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A B S T R A C T   

Thunderstorms represent a major hazard for flights, as they compromise the safety of both the 
airframe and the passengers. To address trajectory planning under thunderstorms, three variants 
of the scenario-based rapidly exploring random trees (SB-RRTs) are proposed. During an iterative 
process, the so-called SB-RRT, the SB-RRT* and the Informed SB-RRT* find safe trajectories by 
meeting a user-defined safety threshold. Additionally, the last two techniques converge to solu
tions of minimum flight length. Through parallelization on graphical processing units the 
required computational times are reduced substantially to become compatible with near real-time 
operation. The proposed methods are tested considering a kinematic model of an aircraft flying 
between two waypoints at constant flight level and airspeed; the test scenario is based on a 
realistic weather forecast and assumed to be described by an ensemble of equally likely members. 
Lastly, the influence of the number of scenarios, safety margin and iterations on the results is 
analyzed. Results show that the SB-RRTs are able to find safe and, in two of the algorithms, close- 
to-optimum solutions.   

1. Introduction 

Uncertainties inherent to convective weather constitute a major challenge for the Air Traffic Management (ATM) system, affecting 
its safety, capacity and efficiency, and accounting for a quarter of the en-route delays in Europe (Eurocontrol, 2020). Specifically, 
thunderstorms represent an important threat, as they involve phenomena such as strong turbulence, wind shear or hail. It is essential to 
avoid them to ensure both passenger’s comfort and aircraft’s structural integrity. Thunderstorms’ location and timing are hard to 
predict with certainty. This stochasticity is an important element that methodologies for aircraft trajectory planning must take into 
account. The aim of this paper is to design a trajectory planning technique for aircraft flying in areas with uncertain thunderstorm 
development. The objective of the algorithm is to minimize the distance flown to reach a desired target while guaranteeing safety 
within a user-defined threshold. 

The aforementioned problem can be formulated as a stochastic trajectory optimization. Within this class of problems, the motion of 
aerial vehicles considering an uncertain environment has been addressed in the literature with a wide spectrum of approaches (for a 
good survey of the topic, see (Dadkhah and Mettler, 2012)). Nevertheless, while there exist multiple methodologies in the field, only 
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few works have tackled aircraft trajectory in stochastic stormy regions. In Seenivasan et al. (2020), nonlinear model predictive control 
is used to avoid moving storms modelled as ellipsoids whose position and size are changing. Although the problem is solved in a 
deterministic framework, the authors suggest how to extend the formulation and include uncertainties. In González-Arribas et al. 
(2019b), a Robust Optimal Control (ROC) problem considering aircraft dynamics and uncertain evolution of convective weather is 
solved using nonlinear programming. To overcome the sensitivity to the initial guess, a randomized initialization is proposed, to obtain 
different local optima, among which the best solution is selected. Moreover, ROC is used in Soler et al. (2020) to obtain efficient 
trajectories based on indicators of risk of convection. Alternatively, Dynamic Programming (DP) algorithms, such as the so-called 
stochastic Reach-Avoid, can find the optimal trajectory in uncertain and dynamic scenarios, as the authors showed in Hentzen 
et al. (2018) with application to thunderstorm encounters. However, DP methodologies involve discretization and exploration of the 
entire state space, a process that is usually computationally prohibitive. Consequently, due to the curse of dimensionality, the 
affordable dimension of the problem is often limited to 3 states under the discretization approach. Both works, González-Arribas et al. 
(2019b) and Hentzen et al. (2018), rely on optimal control principles. Although these methods can be used with relatively complex, 
nonlinear dynamical systems (e.g., an aircraft 3 degrees-of-freedom model in González-Arribas et al. (2019b)), their flexibility to 
incorporate operational constraints is rather limited. 

Contrary to optimal control based methods, path planning and meta-heuristic algorithms look within a set of feasible solutions to 
find the one closer to the optimum. Within the first class of approaches, we find graph based methods, such as A*, D* or Dijsktra’s 
shortest path (DSP) algorithm. As an example, an A* search is used in Chen et al. (2012) to avoid regions of convective activity near 
airports. The authors in Taylor et al. (2018), Ng et al. (2009) employ variations of DSP to generate a set of reroutes based on weather 
avoidance fields (see Section 2). In Bhattacharya et al. (2015), the problem is addressed with persistent homology, looking for the 
group of trajectories that maximizes the probability of success. However, it requires discretization of the search space and compu
tational time increases quadratically, leading to simulations of several minutes, which is not compatible with real time flight simu
lation. Alternatively, meta-heuristic algorithms perform different operations on the candidate solutions to improve them. These kinds 
of operations are usually random and based on natural phenomena such as genetics or animal behaviour. For a good survey on the 
topic, see (Blum and Roli, 2001). There exist many different meta-heuristic algorithms that have been used for aircraft motion planning 
considering uncertainties. In particular, in Courchelle et al. (2019), simulated annealing is proposed to solve aircraft conflicts assuming 
that wind and temperature are not deterministic. Moreover, in González-Arribas et al. (2019a), the authors solve a multi-objective 
optimization of fuel burn, time of flight and spread in arrival times using a genetic algorithm. In the problem, wind is assumed to 
be the only source of uncertainty. One common element from Courchelle et al. (2019) and González-Arribas et al. (2019a) is the use of 
ensemble-based weather products to characterize uncertainties. Additionally, a particle swarm optimization is applied in Hong et al. 
(2019) to the problem of aircraft sequencing and scheduling subject to uncertain parameters. 

A combination of both a meta-heuristic and path planning algorithm was introduced as the so-called Rapidly Exploring Random 
Tree (RRT) (LaValle, 1998). RRT methods have demonstrated the ability to find safe trajectories between two states in high dimen
sional problems considering system dynamics and constraints, such as velocity limitations, obstacles or other vehicles (LaValle and 
Kuffner, 2001). A few years later, the RRT* (Karaman and Frazzoli, 2011) was presented, an update that ensures both feasibility and, 
unlike the RRT, optimality of the solution. RRT* does not require an initial guess, as it finds a feasible path in a few iterations and then 
optimizes it in subsequent steps. RRT and RRT* are versatile algorithms with a wide variety of applications in several engineering 
fields. From their early days, they have been used mainly in robotics (see, for example, (Moon and Chung, 2015; Ghosh et al., 2019)), 
and their implementation in autonomous driving cars (Kuwata et al., 2009), UAV flights (Pharpatara et al., 2017) or medicine 
(Duindam et al., 2010) has been explored recently. RRT algorithms can be modified and upgraded by including additional heuristics 
that enhance performance. A first variation addresses applications in which the environment is time-varying. In these dynamic cases, 
online RRTs must be considered. Such algorithms are constantly incorporating new data from the surrounding area and take the 
necessary actions to ensure safety based on the sensed information (e.g., (Kuwata et al., 2009; Frazzoli et al., 2002)). A second relevant 
upgrade tackles the growth of RRTs considering uncertainties. In Fulgenzi (2009), the author designed a RRT for navigation in areas of 
uncertain obstacles. Furthermore, the work in Aoude et al. (2013) added the stochasticity in the dynamics of both linear and nonlinear 
systems. Note that the latter was built on chance constraints and only checked the safety of discrete states along the trajectory. Lastly, 
to increase the efficiency of the optimal versions (e.g., RRT*), the Informed RRT* was introduced in Gammell et al. (2017), improving 
convergence times by means of reducing the search space progressively. The previous works on RRTs have not addressed the particular 
problem of aircraft trajectory planning under environmental uncertainties. Based on recent advances in Numerical Weather Prediction 
(NWP), our goal is to build RRT algorithms compatible with Ensemble Prediction Systems (EPS). The EPS characterize uncertainties by 
delivering a series of possible atmospheric realizations. 

The contributions of the paper are twofold: First, we apply three RRT-based algorithms to the planning of aircraft trajectories in 
stochastic weather regions. Second, we provide a method to grow RRTs in areas with uncertainties characterized by ensemble-based 
products. The present paper fills these two gaps by proposing a set of novel algorithms: the so-coined scenario-based rapidly-exploring 
random trees (SB-RRTs). The SB-RRT, the SB-RRT* and the Informed SB-RRT* are RRT-based methodologies for aircraft trajectory 
planning in uncertain environments. They guarantee flight safety in hazardous areas captured by an EPS. In the near future, meteo
rological products are expected to come as EPS, and this formulation allows the direct use of this data with no processing (e.g. 
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transformation into a unique probability map.). To illustrate our approach, the three proposed algorithms are tested on an aircraft 
trajectory planning problem utilizing realistic EPS data. A kinematic model of an aircraft flying straight between fixed positions at 
constant flight level and velocity is considered. Although the algorithms are able to handle more accurate dynamical models, the aim of 
this work is to illustrate how to incorporate EPS in trajectory planning. To enhance the computational time, the methodology is 
parallelized with GPU computing techniques leading to a decrease in execution times from days to seconds/minutes. 

The paper presents the detailed mathematical formulation for the scenario-based methodology and extends the preliminary results 
obtained in Andrés et al. (2020) for the RRT*. In addition, the methodology is applied to the RRT and the Informed RRT* as well, 
comparing computational times and convergence to optimal solutions. The rest of the paper is structured as follows. We motivate our 
approach in Section 2. The set of SB-RRT algorithms are presented in Section 3. Their performance is evaluated and verified in Section 
4. Finally, conclusions are drawn and possible future works are outlined in Section 5. 

2. Problem framework 

Thunderstorms are considered to be one of the most hazardous phenomena by aviation stakeholders, and it is preferred to avoid 
them whenever possible. Nevertheless, it is difficult for pilots to find the safest route in stormy regions. This results in delayed and 
diverted flights as well as in an increase in fuel consumption and total costs. 

A first challenge in addressing thunderstorms is that they are uncertain phenomena. Their evolution happens in short timescales 
(∼ 30 min), which makes them hard to predict. Secondly, pilots use weather charts for flight planning that become outdated as they are 
not updated during flights; this obsolescence is more significant for long haul routes. Any relevant weather changes are communicated 
by the air traffic controller or other aircraft. These charts are obtained through NWP models some days in advance and lack the 
sufficient time and space resolution to capture convective phenomena (such as thunderstorm birth and growth). There exist additional 
low resolution products that cover wide regions, such as Convective Significant Meteorological Information (SIGMET), used by pilots 
to determine no-fly regions. Eventually, during a flight, the main source of recent weather information is the onboard weather radar. 
These systems present multiple constraints as their range is limited to 150 nm (around 20 min of flight) and they are only able to scan 

Fig. 1. Representation of a ground-air data link in combination with an onboard electronic flight bag. An ensemble forecast of 4 members provided 
by the ground weather processor is represented in red. Convective activity detected by the onboard weather radar is shown in blue. Additionally, the 
flight planning module, the SB-RRT, would suggest possible trajectories to avoid storms (green lines). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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the aircraft front region. With the radar alone there is no information about lateral areas, which might be relevant for possible 
diversions. 

In this context, there exist many ongoing efforts to improve the weather data available for aviation. In the first place, the atmo
sphere is a nonlinear and chaotic system and there might exist huge differences between predictions. For this reason, weather analysis 
should not be based on just one forecast but on an EPS. These products deliver between 10 and 50 numerical weather forecasts 
assuming small perturbations in the models and the parameters (Bouttier et al., 2012; WMO, 2012). It must be noted that existing EPS 
are not yet able to capture the phenomenology behind convective events. Nonetheless, in the near future (5–10 years), NWP methods 
are expected to evolve towards very short term (∼1 h) and very high resolution (∼100 m) convective-permitting EPS able to better 
capture thunderstorms (Bauer et al., 2015). As a consequence, future algorithms for trajectory planning must be able to work with 
ensemble-based weather products that would eventually be able to forecast thunderstorms. 

A second effort is focused on the ground-air uplink of data and the fusion with onboard information. To this end, NWP forecasts are 
combined with radar, satellite and other possible observations and displayed on the cockpit (Forster et al., 2016). Although this 
approach has been successfully tested in past projects such as FLYSAFE (Lunnon et al., 2009) or eFlightOps (Kessinger et al., 2015), its 
actual deployment in commercial aircraft is still under research. Aviation is subject to strict regulation and certification processes that 
need to be overcome before these systems are ready to be included in primary flight displays. However, the use of complementary 
devices (electronic flight bags, tablets) to represent additional weather information would provide pilots with more time to react to 
thunderstorm evolution. As a result, more efficient trajectory diversions and fuel savings could be achieved. An example of that type of 
technology is eWAS Pilot,1 an app that provides pilots with real time weather information from several sources through Wifi or 4G 
connections. 

The aim of the SB-RRTs is to potentially be used in the cockpit together with the aforementioned systems. Using the information 
onboard, the algorithms would suggest to the pilot possible detours from the initial flight plan to avoid any dangerous weather event 
and minimize costs. Nevertheless, the use of this tool would not be limited to the pilot, yet, in congested airspaces could be used by 
ATCOs to coordinate with other flights and decide the best possible diversions around storms. A sketch of the proposed solution is 
represented in Fig. 1. Tactical rerouting is a topic of interest and has been widely explored and tested in the last decade. A case in point 
is Airspace Technology Demonstration 3 (ATD-3) (Sheth et al., 2018), a project by NASA that addresses the improvement of cruise and 
arrival phases. ATCOs are usually under a heavy workload and rely on conservative rules to quickly plan routes around thunderstorms 
that might not be efficient. Hence, ATD-3 aims to provide pilots with small route changes that consider winds, convective weather, 
airspace restrictions and other aircraft to minimize time and fuel consumption. Tools such as TASAR (Henderson, 2013) and DWR 
(McNally et al., 2015) tackle cruise phase while DRAW (Isaacson and Gong, 2018) and DAR (Gong and McNally, 2015) focus on the 
arrival stage. All of them are continuously identifying flights that can benefit from rerouting, updating possible trajectories every 12 s. 
Conversely, the work in Ng et al. (2009) proposes a methodology based on dynamic programming to obtain reroutes that are less likely 
to be modified by weather. In Taylor and Wanke (2012), the authors designed a simulated annealing algorithm to provide different 
acceptable diversions considering weather, congestion or flight distance. An alternative class of methods is based on Trajectory Option 
Sets (TOS), a group of possible alternative routes for flights (before departure or airborne). In Evans and Lee (2019), machine learning 
techniques are used to automatically build a TOS based on historical data. Additionally, the authors in Taylor et al. (2018) address the 
problem with a multi-objective genetic algorithm that, based on different metrics (e.g., incursions in adverse weather regions), 
evaluates the acceptability of each member in a TOS. 

One common aspect from these methodologies is the modeling of convective weather with Weather Avoidance Fields (WAF) 
(Matthews and Delaura, 2010), a series of deterministic polygons that represent regions that pilots would often try to avoid. For 
example, a 70 percent WAF represents weather regions that 70% of the pilots are likely to avoid (this is the value typically considered 
in these works). In the present work, an alternative methodology for tactical rerouting is suggested, able to run in similar times (e.g., 
the Informed SB-RRT* provides optimal paths in ∼ 10 seconds). Instead of WAF, the proposed algorithms work with EPS, a trend in 
meteorology that in the near future will provide high resolution weather forecasts and characterization of uncertainties (Bauer et al., 
2015). Depending on the scope of the simulation, the SB-RRTs can provide trajectories between close waypoints or for the entire cruise 
phase. Moreover, by means of a user-defined safety margin, there is a compromise between reducing flight distance and increasing 
safety. Note that although the algorithm focuses on weather events, it can be extended to consider congested sectors or restricted 
regions. 

3. Scenario-based RRTs 

This section presents the set of Scenario-Based RRTs: SB-RRT, SB-RRT* and Informed SB-RRT*. The methodology to handle unsafe 
sets described by a finite number of scenarios is included. 

1 http://www.ewas.aero/product/ewas-pilot. 
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3.1. Scenario-based environment 

Let X⊂Rdx be the space of dimension dx in which both the aircraft flight and the collision avoidance take place. The space X only 
includes possible aircraft coordinates, hence dx = 2 or 3. Let Xunsafe⊂X be the unsafe set that must be avoided. The complementary set 
Xsafe = X⧹Xunsafe represents the safe-to-fly regions. In this formulation, the set Xunsafe represents an ensemble forecast of thunderstorms 
with the total number of possible scenarios or members denoted by Nsc. A member of the ensemble is formed by several storm cells, 
each of which is denoted by Oj

l. Superscript j, with j = 1,…,Nsc, refers to a particular member of the ensemble, while subscript l, with 
l = 1,…,Nj

o, considers a storm cell from the j-th member. The number of storm cells Nj
o, in general, varies from scenario to scenario. 

A storm cell Oj
l is a closed region delimited by a general polhyedron. Each cell is treated as deterministic, and it can be checked 

whether a state configuration lies inside it or a curve intersects it. Let Xj
unsafe be the j-th member of the ensemble and the union of all the 

storm cells from that member. Then, 

Xj
unsafe =

⋃N
j
o

l=1
Oj

l. (1)  

The ensemble Xunsafe is the set that includes the different members given by Xj
unsafe, hence 

Xunsafe = {X1
unsafe,…,XNsc

unsafe}. (2)  

Ensemble based weather products produce equiprobable ensemble members by default, as there is no way of knowing if any of them 
would be more important beforehand. In consequence, in this paper, each of the members of the ensemble is assumed to occur with 
identical probability. That is Pr(Xunsafe = Xj

unsafe) = 1/Nsc,∀j. The risk of a particular region can be estimated by accounting for the 
proportion of members of the ensemble that predict a storm. 

3.2. SB-RRT algorithm 

Let S⊂Rds , with ds⩾dx, be the state space2 and let U⊂Rdu be the control space. The aircraft dynamics is represented by a state vector 
s ∈ S that evolves according to a transition equation, 

ṡ = f (s,u), (3)  

where u ∈ U is the control input. 
The SB-RRT algorithm is an iterative process to grow a tree 𝒯 ⊂X, formed by nodes and edges, given a maximum number of it

erations MaxIter. The aim of 𝒯 is to explore the free space Xsafe and find a safe path between a pair of state configurations. Let the node a 
be the representation in X of a state s ∈ S obtained randomly. Moreover, each node can be considered as a programming object with a 
spatial representation in X and multiple fields associated to relevant variables (e.g., velocity, heading, distance to the origin.). Let the 
edge e represent the propagation of the dynamics given by Eq. (3) between two states (or nodes) s and s′. The tree 𝒯 = (𝒜, ℰ) consists of 
two sets, 𝒜 and ℰ, populated by nodes and edges respectively. The condition to be included in 𝒜 or ℰ is based on the safety re
quirements, which leads to the rejection of many nodes and edges through the iterations. 

Let sstart , sgoal ∈ S be the initial and goal state configurations. The nodes astart and agoal are associated to these states.3 The way the SB- 
RRT grows is analogous to the RRT (LaValle, 1998), with the main difference being the way safety is ensured. In particular, during its 
growth, the tree allocates risk dynamically to an edge so as to avoid the violation of a user-defined safety margin. The following list of 
functions is required:  

• InitializeRRT: it creates the tree set 𝒯 with two empty sets, the node set 𝒜 and the edge set ℰ.  
• RandomSample: it takes a random state sk ∈ S and creates the node ak. Subscript k indicates that the sample is obtained during the k- 

th iteration.  
• NearestNode: it returns the closest node to the sample ak,anearest ∈ 𝒜, according to a predefined metric, e.g., Euclidean distance or 

Dubins path length.  
• Steer: it drives the system from a node a to another a′ minimizing a cost function, e.g. distance, time or fuel consumption. This 

connection between nodes is an edge e. 

2 The state space corresponding to the dynamics of the aircraft is denoted by S, while X represents the space where collision avoidance happens 
(see Section 3.1). The space X is limited to possible aircraft positions whereas S can also include variables such as velocity or heading angle.  

3 Although astart and agoal are created beforehand, they are only included in 𝒜 once AddNode function is called. This applies to any other node a. 
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• Safe: it checks the safety of any edge e before being included in ℰ. The way safety is evaluated, and what differentiates the SB-RRT 
from a traditional RRT, is a contribution of this paper. See SubSection 3.5.  

• Cost: it calculates the cost of the path between two nodes a and a′.  
• Parent: for any node a ∈ 𝒜 it returns its parent node (the previous node to which is connected) aparent ∈ 𝒜 and the edge eparent ∈ ℰ

connecting both. The node a is called child of aparent  

• AddNode, AddEdge: these functions include a node in 𝒜 or an edge in ℰ, respectively.  
• RemoveNode, RemoveEdge: these functions remove a node from 𝒜 or an edge from ℰ, respectively.  

Algorithm 1 
𝒯 = (𝒜, ℰ) ← SB-RRT(astart ,agoal)  

1: 𝒯 ← InitializeRRT();  
2: 𝒜 ← AddNode(astart);  
3: while k < MaxIter do  
4: ak ← RandomSample();  
5: anearest ← NearestNode(ak,𝒜);  
6: enearest ← Steer(anearest ,ak);  
7: if Safe(enearest) then  
8: 𝒜 ← AddNode(ak);  
9: ℰ ← AddEdge(enearest);  
10: end if 
11: if agoal ∈ 𝒜 4 then  
12: stop 
13: end if 
14: end while 
15: return 𝒯

The SB-RRT pseudocode is summarized in Algorithm 1. During each iteration, the algorithm takes a random state sk, creates the 
corresponding node ak and connects it to the closest node anearest that is already in 𝒯 . If the connection is not feasible (e.g., not safe, 
collision with obstacles) and Safe fails, ak is rejected and the iterative process continues with a new sample. After MaxIter iterations, the 
algorithm returns tree 𝒯 made of safe paths to each node in 𝒜. 

Note that one of the main goals of the SB-RRT (and subsequent RRT-based algorithms) is to include the node agoal in the set 𝒜 so that 
it is related to astart. Parent-child relations are an important part of the algorithm; one node can have multiple children, but each node 
only has one parent. Therefore, astart can be reached by choosing an arbitrary node from 𝒜 and tracking the sequence of parents. In 
consequence, once agoal is a part of the tree,4 a safe trajectory towards astart is found. By the time the SB-RRT finds a safe trajectory, the 
algorithm is not able to improve it as there is no reorganization of the tree, and the iterative process can stop (Algorithm 1, line 12). 

3.3. SB-RRT* algorithm 

The SB-RRT presented in the previous section only finds feasible trajectories but performs no optimization. In this section, the SB- 
RRT* is presented. It is a modification of the asymptotically optimal RRT* algorithm (Karaman and Frazzoli, 2011) with the scenario- 
based heuristic for checking safety. To achieve the optimization, three additional functions are required:  

• Near: it gets the set of nodes Anear⊆𝒜 within a ball centered at ak with radius μ > (
logcard(𝒜)

card(𝒜)
)

1
dx+1 (see Solovey et al., 2020), where μ is a 

constant to ensure optimality and card(𝒜) is the cardinality of 𝒜 during the corresponding iteration.  
• BestParent: among the set Anear, it finds the node aparent ∈ 𝒜 that achieves the smallest cost going from astart ∈ 𝒜 to ak passing by 

aparent . The node aparent is chosen as the parent of ak, and the connection between both is the edge eparent . Note that if none of the 
explored connections is safe, then the parent node is anearest, with the corresponding connection enearest which is already safe. See 
Algorithm 3.  

• Rewire: it checks if the cost of going from astart ∈ 𝒜 to each of the elements in Anear can be reduced by going through ak. The rewiring 
process eliminates existing edges and creates new ones between nodes, changing the relations between parent and child nodes. See 
Algorithm 4. 

4 The probability of sampling exactly agoal during any iteration is 0. This can be addressed by defining a ball centered in agoal and looking for 
samples within it. Alternatively, an attempt to connect agoal to the tree can be made during an iteration chosen at random. In this paper, the second 
methodology is implemented as it reduced the number of iterations required to connect agoal. In particular, let b be a fixed number between 0 and 1 
(b = 0.1 in our simulations) and let r ∼ 𝒰(0, 1) (with 𝒰 a uniform distribution). If r⩽b, the new sample is equal to agoal, and random otherwise. 
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Algorithm 2 
𝒯 = (𝒜, ℰ) ← SB-RRT*(astart)  

1: 𝒯 ← InitializeRRT();  
2: 𝒜 ← AddNode(astart);  
3: while k < MaxIter do  
4: ak ← RandomSample();  
5: anearest ← NearestNode(ak,𝒜);  
6: enearest ← Steer(anearest ,ak);  
7: if Safe(enearest) then  
8: Anear ← Near(ak,𝒜);  
9: aparent , eparent ← BestParent(ak,anearest ,enearest ,Anear);  
10: 𝒜 ← AddNode(ak);  
11: ℰ ← AddEdge(eparent);  
12: 𝒯 ← Rewire(ak,Anear);  
13: end if 
14: end while 
15: return 𝒯

Algorithm 3 
aparent , eparent ← BestParent(ak,anearest ,enearest ,Anear)  

1: aparent ← anearest ; eparent ← enearest ;  
2: cmin ←Cost(astart ,anearest) + Cost(anearest ,ak);  
3: for anear ∈ Anear do  
4: enear ← Steer(anear,ak);  
5: if Safe(enear) then  
6: cnear ← Cost(astart ,anear) + Cost(anear,ak);  
7: if cnear < cmin then  
8: aparent ← anear; eparent ← enear;  
9: cmin ← cnear;  
10: end if 
11: end if 
12: end for 
13: return aparent , eparent   

Algorithm 4 
𝒯 ←Rewire(ak,Anear)  

1: for anear ∈ Anear do  
2: enear ← Steer(ak,anear);  
3: cnear ← Cost(astart ,ak) + Cost(ak,anear);  
4: if Safe(enear) then  
5: if cnear <Cost(astart ,anear) then  
6: aparent , eparent ← Parent (anear);  
7: ℰ ← RemoveEdge(eparent);  
8: ℰ ← AddEdge(enear);  
9: end if 
10: end if 
11: end for 
12: return 𝒯

The SB-RRT* pseudocode is summarized in Algorithm 2. Additionally, BestParent and Rewire functions are included in Algorithms 3 
and 4. In each iteration, the algorithm takes a random sample ak and looks for the path of minimum cost towards the origin astart . 
Moreover, it optimizes the connections of the nodes surrounding ak. The result, after MaxIter iterations, is a tree 𝒯 that minimizes the 
cost from astart to each node in 𝒜. 

The original RRT* presents asymptotic optimality (Karaman and Frazzoli, 2011) and requires that MaxIter → ∞ to reach the 
trajectory of minimum cost. However, running the simulation indefinitely is impossible and MaxIter must be large enough to obtain 
close-to-optimum solutions, which can be post-processed a posteriori. As the SB-RRT* is based on the RRT*, it also requires enough 
iterations for the optimization routines, BestParent and Rewire, to be effective. Typically, with a higher number of obstacles, more 
iterations are required. 

An example of how the SB-RRT* grows is shown in Fig. 2, illustrating the process during three different iterations. It can be 
observed that:  

• In Fig. 2(a), the sample taken during the 30-th iteration, a30, is connected to the closest node anearest ∈ 𝒜. 
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• In Fig. 2(b), the 50-th sample, a50, is connected to aparent ∈ 𝒜, despite the fact that anearest ∈ 𝒜 is the closest node. This is a 
consequence of the BestParent function. At first, a50 would be connected to anearest, but there is one anear ∈ Anear that leads to a 
shortest path to astart.  

• In Figs. 2(b) and (c), it is shown that a30, previously connected to its closest node, is now linked to another parent, aparent ∈ 𝒜. In 
addition, the path between astart and a30 in Fig. 2(a) has changed in Fig. 2(c), minimizing the flight distance as the iterations in
crease. This is a direct effect of the Rewire process. For some node ak, with k > 30, a30 fell inside Anear and it was found that the path 
to a30 could be shortened through ak. 

3.4. Informed SB-RRT* algorithm 

One of the main drawbacks of the SB-RRT* (inherited from the RRT*) is its inefficiency in single query path planning problems in 
which the objective is to find the optimal trajectory between origin and destination. The RRT* does not use the known information 
about the goal state until the iterative process concludes and needs a large computational effort for the minimization of the costs 
towards each random state. To tackle this issue, the Informed RRT* methodology was developed (Gammell et al., 2017), which is able 
to maintain optimality and improve convergence rates by reducing the search space X progressively. The Informed RRT* grows 
similarly to the RRT* until a solution is found. Then, the sampling region is reduced to an ellipsoidal domain, characterized by the 
distance from the origin-destination and the cost of the best solution cbest . This ensures that only samples that can improve the best 
solution are considered. Any sample outside the ellipsoid would lead to trajectories with a cost higher than cbest , thus obstructing the 
optimization process. Note that this heuristic is only appropriate for the trajectory planning problem in which the objective is to 

Fig. 3. Evolution of the ellipsoidal sampling region.  

Fig. 2. Example of SB-RRT* evolution with 30, 50 and 100 iterations.  

E. Andrés et al.                                                                                                                                                                                                         



Transportation Research Part C 129 (2021) 103232

9

minimize distance at constant velocity. This results in a loss of generality with respect to the original SB-RRT* in exchange for the 
enhancement of convergence rates. For more complex problems, the use of alternative heuristics should be explored. 

A sketch of the ellipsoidal domain after 500 and 1000 iterations is shown in Fig. 3. Each time a better solution is found, the ellipsoid 
shrinks, and, if there were no obstacles, it would eventually collapse into a straight line. The authors recommend referring to Gammell 
et al. (2017) for further details on this methodology. Again, the Informed SB-RRT* included in Algorithm 5 and presented in this work 
updates the Informed RRT* with the new safety check procedure. Two additional functions are required:  

• UpdateBestCost: it returns the cost cbest of the current solution between astart and agoal. This value will be changing due to Rewire 
function.  

• InformedSample: it returns a random sample within an ellipsoidal region with foci on astart and agoal, minor axis equal to the 
Euclidean distance between both and major axis equal to cbest .  

Algorithm 5 
𝒯 = (𝒜, ℰ) ← Informed SB-RRT*(astart ,agoal)  

1: 𝒯 ← InitializeRRT();  
2: 𝒜 ← AddNode(astart);  
3: cbest ← ∞;  
4: while k < MaxIter do  
5: cbest ← UpdateBestCost(𝒜);  
6: if cbest < ∞ then  
7: ak ← InformedSample(astart ,agoal, cbest);  
8: else 
9: ak ← RandomSample();  
10: end if 
11: anearest ← NearestNode(ak,𝒜);  
12: enearest ← Steer(anearest ,ak);  
13: if Safe(enearest) then  
14: Anear ← Near(ak,𝒜);  
15: aparent , eparent ← BestParent(ak,anearest , enearest ,Anear);  
16: 𝒜 ← AddNode(ak);  
17: ℰ ← AddEdge(eparent);  
18: 𝒯 ← Rewire(ak,Anear);  
19: end if 
20: end while 
21: return 𝒯

3.5. Evaluation of safety 

In Algorithm 1 (line 7), Algorithm 2 (line 7), Algorithm 3 (line 5), Algorithm 4 (line 4) and Algorithm 5 (line 13) the function Safe is 
called to determine if an edge is safe and suitable to be added to the tree. Assuming deterministic unsafe regions, an edge would be safe 
if there is no intersection with any hazardous area. However, if the environment is uncertain, it is only known up to a certain prob
ability if the edge is safe. The heuristic to accept or reject an edge as a part of the tree are presented below and are valid for any of the 
SB-RRTs presented above. By applying them, any possible sequence of edges in 𝒯 will be safe with a user-defined probability. 

Probabilistic safety of an edge. Before describing the safety of the approach, we describe how we incorporate the ensemble forecast 
data in a probabilistic safety evaluation. In particular, we define the probability of any edge ei being unsafe as the ratio of the number of 
scenarios in which the edge intersects Xunsafe and the total number Nsc, 

Pr(ei ∩ Xunsafe ∕= ∅) =
mi

Nsc
, (4)  

where mi is equal to the number of scenarios where an intersection takes place and is defined as, 

mi =
∑Nsc

j=1
mi,j, (5)  

with 

mi,j =

{
0 if ei ∩ Xj

unsafe = ∅,

1 otherwise.
(6)  

The variable mi,j indicates if there is an intersection between an edge ei and a realization of the unsafe set, Xj
unsafe, as defined in Section 
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3.1. 
Safety of the tree. Henceforth, the k-th iteration is considered, with k⩽MaxIter. Let ∊ ∈ [0, 1] be the maximum admissible risk for any 

possible trajectory. The existing tree, created during the previous k − 1 iterations, is assumed to be safe with a margin ∊, and the safety 
of any new edge is built on this fact. According to Algorithms 1–5, there are only three possible types of trajectories that appear during 
each iteration and involve both astart and ak:  

• First, the trajectory connecting astart to ak through anearest using the edge enearest.  
• Second, the trajectories created with BestParent function, between astart and ak through each anear using the edge enear (only for SB- 

RRT* and Informed SB-RRT*).  
• Third, any of the rearrangements that happen with Rewire function, connecting astart to anear, and going through ak with the edge 

enear (only for SB-RRT* and Informed SB-RRT*). 

Although in the following we verify safety of the approach for the first kind of trajectories, its generalization to the remaining two 
kinds is immediate. Let Pk = {e1,…, eNk} be the trajectory between astart and ak via anearest. The set Pk represents a sequence of edges ei, 
with i = 1,…,Nk. Note that eNk represents the edge connecting the last two nodes whose safety needs to be checked, which in this case is 
enearest. The trajectory Pk is considered to be safe, with a safety margin ∊, if all its elements are safe (Lefkopoulos and Kamgarpour, 
2019). That is, 

Pr(Pk ∈ Xsafe) = Pr
(

⋀
Nk

i=1
ei ∈ Xsafe

)

⩾1 − ∊. (7)  

Eq. (7) is reformulated using De Morgan’s law. For a series of events, denoted by Zi, it states that ¬(∧iZi) = ∨i( ¬Zi), where ¬Zi is the 
complement of event Zi. If Zi = ei ∈ Xsafe, the complement event corresponds to the existence of intersection between ei and Xunsafe, 
hence ¬Zi = (ei ∩ Xunsafe ∕= ∅). Then, 

Pr(Pk ∩ Xunsafe ∕= ∅) = Pr
(

⋁
Nk

i=1
ei ∩ Xunsafe ∕= ∅

)

⩽∊. (8)  

By means of Boole’s inequality, for a finite number of events Zi,Pr(∨iZi)⩽
∑

iPr(Zi), and Eq. (8) is conservatively satisfied as follows: 

Pr(Pk ∩ Xunsafe ∕= ∅)⩽
∑Nk

i=1
Pr(ei ∩ Xunsafe ∕= ∅)⩽∊. (9)  

We now use the variable mij defined in (6) to calculate Pr(ei ∩ Xunsafe ∕= ∅): 

∑Nk

i=1
Pr(ei ∩ Xunsafe ∕= ∅) =

1
Nsc

∑Nk

i=1

∑Nsc

j=1
mi,j⩽∊. (10)  

Letting Mk := Nsc
∑Nk

i=1Pr(ei ∩ Xunsafe ∕= ∅), we obtain the constraint 

Mk =
∑Nk

i=1

∑Nsc

j=1
mi,j⩽

⌊

∊Nsc
⌋

, (11)  

where ⌊x⌋ denotes the floor function of x. The variable Mk represents the number of times any edge in Pk has intersected any realization 
of Xunsafe. From Eq. (11), it is concluded that the growth of any of the Scenario-Based RRTs must be constrained by limiting the 
maximum number of intersections with Xunsafe to verify Eq. (7). During the growth, the total number of intersections with Xunsafe of any 
trajectory that starts at astart can be of, at most, ⌊∊Nsc⌋. In order to guarantee safety during the tree growth, this work proposes the 
dynamic risk allocation, a novel method that combines the safety evaluation from Eq. (11) with the random growth of RRT-based 
algorithms. 

Dynamic risk allocation. As it was stated in Section 3.2, one of the advantages of implementing a RRT algorithm is that the nodes can 
be used to store data such as their position, velocity, the sequence of edges to get to the initial state, the total distance covered or the 
elapsed time. Using this feature, in our approach we store Mk in the node ak. As Mk is additive, Eq. (11) can be decomposed into two 
terms as follows, 

Mk =
∑Nk − 1

i=1

∑Nsc

j=1
mi,j +

∑Nsc

j=1
mNk ,j⩽

⌊∊Nsc
⌋

, (12)  

where the first sum corresponds to the value of Mnearest associated to anearest , and the second sum corresponds to the number of in
tersections of the last edge in Pk. Using Eq. (5), 
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mNk :=
∑Nsc

j=1
mNk ,j,

and Eq. (12) is reformulated as: 

Mk = Mnearest +mNk ⩽
⌊
∊Nsc

⌋
. (13)  

Note that during the k-th iteration the only unknown is mNk , since Mnearest was already obtained in a previous iteration. In Algorithm 1, 
for the edge enearest to be considered safe, its value of mNk must satisfy Eq. (13). If Mk > ⌊∊Nsc⌋, the number of intersections between 
enearest and Xunsafe is higher than desired. The condition in Eq. (13) can be generalized for any possible trajectory with origin in astart . Let 
ak be the final node in the sequence and let aparent ∈ 𝒜 be its parent with a known value of Mparent . The connection from aparent to ak is the 
edge eparent . Consequently, 

Mk = Mparent +mNk ⩽
⌊
∊Nsc

⌋
. (14)  

Eq. (14) is the basis of the dynamic risk allocation proposed in this work, in which the risk is assigned non-uniformly to the edges as the 
tree is expanding. 

As an example, illustrated in Fig. 4, let ∊ = 0.1 and Nsc = 10. At most, one edge in every possible trajectory can intersect the set 
Xunsafe once, as ⌊∊Nsc⌋ = 1. Let Pk and Pk′ be two trajectories towards two nodes ak and ak′ respectively. Without loss of generality, let us 
assume that both nodes share the same parent aparent with a value Mparent = 0. Then, with Eq. (13), 

Mk = Mparent +mNk = 1,

Mk′ = Mparent +mN
k′ > 1.

In this situation, ak′ would be rejected, as Mk′ > 1, whereas ak would be added to the tree. Moreover, the tree can grow from ak as long 
as the subsequent edges involve no more intersections. In that way, the tree is able to allocate risk wherever necessary, keeping track of 
a whole path. 

If it is required to know which parts of a trajectory are less safe, the allocated risk for any edge ei which connects two consecutive 
nodes ak′ and ak can be measured: 

Pr(ei ∩ Xunsafe ∕= ∅) =
mi

Nsc
=

|Mk − Mk′ |

Nsc
. (15)  

If the tree is grown according to the dynamic risk allocation, any trajectory that starts at astart and ends at any node in the tree is safe 
with a margin ∊. In particular, the solution towards agoal is safe as well. Safety of the solution. Let P* be the solution of the SB-RRT, the SB- 
RRT* or the Informed SB-RRT* connecting astart and agoal. At agoal, the constraint Mgoal⩽

⌊
∊Nsc

⌋
must be satisfied. From Eq. (9) and Eq. 

(10), 

Pr(P* ∩ Xunsafe ∕= ∅)⩽
Mgoal

Nsc
⩽
⌊∊Nsc⌋

Nsc
⩽∊. (16)  

Hence, the safety of the trajectory between astart and agoal is ensured with a user-defined probability 1 − ∊. 

Fig. 4. Schematic illustration of the dynamic risk allocation with two different possibilities: rejection of an edge as it exceeds the maximum number 
of allowed intersections (red dotted line) and acceptance of an edge that meets the constraints (green dashed line). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

E. Andrés et al.                                                                                                                                                                                                         



Transportation Research Part C 129 (2021) 103232

12

3.6. Parallelized SB-RRTs 

The scenario-based formulation requires the implementation of a repetitive task: obtaining intersection between an edge and a 
series of closed figures. In particular, the application of Eq. (14) (Safe function) and the calculation of each mNk are a potential 
bottleneck in the SB-RRTs. By using traditional CPU computation the calculation of the intersection of an edge with each ensemble 
member Xj

unsafe is done sequentially. Moreover, as each member usually has several storm cells Oj
l, the intersections with each of them 

are also determined sequentially. Each time Safe is called, the total number of intersections to be obtained is 
∑Nsc

j=1Nj
o. In consequence, 

the computational time required for checking one edge grows linearly with the number of ensemble members and the number of storm 
cells per member. As the algorithm requires an extensive use of Safe function, which increases with the number of nodes, the total 
execution time grows with the maximum number of iterations. 

As it was proposed in Andrés et al. (2020), this issue is addressed with parallelization routines using CUDA (NVIDIA Corporation, 
2010), a platform for general computing on GPUs. The result is the set of Parallelized SB-RRTs, in which, to calculate the value of mNk , 
all the storm cells Oj

l included in any ensemble member are handled in parallel. In this way, the 
∑Nsc

j=1Nj
o steps required are reduced to 1; 

Safe function is independent of both the number of members in the ensemble and the number of storm cells. In order to compare the 
performance of the GPU approach, the computational time for each time Safe function is called is included in Table 1. A first conclusion 
is that, using GPU, this time is reduced in 3 orders of magnitude. Moreover, the processing time is nearly independent of the number of 
ensemble members Nsc that are being considered. The computations are performed in a workstation equipped with an Intel Xeon E3- 
1240 v5 CPU running at 3.5 GHz and a NVIDIA Quadro M4000 GPU of 8 GB. 

4. Case study 

In this section, the SB-RRTs are tested considering a kinematic model of an aircraft flying with constant heading between nodes. 
Constant airspeed and flight level are assumed. Note that the algorithms are able to handle more complex dynamical models, but the 
goal of this work is to demonstrate how to deal with ensemble-based weather products. 

The state variables are latitude ϕ, longitude λ and heading angle χ. The planning space X = [ − 24◦, − 19◦] × [28◦,35◦] includes ϕ and 
λ, while the state space S = X × [ − π, π] considers heading angle as well. The problem is solved in a scenario-based environment ob
tained from realistic weather data using the Parallelized SB-RRTs. 

4.1. Problem setup 

The test area consists of a stormy region detected by the Rapid Developing Thunderstorms (RDT) system5 on November 16th, 2017 
at 6:00 Zulu time. RDT is a product developed by Meteo-France for the detection, monitoring and forecast of convective cells, which 
uses imagery obtained by Meteosat Second Generation satellites. It is able to characterize convective systems around Europe every 15 
min with a horizontal resolution of 3 km. RDT output includes a list of convective objects (Fig. 5(a)), as well as their speed, direction of 
motion, phase (e.g. growing, decaying.) and a deterministic extrapolation into the future. This data is post-processed (González- 
Arribas et al., 2019b), as illustrated in Fig. 5, incorporating uncertainties in the cell motion and obtaining the probability map p(x)
shown in Fig. 5(c). The function p represents the probability that x ∈ X is in a storm, where x = (λ,ϕ). 

As stated in Bauer et al. (2015), to be able to capture storm cells more accurately, NWP is evolving towards convective-permitting 
ensemble prediction systems (EPS) of very high spatiotemporal resolution. These are not available yet but are expected in the near 
future. In consequence, to simulate an ensemble-based input and obtain different possible forecasts for the SB-RRTs, different ensemble 
members are sampled from the probability map in Fig. 6(a) as follows:  

• The map is first discretized with a 0.1◦ step in latitude and longitude.  
• For each position, a random number is taken from a uniform distribution between 0 and 1. If this number is lower than the actual 

probability of storm at the position, a storm is assigned to that position. For example, if the probability of having a storm is 90%, any 
sample between 0 and 0.9 corresponds to having a storm.  

• The positions with a storm are clustered by means of a density-based clustering method, DBSCAN (Kröger et al., 2019).  
• Finally, the polygon that encloses each cluster is calculated (Preparata and Hong, 1977). 

Table 1 
CPU vs. GPU. Computational time required by Safe function with respect to the number of scenarios.  

Nsc  With CPU (ms) With GPU (ms) timeCPU/timeGPU  

5 720 1.22 590 
10 1500 1.25 1200 
20 2850 1.25 2280 
50 6840 1.31 5220  

5 http://www.nwcsaf.org/web/guest/nwc/geo-geostationary-near-real-time-v2018. 
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An example of the process is shown in Fig. 6(b). As the result is a group of polygons, the intersection of each polygon with a RRT 
edge, if it exists, can be calculated by means of geometric operations. According to the formulation presented in SubSection 3.1, Fig. 6 
(b) represents a set Xj

unsafe, with j = 1,…,Nsc. Each Oj
l, with l = 1,…,10, is a convex polygon. The process is then repeated Nsc times to 

obtain the desired number of scenarios. Fig. 6(c) shows an example of Xunsafe with 20 ensemble members. 

Fig. 5. Methodology to build a probabilistic storm model p(x) based on RDT forecasts by means of a time-lagged ensemble forecast (see González- 
Arribas et al., 2019b). 

E. Andrés et al.                                                                                                                                                                                                         



Transportation Research Part C 129 (2021) 103232

14

In order to test the ability of the three SB-RRTs to avoid hazardous and uncertain regions, a safe route connecting xstart =

( − 22◦,34◦) and xgoal = ( − 20◦,29◦) is sought. The aircraft is assumed to maintain constant altitude at FL300. While the SB-RRT 
searches for safe trajectories, the SB-RRT* and the Informed SB-RRT* look for the optimal trajectory that minimizes flight distance. 

4.2. Results 

There are two main parameters that affect the performance of the three SB-RRTs:  

• The maximum number of iterations MaxIter: as two of the algorithms are based on asymptotically optimal methodologies, a higher 
number of iterations leads to a better solution in terms of flight distance in exchange for higher computational times.  

• The product ⌊∊Nsc⌋: this integer variable represents the maximum number of intersections allowed for each trajectory. A higher 
value means that the algorithm is able to grow closer to the unsafe regions. Nsc is given by the meteorological product while ∊ varies 
from 0 to 1. 

Although it is not discussed here, there is a third parameter with influence on optimal algorithms, i.e. the constant μ that appears in 

Near function. The RRT* requirement for optimality is that μ > μ*, with μ* =

(
logcard(𝒜)

card(𝒜)

) 1
dx+1

. The value of μ is related to the number of 

nodes considered in the optimization process performed by Parent and Rewire. A higher value means that Anear covers a larger region 
and more nodes are likely to lie inside it. Consequently, the for loops in Algorithms 3 and 4 involve more edges to rearrange, and 
therefore higher computational times. In our simulations, a value of μ = 1.1μ* is chosen. A larger value degraded the computational 
performance with small benefits on the convergence process. 

Number of iterations. To begin with, the influence of the maximum number of iterations is analyzed, assuming that ∊ = 0.1 and Nsc =

20. First, the results corresponding to the SB-RRT after 500, 1000 and 2000 are shown in Fig. 7. As can be observed, there is no 
optimization, and once a path is found the algorithm will not further refine it irrespective of the number of iterations. This algorithm is 
much faster than the other two and would be useful in problems with no cost penalties in which only a safe trajectory is required. 
However, in aircraft trajectory planning problems, fuel, distance or time are objectives to be minimized and the optimal approaches 
must be employed. An example of SB-RRT* growth is included in Fig. 8. Note that the stopping criteria once agoal is reached (Algorithm 
1, line 12) is ignored with the purpose of showing that there is no optimization. 

In the SB-RRT*, and in those algorithms based on the RRT*, there are two processes happening simultaneously, exploration and 
optimization, both of which can be observed in Fig. 8. On the one hand, the exploration results in reaching the highest possible number 
of nodes. Higher number of nodes implies that new samples are more likely to get connected to the tree. Exploration is associated to 
RandomSample, NearestNode and Safe (lines 4, 5 and 7, respectively, in Algorithm 2), which determine the new sample and the pos
sibility of a connection towards it. On the other hand, the optimization seeks to lower the cost associated with the sequence of edges. 
Optimization is connected to BestParent and Rewire (lines 9 and 12, respectively, in Algorithm 2), both highly influenced by the number 
of nodes in Anear. The tree growth can be divided into two phases, depending on the predominance of exploration or optimization: 

Fig. 6. Probability map (left), sample taken from it (center), and ensemble of 20 members (right).  
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• In the early stages (Fig. 8(a)), exploration predominates in order to increase the density of nodes. During the initial iterations, if the 
algorithm is able to find a feasible trajectory, it is usually far from optimal. The exploration rate is small as the number of iterations 
is still insufficient to develop a proper tree. Many random samples are taken but not connected to the tree, due to the fact that no 
safe path to the existing branches is found and the sample tends to be rejected.  

• In the later stages (Figs. 8(b)–(c)) the domain has been widely explored and the algorithm focuses on the optimization. As the 
number of iterations increases and more nodes are added to the tree, the edges are able to reach further areas and grow through the 
narrow corridors between unsafe regions. Consequently, this increase in the number of nodes facilitates the addition of new ones, 
more areas are explored and the probability of taking a random sample close to an existing branch increases. As can be seen, most of 
the nodes in the vicinity of xstart tend to be connected with a straight path, which reduces the distance as much as possible. With a 
large number of iterations the optimization becomes more effective, and this trend extends progressively towards more distant 
nodes. 

As can be observed in Fig. 8, the SB-RRT* is optimizing all the paths that are connected to xstart , a highly inefficient process. The 
Informed SB-RRT* shown in Fig. 9 addresses this problem. During the first iterations, the Informed SB-RRT* is identical to the SB- 
RRT*, growing to find a first path. Once it is found, the search region is reduced to an ellipsoid, as can be appreciated in Fig. 9(a)–(c). 
Inside the new search space, the aforementioned exploration and optimization processes take place as in the SB-RRT*. 

Fig. 8. SB-RRT* expansion (green) and solution (red) after 500, 1000 and 2000 iterations considering ∊ = 0.1 and Nsc = 20. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. SB-RRT expansion (green) and solution (red) after 500, 1000 and 2000 iterations considering ∊ = 0.1 and Nsc = 20. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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A comparison of computational times with respect to the number of iterations is presented below. The average time at different 
iterations is included in Table 2.6 A first conclusion is that computational time grows as ∼ Iterationsn with n ∼ 1.7 − 1.8, hence doubling 
the iterations would require ∼ 3.4 times more time. This holds for both the optimal algorithms and for the SB-RRT after 1000 iter
ations. A second observation is that, for more than 1000 iterations, the SB-RRT is an order of magnitude less time than the SB-RRT* and 
the Informed RRT*. This additional time is the cost of optimization. Note that running the SB-RRT for more than 100 iterations is not 
worthwhile. A first solution is usually found in less than 100 iterations, and increasing the number of iterations will not produce any 
improvement. 

Safety margin and number of scenarios. As stated above, the influence of ∊ and Nsc is encapsulated in the product ⌊∊Nsc⌋. This variable 
measures the maximum number of intersections between any safe trajectory that starts in xstart and the set of scenarios in Xunsafe. Note 
that according to Eq. (14), each node in the tree verifies that Mk⩽⌊∊Nsc⌋. Let the cost of safety be the relative difference between the 
distance covered by a solution and the great circle distance from the origin to the destination. The orthodrome would be the shortest 
path with no safety constraints. However, under the influence of thunderstorms, and in exchange for safety, the aircraft must deviate 
from this path, which leads to an increase in cost. Consequently, this product can also be considered as a measure of how conservative 
the simulation is. By tuning the value of ⌊∊Nsc⌋, the methodology allows a certain risk to reduce costs. The particular case of ⌊∊Nsc⌋ = 0 
would correspond to the most conservative scenario. Such problem is equivalent to a trajectory planning problem in a deterministic 
environment built as the Boolean union of all the scenarios. 

Fig. 10 represents the average cost of safety for different values of ⌊∊Nsc⌋. Note that the SB-RRT is not included as it does not look for 
optimal solutions. Two trends can be observed. First, the convergence of both algorithms. As the number of iterations increase, the 
average cost of safety decreases. This effect is more abrupt in the Informed SB-RRT*, as convergence happens earlier and the curves for 
500 and 1000 iterations almost overlap. Second, the asymptotic behavior with ⌊∊Nsc⌋. For larger values of this parameter, more in
tersections with Xunsafe are allowed, which permits the aircraft to get closer to the cells, thereby reducing total cost. However, for 
⌊∊Nsc⌋ > 2, it can be appreciated that this cost is almost constant. The main reason is that the different realizations that describe a 
storm cell are close together, so that intersecting more scenarios merely affects cost. For this purpose, in simulations with Nsc = 20, a 
safety margin ∊ = 0.1 is chosen. Increasing it would not reduce the cost of safety significantly. 

Fig. 11 represents the cost of safety for 20 different simulations and for ⌊∊Nsc⌋ between 0 and 10 after 1000 iterations. Again, it can 
be observed that the Informed SB-RRT* converges earlier than the SB-RRT*, as the cost presents less deviation from the mean value. 

Table 2 
Computational time (in seconds) as a function of the maximum number of iterations for Nsc = 20.  

MaxIter 200 500 1000 2000 5000 

SB-RRT 1.5 3.7 8.3 22.0 105.6 
SB-RRT* 3.8 16.5 54.4 182.4 978.0 

Inf. SB-RRT* 5.2 24.3 82.2 287.4 1530.0  

Fig. 9. Informed SB-RRT* expansion (green) and solution (red) after 500, 1000 and 2000 iterations considering ∊ = 0.1 and Nsc = 20. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

6 Note that this is a proof of concept prototype in Python; the algorithm for operational use would be more efficient and computational times 
would be reduced. 
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4.3. Sensitivity of the results with respect to the number of iterations 

RRTs are meta-heuristic algorithms that explore a region based on a random sampling process. During each simulation the tree 
growth is different and, after the same number of iterations, solutions will differ between them. To show this variability, the different 
solutions provided by 20 runs of the SB-RRT with ∊ = 0.1 and Nsc = 20 are included in Fig. 12. As can be observed, this algorithm is not 
influenced by the number of iterations; each simulation provides a safe trajectory and there are no further changes once it is found. The 
main advantage of this algorithm is its ability to find different trajectories in a reduced time (from Table 2, 1.5 s) but with no gua
rantees of optimality. 

As stated earlier, the SB-RRT* and the Informed SB-RRT* are based on asymptotically optimal algorithms. Since it is impossible to 
run the code indefinitely, the sensitivity of the simulation with respect to the number of iterations is analyzed. To this end, the smallest 
value of MaxIter that presents a reduced variability in the results is sought. To better visualize this variability and the convergence of 
both algorithms, 20 routes obtained for MaxIter = 500, 1000 and 2000 with ∊ = 0.1 and Nsc = 20 are shown in Figs. 13 and 14. 

The analysis of the SB-RRT* results reveals that during the first series of iterations (Figs. 13(a)–(b)) there is a wide spectrum of safe 
solutions, but none of them are optimal. As the iterations increase (Figs. 13(c)), it is noticeable that the algorithm converges to 3 
possible solutions, thus indicating the existence of different local optima. This is indeed a positive fact, as different alternatives, all of 
them safe, can be proposed to both pilots and air traffic controllers in times compatible with practical settings (seconds/minutes). 

Contrariwise, the trajectories provided by the Informed SB-RRT* converged to the global optimum (in terms of flight distance) after 
a lower number of iterations (Figs. 14(a)–(c)). All the SB-RRT* simulations would eventually converge to this same solution but 
involving a larger number of iterations. This fact demonstrates the higher efficiency of the informed approach. 

After a first qualitative analysis, the aforementioned cost of safety is represented with respect to the number of iterations for both 
algorithms. To illustrate this, a percentile representation of the results is shown in Fig. 15, including different color bands for the 0 and 
100 percentiles and the median highlighted with a black line. The region of interest between 500 and 1000 iterations is zoomed on the 
right. It can be observed that as the maximum number of iterations is increased, the cost of safety decreases, and so does the variability 
in the solutions. These results allow the conclusion that it might not be necessary to run the algorithms for a large number of iterations. 

Fig. 11. Cost of safety for the SB-RRT* and the Informed SB-RRT* after 1000 iterations as a function of ⌊∊Nsc⌋.  

Fig. 10. Mean cost of safety as a function of the maximum number of intersections allowed ⌊∊Nsc⌋. SB-RRT* and Informed SB-RRT* are considered 
for 200, 500 and 1000 iterations. 
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On the one hand, the highest costs obtained by the SB-RRT* after 500 and 1000 iterations were 10.4% and 6.7%, respectively. In half of 
the simulations, the error is less than 4.7% and 3.1% after 500 and 1000 iterations, respectively. On the other hand, as was to be 
expected, the Informed SB-RRT* presented less variability for the same number of iterations. The highest costs were 2.4% and 2.0% 
after 500 and 1000 iterations, respectively. Additionally, the median is 1.7% after 500 iterations and 1.5% after 1000. 

Fig. 14. Sensitivity of the Informed SB-RRT* to the maximum number of iterations.  

Fig. 13. Sensitivity of the SB-RRT* to the maximum number of iterations.  

Fig. 12. Sensitivity of the SB-RRT to the maximum number of iterations.  
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To conclude, the mean cost of safety and its standard deviation are illustrated for all the SB-RRTs in Fig. 16. On one side, the SB-RRT 
presented constant and large values since there was no convergence and only provided random solutions. Conversely, the different 
convergence rates for the SB-RRT* and the Informed SB-RRT* can be appreciated. Fig. 16(b) shows that the informed algorithm almost 
eliminates the variability after 300 iterations, while the SB-RRT* required more than 1000. Although the latter is a slightly faster 
algorithm (see Table 2), it requires more iterations to reach the same convergence levels. By way of example, the 300 iterations of the 
Informed SB-RRT* take 10 s, whereas running the SB-RRT* for 1000 iterations takes around 1 min. 

5. Conclusions 

In this work, the scenario-based methodology for RRTs has been presented and applied to the RRT, the RRT* and the Informed 
RRT*. This results in the so-called Scenario-Based RRTs, three algorithms for aircraft flight planning in areas of uncertain convective 
weather. Each of them is able to find a safe trajectory that connects two states constrained by a safety margin ∊. Additionally, the SB- 
RRT* and the Informed SB-RRT* are used to minimize flight distance and increase efficiency. In anticipation of future NWP products, 
an ensemble of possible weather forecasts is simulated to characterize the environmental uncertainties. For this particular example, the 
trees grow with a 90% probability of being safe. After 1000 iterations, the SB-RRT* provides solutions that increase 1.9 − 6.7% with 
respect to the great circle distance, while the Informed SB-RRT* reduces this difference to 1.3 − 2.0%. The orthodrome, however, is 
unsafe with probability 1. Moreover, relying on parallel GPU programming, the algorithm is able to produce close-to-optimum so
lutions in seconds or minutes, being compatible with near real time operation. 

The main disadvantage of the SB-RRT* is that it is based on an asymptotically optimal algorithm. Theoretically, a RRT* simulation 
would require an infinite number of iterations to reach the optimum. This issue is overcome with the informed algorithm that biases 
the search around the solution and only takes random samples that support the optimization. It is demonstrated that this focused 
sampling increases the efficiency substantially. As an example, 300 iterations are enough for the Informed SB-RRT* to converge, which 
takes around 10 s, while the SB-RRT* requires more than 1000 iterations (or 1 min). In the future, the effect of the number of storm 
cells and their arrangement on the convergence rate will be explored, as the number of iterations to approach close-to-optimum so
lutions is affected. Additionally, the formulation will be extended to consider not only weather but restricted areas or congested 
sectors. 

Fig. 16. Mean cost of safety and standard deviation with respect to the number of iterations.  

Fig. 15. Cost of safety as a function of the number of iterations for the SB-RRT* and the Informed SB-RRT*.  
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