner, according to real-time road conditions based
of Angle of Arrival (AoA), Received Signal Strength (RSS)
and inter-vehicular distance (IVD). Additionally, a dual cluster
head scheme is introduced in order to improve the network’s
robustness and guarantee seamless communication. The results
showed that the proposed design substantially improved 5G
users’ bit error rate and trunk link throughput rate. Last but
not least, in [16], the use of a user-specific and adaptive
cell clustering technique is proposed, based on mobility state
estimation. As a result, the network customizes the cell
cluster size separately for each user. Results show network
performance enhancements in terms of mobility management,
as well as throughput. As it becomes clear, numerous works
have attempted to model the user traffic and mobility patterns,
or the network’s traffic characteristics via diverse ML-based

approaches. However, to the best of our knowledge this is the
first work that aggregates and correlates network-, service-, as
well as user/device-oriented information from diverse layers of
the network towards a holistic behavioral pattern identification,
as well as forecasting. The proposed framework correlates for-
merly disconnected and uncorrelated information sources into
a broader concept, namely the behavioral profile and manages
to ultimately predict this profile throughout the users’ activity
for future, dynamically-defined time windows in the network.
As it will be shown, this can prove of utmost significance for
network resource management purposes, enabling the network
administrators to proactively allocate resources in different
segments of the network (infrastructure, virtualization, etc.),
and especially for Industry 4.0 and IIoT use cases, where
the heterogeneity of co-existing devices and the ultra-dense
nature of the radio environments demonstrate highly complex
behaviors.

III. THE PROPOSED FRAMEWORK

This section provides a detailed description of the proposed
framework. Section III-A describes the data model that was
used, Section III-B presents a brief overview of PRIMATE
including all its structural components and modules. Finally,
section III-C provides a detailed description of each method-
ology step followed for the implementation of PRIMATE'’s
proposed framework along with a step-by-step algorithmic
representation.

A. Data Modeling

This section presents the details of the data model designed
and used by PRIMATE. Different data categories - from now
on denoted as data entities - are identified, namely Device,
Service and Network. All data entities are associated to a
specific UE, which is characterised by a unique identifier, -i.e.,
the International Mobile Subscriber Identity (IMSI). Each one
of the three data entity types is correlated with the other two,
since each single UE is using a Device that executes a Service
through a Network Radio technology. A visual representation
of the data model is given in Figure 1.

The Device entity refers to a specific type of equipment that
a user is using and comprises of data features that are related to
geolocation (latitude, longitude), user velocity, battery status of
the device, radio signal-related metrics (Reference Signal Re-
ceived Power/Quality - RSRP/RSRQ and transmission power),
as well as user-cell association information. The Service entity
is related to the type(s) of active session(s) of the user. It
is described by the service name, the transfer protocol used
for the Transport Layer (TCP/UDP), as well as a number of
service-related metrics, namely Uplink (UL) and Downlink
(DL) packet size and inter-packet transmission interval. The
Network entity refers to the type of RAT serving the specific
user-cell association. The identified data features of Network
entity are related to traffic load and end-to-end delay for both
UL and DL stream (transmitted and received data in pack-
ets/bytes, UL/DL end-to-end delay). There are data features
characterising a cell that is used in the RAT (transmission
power of the cell, type of cell, allocated bandwidth, number
of UEs connected on the cell).
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Fig. 1: data model of PRIMATE

B. Overview

In the current section, an overview of the PRIMATE
framework is provided. As already discussed earlier, PRI-
MATE dynamically generates network-, service-, as well as
user/device-related behavioral profiles, by processing con-
textual information that is aggregated from diverse network
entities and segments as well as logging modules; ultimately,
the aforementioned extracted knowledge is exploited in order
to forecast network and service requirements, as well as UE-
related behavior (e.g., device mobility, service consumption
etc.). As a result, this extracted knowledge could be exploited
by respective proactive network management and resource
allocation schemes, generating considerable gains for the
network. PRIMATE’s step-by-step methodology, which is also
visually depicted in Figure 2, is provided below via the list
of modules, which comprise the overall framework, and their
respective functionality.

1) Aggregation and pre-processing of Contextual Infor-
mation: This module is responsible for aggregating and
pre-processing all the available contextual information
from the different network entities and segments as well
as the logging modules.

Hierarchical Agglomerative Clustering (HAC): This
module exploits all the available contextual information
(data points) provided by the previous module, in order
to group similar data points in common clusters named
Labeled Clusters.

Dynamic Cluster Filtering & Profile Extraction:
This module is responsible for 3 main operations.
More specifically, the module removes Labeled Clusters,
which are considered outliers. This study defines the
output of this operation as Behavioral Clusters. The
module also maps the Behavioral Clusters to profiles
(named Behavioral Profiles) and finally filters these
produced profiles in order to further enhance the quality
of the output.

Training for Cluster Prediction: This module exploits
the extracted Behavioral Clusters in conjunction with the
initial contextual information, in order to train an ensem-
ble Weighted Voting Model. This model combines the
predictions from 4 different well-known supervised ML
models (called base models), namely a Decision Tree
(DT), a Random Forest (RF), a k-Nearest Neighbors (k-
NN) and Support Vector Machines (SVM). The result
of this module is the classification of newly introduced
contextual information by predicting the respective clus-
ters.

Cluster & Profile Forecasting: This module is de-
veloped to perform cluster and profile forecasting for

2)

3)

4)

5)

predefined time windows. More specifically, the module
attempts to forecast contextual information that will be
provided as input to the already trained ensemble model,
introduced in the previous step, in order to predict the
respective clusters. These clusters are exploited by the
dynamic cluster filtering & profile extraction module
which is capable of extracting the final forecasted Be-
havioral Clusters and Profiles.

Performance Evaluation: This is the final module of
the PRIMATE framework. It is responsible for collecting
the predicted (Cluster & Profile Forecasting module)
along with the ground truth (Profile Extraction & Dy-
namic Cluster Filtering) behavioral clusters and profiles
in order to evaluate the performance of the forecasting
module (Step 5).
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Fig. 2: Overview of PRIMATE
C. Methodology and Algorithm

1) Aggregation and pre-processing of Contextual Informa-
tion: The first step in the development of PRIMATE is the
aggregation and pre-processing of all the available contextual
information from the different network entities and segments
as well as the logging modules. This information is related to
Device, Service and Network oriented data, which was thor-
oughly presented in Section III-A. This step is responsible for
removing any potential irrelevant and/or redundant information
present in the data set.

2) Hierarchical Agglomerative Clustering (HAC): The sec-
ond step in the development of PRIMATE, as already dis-
cussed in III-B, is the extraction of the Labeled Clusters from
the collected data features of the 3 different data entities
presented in III-A. In order to successfully extract the set
of Labeled Clusters, a well-known unsupervised clustering
method used for grouping objects into clusters based on their
similarity, is proposed in the current work. The selected clus-
tering method is called Hierarchical Agglomerative Clustering
(HAC). The name agglomerative relates to the “bottom-up”
approach of this technique.

More precisely, each observation is initially considered to
be a single-element cluster. At each step of the algorithm, the




two clusters with the greater similarity are merged into a new
cluster. This procedure is iterated until all points are merged
into one single cluster. An indicative example of HAC is
given in Figure 3. This method provides great flexibility, since
having a pre-defined number of clusters is not a requirement.
Additionally, HACs results are reproducible. In order to decide
which clusters should be combined, a similarity measure
is required. More specifically, the merging is based on an
appropriate distance function, which is a measure of distance
between pairs of observations and a linkage criterion, that
specifies which clusters should be combined (linked) based
on the distance information [17].

The HAC method was implemented for each one of the 3
data entities separately. At this stage a grid search process
is introduced, in order to find an appropriate configuration
(similarity measure, number of clusters) that best categorises
the data features. The objective of the grid search process is
to maximise a metric ranging from —1 to +1, that measures
how similar a data feature is to its own cluster compared to
other clusters, which is known as Silhouette Value [18]. A high
silhouette value indicates that an object is well matched to
its own cluster. The grid search process exhaustively searches
for a combination of a similarity measure (distance function,
linkage criterion) along with a number of clusters (selected
from a predefined set of values), that results in the highest
Silhouette Value. The final output of HAC is 3 labeled data
sets (one data set per entity), in which all data features are
mapped to Labeled Clusters.

Agglomerative
Approach

Fig. 3: Example of Hierarchical Agglomerative Clustering

3) Dynamic Cluster Filtering & Profile Extraction: The
third step in the development of PRIMATE, is the imple-
mentation of 2 mechanisms named Dynamic Cluster Filtering
and Profile Extraction respectively. The purpose of the first
mechanism, is to remove the Labeled Clusters, which are
considered to be outliers, from each one of the 3 data entities
(Section III-A). In a given timeline in case of transitioning
from one Labeled Cluster to a different one that has only
1 second of duration, the latter is considered to be falsely
classified (outlier) and thus it needs to be replaced. Each
outlier will be replaced by a Labeled Cluster that last appeared
for more than 2 seconds. This replacement operation is named
One-Sec Removal Adaptation. An indicative example is given
in Figure 4. The final output of this mechanism is the filtered
set of Labeled Clusters and it is called Behavioral Clusters.
The second mechanism is responsible for a 2-fold operation.
The first one is called Profile Mapping and is responsible for
assigning labels to the Behavioral Clusters. This is achieved by
mapping unique triplets into single unique labels. One triplet
consists of three Behavioral Clusters, one for each of the 3
data entities that have been already presented in Section III-A.

Before Removal Adaptation

IIB

2]2]2]3]a[[3[3[a[a[3[a[a

Fig. 4: Example of PRIMATE’s One-Sec Removal Adaptation
Operation

Each one of these unique labels is defined as a Behavioral
Profile. An indicative example is given in Figure 5.

Behavioral Clusters Behavioral Profiles

Device Service  Network ... Profile
of | cluster 1 | cluster 1 | cluster 3| —— | profile 1
E||cluster 1 | cluster 1 | cluster 3| — | profile 1
“||cluster 1| cluster2 | cluster 1| — profile 2
cluster 1 | cluster 2 | cluster 1 | — | profile 2

Fig. 5: Example of PRIMATE’s Profile Mapping Operation

The second operation of Profile Extraction is called Dual
Step Removal Adaptation and is responsible for the removal
of Behavioral Profiles, which considered to be outliers. Once
again, the same definition of the term outlier, that is used
for the Behavioral Clusters, is also applied to Behavioral
Profiles. This study considers these outlier Behavioral Profiles
to be falsely extracted and thus they need to be replaced. The
replacement method for the outlier Behavioral Profiles follows
the same logic as the one presented for the One-Sec Removal
Adaptation. This operation adds a second layer of filtering,
after the first stage outlier filtering. The removal of the falsely
extracted profiles may lead to additional reduction of the final
Behavioral Profiles and as a result further enhance the quality
of the output. Intuitively, the improvement in quality comes
from the fact that fewer profiles with longer duration provide
easier monitoring and management. The set of Behavioral
Clusters & Profiles is being stored in a data pool named
Available Behavioral Clusters & Profiles in order to be used
as a mapping guide from the Cluster & Profile Forecasting
module (Section III-C5).

4) Training For Cluster Prediction: The fourth step in the
development of PRIMATE is the training of an ML model,
which is capable of classifying contextual information - from
each one of the 3 data entities - (Section III-A) into clusters.
The selection of the model to be trained in order to predict
clusters - and not profiles - was made in order to enforce the
Cluster & Profile Forecasting module (Section III-C5) with
the possibility to discover new triplets of clusters -and as a
result new profiles (through the process of Profile Mapping).
In case of profile prediction, such a scenario would not be
possible and the number of profiles would be static. The
heavy task of training the model is performed offline. Having
trained the model offline, makes the prediction process suitable
for near real-time operation. The trained model is stored and
periodically updated in a database, in order to be exploited
in a real-time manner by the Cluster & Profile Forecasting
module. The development of this model is of high importance,
as it provides PRIMATE the capability of exploiting contextual
information in a supervised manner.



In order to properly train the aforementioned model, this
work introduces an ensemble Weighted Voting Model, which
combines the predictions from 4 different well-known su-
pervised ML models (called base models), proposed by the
literature [19], namely a Decision Tree (DT), a Random
Forest (RF), a k-Nearest Neighbors (k-NN) and Support Vector
Machines (SVM). Ideally, the ensemble model will be able
to achieve better performance than any of the base models
and offer more robust predictions in different simulation
scenarios. The term weighted derives from the fact that the
RF algorithm along with the SVM has increased weighted vote
importance (2-times the importance compared to the other base
models) since they are the most robust algorithms among the 4
base ones considered. The performance of the aforementioned
ensemble model has been evaluated using the accuracy and
f-1 score metrics. The final output of this module, named
Training for Cluster Prediction, is a trained model, which will
be exploited later on by the Cluster and Profile Forecasting
module.

5) Cluster & Profile Forecasting: The fifth step in the
development of PRIMATE is the forecasting of Behavioral
Clusters & Profiles. This module comprises two different
operations. The first operation, named Contextual Forecasting
- LSTM Autoencoder relates to the forecasting of contextual
information for each one of the 3 data entities described in
Section III-A. The forecasting model is a Long Short Term
Memory (LSTM) Autoencoder model for multivariate multi-
step time series data [20]. The core functionality of this model
is to forecast contextual information on multiple time-steps
into the future (multi-step), using multiple prior time-steps of
contextual information (historical contextual information). In
this work, a time series model is used, since all the collected
data points are equally distributed and indexed in time. The
term multivariate, results from the fact that the collected
contextual information consists of different data entities with
different data features (Section III-A). Since PRIMATE is
attempting to forecast time series of contextual information
(future) using data, which is also structured in the same
time series manner (past), the use of an Autoencoder is
of high importance. The selected LSTM Autoencoder is an
implementation of an Encoder-Decoder LSTM architecture
and is designed to efficiently perform a sequence-to-sequence
(seq2seq) prediction. A seq2seq approach imposes that the
order in the data must be preserved when training the model
and making predictions. The Encoder processes the input
sequence of contextual information and encoding it into a
fixed-length vector (context vector). The decoder takes as input
the encoded vector, reconstructs the sequence and outputs the
forecasted sequence of contextual information. In order to
evaluate the forecasting capabilities of the proposed model,
the Root Mean Squared Error (RMSE) is used as an error rate
metric and is defined as the square root of the Mean Squared
Error (MSE). The RMSE is directly interpretable in terms of
units of measurement, and thus is a more suitable metric for
a high performing model. Additionally, since the errors are
squared before they are averaged, the RMSE gives a relatively
high weight to large errors. The latter makes this metric quite
appropriate in the case of forecasting, since large errors are

particularly undesirable.

The second operation of the Cluster & Profile Forecasting
mechanism is called Cluster Classification. This operation is
responsible for exploiting the forecasted contextual informa-
tion in conjunction with the exported Weighted Voting trained
model from the previous step (Section III-C4) in order to
perform cluster classification. The output of the model is the
extracted clusters for each one of the 3 data entities. This
set of extracted clusters may also contain outliers that need
to be filtered. Once again, the outlier removal operation that
was applied in this step is the One-Sec Removal Adaptation,
introduced previously. The output of this removal operation
is considered to be the Predicted Behavioral Clusters. These
Predicted Behavioral Clusters should be mapped into the final
profiles. In order to extract the final profiles, we initially
map the filtered clusters into profiles and then add a second
layer of filtering to remove any potential outlier profiles.
This procedure is once again performed by applying the
Profile Extraction mechanism introduced in the third step of
PRIMATE (Section III-C3). In this case, the mechanism is
using the Available Behavioral Clusters & Profiles pool as a
mapping guide. The final extracted profiles of this mechanism
are denoted as Predicted Behavioral Profiles. It is worth men-
tioning that it is possible for the One-Sec Removal Adaptation
operation to output triplets of Predicted Behavioral Clusters
that were not previously identified. As a result, the Profile
Extraction mechanism will extract newly introduced Predicted
Behavioral Profiles. These newly introduced behavioral clus-
ters and profiles will be stored in the data pool introduced in
I1-C4.

6) Performance Evaluation: Finally, the sixth and final
step in the development of PRIMATE is responsible for
collecting and comparing the predicted Behavioral Clusters
& Profiles along with the ground truth ones (extracted from
step 3 of PRIMATE (Section III-C3)) in order to evaluate the
performance of the proposed forecasting module.

In this final part of the study, an algorithmic represen-
tation (1) summarizes the methodology that was previously
presented, while Table I provides the respective notation.

IV. EVALUATION

This section presents the evaluation outcomes of the pro-
posed framework. The necessary data that were used for the
evaluation were generated using the discrete-event network
simulator (NS-3) [21]. All the experiments were conducted
using a single PC unit equipped with Ubuntu 16.04, Intel®
Core™ i7-6800K Processor 6/12 and 32 GB of DDR4 RAM.
The simulated topology chosen for this study was considered
from a use case defined in one of the first 5G-related EU
projects, namely METIS, [22], [23] and was implemented in
NS-3. The simulated topology is depicted in Figure 6. The
data produced by NS-3, simulate 10800 real-life seconds (3
Hours), while the simulation’s estimated time of completion
(ETC) is approximately 12 hours. The logging frequency of
data is set to 1 second. The size of the area of experiments,
in which the simulation was executed is equal to 400x200 m2
with 10 equally sized sub-areas, in which a femto cell is placed



Parameter Description
X The Available unlabeled Contextual Information
Xag, Xn, X5 Unlabeled Contextual Information for the Device, Network and Service data entities

HAC HAC HAC HAC
X XXd sX'n, 7Xs

HAC’s labeled set / HAC's labeled dataset for the Device, Network and Service data entities

XG‘RE SEC

One-Sec Removal filtered set

OoOmne SEeC Ome SEecC Omne SEcC
X3  Xn X5

One-Sec Removal filtered dataset for the Device, Network and Service data entities

BPXBP(duﬂI—StEp}

Unfiltered set of behavioral profiles / Reduced set of Behavioral Profiles

WVMg, WV Mn, WV M,

Weighted voting models for the Device, Network and Service data entities

X f(noibl) Unlabeled Forecasted Contextual Information

X c‘: ("O—m), X,{(no—w”, x1me 1t Unlabeled Forecasted Contextual Information for the Device, Network and Service data entities
xf Labeled Forecasted Contextual Information

X c{ , X;‘:,X _{ Labeled Forecasted Contextual Information for the Device, Network and Service data entities

X flone sec)

One-Sec Removal filtered forecasted set

Xc_!f(ane SEC},X.,{(OHE sec),Xg'(one SEC)

One-Sec Removal filtered forecasted dataset for the Device, Network and Service data entities

BPf

Unfiltered set of behavioral forecasted profiles

BCJ,BC}, BCI

Forecasted Behavioral Clusters for the Device, Network and Service data entities

B pf(dual_step)

Reduced set of forecasted Behavioral Profiles

TABLE I: PRIMATE’s Framework Notation

in the middle. Additionally, there are 2 macro cells in the
outer bounds of the area of experiments, which provide greater
coverage if needed. There are 2 different mobility models
implemented in the simulation. Each model has 2 parameters
named velocity and path pattern. Both mobility models follow
a Random-Walk process for their path selection. The velocity
of the low as well as the medium mobility models is uniformly
distributed in the ranges of (0,0.2] m/s and (0.2,1.2] m/s
respectively. Table II summarizes the NS-3 parameters used
in the simulated scenario.
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Fig. 6: NS-3 Virtual Topology

In the current simulation scenario a single eMBB UE con-
sumes 3 different kinds of simulated services, namely Instant
File Sharing (IFS), High Quality Live-Streaming (HQLS) and
Fast Browsing (FB); the traffic modeling specifications of the
service types are summarised in Table III [24]. During the
simulation time, services are randomly assigned to the user
and their duration is modelled following a Normal Distribution
X <= N (i, 0?)), where (u,02) = {(30, 10),(45, 10), (40,15)}
for each one of the abovementioned services respectively. The
selection concerning the mean value and variance aims at
offering a rather small but distinctive variation in the duration
for each one of the services.

A. Hierarchical Agglomerative Clustering and Dynamic Clus-
ter Filtering & Profile Extraction evaluation

This section focuses on the evaluation of the HAC along
with the implemented filtering mechanisms introduced in
Section III-C2 and III-C3 respectively. Overall, for the im-
plemented grid search concerning the HAC, several number
of clusters were tested in order to efficiently capture the
variance in the data along with 1 distance function and 4
linkage criterion. More specifically, the number of clusters
tested were selected from the set {3, 4, 5, 6, 7}, while the
Euclidean distance was selected as distance function. Finally,
the 4 linkage criteria were selected from the set {Ward,
Average, Complete, Single}. The ward criterion refers to the
minimisation of the variance of the clusters being merged,
while the average criterion uses the average of the distances
of each observation of the two sets. The complete linkage
criterion uses the maximum distances between all observations
of the two sets. Finally, single linkage uses the minimum of
the distances between all observation of the two sets.

Figure 7 presents the Silhouette Scores for the best param-
eters selected based on the results of the implemented grid
search. For the Device entity the Silhouette score is nearly 0.6.
The selected number of clusters is set to 4 while the linkage
criterion is set to Average. The Silhouette Score for this entity
is rather low indicating clustering results of low accuracy. This
is due to the fact that the data features of the Device are far less
logically correlated (e.g no correlation between geolocation
and battery status) and have no obvious repeating patterns for
the HAC method to identify (e.g random-walk process for path
selection, random velocity changes). Regarding the Service
entity the number of clusters selected is set to 3 while the
linkage criterion is set to Ward. Finally, the selected number
of clusters for the Network entity is set to 3 with the Ward
being the selected linkage criterion. For both the Network and
Service data entities, the Silhouette Scores are almost identical
and close to 1 indicating that the data entities have been
separated into different clusters in an almost optimal manner.
This can be explained by the fact that in the current simulated



Algorithm 1: PRIMATE’s Framework

Input Data: X = ng,Xn,Xs}
Output Data: BC;, BC{, BC], BPf(dual_step)
Hierarchical Agglomerative Clustering
foreach entity € X do
| perform HAC
retrieve labeled unfiltered set
XHAC — (XHAC YHAC YHACY
7 T 1 &
Dynamic Cluster Filtering & Profile Extraction
foreach entity € XH4C do
| perform One-Sec Removal Adaptation Operation
retrieve filtered set
Xﬂﬂ.e BEC — {Xgﬂ-e BEC XOﬂ.B BEC XOTI-E. SEC}
¥ n 7 &
apply Profile Mapping to X "¢ $€¢ and retrieve set of
behavioral profiles BP
foreach p € BP do
| perform Dual Step Removal Adaptation Operation
retrieve reduced set of behavioral profiles
B P(duai_step}
Training for Cluster Prediction
foreach entity in X°™¢ °*¢ do
| perform training of the Weighted Voting Model
retrieve weighted voting models
WV Mg, WV M, WV M,
Cluster & Profile Forecasting
foreach entity € X do
| perform forecasting using LSTM
retrieve unlabeled forecasted set
X f(no_tbl) _ {de(no_IbI}’Xr{(no_!bI)1 Xéf(no_!bl}}
foreach entity € X/(no-ib) do
perform classification using trained models
WV Mg, WV M, WV M,
retrieve labeled unfiltered forecasted set
X ={x], X}, X[}
foreach entity € X/ do
| perform One-Sec Removal Adaptation Operation

apply Profile Mapping to X/ (one sec) and retrieve set
of unfiltered forecasted behavioral profiles BPY

retrieve BCJ, BC{, BC{ from X/(one sec)

foreach p € BPY do
| perform Dual Step Removal Adaptation Operation

retrieve reduced set of forecasted behavioral profiles
B_Pf(dual_step}

return set of forecasted behavioral clusters & profiles
BCJ,BC], BC!, BpS(dualster)

Parameter Description Default Value
# of UEs 1
# of Femto Cells 10
# of Macro Cells 2
Mobility Models 2 (Low, Medium)
UEs’ Transmission Power 20 dBm
Femto Cells’ Transmission Power 20 dBm
Macro Cells Transmission Power 35 dBm
Macro Cells Downlink and Uplink Bandwidth 20 MHz
Femto Cells Downlink and Uplink Bandwidth 20 MHz

TABLE II: Parameters Used in the ns-3 Simulated Scenario

Service gﬁ?ggf}{ packet interval DL/UL | packet size DL/UL
IFS UDP 2 /2000 ms 600 /7 12 bytes
HQLS UDP 2/2ms 1400 / 1400 bytes
FB TCP 5/ 1000 ms 1100/ 12 bytes

TABLE III: Traffic modeling specifications of the simulated
services

scenario there are 3 different simulated services (3 clusters
for the entity Service) and the Network entity is comprised of
data features concerning the traffic load of 3 services in the
network (3 clusters for the entity Network). To this end, the rest
of the evaluation is based on the aforementioned parameters’
configuration.
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Fig. 7: HAC Performance (Best Silhouette Scores) for the 3
data entities: Device, Network, Service

The next part that is presented in this section relates to
the filtering mechanisms introduced in Section III-C3. More
specifically, Figure 8a depicts 3 vertically stacked excerpt
timelines (one for each entity), in which all the different
clusters, that were extracted from the HAC, are arranged based
on their chronological occurrence. As it can be seen in the
figure, the y-axis depicts the names of the different clusters
and the x-axis depicts the duration of the timeline in seconds.
In the time-window [4523,4550] the Service and Network
data entities are rapidly changing clusters every second. These
short-lasting clusters will be candidates for the outlier removal
operation that follows. Figure 8b illustrates the behavioral
cluster timelines as they are formed after the enforcement
of the One-Sec Removal Adaptation Operation. As it can
be inferred from the figure, the aforementioned operation
manages to eliminate all the short-lasting clusters. Overall, the
elimination process (One-Sec Cluster Removal Adaptation) for
the entire simulation, results in 3, 2 and 2 behavioral clusters
for the Device, Service and Network data entities respectively.
The results of the filtering mechanism indicate that the output
of the HAC could be improved (in terms of number of clusters)
despite of the high Silhouette Scores. This can be explained by
the fact that two (IFS, FB) out of the three simulated services
have similar traffic load modeling, and - as a result - similar
behavior. As a result, the One-Sec removal is able to identify
this similarity and remove the extra cluster for both Service
and Network data entities.

Figures 9a, 9b and 9c and present the Profile Timelines
that result from the implementation of the Profile Mapping
operation. More specifically, Figure 9a depicts over time the
different profile occurrences, using as an input the clusters that
were extracted from the HAC. Once again, the y-axis depicts
the names of the different profiles, while the x-axis depicts
the duration of the timeline in seconds (10800 secs in total).
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Fig. 8: Cluster Timelines: (a): Timelines as extracted from
HAC (b): Timelines after the enforcing of the One-Sec Re-
moval Adaptation operation (Behavioral Cluster Timelines)

It must be noted that some profiles appear to have no duration
(P_O, P_1, P_4, P_8, P_10, P_12, P_14). This inability to
depict the duration for some of the profiles, is explained by
the fact that it is minuscule for such a large scale timeline.
Again, these short-lasting profiles will be candidates for the
outlier removal operation that follows. Figure 9b depicts the
behavioral profile timelines, as they are formed using the
resulted clusters of the One-Sec Removal Adaptation operation

as an input. As it can be inferred from the figure, there is
a clear reduction in the number of the extracted profiles.
Figure 9c depicts the reduced behavioral profile timelines,
which result from the additional layer of filtering, namely
Dual Step Removal Adaptation operation. The result is a clean
timeline with 6 behavioral profiles in total. Finally, Figure 10
compares the different number of extracted profiles, under the
above-mentioned filtering mechanisms. As it can be seen in
the figure, there are 15 different profiles in total when no
filtering mechanism is applied. After the application of the
One-sec and Dual Step Removal Adaptation operations, the
different number of profiles are clearly reduced and equal to 10
and 6 respectively. As previously discussed in Section III-C3,
this reduction further improves the output quality of the the
Dynamic Cluster Filtering & Profile Extraction module.
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Fig. 10: Dynamic Removal Adaptation Performance

Entity Name | Accuracy | fl1-Score
Device 96% 92%
Service 92.72% 91.72%

Network 93.68% 89.68%

TABLE IV: Performance of the Weighted Voting Model

B. Cluster & Profile Classification evaluation

This section focuses on the evaluation of the Weighted
Voting Model introduced in Section III-C4. The weighted
model combines the predictions from 4 different base models
(DT, RF, k-NN, SVM) in order to potentially improve on
the performance delivered by each of these base models. The
weight of each vote is equal to 1 for the DT and k-NN, while
the voting weight for the case of RF and SVM models is
doubled since they are the most robust algorithms among the
rest. All base models have been optimized using a grid search
process in order to identify the best parameters that result in
the highest performance. Table IV depicts the performance
of the aforementioned weighted model. The performance was
measured using the accuracy and fl score metrics. More
specifically, as it is shown in the table, the models achieve
accuracy equal to to 96%, 92.72% and 93.68% for the Device,
Service and Network data entities, respectively. In the same
manner, the fl score for the 3 data entities is equal to
92%, 91.72% and 89.68% respectively. This high performing
model will be exploited in the Profile Forecasting section that
follows.

C. Cluster & Profile Forecasting evaluation

In this last part of the evaluation, the results from the cluster
and profile forecasting module (Section III-C5) are presented.
After extensive experimentation regarding the training phase
of the 3 LSTM models (one per entity), the batch size was
set to 64 and the total number of epochs to 250. In order to
prevent any degradation in the performance of the validation
set and as a result overfitting, an early stopping function was
applied. This function monitors the MSE of the validation set
and stops the training when a minimum value is reached. To
increase the performance of the models the Stochastic Gradient
Descent (SGD) with momentum was selected as an optimiser
with learning rate, Ir = 0.001. All models used L2 (weight
decay) regularisers of 10 6. Finally, the time window selected
for forecasting was set to 30 seconds using a 30 second prior
time window of contextual information as an input. The split
ratio for the dataset was set to 0.8, meaning that 80% of the
available data was used for model training and the rest 20%
for evaluation. As a result, 8640 seconds were used for the
training phase and 2160 for the evaluation. After segmenting

the training and evaluation set into 30 second time windows,
we result with 288x30 and 72x30 seconds of data respectively.

Figure 11 depicts 3 excerpts from the performance evalua-
tion of the 3 LSTM models. Figure 11a presents the RMSE
for the Device’s data feature named velocity for all the 30
second forecasted time windows. More specifically, each ¢+
depicts the RMSE for the i;, second for each one of the 72
forecasted windows. The plot shows that the seconds in the
range [t + 1,¢ + 6] are easier to forecast while the seconds
in the range [t + 10, + 16] are the hardest. The overall
RMSE for this data feature is about 0.0045 m/s and indicates
a good performance of the model since the average value of
velocity for the evaluation dataset is equal to 0.129 m/s. In a
similar way, Figure 11b presents the RMSE for the Services’s
data feature named Downlink Packet Size in bytes for all the
forecasted windows. The easiest seconds to forecast are in the
range [t + 1, + 6] while the hardest are the ¢ + 14 second
and the range [t + 24,¢ + 30]. The overall RMSE results
in 278.97 bytes, while the average value in the evaluation
dataset is equal to 1118 bytes, which indicates an acceptable
performance of the model. Finally, Figure 11c illustrates the
RMSE for the Network’s data feature named Downlink Delay.
This time, the hardest seconds to forecast are included in
the set {t + 12,¢ + 20,¢ + 26}, while all the other seconds
are forecasted with higher accuracy. The overall RMSE for
this feature is at 0.001 seconds having an average value of
0.0047 seconds in the evaluation dataset, which once again
indicates good forecasting capabilities. The fluctuations in the
results are related to the stochastic nature of the LSTM model.
Additionally, a larger data set as well as a larger prior time
window could potentially further decrease the overall RMSE
and increase the performance of the model.
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Fig. 11: Evaluation of LSTM using RMSE per timestep
for specific data features: (a): Device’s Velocity in m/s (b):
Service’s Packet Size in bytes (c): Network’s Downlink Delay
in seconds

Having evaluated the performance of the LSTM models,
Figure 12 illustrates the behavioral clusters (top), in com-



parison to the ground truth ones (bottom). More specifically,
Figure 12a depicts the behavioral clusters, which are the
forecasted cluster timelines for each one of the 3 data entities
that were extracted with the use of the already introduced and
evaluated (Section IV-B) Weighted Voting model for the 2160
(72x30) seconds of the evaluation dataset in conjunction with
the One-Sec Removal Adaptation operation. Figure 12b depicts
the actual behavioral cluster timelines (ground truth) for the
same time period as they were extracted at a previous step of
PRIMATE (Section IV-A). As it can be inferred from the two
figures, there is a high similarity between them, indicating
that once again the good performance of the forecasting
mechanism. To be more precise, Figure 14 shows that the
accuracy for the cluster forecasting is 88.29% for the Device
entity, 87.71% for the Service entity and 82.59% for the
Network entity.

The last step of the forecasting module is the application
of the Profile Extraction mechanism in order to map the
behavioral clusters into the final behavioral profiles. Figure
13 presents the final behavioral profiles and the actual ones
in order to illustrate the performance of the Profile Extraction
mechanism. Figure 13a, illustrates the behavioral cluster time-
lines for the 2160 (72x30) seconds of the evaluation dataset
in conjunction with the Dual Step Removal Adaptation oper-
ation. In this particular evaluation phase, a newly-introduced
profile, namely NP_0 is falsely forecasted according to the
ground truth timeline. However, the aforementioned profile
illustrates the capability of the module to forecast profiles,
which were never observed before. Figure 13b presents the
actual behavioral profile timelines (ground truth) for the same
time period, which were extracted and discussed in Section
IV-A. Overall, the Profile Forecasting performance amounts to
71.25%, as it can be seen in Figure 14. The profile forecasting
performance is lower than the forecasting accuracy for each
one of the 3 entities. The reason for this decrease lies on the
fact that in order to successfully forecast a final profile, firstly
we need to accurately forecast the behavioral clusters for the 3
entities. Then, we use the Profile Mapping operation in order to
extract the final profiles, based on which the profile forecasting
accuracy will be calculated. Intuitively, this step lowers the
final accuracy of the final forecasting. Overall, the results of
PRIMATE illustrated the ability of the framework to forecast
behavioral profiles with high accuracy. As presented in Section
III-C, PRIMATE comprises multiple modules, which in turn
offers high flexibility and adaptability in different environ-
ments. As a result, the performance of PRIMATE could be
improved by exploiting different clustering techniques like k-
Means and Hierarchical Density-based spatial clustering of
applications with noise (HDBSCAN) [25]. Additionally, the
Weighted Voting model could be enriched by including new
base models like Naive Bayes, Multilayer-Perceptron (MLP)
and Stochastic Gradient Descent (SGD) that could potentially
improve the performance of the voting model and as a result
the performance of the Cluster & Profile Forecasting module.

V. DI1SCUSSION AND CONCLUSIONS

This work presented a novel framework for Al-driven, pro-
filing and network behavior forecasting of heterogeneous 5G
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Fig. 12: Cluster Timelines: (a): Forecasted (Behavioral) Clus-
ters (b): Ground Truth (Behavioral) Clusters

and beyond devices and things. A comprehensive methodology
was presented, which described step-by-step the modules
and algorithms applied to the collected contextual network
information towards profile extraction and forecasting. Novel
definitions of entity clusters and profiles were introduced, de-
scribed by a detailed data model. Lastly, a detailed evaluation
study showed the effectiveness and viability of the proposed
scheme.

As part of the next steps of this work, extended evaluation
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scenarios have already been planned in order to evaluate
the performance of PRIMATE for more complex scenarios
and network deployments, which will comprise heterogeneous
types of things, users and service types.

Last but not least, one of the major next objectives of the
specific work is to integrate the specific framework with a
set of resource allocation algorithms in different layers of the
network (such as radio resource management, VNF placement
and scaling, etc.) and exploit the profile forecasting outputs for
proactive resource management. Particularly, for beyond 5G
network environments with several co-existing, heterogeneous
types of devices and services, considerable gains are expected.
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