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Abstract In the last years, there is an increasing interest for enhanced method
for assessing and monitoring the level of the global horizontal irradiance (GHI)
in photovoltaic (PV) systems, fostered by the massive deployment of this en-
ergy. Thermopile or photodiode pyranometers provide point measurements,
which may not be adequate in cases when areal information is important (as
for PV network or large PV plants monitoring). The use of All Sky Imagers
paired convolutional neural networks, a powerful technique for estimation, has
been proposed as a plausible alternative. In this work, a convolutional neu-
ral network architecture is presented to estimate solar irradiance from sets of
ground-level Total Sky Images. This neural network is capable of combining
images from three cameras. Results show that this approach is more accurate
than using only images from a single camera. It has also been shown to im-
prove the performance of two other approaches: a Cloud Fraction model and
a Feature Extraction model.
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1 Introduction

The last decade has seen considerable effort to make the solar energy a vi-
able alternative to conventional energy generation systems. Many countries
have already reached a notable solar share in their energy mixes and further
growth is expected in the near future [1], particularly for photovoltaic (PV)
solar technology. For that reason, there is an increasing interest in enhanced
methods for assessing and monitoring global horizontal irradiance (GHI) in
PV systems. Remarkably, GHI monitoring is important to manage PV dis-
tributed networks, micro grids or smart homes [2, 3, 4] and, in general, for PV
plants performance assessment [5].

GHI measurements are typically provided by thermopile or photodiode
pyranometers, having 95% confidence intervals from +3% to +10% for GHI
depending on the instruments quality and the sun position [6]. However, pyra-
nometers provide point measurements, which may not be adequate in cases
when areal information is important (as for PV network or large PV plants
monitoring). In this case, the use of a pyranometer network becomes an ex-
pensive choice. Aside from the use of pyranometers, a plausible way for areal
solar irradiance monitoring is the use of satellite imagery [7, 8]. Nevertheless,
spatial and temporal resolution of satellite irradiance estimates are relatively
coarse. This make this approach not suitable for some applications and/or geo-
graphical areas. For instance, for relatively small areas or areas with a complex
topography or/and showing a high spatial variability of the solar resources re-
lated to the cloud characteristics. The use of different parameters measured
at the PV system (such as active power flow, cell temperature of direct cur-
rent and voltage) have been used for GHI estimation [9, 10], but reliability is
relatively low.

In the last years, the use of All Sky Imagers (ASI) [11] to estimate solar
irradiance has been proposed. Traditional approaches are varied, consisting
on extracting features and operating over them. The use the ASIs have some
advantages compared to other approaches, particularly regarding the spatial
representativeness of the estimates. For instance, [12] showed that, for areas
of a few squared kilometers, the ASIs outperform a single pyranometer in
representing the spatial irradiance distribution. The work by [13] proposed
and evaluated a method for GHI estimation from ASI based on polynomials
functions. Authors reported nRMSE values ranging from 6% during clear-
sky to 13% for partly-cloudy conditions (9% under all sky conditions) and
for 1 min data. [12] evaluated high temporal resolution (15 seconds) GHI
estimates derived from an ASI using a network of 99 pyranometers. Results
were evaluated on the light of the cloud type. Results proved ASI estimated
accuracy to depend on the location of the pyranometers and the cloud type.
The highest error were found for Cumulus (RMSE 229 W/m2), Altocumulus
(180 W/m2) and Stratocumulus clouds (150 W/m2), while for clear skies
the lowest errors were wound (RMSE of 60 W/m2). [14] estimated the GHI
using information from a camera system with a charge-coupled device (CCD)
sensor. Authors reported nRMSE values for GHI estimates to be in the range
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69% for hourly averaged data. [15] proposed a machine learning procedure
to estimate the GHI from ASIs. The method uses selected features of the
images to train an artificial neural network (ANN) and was tested against
pyranometer measurements. Authors reported nRMSE values ranging from
13% to 34%, depending of sky type, for one-minute time resolution estimates.

Machine learning algorithms used in this field have gained popularity over
the years. For example, in [16], meteorological variables and geographical in-
formation is used with historical data to create an ANN estimator for monthly
average irradiance over Turkey. Another approach is presented by [17] where
features extracted from ASIs are combined with a neural network for DNI
hourly estimations. A relevant use of ANNs is presented by [18] where a prin-
cipal component analysis (PCA) is performed on the ASI to extract featues.
Convolutional Neural Networks (CNNs) [19] have seen widespread use in com-
puter vision problems since their introduction. Nowadays, many fields of re-
search are being tackled by means of CNNs, but the estimation problem has
not been sufficiently explored in this regard. There are some related applica-
tions of CNNs to irradiance estimation, but most do not explore this problem
directly. For example, the work of [20] proposes combining video and weather
information for forecasting, via intermediate irradiance estimations. Finally,
the work of [21] proposes independently using sequences of images to estimate
DNI, without further information. Irradiance monitoring works rarely process
the raw image. Instead, they rely on either features, cloud estimates, meteoro-
logical information, or other human-extracted information; however, when the
image is independently treated, some information is lost as 2D representations
lack nuance about the sky state, such as cloud volume and altitude.

In this paper the problem of irradiance estimation from raw ASI images
using CNNs is addressed, in order to study whether more accurate irradiance
estimations can be obtained. The methods proposed in this work aim to re-
move the use of expert knowledge via automatic image feature extraction using
CNNs, letting the learning algorithm discover relevant information on its own.
Different approaches based on CNNs are proposed and studied. First, a CNN
architecture (the single-view CNN model) is designed to estimate irradiance
using a set of images from a single camera. This model is based on a standard
CNN but including a dilated convolution after the input channels. This aims
to take advantage of spatial information distributed over wide areas of the
image without increasing the number of weights. This model receives as in-
puts the RGB channels from the images and an additional channel containing
contextual information about the sun distance. The new additional channel
represents the distance from each pixel of the image to the sun. Wherever the
sun hits the sensor, the image is saturated in these points, producing severe
imperfections [22]. Knowing the distance to the sun center pixel may help the
network to take into account this phenomenon as supported by the results
from [23].

Second, CNN models are proposed to combine several simultaneous images
of the sky from different cameras (the multi-view CNN models), instead of
images from a single camera. Although there have been attempts to merge
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information of multiple images through CNN’s (e.g. [24]), no attempt has
been made for irradiance estimation or forecasting as far as we know. The
objective is to study whether the joint information from different cameras can
improve the estimation of irradiance. These models use as inputs the RGB
channels from the images and the additional distance sun channel, similarly to
the single-view model. In this work, two approaches are studied: the Feature
Average model (the most direct approach to combine simultaneous images
from different cameras), where the features extracted by the CNN from each
of the three cameras are simply averaged; and a more complex proposal, the
Multi-view Pooling model, where the features obtained from the cameras by
means of CNN filters are further combined and processed by additional CNN
layers.

Different baseline methods have been used for comparison purposes. First,
the Cloud Fraction (CF) algorithm [25], one of the most used approaches to
estimate irradiance from images. Second, the Random Forest (RF) algorithm
[26] using as inputs a set of features extracted from the images, instead of
the raw images. Specifically, the features described in [27] have been used in
this study. Finally, and with the aim to show the advantages of the CNN
architectures proposed in this work, a standard CNN architecture [19] has
been also employed as baseline.

All the measurements and ASI images used in this study were collected
at the Abengoa Solar Platform of Solicar (6.25 W, 37.44 N). Each example
in the set contains three spatially separated images taken at the same time
with different perspectives of the same sky. In order to construct the machine
learning models, each picture is associated with an irradiance measurement,
obtained with a pyranometer. A total of 1186 instances are available to train,
validate and test the proposed models.

In this article, we present relevant contributions to both the irradiance
estimation problem, as well as a novel approach to CNN architecture. The
first contribution is the use of CNNs to estimate irradiance from ASIs and
contextual sky information. The second contribution is a CNN approach to
combine different cameras simultaneously to improve solar irradiance estima-
tion, achieving low errors.

This document describes the method used to reach this objective in Section
2. The data that is analysed in this study is described in Section 3. The
experimental methodology is defined in Section 4 and results are reported and
discussed in Section 5. Finally, Section 6 summarizes the main conclusions of
this work.

2 Single and Multi-view models using CNNs

In this section, the CNN models used to estimate the irradiance from a set
of ASIs are described. A CNN can be interpreted as a sequence of layers
that process an image. In the most common architectures, each layer applies
one of three basic operations (convolution, activation, and pooling). Typically,
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Fig. 1 Representation of the single-view CNN model.

several blocks of convolution-activation-pooling (called blocks from now on)
are applied, and after them the output is flattened and processed by a standard
multi-layer perceptron or MLP (known as dense layers in the context of CNNs).

Modifications over a standard LeNet [19] CNN architecture are proposed
to improve estimations using the information from a single camera ASI (single-
view CNN model). Finally, CNN models are proposed to use information from
different cameras (multi-view CNN models). Both are described in the follow-
ing sections.

2.1 Single-view CNN model

The single-view model (Fig. 1) is based on a standard LeNet architecture (see
[19]) with some modifications. The model receives ASIs from a single camera,
using the information of RGB channels, as usual. However, in this work, ad-
ditional contextual information is used as an input to the CNN in order to
obtain better irradiance estimates. A new channel is added to represent the
sun distance, where each pixel contains the distance from the pixel location to
the sun radius. It is known that the area around the sun is more saturated [22],
and therefore we considered that the network should be aware of distances be-
tween each pixel in the image and the pixel sun. The sun centre is calculated
with latitude, longitude and solar hour, features that have performed well in
past works [16].

A visual representation of the additional information channels along with
the original image is shown in Figure 2. In the original image (left image) it
can be seen that the pixels near the sun are heavily distorted compared to
the rest of the image. A solution would have been covering or filtering the
sun through physical means or via image editing. However this would result
in the loss of critical information about irradiance. To solve this problem, a
fourth channel is created. It contains the Euclidean distance (see Eq. 1) from
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Fig. 2 Example of corrected original image and the additional channel. Left image: Original
image of a partially overcast sky, composed of RGB channels. Right image: sun distance
channel: pixels closer to the sun are represented as brighter pixels.

any pixel to the sun. This solution aims to include as input the information of
which pixels are near the sun. Given the date, latitude, longitude, and camera
calibration, the center and radius of the sun can be automatically computed
[28].

Eq. 1 displays how the Euclidean distance from each pixel to the sun is
computed. (s, ysc) are the coordinates of the sun centre and (x,, y,) are the
coordinates of a pixel. This is computed over every pixel of the image, and
finally the pixels inside the sun circle are adjusted to 0.

z = \/(Ip - Z150)2 + (yp - ysc)2 (1)

The single-view CNN model also uses a dilated convolution (see Fig. 1).
Instead of directly connecting input channels with the first convolutional-
activation-pooling block, the inputs are previously connected to a dilated con-
volution [29]. Cloud images have rich spatial information that is distributed
over wide areas, much bigger areas than for standard computer vision scenar-
ios. The dilated convolution addresses this problem by using a larger window
without increasing the number of weights in the network.

Also, the commonly used max pooling operator has been replaced by the
average pooling operation on every pooling layer, in order to use the informa-
tion contained in every pixel. Applying max pooling would lose the irradiance
information, because all values in the max pooling sliding window which are
below the maximum would be lost.
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2.2 Multi-view CNN models

In this work, multi-view models are proposed with the aim of studying whether
the use of information from different cameras can improve the estimation of ir-
radiance. In particular, it will be studied whether the use of three concurrent
views of the same sky situation is able to improve estimations. The combi-
nation of several images from different sources is not a commonly problem
addressed in the literature. It is well known that CNNs produce a series of
features from the images before being processed by the dense layers. In this
work, two approaches will be compared: Feature Average model (CNN-FA)
and Multi-view Pooling model (CNN-MvP). Both of them perform the afore-
mentioned generation of features, but differ in the way they are combined,
and the processing after the combination. The first one uses a straightforward
way to combine simultaneous images, while the second one is a more complex
proposal that allows the CNNs to extract more information from images from
the different cameras.

For both models proposed there is a step within the network where infor-
mation is combined. Let I;’E)C) be a value with position (a,b) from a channel
(¢) of the camera i. In the case of several cameras, a set of features would be
obtained for each of them, from camera 1: I;:lgc) to camera t: IZiéC). In this
work, ¢ = 3, but any number could be used in principle.

In the case of the Feature Average model (CNN-FA) (see Figure 3),
a sequence of convolution-activation-pooling layers is applied to every camera.
All ¢ such sequences have the same CNN architecture (i.e. the same layers).
For every image 7 the network C NN is the same, sharing the same weights
for each image. Those layers generate the I;’}Ef) mentioned before. Given the
C N N’s for each camera are identical, every feature found has a counterpart in
the feature set from other images. This allows to average the vector of outputs
feature-wise, merging the information from the different cameras. The CNN-
FA model combines them by averaging the corresponding feature maps, as
shown in Eq. 2. In short, for every channel ¢ and pixel (a,b), the average

for all ¢t cameras is computed. Once the I;(? have been computed, they are
flattened and fed to the final dense layers.

1 ;(72) = average([ ;7,576)) (2)

The averaging of CNN features obtained from images of different cameras
may be too simple an approach to detect further synergies between images.
The Multi-view Pooling model (CNN-MvP) (see Figure 4) also applies
the same CNN architecture to obtain the features from each camera (in this
case, these networks will be named C'N Ny). But it has two differences with the
CNN-FA model. First, max-pooling is used to combine the features (instead
of the average), as displayed in Eq. 3. Next, a second convolution-activation-
pooling set of layers, C N N5, is applied to the results. In the case of CNN-
MvP, they will be explicitly named first set of convolutional blocks (C'NNy)
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Fig. 4 Representation of the CNN-MvP model

and second set of convolutional blocks (CNN3). After C N No, results are also
flattened and fed to the dense layers.

1) = max(17) (3)

3 Data description

All the measurements and ASI images used in this study were collected at the
Abengoa Solar Platform of Solicar (6.25 W, 37.44 N) (Fig. 6). The platform
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is located in the southwest of the Iberian Peninsula (near Seville) with an
average altitude of 40 meters above sea level and includes several commercial
plants (Abengoa Solar operation of 183 MW), pilot plants and research labo-
ratories. Dataset include ASI images collected by three cameras and GHI mea-
surements registered at four radiometric stations, equipped with Kipp&Zonen
CMP-6 Pyranometer. Raw data were quality-check analyzed according to the
procedures defined by (20), related to physically possible and extremely rare
limits. Raw data with solar zenith angle > 75 were discarded. The ASI system
is composed by a set of three commercial low-cost video surveillance cameras
(model Axis M3007-PV). The distances between ASI cameras are 1, 1.84, and
2.4 km. The cameras provide raw (2592 x 1944) pixels JPEG RGB image files.
However, the relevant information is contained in circle of approximate 972
pixels of radio.

The images have been transformed to fit a square image of 500x500, using
exclusively the relevant sky information. Every pixel is normalized between
0 and 1. Regard to the irradiance measurements, the average of the values
registered at four radiometric stations is considered, because it is more accurate
than any individual irradiance measurement.

In this work, instead of directly estimating irradiance, the K; index is
used. This measure is the ratio between irradiance and clear sky irradiance,
an analytical calculation based on the date, latitude and longitude. The K,
index removes the solar cycle from the irradiance measurement because it
measures the amount of irradiance present relative to the maximum possible
for that particular time of the day (and location).

Dataset were registered during a set of days corresponding to the period
June to October 2015 and images were taken every 1 minute. There is a set
of 1186 examples to perform the experimentation. Each image in the dataset
has been labeled with its sky type. Table 1 shows the number of images for
each sky type and the average of GHI and the GHI-K; for each group. There
are two special sky types: Multi-cloud and Aerosols. The first happens when
different cloud types overlap, resulting in average measurements of irradiance
with very high variability (which results in a difficult sky type to estimate).
To the best of our knowledge, it is the first time that these two sky types are
assessed in the context of ASIs-based solar irradiance estimation.

The state of the sky, and clouds in particular, are the greatest contributors
to the intermitency of solar irradiance. Sky type has been used to stratify the
training, validation, and test partitions, as it ensures a fair representation of
the variety of different sky conditions.

4 Methodology

To ensure the quality of the results and reproducibility of the models, the ex-
perimental methodology used in this work is presented in the following para-
graphs. Also, the two baseline methods used for comparison are described.



10

Javier Huertas-Tato et al.

I
il

Fig. 5 Spatial location of cameras and sensors.

Table 1 Dataset summary for each sky type: number of images and average GHI. Standard

deviation shown in brackets.

Cloud Type Number of images | Average GHI Average GHI-K,
Clear sky 14 | 737.01 (119.07)  0.938 (0.019)
Cirrus 100 783.82 (91.93) 0.933 (0.094)
Cirrostratus 100 | 545.54 (113.12)  0.689 (0.134)
Cirrocumulus 30 | 578.22 (151.80)  0.686 (0.196)
Altocumulus 122 | 600.15 (184.42)  0.686 (0.2)
Altostratus 41 | 248.94 (44.69)  0.295 (0.043)
Stratus 163 | 180.86 (95.44)  0.224 (0.115)
Stratocumulus 220 | 615.92 (213.45)  0.738 (0.23)
Cumulus 100 | 757.53 (112.9) 0.834 (0.128)
Multicloud 263 | 516.43 (235.94)  0.577 (0.258)
Aerosol 33 | 592.46 (105.1)  0.633 (0.106)

4.1 Baseline methods

Two baseline methods have been compared to the convolutional approaches:
a Cloud Fraction model and a Random Forest Feature model.

— Cloud Fraction: A common approach to irradiance estimation is Cloud
Fraction (CF). This algorithm computes irradiance as the product of total
clear-sky irradiance and (1-sky coverage). The coverage is an estimation of
the proportion of the sky which is covered by clouds. Coverage has been
estimated by means of a HYTA-inspired algorithm [30]. This algorithm
first calculates the standard deviation of a normalized index of the image,
to decide whether it is unimodal (either clear sky or overcast) or mul-
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timodal (partially cloudy skies). If the image is detected as unimodal, a
simple thresholding of the pixels is performed. On the second case, the
thresholding is dynamic, depending on the mode of each pixel.

For multiple images, this estimation is averaged. This approach is com-
monplace in irradiance estimation from ASI and despite its simplicity, it
offers competitive results [25].

— Random Forest using Heinle features: Another approach used for
comparison consists on extracting features from the images and use them
as inputs to a machine learning method whose output is the estimate of
irradiance. Here, the features proposed in [27] have been used. Three types
of features are used, spectral, textural and coverage. Spectral features cal-
culate direct statistical measurements from RGB channels and contain: av-
erage of the red channel; the average, standard deviation and skewness of
the blue channel; and the difference between the averages of red, green and
blue channels. Textural features are calculated over the GLCM (Gray-Level
Co-Occurrence Matrix) computed over the blue channel. The following fea-
tures were extracted: homogeneity, energy, entropy and contrast. The last
feature is the coverage, calculated using the cloudy pixels detected by a
HYTA-based algorithm and calculating the percentage of cloudy pixels in
the image.

These features are frequently used for cloud classification, and given that
clouds are the main intermitence source for irradiance, it is expected that
the irradiance can be estimated from this set of features.

When images from a single camera are used, 12 features are used as inputs
to the RF regression method [26]. For experiments using images from mul-
tiple cameras (3 in our study), the features extracted from each camera
are combined into a vector of features (3x12=36) that will be the inputs
to the machine learning algorithm.

The RF optimal hyper-parameters have been found empirically, fixing the
number of trees to 500 and searching the number of features per tree be-
tween 3 and 11. In this case, the same three stratified train, validation
and test partitions as for CNN are used and the validation set is used for
selected the hyper-parameters of RF.

4.2 Validation

The complete dataset is split into three stratified partitions: training (70%),
validation (15%), and test (15%). The partitions are stratified by cloud type
as pointed out in Section 3, with the aim to ensure the fair representation of
sky conditions. The training set is used to fit the neural network, validation
for optimizing hyper-parameters, and the test set for the final evaluation of
the models.
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4.3 Metrics

Two different error metrics are used to measure performance: MAE and RMSE.
Both metrics can be normalized (relative errors) by the average of the target
variable as in Eq.4.

E (Yp'red7 Yrobs)
mean(Yops)

TE(}/])Tedy Yobs) =100 x (4)
where E is MAE or RMSE, and Yj,ed, Yobs are the sets of predictions and
target values, respectively.

In addition to the global metrics, errors have also been broken down by
sky type and by the different ranges of irradiance magnitudes (low, medium,
high). This is meant to analyse the weaknesses and strengths of the developed

models with regard to the different sky types and irradiance levels.

4.4 CNN hyper-parameter tuning

Every network needs to be trained by an optimization algorithm, which has
to be carefully selected. In this case the Adam optimizer [31] has been found
to be the most suitable algorithm for this problem and dataset.

CNNs have a large number of hyper-parameters. In this article, they have
been set via empirical trials. The following hyper-parameters and values have
been tested: number of convolutional-activation-pooling blocks {3, 4, 5, 6},
number of filters of the initial dilation {32, 64, 128, 256}, number of filters of
the first block {32, 64, 128, 256} (filters always double after the first block), the
type of pooling inside a block {Average or Max}, size of the pooling window
{2x2 or 3x3}, size of the dilation window {3x3, 5x5, 7x7}, and dilation factor
{2, 3, 4}. The search for the optimal values has been incremental, fine-tuning
manually the hyper-parameters after each execution, instead of exhaustive, in
order to reduce computation time.

After this study the following hyper-parameter values have been selected:
the initial dilated convolution has a size of 15x15 dilated by 4, with 128 filters.
The single-view model has 5 blocks, with a starting number of 32 filters, dou-
bling the number of filters every block. The convolution filter size is 3x3 (with
the standard stride of 1x1). The max-pooling window size is 3x3, with a stride
of 2x2. The number of neurons in the dense layer is 512 and the dropout layer
has a probability of 75% to drop a neuron (which is a fixed hyper-parameter
as a prevention tool against overfitting). The CNN-FA model has the same
hyper-parameters as the single-camera model, without further tuning. For the
CNN-MvP model, it should be reminded that it has two sets of convolutional
blocks. The first one (C'N Np) processes the three images in parallel, while the
second one (C'NNy) processes the result of merging the outputs of the first
set of blocks by means of max-pooling. CNN; has 3 blocks, with a starting
number of 32 filters, doubling each block. C NNy also has 3 blocks, with a
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Table 2 Summary of test metrics (MAE, RMSE as W/m2 and rMAE and rRMSE as
percentage) for the single-view camera models (CNNs in the last two rows) and baseline
methods (CF, RF, and LeNet, displayed in the first three rows).

| MAE RMSE rMAE rRMSE

CF 110.71 153.47 20.03% 27.76%
RF 83.05 116.22 15.02% 21.02%
LeNet CNN 92.46 125.42 16.73% 22.69%
CNN 78.51 106.29 14.20% 19.23%

CNN + Sun distance | 75.92 101.01 13.73% 18.27%

starting number of 128 filters, doubling every block. The dense and dropout
layers are identical for both models (single-view and multi-view).

Early stopping of training has been applied as follows: networks are trained
for a maximum number of 1500 epochs, but for each iteration, training, val-
idation, and test MAE are recorded. Afterwards, the iteration number with
minimum validation MAE is selected. The learning rate of the Adam algorithm
was set to 1-107° while the default momentum value is used.

4.4.1 Technical details

The following experimental results have been obtained on the R environment
[32] with the MXNET library [33]. An Nvidia GTX 1080 GPU with 10GB of
internal memory has been used.

5 Results and discussion
5.1 Single-view results

Results from the experimentation on a single camera view are presented on
Table 2 where all relevant metrics, computed on the test set, are shown. An
additional experiment has been conducted, comparing with an standard LeNet
architecture [19]. This CNN has no dilation operation. The max pooling op-
erations use a window size and stride of 2x2. Only the RGB channels have
been used as inputs. Table 2 contains also the result obtained with baseline
methods (CF and Random Forest Feature model).

In Table 2 it is observed that all machine learning methods outperform
CF. The baseline method based on feature extraction and RF (second row in
Table 2) presents better results than CF and the LeNet CNN architecture, but
worse than the CNN architecture proposed in Section 2.1. It is also observed
that, for all metrics, the inclusion of the sun distance as an additional input
channel to the CNN decreases errors (fourth versus fifth row in Table 2). The
use of this information reduces the RMSE by 5.28 W/m2, and the MAE by
2.59 W/m2. If CNN + Sun distance is compared to the standard LeNet, the
differences are larger, with a difference of 16.54 W/m2 for MAE and 14.41 for
RMSE W/m2. In summary, the CNN architecture proposed and the use of
RGB channels and sun distance as inputs to the neural network, achieve the
best performance for all metrics.
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Table 3 rMAE and rRMSE metrics for the single-view camera models by sky type for each
method. The baselines (CF, RF, and LeNet, displayed as the first three columns of each
metric) and novel methods (CNN and CNN+Sun distance as the fourth and fifth column of
each metric) are compared. These values are expressed in %. The best results for each sky
type and experiment are marked in bold.

rMAE CF RF LeNet CNN CNN + Sun
Clear-Sky 3.28% 8.57% 5.63% 3.20% 4.05%
Cirrus 8.77% 7.20% 7.18% 6.40% 8.53%
Cirrostratus 9.66% 13.28% 14.33%  10.26% 13.19%

Cirrocumulus 13.40% 6.85% 8.37% 8.26% 11.94%
Altocumulus 26.87% 16.75% 24.08%  19.76% 13.84%

Altostratus 28.99% 8.42% 15.59%  14.80% 15.10%
Stratus 36.10% 34.78% 33.83% 27.87% 27.20%
Stratocumulus || 31.38% 19.55% 23.02%  21.54% 18.10%
Cumulus 9.59% 10.18% 10.16% 7.58% 9.70%
Multicloud 24.86% 20.04% 20.64%  17.72% 16.16%
Aerosol 34.55% 10.52% 15.61%  9.00% 8.29%
rRMSE CF RF LeNet CNN CNN + Sun
Clear-Sky 3.62%  12.79%  6.84%  4.35%  4.15%
Cirrus 12.62% 9.05% 9.84% 9.54% 11.86%
Cirrostratus 12.32% 16.51% 16.74%  13.01% 16.01%

Cirrocumulus 15.48% 9.41% 10.11%  10.18% 17.30%
Altocumulus 33.85% 20.91% 29.95%  24.01% 18.59%

Altostratus 29.69% 10.21%  20.58%  16.88% 16.66%
Stratus 45.96% 44.37% 44.03% 33.91% 35.11%
Stratocumulus || 41.11% 26.22% 30.03%  26.64% 21.90%
Cumulus 14.35% 12.28% 13.44%  9.52% 12.18%
Multicloud 31.12% 29.06% 26.93%  23.16% 21.64%
Aerosol 35.99% 15.53% 17.69% 12.13% 12.38

Results have also been broken down by sky type and they can be seen
in Table 3. In this case, CF and RF have the best performance on cirrostra-
tus, cirrocumulus and altostratus on both metrics, and cirrus and clear-sky
for RMSE. The LeNet architecture always underperforms the other models.
The CNNs (RGB and RGB + Sun distance) obtain the best results for the
remaining sky types, but no systematic conclusions can be extracted in this
case. Another highlight is the performance of CNN methods on the hardest to
detect sky types (for example stratocumulus or stratus) improving errors by
2%-5%.

The inclusion of sun distance smooths and decreases most errors for many
sky types compared to not using it, although the improvements are not sys-
tematically better for all sky types. For instance, there are some cases where
errors increase in comparison, for example on cirrostratus where it is worse
than CF, or cirrocumulus or altostratus where it is worse than RF. However,
for the rest of sky types, errors stay the same or decrease enough for the sun
distance to outperform the rest of the models.

An alternative breakdown of results by irradiance magnitude is shown on
Table 4. This comparison helps to understand why results are better on the
overall metrics but not systematically better on all cloud types. It is observed
that while on medium irradiance, the CNN + Sun distance performs worse
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Table 4 rMAE and rRMSE metrics (in %) for single-view camera models by irradiance
range (low:[0,441), medium:[441, 699) and high:[699, 1079)). Best results are marked in bold.

rMAE rRMSE

Low Medium  High Low Medium High
CF 50.69% 20.48% 9.81% 66.72% 26.18% 16.16%
RF 40.47% 11.41%  9.34% 56.00% 15.06%  13.26%
LeNet 46.06% 14.20% 9.02% 61.29% 18.26% 12.64%
CNN 32.92% 12.67% 9.14% 44.91% 16.90% 12.46%
CNN + Sun distance 28.27% 13.70% 8.83% 39.82% 17.48% 11.66%

than RF, the CNN outperforms the baselines at low and high irradiance. The
case of the best performance for low irradiance is important, because the re-
maining methods performance is poor, which indicates that this case is diffi-
cult. For low irradiance, the improvement of CNN+Sun distance over the best
of the other methods (RF) is 12% for rMAE and 16% for rRMSE. For high
and medium irradiance, differences in the error are smaller: the CNN + Sun
distance is best for high irradiance while RF is best for medium, but in both
cases differences are smaller than about 2%. This matches the observations on
Table 3 where the greatest improvements are seen on high error sky types.

As a conclusion of this analysis, the modifications introduced in the CNN
help predict high coverage (hardest type to detect) sky types better than the
baseline models. There is a trade-off between medium-high irradiance error and
low irradiance error with the CNN + Sun distance method, but the differences
on medium irradiances are too low to matter in comparison with the increased
capability to correctly predict low irradiance skies.

Convolutional networks are significantly better than Random Forests and
Cloud Fraction. While LeNet remains competitive to the baselines, it is worse
than our adapted CNN proposal, especially when adding the sun distance fea-
ture. The sun distance positively influences results, reducing errors on some
cloud types. A feasible explanation for this phenomenon is that the sun dis-
tance feature includes otherwise unknown information to the image, revealing
new relations within the ASI. It is possible that some defects in the camera
are corrected by this method such as image sunburns. Also it is possible that
sun distance complements direct irradiance estimations inherent to calculating
GHI. There may exist other artificial features for solar irradiance that we did
not, consider throughout this study, however it is important to include only
external information to the image, pieces of information that are not contained
within the image.

5.2 Multi-view results

Results from the experimentation on a multiple camera views are presented
on Table 5. Here the CNN approaches (CNN-FA and CNN-MvP) described
in Section 2.2 are compared to the baseline methods. In this case, the CNNs
use as inputs RGB channels and sun distance channel, because it is the best
approach when a single-view camera is used (see Section 5.1). As in the case
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Table 5 Summary of test metrics (MAE, RMSE, rMAE and rRMSE) for the multi-view
models (CNN-FA and CNN-MvP proposals in the last two rows) and baseline methods (CF
and RF displayed in the first two rows). Previous results for the single-view CNN (with Sun
distance) is shown in the third row.

MAE RMSE rMAE rRMSE
CF 110.71  153.47  20.03% 27.76%
RF 77.53 106.71  14.02% 19.30%
CNN (single-view) | 75.92 101.01  13.73% 18.27%
CNN-FA 84.79 114.47  15.34% 20.71%
CNN-MvP 70.52  98.13 12.76% 17.75%

of a single camera, CF performs worse than other techniques for all metrics
(MAE and RMSE). RF provides better results than the CNN-FA, but the
best performance for all metrics is observed for the CNN-MvP. This approach
outperforms the CNN-FA model, with an improvement of 14.27 W/m2 in MAE
and 16.34 W/m2 in RMSE. Therefore, information from multiple cameras can
be useful when an appropriate combination is performed. With respect to RF
(second best approach), the CNN-MvP model improves the errors by 7.01
W/m2 for MAE and 8.58 W/m2 for RMSE. It can also be seen that CNN-
MvP improves over the previous single-view CNN in all metrics: it reduces
MAE by 5.4 W/m2 (a relative 7.11% improvement) and RMSE by 2.88W/m2
(a relative 2.85% improvement).

As with the single-view results, the metrics are broken down by sky type in
Table 6. Here, the CF and CNN-FA models are systematically outperformed
by the RF and CNN-MvP models, as the CF and CNN-FA never have the best
performance on any cloud type. The CF is still the best algorithm to estimate
irradiance in clear skies.

The CNN-MvP model is the best architecture for most sky types on tMAE,
and more than half on rRMSE, decreasing errors on some of the most critical
types. For example, on stratus (from 11.90% to 5.92% on rRMSE) or cirrostra-
tus (from 12.32% to 8.97%). The CNN-MvP model, in addition to being the
best model on the global metrics, it manages to outperform the other models
on most sky types.

As with the single camera models, a comparison for different ranges of
irradiance magnitudes is presented in Table 7. Here the patterns observed on
the single camera comparison are shown again, because the improvements on
low irradiance measures are large (10% on rMAE and 11% on rRMSE) with
respect to the best baseline method (RF). The error of the CNN-MvP model
is worse on medium and high irradiance but the differences with RF are very
low (less than about 1%).

When comparing results broken down by sky-type for the single-view and
the multi-view methods (Tables 3 and 6), some major improvements of the
multi-view approach are observed. Some cloud types have a large reduction
in error: altostratus (10%) or cirrostratus (5%). In most cases studied, when
multiple cameras are included in the estimation, the results for all sky types
improve or remain the same, so including multiple cameras is considered mostly
beneficial. If the comparison is done by irradiance magnitudes (Tables 4 and
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Table 6 rMAE and rRMSE metrics for the multi-view camera models by sky type for
each method. The baselines (CF and RF displayed as the first and second columns of each
metric) and novel methods (CNN-FA and CNN-MvP as the third and fourth column of each
metric) are compared. These values are expressed in %. The best results for each sky type
and experiment are marked in bold.

rMAE CF RF CNN-FA  CNN-MvP
Clear-Sky 3.28% 5.75% 4.96% 4.96%
Cirrus 8.77% 6.20% 7.58% 9.16%
Cirrostratus 9.66% 11.19% 12.27% 6.87%

Cirrocumulus 13.40% 9.32% 10.54% 11.78%
Altocumulus 26.87%  14.26% 19.90% 12.21%

Altostratus 28.99%  8.96% 19.90% 5.33%
Stratus 36.10%  30.70% 29.52% 22.54%
Stratocumulus || 31.38%  19.38%  19.96% 19.98%
Cumulus 9.59% 10.26% 8.48% 7.40%
Multicloud 24.86% 18.75% 20.68% 15.04%
Aerosol 34.55%  10.25% 8.60% 7.44%
rRMSE CF RF CNN-FA  CNN-MvP
Clear-Sky 3.62% 7.64% 5.24% 5.45%
Cirrus 12.62% 8.12% 11.06% 12.12%
Cirrostratus 12.32%  14.33% 14.83% 8.97%

Cirrocumulus 15.48% 10.89%  13.15% 15.46%
Altocumulus 33.85% 17.53% 24.22% 17.72%

Altostratus 29.69%  11.90% 21.80% 5.92%
Stratus 45.96%  38.81% 41.00% 32.86%
Stratocumulus || 41.11% 24.96%  26.85% 25.58%
Cumulus 14.35%  12.52% 9.65% 8.16%
Multicloud 31.12%  26.05% 25.80% 19.43%
Aerosol 35.99%  16.36% 14.34% 10.80%

Table 7 rMAE and rRMSE metrics (in %) for the multi-view camera models and baseline
methods by irradiance range (low:[0,441), medium:[441,699) and high:[699,1079)). Best
results marked in bold.

rMAE rRMSE

Low Medium High Low Medium High
CF 50.69% 20.48% 9.81% 66.72% 26.18% 16.16%
RF 37.32% 10.62% 8.76% | 51.67% 13.90% 11.78%
CNN-FA 37.6% 13.53% 9.30% 52.00% 17.67% 12.24%
CNN-MvP 27.44%  11.21% 8.85% 39.82%  15.35% 11.96%

7) there are minor improvements on low and medium irradiance while high
irradiance remains similar.

Multi-view results improve upon single camera estimations by adding ad-
ditional information from different locations. By using spatially separated per-
spectives in the inference of irradiance, the model is able to discern the best
estimation out of the provided inputs. We consider a possibility that this pro-
cess may approximate a 3D representation of the sky state, not available to
the single-view models. Knowing altitude and volume of clouds is very rel-
evant to estimation as overcast skies blocks sun irradiance, and the model
being able to better infer low irradiance skies points to this happening as very
low, dense cloud types greatly interfere with irradiance. However, whether this
approximation is happening is not completely certain, and would make an in-
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teresting future research line. To improve the quality of individual and pooled
representations the intermediate CNN models (CNN; and CN Ny from the
CNN-MvP model) can be enhanced with residual connections, layer normal-
ization or even other state-of-the-art pre-trained networks. Another way to
improve the pooled representation would be to use more cameras per sample,
or in other words: using more images of the same sky state, which could create
more complete representation of the sky type, improving results in turn.

6 Conclusions

In this work, different approaches using CNNs have been proposed and studied
to estimate irradiance from a set of AST images taken at Seville station. Images
from three cameras (three different points of view of the same sky situation) are
available. The CNN models have been compared with two baseline methods:
Cloud Fraction and Random Forest algorithm using as inputs a set of features
extracted from the images.

The research started by proposing a single-view CNN model, that use raw
images from a single camera. The CNN receives as input the RGB channels
of the images, as usual, and an extra input channel containing the distance of
every pixel to the sun. The inclusion of this new channel has shown positive
results and it has been tested that the removal of sun distance negatively im-
pacts metrics. Moreover, the single-view CNN model outperforms the baseline
methods with respect to the global rMAE and rRMSE metrics.

Multi-view CNN approaches have also been proposed, where sky images
from three different points of view (three different cameras) are combined.
Two approaches (Feature Average model and Multi-view Pooling model) have
been compared, that basically differ on the way the features that CNN extracts
from each of the three cameras are combined and processed. The first approach
simply averages those features, while the second one combines them via max-
pooling and performs further processing with additional CNN layers. The use
of additional processing layers (Multi-view Pooling model) has proved to be
the best alternative to combine information from different cameras. Results
have also shown that inclusion of multiple views of the sky reduces the global
errors compared to the single-view CNN model and the baseline methods.

The Multi-view Pooling CNN model also reduces the errors across most
cloud types, unlike the single-view CNN model, where this behavior is not
so systematic. In some critical sky types, such as stratus or cirrostratus, the
error decreases considerably for the Multi-view Pooling model. Analysing the
results broken down by the level of irradiance, it is concluded that CNN models
provide quite smaller errors for low irradiance, while for medium and high
irradiance, they perform similar to the Random Forest with feature extraction,
which is the best performer among the baseline methods.

In summary, the proposed CNN models show an improvement over other
traditional techniques, such as Cloud Fraction or feature-based machine learn-
ing methods (Random Forest with feature extraction), specially when joint
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information from different cameras is used and when that combination is made
through additional CNN layers.
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