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Reliable and timely information on socio-economic status and divides is critical
to social and economic research and policing. Novel data sources from mobile
communication platforms have enabled new cost-effective approaches and
models to investigate social disparity, but their lack of interpretability, accuracy
or scale has limited their relevance to date. We investigate the divide in digital
mobile service usage with a large dataset of 3.7 billion time-stamped and geo-
referenced mobile traffic records in a major European country, and find
profound geographical unevenness in mobile service usage—especially on
news, e-mail, social media consumption and audio/video streaming. We
relate such diversity with income, educational attainment and inequality, and
reveal how low-income or low-education areas are more likely to engage in
video streaming or social media and less in news consumption, information
searching, e-mail or audio streaming. The digital usage gap is so large that
we can accurately infer the socio-economic status of a small area or even its
Gini coefficient only from aggregated data traffic. Our results make the case
for an inexpensive, privacy-preserving, real-time and scalable way to under-
stand the digital usage divide and, in turn, poverty, unemployment or
economic growth in our societies through mobile phone data.
1. Introduction
Inequality is a central societal problem, especially within rapidly expanding urban
areas. While it is a crucial driver for economic growth [1], the progressive cluster-
ization of workers, industries, companies and services in cities has a tremendous
cost in terms of segregation and discrimination. This cost is not only economic:
in the same city, different areas can have a 10- to 15-year imbalance in life expect-
ancy and highly divergent education levels, with little chances of social mobility
[2]. The design and successful implementation of policies to alleviate these pro-
blems require fine-grained, frequently updated information about income,
education or inequality across metropolitan areas. However, most data sources
employed today, such as population censuses or surveys, suffer from sparsity in
population coverage or infrequent updating, hence they do not allow the swift
evolution that urban societies experience nowadays to be followed. Thus, the tra-
ditionalways ofunderstanding cities tend to explainwhat happened 5years earlier
rather than nowcasting or even predicting urban transformations.

In recent years, digital data have been proposed as an alternative source for
socio-economic status (SES) inference [3–5]. The escalating use of mobile
devices [6–9], social media [10] or credit cards [11] and the growing availability
of pervasive satellite imagery [12,13] have allowed researchers to build SES
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models with unprecedented temporal and spatial resolutions.
For example, income levels in urban areas were correlated
with the unequal presence of trucks [14] or utilization of con-
struction materials [15] extrapolated from imagery data.
Similarly, the diversity in human mobility or social inter-
actions observed in data from mobile phones or social
media was found to be correlated with higher income
[8,10]. However, while very successful in predicting SES in
developing countries [7,9,12], these approaches are only
moderately accurate in developed countries [8,16], where var-
iances in the penetration of mobile phones, in the use of credit
cards and in social segregation itself are more nuanced.

When considering economic and social inequality in
wealthier countries, we argue that specific mobile services’ con-
sumption may be a more suitable proxy for SES than other
digital data considered to date. Indeed, a diffuse preference
for particular mobile applications is a more subtle indicator
than the sheer adoption ofmobile digital technologies, as it con-
nects to finer-grained user traits such as personal interests,
digital skills or accessibility to paying services [17,18].

Several previous studies provide some evidence that corro-
borates our postulation. For instance, it has been hypothesized
that mobile service usage can reveal the digital divide between
different socio-economic, gender or age groups [17]. There is
qualitative confirmation that mobile digital usage might exacer-
bate socio-economic inequalities given the impact that social
media and online information resources have on the social,
political and economic aspects of our society [18,19]. It is also
known that time on some social platforms, watching videos
or playing videogames [20] or news media consumption
patterns [21] depend on users’ SES, and that students’ per-
formance is related to different patterns in their Internet
usage [22,23]. All these studies suggest a significant disparity
in how mobile services are consumed, even in developed econ-
omies where the technology access gap is not significant.
Nevertheless, the limited scale and small granularity of existing
studies do not allow a conclusive opinion to be formed on the
magnitude of such a mobile application usage gap nor do they
allow its repercussions on SES features to be understood.

In this paper, we present the first large-scale, quantitative
study of the relationship between mobile service adoption
and socio-economic inequality. To that end, we analyse nation-
wide data traffic measurements collected by the leading mobile
operator in amajor European country (France), and find funda-
mental imbalances in the relative usage of specific mobile
applications by different income or education groups during
particular time periods. More precisely, we focus on a time
framewhere individuals aremost likely to be in their residential
areas, which favours the matching of mobile phone usage with
demographic data. In such intervals, the mobile service con-
sumption gap is so profound that we can build fairly accurate
models based on mobile traffic to estimate income, education
level and economic inequality at high spatial resolution.
2. Results
Our data consist of around 3.7 billion time-stamped and geo-
referenced records of the mobile traffic generated by different
applications, such as YouTube, Facebook or Netflix—includ-
ing device-specific ones such as Apple Store (run by iOS
devices) or Google Play (run by Android devices). The data
were collected between May and June 2017 over the whole of
France, and aggregated at the base station (BS) level. Because
of their volume and scattered nature, some traffic from differ-
ent applications were aggregated to common categories such
as mail, gaming, news consumption (mainly newspapers out-
lets) or audio streaming (see electronic supplementary
material, text and table S1). We merge the per-service traffic
volume recorded in each BS coverage area with socio-economic
indicators gathered from the 2014–2015 census, which include
information about the income and population structure in
each IRIS zone, i.e. the French sub-municipal statistical unit
(see Methods). The combination of the two datasets is per-
formed via an areal interpolation that maps mobile traffic over
BS coverage areas into IRIS zones (figure 1).

Since our traffic data are collected by BS, they include app
usage by residents of that area and users from other areas that
visit that BS throughout the day. To link traffic data to the
residents of a particular statistical area, we implemented a
temporal consolidation of our data in which we only consider
the mobile service usage recorded during the hours in which
we can safely consider people to be at home, i.e. between
20.00 and 7.00 during weekdays (see Methods and electronic
supplementary material, text).

The various mobile applications inherently entail very
different traffic volumes: for instance, YouTube video stream-
ing sessions consume much more data than Twitter
messages. Therefore, plain traffic byte counts per inhabitant
are not comparable across services and tend to conceal
subtle differences in usage patterns, as exemplified in
figure 1 and electronic supplementary material, S1. In order
to bring patterns in the consumption of individual applications
to the foreground, we use the revealed comparative advantage
(RCA) [24] to normalize the aggregated traffic by IRIS area and
service. RCA measures the ratio between the share of traffic
generated by an application in a certain IRIS area and the
same share computed in the whole country; it can thus
reveal higher or lower relative adoptions of specific mobile
services in a given area with respect to the national average.

The spatial, temporal and scale consolidation of the data
outlined before allows a structure of correlations to be revealed
in the usage of mobile service across geographical areas that
was not recognized to date (figure 2). Specifically, previously
observed strong correlations among different byte-count traffic
flows [25] dissolve into a fabric of mild pairwise correlations
and anti-correlations. We can clearly distinguish two groups
of traffic flow RCAs which are loosely correlated within them-
selves and anticorrelated between them. We can easily
recognize device-specific ones such as the Apple Store and
iCloud on one of them and their counterpart (Google Play)
in the other. Beyond that, the former seems to be dominated
by more information apps (Google, news, mail), while the
latter is composed of video-streaming traffic or gaming.
Social media traffic is different also across both groups:
while Instagram and Twitter traffic flow seems to be more cor-
related with the news and mail group, large Facebook or
Snapchat usage co-occurs with generic video streaming and
Google Play. Also gaming usage is different across groups,
and is mainly concentrated in the group of high use of
Facebook, Google Play and video streaming. The result high-
lights a pronounced spatial uniqueness in the consumption
of each application, when relative usage is compared across
different geographical units at a national scale.

In order to explore dependencies between such spatial
diversity in mobile traffic and SES indicators, we gathered
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Figure 1. Areal interpolation infographic. The mobile traffic dataset comprises mobile service usage statistics for 25 000 geo-located base stations (BS; bottom layer).
The coverage areas of BS are approximated by Voronoi polygons where mobile traffic is assumed to be uniformly distributed (middle layer). The mobile traffic is
weighted and interpolated into French administrative areas (IRIS zones; top layer). The top plot depicts the average daily time series of downlink traffic per inhabi-
tant at the richest 5% (dashed lines) and the poorest 5% IRIS zones in Paris for two representative mobile services: Facebook (red) and news (blue). As can be seen,
time series of raw byte counts in the same area are highly correlated and reveal little information. However, the relative traffic generated by the two services in
different areas exposes unique patterns that can be exploited for SES prediction.
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three demographic variables in each IRIS area from census
data: (i) the median income, (ii) the ratio of people with a pro-
fessional activity that requires higher education (or higher
education ratio, for short, hereafter), and (iii) the Gini index
of the income distribution, as a measure of local inequality.
We model these three responses to try to explain them as a
function of the relative traffic usage per category across
areas. We use the population structure (i.e. population ratio
by age ranges and immigrant ratio) as control variables in
the framework of a generalized linear model weighted by
the population counts in each area, with link functions
specifically tailored to each response considered (Gamma
regression with log link for median income; quasi-binomial
regression with logit link and fractional response for higher
education ratio; and Beta regression with logit link for
local inequality). All the regressors are standardized prior
to model fitting. As for the spatial autocorrelation, the
distribution of the response variables as well as the dimen-
sion of the problem (11 000 observations of 40 covariates)
make traditional approaches (spatial lag/error models and
eigenvector selection for semi-parametric spatial filtering)
computationally unfeasible. Thus, we developed a hybrid
approach between a spatial error model and spatial filtering,
implemented in two stages: in a first stage, the model is fitted
without taking into account the spatial dimension, which
produces spatially autocorrelated residual deviances; then,
these are spatially lagged and re-introduced in a new fit as
an additional auto-covariate. Our results show that this tech-
nique not only is much faster computationally but also
successfully filters the spatial autocorrelation in the final
model (as measured by the Moran-I value), producing
stable estimates (see Methods for further details).

Figure 3a shows the quality of the regression on the three
SES responses (i.e. median income, higher education ratio
and local inequality) using four sets of predictors: population
(control) variables, normalized mobile service traffic and
both sets of variables without (All) and with (All+SF) spatial
filtering. The left panel shows that the control variables alone
explain a low ratio (in the 0.25–0.35 range) of the total var-
iance, measured by an adjusted pseudo-R2, for the three
SES models. On the other hand, mobile application traffic fea-
tures alone significantly predict SES responses (with up to
0.74 of variance explained for the higher education ratio).
Jointly considering population and traffic variables, as well
as adding spatial filtering, further improves the result: ulti-
mately, 0.73, 0.84 and 0.87 of the variance can be predicted
for local inequality, median income and higher education
ratio, respectively. The right panel in figure 3a shows the
mean absolute error (MAE), standardized by the mean
response, so that the three models can be compared. Notably,
the best model in terms of explained variance is the worst in
terms of relative MAE, and vice versa. This can be explained
by the much larger variability that the higher education ratio
presents in comparison with the other two SES responses. As
a consequence, this model, despite being very reliable when it
comes to capturing averages and general trends across spatial
units (even for the traffic variables alone), is less suitable for
point estimates than the others. The overall predictive power
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for these models is depicted in figure 3b for the Paris metro-
politan area. The three SES responses are bucketed in
fine-grained categories. Predicted values, on the right, show
an excellent agreement with the observed ones.

We compare the relative effect size of traffic variables,
population control variables and spatial filtering (SF) for
the best models (all+SF) in figure 4, with 95% confidence
intervals (CIs). News and Facebook traffic stand out as key
explanatory variables for all SES models, with especially
high coefficients for the higher education ratio and median
income. Their effect is however antithetical: a stronger
usage of news applications positively correlates with
income and education levels, whereas the increased usage
of Facebook is associated with reduced income and edu-
cation. Similar antagonistic behaviours are found in the
specific groups of mobile services found in figure 2: for
instance, a relatively higher consumption of WhatsApp,
e-mail and audio streaming services is associated with
higher income and education, but the increased use of Snap-
chat, video streaming or adult services has an opposite effect.
Gaming also has mixed relationship with SES: while Candy
Crush is more used in areas with low income and education
ratio, the opposite happens for Clash of Clans. The large size
effects identified for traffic variables suggest a deep usage
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gap of mobile phone data between different areas of income
and educational attainment. On the other hand, traffic vari-
ables tend to have a different role when local inequality is
concerned: as an example, audio and video streaming have
reverse correlations (i.e. negative and positive, respectively)
with this SES response. Especially good predictors of inequal-
ity are the adoption of iOS (i.e. Apple Store) devices in areas
where income disparity is higher, and Android (i.e. Google
Play) devices where the economic status of the population
is instead more homogeneous. Putting together our results
in figure 4, we can generally say that high-income and
high-education areas have relatively more traffic on infor-
mation-seeking tools (news, Google, mail), e-commerce and
audio streaming, while areas with low SES indicators have
higher relative traffic on social media activity and streaming
(Facebook, YouTube, Snapchat).

Regarding population structure variables, most age
groups show a similar positive effect on the responses,
except for the higher education ratio, for which ages from
18 to 64 exhibit larger effects—as these are naturally the
groups that had access to higher level education. On the
other hand, the ratio of immigrants is associated with lower
levels of median income and education, as well as higher
levels of inequality, which can be expected. Remarkably,
this pattern is consistent with the estimates for mobile ser-
vices such as Facebook, generic messaging and Twitter.
Finally, we quantify the relative importance of the spatial fil-
tering in the same way as the rest of the variables in the
model, although the method does not allow an actual spatial
correlation to be estimated. In this sense, our estimates show
that the spatial term is especially influential in the case of
median income, but less important in the other responses.
3. Discussion
The data revolution has created an opportunity to scrutinize
individual and collective behaviour at an unprecedented
scale, detail and speed. We now have the opportunity to
measure, monitor and predict relevant aspects of SES and
growth in quasi-real time by using satellite images, social
media or mobile phone data. More interestingly, some of
these models relate socio-economic development to meaning-
ful measures of human behaviour such as diversity,
expressed opinions, purchases or the urban environment
[7,8,10,13]. Thus, they can be used not only to monitor
human development but also to understand the roots of
SES and inequality. However, there seems to be a balance
between predicting power and interpretability [13]. While
machine learning models applied to satellite imagery and
mobile phone data achieve typically high precision to explain
SES [7], highly interpretable models based on diversity of
mobility, purchases, content or other more interpretable
metrics have less powerful explanatory power [8,10,13].

Our results show another dimension of human behaviour
obtained from mobile phone data, i.e. digital usage can be
used to achieve both high predicting power and interpretability
of SES, even in developed countries. By just leveraging privacy-
preserving aggregates of consumption of different services
through mobile phones, we were able to have simple interpret-
able models for SES with high precision (approx. 80% of
variance explained), larger than othermodels based onmobility
diversity [8] or satellite imagery [13] for the same regions in
France. Since our approach is complementary to these ones,
there is a possibility that better precision can be obtained by
combining our data with satellite imagery, for example. Finally,
we found that the usage gap is partly drawn around the already
observed iOS/Android operating system divide [26], with a
positive correlation for iPhone users and a negative one for
Android devices. More importantly, we took a step further,
and revealed that the gap goes beyond plain platforms and
roots deeply into the usage of different apps. We note that, to
allow for demographic matching, we use the patterns of con-
sumption for a specific time frame that are most likely to be
produced by users when they are in their residential areas.
The unobserved time window constitutes a limitation, in the
sense that it would be possible for different demographic
groups to present similar overall patterns of mobile consump-
tion, but with a different distribution throughout the day. In
such a case, this studywould be detectingwhen services are con-
sumed, instead of which services. However, the results from
previous studies, as discussed above, as well as our robustness
checks show that our results hold for different definitions of
the observation period, such as weekends or earlier in the day.

The success of our models is based on a dramatic differ-
ence in mobile phone usage behaviours across groups of
different SES during our observation window. The digital
usage gap is so profound between low- and high-income
or low- or high-education areas that it can be used to clearly
distinguish between them or even identify the relative com-
position of these groups in a given area (Gini coefficient).
High-income areas or those with higher education attainabil-
ity show a more pronounced utilization of mobile devices to
consume news, exchange e-mails, search for information or
listen to music. At the same time, they display a reduced
use of some social media platforms or video-streaming ser-
vices. These results hold even when we control for age
composition and other census variables such as an immigrant
population. Although our models are equally accurate, the
impact of the digital usage gap is more important for edu-
cational attainability. We can clearly see how regions that
consume more Facebook content and less news have in
general a lower fraction of the population with a higher
education. This can be related to the two competing para-
digms for online information consumption: the usage of
traditional media versus social media platforms. Social
media has reshaped news by facilitating the involvement of
audiences, and thus boosting engagement and dissemination
[27]. Platforms such as Facebook and YouTube have been
identified as the major pathways to the increasing habit of
using social media as a news source [28,29]. Even when per-
ceived as unreliable, these platforms are used as ‘big outlets’
for convenience, especially by young adults [30]. However,
since we control for age composition, this is not strictly an
effect of generational differences of social media and news
usage. Rather, it might be related to how less-educated
people consume news: for instance, US adults who rely
mostly on social media for news tend to have lower levels
of education than those who mainly use several other
platforms [31]. Another study in Chile found strong
correlations between the socio-demographics of users and
online news media content [21]. Given that polarization
and spreading of misinformation is more likely on social
media [19], our results could also be used to identify those
populations and areas which could be more susceptible to
these problems.
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Following the Bourdieusian framework [32], we can
assume that the practices of individuals in the field of
mobile Internet highlight interrelations between economic
resources and social positioning—and, probably, internalized
abilities. For example, in the analysis of the digital activities
of Italian youth according to their social background, Micheli
[33] found that, while information seeking is positively corre-
lated with the cultural capital of the students and the
professional status of their parents, this is not the case for
social media use. Adolescents from disadvantaged social
backgrounds are more likely to actively participate in social
media than adolescents from upper strata. Micheli’s interpre-
tive analysis of qualitative data indicates that upper-middle
class students replicate their parents’ attitudes towards the
Internet as a tool for personal enrichment.

Finally, it is worth noting that our results are based on a
fully privacy-preserving analysis of mobile phone data.
While other metrics based on user mobility and communi-
cations need individual or high-resolution data, our
variables are constructed using aggregates of traffic at net-
work BS. Such variables are fully compliant with the
General Data Protection Regulation (GDPR), since they typi-
cally blend in a non-reversible way data generated by
hundreds of users, hence they do not incorporate any personal
information and hinder the possibility of de-anonymizing
individual information. Also, they are compact enough to
enable very large-scale analyses such as the one we carried
out, and they are relatively simple to collect for mobile net-
work operators, easing the permanent availability of statistics
for longitudinal studies. More importantly, since our analysis
is complementary to the ones using other dimensions of
mobile phone data (mobility, diversity of communications),
we believe our results will foster a new analysis in the future
about the relationships between different aspects of access to
information, human communication and mobility and their
impact on human development and SES.

Although our results are descriptive and do not imply
causal relations, we believe that our findings could be used
to point to important and previously overlooked factors of
socio-economic inequality whose causal effect may be further
tested through carefully designed experiments, interventions
or digital regulations. For example, the fact that low income
or educational attainment is correlated with groups of ser-
vices such as social media, video streaming or messaging
could be used to devise successful holistic interventions to
minimize their use and promote other mobile phone usages.
4. Material and methods
4.1. Mobile service traffic data
The network traffic dataset employed by our study comprises
usage statistics of popular mobile applications. Data entries are
recorded as the uplink (data transmitted by the user device)
and downlink (data flowing to the user device) byte counts per
service, at a temporal granularity of 5min and aggregated by
BS. The data were collected by Orange France within its own
infrastructure during 1.5 months in May and June 2017. They
describe the mobile behaviour of the whole Orange subscriber
base in France, i.e. approximately 15million individuals distrib-
uted over more than 550 000 km2 and served by over 25 000 BS.
Usage statistics were collected by passive probes monitoring
user sessions; the specific mobile service associated with each
session was detected using deep packet inspection (DPI) and
fingerprinting techniques tailored to specific traffic types (see
electronic supplementary material, SI appendix for further
details). The final dataset made available by the operator
included the 40 services that generate the most traffic in the net-
work, as detailed in electronic supplementary material, figure S1.

4.2. Geographical data and socio-economic indicators
We used geographical information and census data from the
French Institut national de l’information géographique et forest-
ière (IGN), which are publicly available in their web pages. For
the geographical description, we downloaded the Contours IRIS
édition 2016 dataset, which defines a polygon in a Lambert-93
projection for each IRIS zone (i.e. aggregated unit for statistical
information) in France, as well as an associated record containing
the IRIS code, name and type among other information. For the
population structure, we downloaded the Population en 2015
dataset, which contains a description of the population structure
by age group and other factors, such as socio-professional cat-
egory and immigration. For the economic indicators, we
downloaded the Revenus, pauvreté et niveau de vie en 2014 (IRIS)
dataset, which contains a complete description of the income dis-
tribution deciles for residential IRIS zones. These are areas with
more than 1000 inhabitants, and their population generally
falls between 1800 and 5000. Indicators for areas with less than
1000 are not shared by the IGN for privacy reasons.

4.3. Areal consolidation
The coverage area of each BS in the Orange mobile network is
modelled via a Voronoi tessellation that uses the BS location as
the object positions on the geographical space. Such BS coverage
areas have a different geometry from the IRIS zones for which
income and population data are available; generally, coverage
areas are much smaller than IRIS zones in urban centres, but
the opposite occurs in the countryside and less populated regions
of the country. To spatially consolidate the data, we adopted an
areal-weighted interpolation procedure to transfer BS-level traffic
counts into IRIS zones. As exemplified in figure 1, the principle
is computing the intersection between the two spatial bases,
and then creating a many-to-one mapping of BS coverage sub-
areas to IRIS zones (i.e. determining which IRIS zones each BS
coverage area intersects with) plus a set of associated areal
weights (i.e. the surface fraction of original BS coverage area
that falls into each BS sub-area). By assuming that mobile service
traffic is evenly distributed within the BS coverage area, traffic
counts for each BS sub-area are calculated as the areal weight
multiplied by the total traffic recorded for the BS, for each ser-
vice. Finally, the traffic counts for all relevant BS sub-areas are
aggregated for each IRIS zone. After filtering out IRIS zones
without economic indicators, we have mobile service traffic
data for 11 806 IRIS zones (out of 49 404), which encompass all
the main urban areas of France as depicted in electronic sup-
plementary material, figure S2. Classified by their degree of
urbanization (according to Eurostat), we find that 78% of the
IRIS zones in the final dataset correspond to urban areas, 19%
are peri-urban areas and 3% are rural areas.

4.4. Temporal consolidation
A mismatch between traffic and socio-economic datasets exists
also in the temporal dimension, because of the inherent mobile
nature of the consumption of applications on portable devices
as opposed to the static character of census indicators. We resolve
the discrepancy by only considering the mobile service usage
that is most likely to be produced by users when they are at
their locations of residence—which their socio-economic indi-
cators also refer to. More precisely, we filter out weekends and
French holidays (25 May and 5 June in the period considered),
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and we keep observations during home hours (from 20.00 to
7.00) on weekdays. There is evidence that app usage peaks
from 20.00 [34], and that online consumption is more or less
homogeneous throughout the day [35]. Although there could be
important differences in traffic during the day for individuals, we
believe that our aggregate consumption data by area are highly
representative of the daily online consumption of the population
of the area. As we show in the electronic supplementary material,
SI appendix, our results are robust to the definition of home
hours, and even hold for weekends, with no unobserved period.
journal/rsif
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4.5. Scale consolidation
Different mobile applications generate heterogeneous volumes of
network traffic depending on the nature of the data transferred
(e.g. video streaming creates a much higher load per session
than messaging) and popularity (with widely adopted services
producing a much higher demand than niche ones). This results
in diverse scales for traffic counts across services, which can
span several orders of magnitude, as observed in electronic sup-
plementary material, figure S1. In addition, as shown in figure 1,
raw byte counts are highly correlated across different mobile
services, both spatially and temporally.

The scale mismatch and spatio-temporal correlation tend to
hide differences in mobile service consumption. In order to
give prominence to any such diversity, we aim at adopting a rela-
tive metric of the traffic with the property of being comparable
across spatial zones and applications. Firstly, we consider the
downlink byte counts for all services, which is aggregated on a
hourly basis and normalized by census population. We then
take the median values of the downlink bytes/inhabitant/hour
during the whole 1.5-month observation period, for each IRIS
zone and mobile service. Finally, we calculate the revealed
comparative advantage (RCA) [24] as follows:

RCAij ¼
Tij=Ti

Tj=T
, ð4:1Þ

where Tij is the median hourly traffic per inhabitant in zone i for
application j; Ti is the median hourly traffic per inhabitant in
zone i jointly generated by all considered applications; Tj is the
median hourly traffic per inhabitant generated by service j in
all zones at once; T is the median hourly traffic per inhabitant,
aggregated over all zones and services. The index in equation
(4.1) measures the proportion of traffic generated by a particular
mobile application in a specific IRIS zone, normalized by the
fraction of global (i.e. over all zones) traffic imputed to that
same application. An advantage of service j is revealed in IRIS
zone i if RCAij > 1, implying a higher-than-ordinary usage of ser-
vice i in area j; conversely, if RCAij < 1, application j presents a
comparative disadvantage, i.e. a reduced adoption with respect to
the national average, in zone i. The metric allows all traffic fea-
tures in a common unit to be measured, and reveals a structure
of mild correlations and anti-correlations, shown in figure 2,
which is instead concealed by uniform strong interdependence
when considering raw byte counts.
4.6. Multicollinearity handling
The RCA transformation is a relative measure of importance,
and, as such, we have to drop at least one variable to avoid a per-
fect fit, i.e. that every RCAij is an exact linear combination of
remaining RCAik, 8 k = i. We dropped a no info service, which
gathers traffic generated by unknown applications.

To diagnose the presence of multicollinearity in the remain-
ing set of variables, we compute the variance inflation factor
(VIF) for each individual RCAij using the median income as
the dependent variable. This method reports a high level of
multicollinearity, with an average VIF of approximately 4 and a
median VIF of approximately 27 across variables.

Therefore, we proceed to manually remove a few residual
traffic categories and uninformative ones that are of little interest
from the behavioural perspective. These are Pokemon Go, other(s),
advertisements, updates, encrypted web and generic web. After drop-
ping these variables, 32 services remain, which are listed in figure
4; the same diagnostic run on the lasting variables reports aver-
age and median VIF of approximately 2, which corresponds to a
low level of multicollinearity.
4.7. Regression models
We consider two socio-economic indicators in IRIS zones that are
available in the public datasets, i.e. the median income and the
ratio of people with a professional activity that requires higher
education, or higher education ratio for short; in addition, we con-
sider a third inequality indicator in the form of the Gini index
computed from the income data (see the electronic supplemen-
tary material, SI appendix for further details). We model the
dependency of the indicators on mobile service usage via a
generalized linear model

g(E½yi�) ¼ a0 þ
X

j

bj � RCAij þ
X

k

gk � POPk þ d � SPerr, ð4:2Þ

where yi ; fincome, education, inequalityg for zone i is mod-
elled after the RCAij values for each application j. POPk are
control variables from the population structure, i.e. the ratio of
inhabitants in the 11–17, 18–24, 25–39, 40–54, 55–64, 65–79 and
80+ ranges, plus the ratio of the immigrant population. Both
groups of regressors, RCAij and POPk, are standardized: scaled
by the square root of the second raw sample moment of the
whole group, so that the coefficient estimates and effect sizes
across groups are comparable. The link function g is tailored to
the distribution of each response.

— Median income is a positive-definite continuous response
that can be modelled after a Gamma function. Thus, we per-
form Gamma regression with a log link, and estimates are
interpreted as a means ratio.

— Higher education ratio is the proportion of people with a pro-
fessional activity that requires higher education, which is a
counting process that may be overdispersed. Thus, we
define a fractional model, i.e. a quasi-binomial regression
with a logit link and fractional response, and estimates are
interpreted as an odds ratio.

— Local inequality is measured with the Gini coefficient, which
can be modelled after a Beta distribution. Thus, we perform a
Beta regression with a logit link, and estimates are inter-
preted as an odds ratio.

Finally, the high Moran-I value for each response (0.72, 0.81 and
0.74, respectively; see electronic supplementary material, table
S2) justifies the use of a spatial model. Therefore, SPerr is a vari-
able created to filter the spatial correlation, and is defined as the
spatially lagged residual deviance of the rest of the model

SPerr ¼ Wri, ð4:3Þ
where W is the row-standardized matrix of queen-contiguity
spatial weights and ri is the deviance residuals for an initial
fit with the rest of the variables involved (see the electronic
supplementary material, appendix for further details).

These models are thus fitted in four stages: (i) a reference fit
with the population variables alone, which serves as a null
model; (ii) a second fit with traffic variables alone, to explore
their explanatory power; (iii) a complete model with both traffic
and population variables; and (iv) a final model that performs
spatial filtering by taking the deviance residuals ri from (iii),
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which show spatial correlation, and incorporating them as SPerr in
a new fit. We checked that point estimates for RCAij and POPk in
(iii) and (iv) are very similar, but (iv) succeeds in filtering out the
spatial correlation (p < 0.001 for the Moran-I test), thus producing
better results and more precise and stable coefficients (see elec-
tronic supplementary material, figures S5–S7 and tables S3–S6).
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