
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Mingo, J.M., Aler, R. (2016). A competence-
performance based model to develop a syntactic
language for artificial agents. Information Sciences,
373, pp. 79-94.

DOI: 10.1016/j.ins.2016.08.088

© Elsevier, 2016

https://doi.org/10.1016/j.ins.2016.08.088
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

A competence-performance based model to develop a
syntactic language for artificial agents

Jack Mario Mingoa,∗, Ricardo Alerb

aDepartment of Computer Science, Universidad Autónoma de Madrid
bDepartment of Computer Science, Universidad Carlos III de Madrid

Abstract

The hypothesis of language use is an attractive theory in order to explain how

natural languages evolve and develop in social populations. In this paper we

present a model partially based on the idea of language games, so that a group

of artificial agents are able to produce and share a symbolic language with syn-

tactic structure. Grammatical structure is induced by grammatical evolution

of stochastic regular grammars with learning capabilities, while language devel-

opment is refined by means of language games where the agents apply on-line

probabilistic reinforcement learning. Within this framework, the model uses

the concepts of competence and performance in language, as they have been

proposed in some linguistic theories. The first experiments in this article have

been organized around the linguistic description of visual scenes with the pos-

sibility of changing the referential situations. A second and more complicated

experimental setting is also analyzed, where linguistic descriptions are enforced

to keep word order constraints.

Keywords: Stochastic Grammars, Grammatical Evolution, Reinforcement

Learning, Dynamics of Artificial Languages, Language Games, Multi-Agents

Systems, Competence and Performance in Language.

∗Corresponding author
Email addresses: mario.mingo@uam.es (Jack Mario Mingo), aler@inf.uc3m.es (Ricardo

Aler)

1. Introduction

Language is one of the fundamental cognitive skills needed for the develop-

ment of advanced multi-agent or multi-robot systems, as it allows communica-

tion and cooperation among individuals in the group. This necessity has recently

motivated research where computational models are applied for developing ar-5

tificial languages with increasing complexity. Computational simulations, and

even experiments with real robots, have also been used for explaining properties

of natural languages [1, 2]. Nevertheless, the aim of the present article is not

to use artificial system to aid in the understanding of natural languages, but

rather to propose an evolutionary and learning process so that a team of agents10

can construct a shared artificial syntactical language.

The initial approaches for communication within teams of agents have fo-

cused on creating a basic vocabulary or lexicon that is shared by all members

of the group. This vocabulary is generally a simple mapping between symbols

and meanings. Although this problem seems to be apparently simple, it is not15

trivial because of the problem known as Symbol Grounding Problem: how to

effectively connect a symbol with its meaning (see [3] for definition and details).

Humans do not seem to be limited by this issue, but artificial organisms have

serious difficulties. While some works address this problem [4, 5, 6, 7, 8, 9, 10],

other proposals bypass it and focus on the higher level, while the aspects related20

to the physical association between symbols and meanings are assumed to have

been solved or are not considered [11, 12, 13, 14].

Although a shared vocabulary is essential and it has to be the first step, syn-

tactic competence is vital for an agent to efficiently describe reality in a symbolic

way. In this work, we approach the syntactic alignment of agents in a team by25

means of language games applying on-line reinforcement learning algorithms and

grammatical evolution to allow the agents to evolve and adapt their language to

the current linguistic situation. syntactic alignment refers here to the process

that allows a team of agents to develop a common syntactic language, by pair-

wise interactions or language games, without being told by a centralized source.30

2

The concept of language games is partly inspired by the ideas of Wittgenstein

[15] and De Saussure [16] about the public and conventional dimensions of lin-

guistic meaning and it has been applied in most of Steel’s works (see [17] for a

recent review) and related authors such as [18, 19]. The importance of syntactic

competence is currently so relevant that other approaches based on different35

ideas have been proposed in [20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

Most of the cited works, except [8, 9, 14], are focused on explaining proper-

ties of natural languages by means of computational simulations as we already

mentioned. On the other hand, the above three exceptions are more oriented to

practical applications (and our work follows the same line). However, they do40

not address syntax in depth. A recent work proposing a more complicated lan-

guage with syntactic properties can be found in [30]. In Maravall et all’s model,

a team of agents reach syntactic alignment by learning the probabilities asso-

ciated to the production rules in a stochastic regular grammar. Results show

how different configurations of teams agree on a shared language with syntactic45

structure. It also compares when a human teacher is included in the group or

when the agents are on their own. The Maravall et all’s model is effective for

team sizes ranging from 5 to 60 and it shows how a grammar is adjusted by

tuning the probabilities of its production rules. However, the production rules

themselves do not change, and they are directly encoded in the agents’ controller50

from the beginning. As the grammar is defined in advance, it cannot adapt to

changing linguist situations and it cannot explain how the agents could evolve

this kind of grammatical knowledge. In this work, we follow this approach based

on reinforcement learning and language games, but we study how the agents can

evolve the grammar itself. Evolving the grammar allows the agent to look for55

the grammar that best describes the current linguistic situation which is a very

important skill if the agents need to change their linguistics descriptions and

“talk” about different contexts. To solve this problem we propose a model that

takes into account the concepts of Competence and Performance as they were

initially defined by Chomsky [31]. Competence is the knowledge that a speaker60

has about his/her language and performance stands for the specific use of the

3

language in a specific context. Competence is developed by means of an evolu-

tionary algorithm in our model and it is essentially a searching process in the

space of possible grammars that describe the current linguistic situation. On

the other hand, performance is achieved by means of a reinforcement learning65

mechanism, which rewards the most used structures.

The rest of the paper is organized as follows. Section two describes two tasks

used in the computational experiments. Section three studies the process of

producing and evolving the symbolic artificial language by means of grammatical

evolution. Section four analyses how the language can be shared by means of70

on-line reinforcement learning algorithms. Section five summarizes the whole

model. Section six enhances the initial model to keep syntactic order constraints.

In sections seven both setting and the experimental results for the tasks are

presented and discussed. A section about conclusions closes the work.

2. Describing Dynamic Linguistic Situations in Two Different Tasks75

The first task to be solved by the agents in the team consists of evolving a

symbolic language to describe two types of linguistic situations. The agents are

situated in an environment that they can perceive with their specialized sensors.

As in this paper we are mainly interested in the syntactic alignment of the agent

team, we assume that agents are able to segment the images they watch and80

they are able to build intermediate or internal representations of them. Figures

1 and 2 show the type of visual scenes that the agents could watch.

Figure 1: Object Properties: blue book, yellow pencil and green ball

Figures 1 and 2 represent two linguistic situations which are made of several

scenes. Figure 2 about spatial relations is essentially the same that it was

4

Figure 2: Spatial Relations: book on the right of the ball and pencil on the left of the glasses

used in [30] and we use it here in order to show how the proposed model can85

evolve and adapt itself to new linguistic situations without a predefined grammar

and without human intervention such as the cited work did. In the easier

context (Figure 1) the agents must agree on a language about simple objects

and their colors while a slightly more complicated situation is set in the second

case (Figure 2) where the agents must agree on a language about simple objects90

and their spatial relations. To simplify, we suppose that all agents watch the

referential or shared attention scene from the same point of view. Perspective is

very important in a spatial language and by adopting the same point of view, we

follow what Levinson calls a relative frame of reference [32], that is, a coordinate

system that “use the viewer’s own bodily coordinates”. This question is specially95

important in the case of spatial relationship such as Figure 2 shows. As another

precondition, alignment language games should be used so that the agent team

shares a vocabulary for the objects that can be located in the environment

(book, pencil, glasses, ball) as well as a common lexicon for the color properties

(blue, yellow, green) and the possible spatial relationships (right, left). This100

previous process is needed in order to efficiently map symbols and meanings

for the basic vocabularies. Nevertheless, in this paper we do not describe the

concrete processes behind these lexical alignments as our aim is to focus on

syntactic alignment. This way, we assume that agents have names or words

to refer to any item in the linguistic situation but they also need to compose105

complex (syntactic) sentences to express the situation in the most effective way.

For the type of situation defined in Figure 1, the agents’ language is formed

by sentences like ”the book is blue”, which can be formalized as strings repre-

5

senting syntactic structures such as Pa or aP where P is a color property and

a is an object. In a similar way, for the type of situation defined in Figure 2,110

sentences would be like ”the book is on the right of the ball”, which can be

formalized as strings representing syntactic structures aRb, Rab or abR where

a and b are object names and R is a spatial relationship. As we are interested

in using a language formalism that allows the agents to learn their language

by means of an interactive process, we use stochastic grammars with learning115

capabilities because this kind of device has shown its effectiveness in a similar

context [30]. However, as the linguistic situations are dynamic, we do not design

in advance the set of grammatical rules and we propose a framework where the

grammars themselves are evolved in order to adapt to the current linguistic sit-

uation. Both grammatical evolution and reinforcement mechanism are defined120

in subsequent sections.

Once the first task has been solved, we move the focus toward a more complex

linguistic situation where the agents must agree upon scene descriptions using

sentences like ”the blue book is on the right of the green ball”. These types

of sentences combine previous syntactic knowledge. Specifically, each agent in125

the team has to apply the same word order in the first object’s description and

in the second one, such as natural languages constrain word order. Therefore,

the strings representing syntactic structures in this new task will take the form

of PaRQb, aPRbQ, RPaQb, RaPbQ, PaQbR or aPbQR, where a and b are

object names, R is a spatial relationship and P and Q are color properties. An130

advantage of syntactic constraints is a significant reduction in the number of

possible combinations of words, as we can see in the previous example, but the

drawback is that a more complicated evolutionary process will be required.

3. Evolving Grammatical Structures

As explained in the Introduction section, the model that we propose is based135

on two strategies: evolution and learning. Evolution allows the agents to pro-

duce, evolve and adapt their grammatical structures (competence) while learning

6

drives the process of achieving linguistic consensus (performance). In this sec-

tion we will define in depth the evolutionary process as a competence developing

process.140

Evolutionary algorithms can be an effective way to study artificial language

emergent phenomena because they allow us to look for different syntactic struc-

tures as long as we can represent these structures in some way. Grammatical

Evolution by Grammatical Evolution ((GE)2) [33] is an evolutionary algorithm

that can be used for this purpose. This algorithm is an extension of the Gram-145

matical Evolution (GE) algorithm [34], but applied to the evolution of the gram-

mar itself. (GE)2 will be explained briefly in the next section in the context of

this work.

3.1. Grammatical Evolution (GE) and Grammatical Evolution by Grammatical

Evolution ((GE)2)150

GE was proposed by Collins, Ryan and O’Neill [34] and it is an evolutionary

algorithm which uses variable-length linear genomes. Its initial application was

to evolve computer programs represented in any language (defined by a gram-

mar). But its application field is more general, and it can be used to evolve

whatever structure that can be described by means of a grammar. In fact, GE’s155

principles can be applied to evolve the grammar itself and this point of view was

adopted in a new algorithm known as (GE)2 [33]. In order to evolve the gram-

mar, (GE)2 uses a meta-grammar which specifies the structure that candidate

grammars can adopt. By evolving the grammar the algorithm can fit better to

dynamic environments and this feature is specially interesting in the changing160

linguistic situations we treat here. In summary, in (GE)2 there are two different

types of grammars:

• The meta-grammar describes the rules to build grammars. This grammar

can be seen as playing the role of Universal Grammar proposed by some

linguists.165

• The solution grammar describes the rules to build solutions (sentences,

7

in our case). This grammar would represent the grammar which is tradi-

tionally used in a standard GE.

This way, (GE)2 tries to solve a prolem by first generating a solution gram-

mar from the meta-grammar, which in turn is used to generate the final solution.170

From this point of view the algorithm applies a double evolutionary process (see

[33] to study the original algorithm in depth).

(GE)2 is the evolutionary algorithm adopted in this work because it allows us

to analyze how a suitable grammar can be developed in an initial stage, which

can be finally used subsequently in a social context. In this case, the meta-175

grammar defines the rules to build stochastic regular grammars which in turn

will allow the model to build the sentences in the language. However, sentences

are generated from those solution grammars by means of a reinforcement learn-

ing process , instead of applying the second evolutionary process as the original

(GE)2 actually does (this will be explained later). Meta-grammars allow the180

model to evolve different solution grammars in a self-organized process that

would not be possible if a fixed solution grammar was previously designed by a

human designer. Besides, they can adapt to changes in the linguistic situations.

3.2. How to Generate Syntactic Structures

In order to generate a solution grammar from a meta-grammar (see pro-185

duction rules in Appendix A) the transcription and translation processes are

applied as it is usual in a standard GE, [34]. In GE there is a clear distinction

between the genotype and the phenotype corresponding to the individual so it

needs a mapping process to transform the genotype into the phenotype. This

is precisely what the transcription and translation processes do. Both processes190

are summarized below:

1. Transcription. In this stage, the original binary string that represents

the individual’s genotype is transformed into an integer string. We will

show this process through an example. Consider a binary string which

8

is composed of two-bits codons: 01-00-11-10-00-01-01-10-00-11. After ap-195

plying the transcription process this binary string is transformed into the

equivalent integer string: 1-0-3-2-0-1-1-2-0-3.

2. Translation. Starting from the integer string and the meta-grammar’s

rules, a solution grammar can be built. In the previous example, the

derivation tree associated to this process is showed in Figure 3. Grey200

nodes represent terminal symbols. Numbers displayed near the nodes

represent the rule number to apply to the non-terminal symbol (white

nodes). These numbers are taken from the integer string and they appear

from left to right as the integer string is traversed. In order to determine

which rule is going to be applied the following equation is used: Rule =205

CIV%MNR; where CIV stands for codon integer value and MNR stands

for the maximum number of rules corresponding to the non-terminal that

it must be expanded at this time. Meta-grammar’s rules are defined in

the Appendix A.

The translation process is correct if it is possible to build a string composed210

exclusively of terminal symbols. As we can see in Figure 3, the terminal-only

string is in its turn a solution grammar. In the example, the generated solution

grammar would include the following rules (in BFN notation):

<sentence> ::= <object> <objectprop>

<object> ::= anObject

<objectprop> ::= aColor

This solution grammar defines a grammatical structure which can generate

sentences with an object and a color. It is appropriate to describe a linguistic215

situation as the one we showed in Figure 1. It is worth noting that solution

grammars are generic, in the sense that terms such as anObject are used, in-

stead of any specific object. Later, an specialized module in the agent will

replace these generic terms (anObject, aColor, . . .) by the specific objects or

colors related to the current visual scene. Replacement is applied during the220

language games as we will explain later. To some extent, the generic terms

9

Figure 3: Example: derivation tree to generate a solution grammar (translation)

for the terminal symbols anObject and aColor are equivalent to lexical cate-

gories, widely used in linguistics. On the other hand, the non-terminal symbols

<sentence>, <object> and <objectprop> represent grammatical categories, a

concept commonly applied the literature about phrase structure grammars as225

well. This way, by using grammars as formalism to define languages we can eas-

ily include some important properties about natural languages such as hierarchy,

recursion or compositionality.

3.3. The Evolutionary Process

The evolutionary process we propose here is simply the application of the230

(GE)2 algorithm with the particularities that we described in the previous sec-

tion. Another important difference is that we do not apply the second evolu-

10

/ .--.•.. ,
/ \
(·,·ut>1c,;ti:ro11~·

0

1

\ /
" ·~-/

tionary process to the solution grammars that have been generated from the

meta-grammar as in the original algorithm. Instead, we will apply a reinforce-

ment learning algorithm to generate the final sentences as we will show later.235

The reason for using reinforcement learning is that we consider syntactic align-

ment as a social event where agents interact with each other by means of re-

warded language games. The remaining items are implemented as it is usual in

evolutionary algorithms, so a population of individuals is initially created and

the individuals are evaluated for generations until an optimal solution is found240

(success) or a maximum number of generations is reached (failure). To evaluate

an individual, a mapping process from its genotype (binary string) to its phe-

notype (solution grammar) is needed. Transcription and translation make this

mapping possible. After each generation, a group of genetic operators such as

crossover, mutation and duplication are applied to the individuals in the pop-245

ulation with specific probabilities as we will show in the results section. This

way, new populations are created and subsequently evaluated. Regarding the

individuals’ evaluation we define a fitness measure which is based on the gener-

ated solution grammar. This capacity is evaluated according to the concept of

current communicative intention.250

The communicative intention measures how well a solution grammar could

generate sentences which are applicable to the current linguistic situation. In

the previous example, the solution grammar could generate sentences with an

object and a color, so this grammar could be useful if the agents are trying to

agree a scene such as that in Figure 1. In order to compute a numeric value255

as fitness, we adapt some concepts that were previously defined in [35] and

subsequently applied to the GE’s algorithm in [36]. In both works, grammars

are measured by means of a matrix representation of the grammar. Matrix

representation helps to determine which strings are reachable starting from the

start symbol of the grammar. In this work we define a matrix representation that260

we call Communicative Intention Matrix. This matrix is computed for each valid

generated solution grammar since invalid generated solution grammars have no

matrix representation and its fitness is directly zero (worst fitness) which ensures

11

that they will be eventually discarded along the evolutionary process.

The Communicative Intention Matrix has as many rows as production rules265

and as many columns as terminal symbols plus an additional column which rep-

resents the length of the sentence that can be generated applying the production

rule corresponding to the row. If we apply this representation to the solution

grammar in the previous example we get the matrix that Table 1 shows.

Table 1: Example: Communicative Intention Matrix

Grammatical Category Sentence Length aColor anObject

<object 0 > 0.0 0.0 0.0

<objectprop 0 > 0.0 0.0 0.0

<sentence 0 > 2.0 1.0 1.0

Numeric suffixes in the production rules stand for the non-terminal’s pro-270

duction rule number. In the example there is a single rule associated to each non

terminal symbol. The aColor and anObject columns are the terminal symbols in

the example’s solution grammar. Numeric values under these columns show the

number of corresponding items in a sentence generated from the non-terminal

symbol. This way, as ”sentence” is the start symbol in all solution grammars275

(see meta-grammar’s rules in Appendix A), a sentence starting from ”sentence”

is made of a aColor and a anObject. This is why we can see a numeric value of

1 under those columns. The length of this sentence is 2 and it stands for the

number of words. Non-terminal symbols <object 0 > and <objectprop 0 > are

not useful because any sentence can start from these non terminal symbols, so280

they have a zero as default value.

As we can see in the example, the Communicative Intention Matrix defines

the solution grammar’s skill in order to describe the communicative intention

related to the current linguistic situation. In this case, if agents are trying

to share a symbolic language about object colors this solution grammar would285

include at least a suitable production rule. The fitness value is finally computed

by using Eq. 1:

12

Fitness = SPR (1)

Where SPR is the number of suitable production rules according with the

current linguistic situation. Ideally, this value would be the maximum number

of rules which allow to combine words in every order. In the simple task about290

object colors there are only two possible combinations of words as we described

when the task was defined. They are “Pa” or “aP” with a referring to an object

andP stands for a color property. Therefore, the maximum fitness for this task is

2. It is worth noting to remember that we are studying how an artificial language

evolves and is shared by a team of agents, so we cannot constraint more the295

language by limiting the number of possible expressions. This is why we define a

fitness value with the possibility of generating whatever combination, although

we can limit the fitness to smaller values. On the other hand, the fitness value

is also dynamic because it depends on the current linguistic situation and the

linguistic context can be changed at any time. It can be argued that by using a300

maximum fitness value, the evolutionary algorithm probably could be replaced

for an algorithm such as breath-first or depth-first search, but in this case we

have into account the communicative intention and this knowledge is very useful

in order to guide the search process and avoid to explore useless alternatives in

the space of possible solution grammars. Therefore, the evolutionary algorithm305

is not so blind and it looks for grammars that can potentially derive expressions

with the highest communicative power. As we commented above the intention

is represented by means of the communicative intention matrix.

4. Stochastic Learning-Grammars

In order to allow the agents to develop a suitable language for the description310

of the type of visual scenes displayed in Figures 1 and 2, which are composed

of objects, colors or spatial relations, we propose to use an stochastic version of

the solution grammars that we described in previous sections. In a stochastic

solution grammar the probabilities of the production rules can be learnt by

13

the agents through reinforcement as they engage in language games. The idea315

of learning the probabilities associated to the production rules in a stochastic

regular grammar has been recently presented in [30]. However, in the cited work

the grammar is defined in advance and it is therefore static, so it cannot adapt

to different linguistic situations. In the model that we propose here grammars

are not hand-designed but evolved by the evolutionary process we described320

above.

A stochastic solution grammar includes additionally a probability for each

production rule (i.e. the probability that the production rule will be used).

To simplify, we will show a simple example in a two-agent team. After the

evolutionary process and the stochastic transformation, we suppose that an325

agent called Agent 1 has a stochastic solution grammar such as:

<sentence> ::= <object> <objectprop> p0

| <objectprop> <object> p1

<object> ::= anObject

<objectprop> ::= aColor

On the other hand, agent Agent 2 produces the following stochastic solution

grammar:

<sentence> ::= <object> <object> p0

| <object> p1

| <objectprop> <object> p2

| <object> <objectprop> p3

<object> ::= anObject

<objectprop> ::= aColor

Both agents have suitable grammars if we suppose that they want to share

a language for describing the linguistic situation that Figure 1 proposes. As330

the problem in the example is simple, the grammars are very similar. In fact,

grammatical similarity is biased by the fitness definition that we adopt, and it

is also a consequence of having a common meta-grammar or universal gram-

mar, but this is the hypothesis that is defended by nativists in linguistics. The

14

larger the number of suitable production rules there are in the grammar, the335

more likely is that many of them will be similar. Contrariwise, if the number

of suitable production rules is only one, it will be more difficult for the rein-

forcement learning process to succeed because grammars will be less similar. In

natural languages, it seem obvious that the more similar are the grammatical

system of two speakers, the more likely for speakers to understand each other.340

Nevertheless, in the example, Agent 2 has also evolved some irrelevant rules for

the task about object’s properties, such as the first two rules for <sentence>.

The probabilities of the rewriting rules p0, p1, p2 and p3 (or pn in general) are

initialized arbitrarily but reinforcement learning modifies them and eventually

allows the agents to converge to a common set of rewriting rules. To this end,345

we apply the so called Linear Reward-Inaction algorithm, LRI [37] similarly to

[30].

4.1. The Syntactic Language Games

For a team of N agents, each of them with its own stochastic grammar (which

was previously evolved), the way to reach a syntactic alignment by means of350

reinforcement learning is based on language games. Specifically, a sequence of

language games is performed until the team converges to an optimal commu-

nication system where all the agents use similar stochastic grammars. In each

language game round, all the possible communicative acts are performed among

the agents and each agent utters its own sentence according to its evolved pri-355

vate grammar. A reward or penalty signal is sent to the learning algorithm

for the updating of the probabilities of the production rules. As the private

grammar only defines the generic syntactic structures, the agent replaces the

lexical categories such as aColor and anObject for the specific terms related to

the current visual scene presented to the agent. We suppose that all the agents360

are endowed with the specialized module to make these changes. In this work,

we use the Communicative Efficiency (CE) term (see Eq. 2) as it was defined

in [30]:

15

CE(k) = (NSD/ND)100 (2)

where NSD stands for number of successful dialogs and ND stands for number

of dialogs. Communicative Efficiency helps to decide whether the syntactic365

alignment was possible or not.

Unlike the evolutionary process, the language games development process is

a social event where all the agents interact with each other in order to agree on

a shared language. We think about this process as performance because it refers

to the actual use of the language, while the evolution is a competence because370

it refers to the grammatical knowledge development. Of course, both terms

are simplifications and adaptations of the equivalent concepts about natural

languages and they are not completely synonyms. For example, competence in

the model is developed as a private event within each agent, while babies usually

interact with adults even though they cannot talk. In any case, let us remember375

that our purpose is not to model exactly human languages, but to propose

a model so that a team of artificial agents agree on a syntactical language.

Although the evolution of grammar is a private event, all the agents participate

in a shared scene where all of them watch the same situation. Besides, each

agent evolves its own grammar but it has into account its own communicative380

intentions, so we need to suppose that agents share similar intentions. We do

not have room to explain the role of intentions in artificial or natural organisms

but we consider that it is a key factor in communication just as Tomasello ([38])

(among others) note.

5. The Whole Model385

Once the evolutionary and reinforcement processes have been explained with

detail, we consider useful to describe the whole model in order to provide a

complete view of our work. Essentially, the model performs in two stages.

First, an evolutionary algorithm is executed. In this evolutionary process each

agent in the team tries to develop a private suitable solution grammar. A390

16

suitable grammar is a grammar which can express the agent’s communicative

intention. Communicative intention is determined according to the linguistic

situation that agents can perceive in a shared scene. A communicative intention

matrix helps to measure this intention. A solution grammar is evolved starting

from the meta-grammar’s rules, which acts as a type of Universal Grammar for395

the agents. Each agent manages a population of chromosomes (binary strings)

that are transformed into solution grammars and the agent’s aim in this stage

is to find the best solution grammar. Evolution is executed until all the agents

find a suitable solution grammar or a maximum number of evolutionary trials is

reached. In the later case, the evolutionary algorithm fails. If the evolutionary400

process succeeds, a reinforcement learning process is started, where the whole

team plays language games. A syntactic alignment can be reached if all the

agents agree to use the same sentences to describe the linguistic situation. If

the reinforcement learning process succeeds, the problem is solved. If it fails, a

new evolutionary process is started again and the process is repeated. If all the405

evolutionary and reinforcement trials fail the syntactic alignment is not found.

Figure 4 summarizes the whole process.

Figure 4: Pseudocode for the model’s main-loop

An alternative explanation of the model from a linguistic point of view is

as follow. In a first stage the agents evolve a grammar, that is, they develop a

competence for the language according to their communicative intentions. This410

grammar contains potentially the production rules which can describe the refer-

17

ential scene, but they have to be tested in a social event because the evolutionary

process is a private event for each agent. Then, a second stage explores this so-

cial interaction by means of language games and the language is finally shared

through a reinforcement process where the most frequently used sentences are415

rewarded and finally adopted by the team. Therefore, this stage represents the

performance of the language, that is, the actual use in a social or cultural envi-

ronment. Competence in this way constraints the performance because agents

need syntactic rules that allow them to build sentences. The more suitable pro-

duction rules there are in each agent’s grammar, the more likely is consensus in420

the performance stage. This is why the maximum fitness in equation 1 rewards

the greedy solution. If the agent has little or no grammatical knowledge, it

cannot express sentences. That is, it will not be able to perform in actual com-

munication. As the model executes for a number of evolution-learning cycles,

the agents have several opportunities to evolve a suitable solution grammar,425

even though the grammar is evolved in a private way and there is no feedback

from learning to evolution in an explicit way. To some extent, the model trusts

in the agent’s intention as the force that guides the evolution to find the right

grammar.

6. Imposing Order Constraints430

The previous model presents two potential problems once it has to scale

to more complicated situations. On one hand, evolutionary processes usually

need a long time and resources to find solutions, specially if the number of

states in the space search increases. This situation is likely in a referential scene

combining colors, objects and spatial relations. In this case, there is a significant435

number of possible combinations of words associated to each item. On the other

hand, the evolutionary process in the model does not impose constraints about

the order of the words in a sentence. Obviously, natural languages impose

syntactic limitations to certain structures. For example, if a combination of

words object-color or color-object has been adopted for the first object, it must440

18

be kept to refer to the second one. This way, the number of combinations of

words in a sentence is reduced. The most obvious way to solve this problem

consists in adding specific production rules to the meta-grammar. However, we

are studying here the phenomenon of emergence of artificial languages and we

do not want to impose these syntactic constraints. An alternative solution is to445

include some kind of validation in order to check the syntactic constraints that

we have described. Fortunately, grammars are powerful devices and they can

include semantic rules in the same production rules that describe the syntactic

properties. Details about attribute grammars or similar devices which allow to

combine syntactic and semantic rules cannot be reviewed here but we can find450

comprehensive studies in [39] or [40]. For the aim of the present work, only a

few issues need to be explained, as we will do next.

According to [39], a translation scheme is a context-free grammar with at-

tributes associated with the non-terminal symbols. An attribute has a name and

a value. This value is computed by means of a semantic rule. Semantic rules or455

actions are included in the right side of the production rules and the order in

which an action is executed is determined by its position in the production. In

this work, a semantic rule will be represented enclosed within square brackets

in the grammar’s production rules and it can be a conditional or an assignment

sentence. In the latter case, a value will be assigned to the attribute. Condi-460

tional sentences will check the attribute’s values and will return a true or false

value. A false value means that some condition is wrong in the process of build-

ing the derivation tree. As we explained above, the model builds a derivation

tree when it is generating a solution grammar during the translation process, so

that the semantic rules avoid wrong solution grammars. Thus, invalid solutions465

are discarded even before they are evaluated. An example will be used to clarify

this process. Figure 5 shows a derivation tree similar to the one of Figure 3,

but the new derivation tree includes semantic rules, which appear as dark grey

nodes.

As a curiosity, the derivation tree represented by Figure 5 would be built470

starting from a solution with an integer string such as 2-0-1-2-1-2-2-1-0-0-1-2-

19

Figure 5: Derivation tree to generate a solution grammar with order constraints

0-1-1-2-0-3-0-1 during the translation process. We only need to explain what

semantic rules really does. Check First Semantic Rules and Check Second Se-

mantic Rules functions simply checks if the expressions contain the number of

right words and the order is also equivalent. Both functions return false when475

the tests fail. In the example that is shown in Figure 5, there are no semantic

errors, so the solution grammar is valid from the syntactic and semantic points

of view. However if leave nodes ′ <object>′ and ′ <objectprop>′ under the

node <pro-expression-2> were swapped or they represented the same symbol,

20

//·~--... "\..
j ,:,..w,,v
\ / ' ·- --~

the solution grammar would be syntactically valid but semantically invalid and480

this solution would be rejected. The most important consequence of semantic

checking is that only those solution grammars with the same word-order are

generated. Essentially, with the mechanism of semantic rules and the impor-

tance of the communicative intention matrix each agent is endowed with skills to

evolve its own grammatical competence with some guarantees and the process485

is not blind at all.

7. Experimental Results

7.1. Suppositions and Setting

It is mandatory to comment here some important issues about the exper-

iments and the focus of the model in this work. We are interested here in490

analyzing how a shared language can emerge in a population of artificial agents

but we have in mind to translate the model to more complex device such as

robots. Therefore, the model has to do with the symbolic or higher procedures,

that is, it provides a framework to develop and use a language with a syntacti-

cal structure similar to the natural languages. Nevertheless, higher procedures495

are supported by other kind of processes such as perceptive and motor among

others. We do not address these processes here and we suppose that agents are

endowed with sensors and actuators that allow them to watch the scene and ut-

ter the sentences that they finally produce thanks to the model. Besides, other

process or modules that are essentials to create intermediate representations500

about the perceived scenes are not treated here. All these suppositions allow us

to concentrate efforts in the process of evolving the symbolic language.

Therefore, the experimental setting is a simple schema where agents are

”notified” at the beginning of each referential scene and the previous hypothesis

are included as initial knowledge. Then, the model helps to share a language505

with syntactic structure. A more realistic stage implies to include the model

in a general architecture, for example, a hybrid architecture (see [41] for a

comprehensive study about robot controllers and architectures) and specially to

21

solve the Symbol Grounding Problem. However, we think that the model can

solve part of the whole problem by contributing to implement some symbolic510

processes.

7.2. First Task

The experimental work in the initial task focus on medium-sized agent teams.

We have experimented with two different linguistic situations such as the ones

described in Figures 1 and 2. We suppose that all agents are located in the same515

place so their perspective are the same. Each linguistic situation includes a few

specific objects, colors (in the case of Figure 1) and spatial relationships (in the

case of Figure 2). More specifically, the scenes contain four simple objects (book,

pencil, glasses and ball), three colors (blue, yellow and green) and two spatial

relations (left and right). It is worth noting that the introduction of more520

objects, colors and spatial relations does not imply any significant difficulty

for the agents’ syntactic alignment since lexical categories are used, instead of

specific objects or items.

We conducted a series of 50 experiments for the linguistic situation about

objects and colors and a series of 20 experiments for the linguistic situation525

about objects and spatial relations. Different team sizes were tested, from 5 to

30 agents, with steps of 5 agents. Sentences are uttered by agents according to

the probabilities of their learned stochastic grammars. In the first round, all

the agents randomly choose a rule. During each language game round all the

possible communicative acts between agent-pairs are performed and the pro-530

duction rules that allow the agent to make up the sentence are rewarded or

punished depending on the success or failure in the corresponding communica-

tive act. Success means that both agents share the same sentence to describe

the linguistic situation. Syntactic alignment is attained when the whole team

uses the same sentences to describe the scene. As the model can adapt itself to535

dynamic environments, the linguistic situations can be presented to the agents

in any order, because we do not need to change anything while the system is

executing. The agents can adapt their syntactic structures to each linguistic sit-

22

uation as the meta-grammar’s production rule and the evolutionary algorithm

are adaptive enough. In a typical execution we can set a scene representing a540

linguistic situation about object’s properties such as the Figure 1 shows, then

we start the system. Once the process of alignment ends we can set a new lin-

guistic situation and repeat the process without redesign nor evolution nor the

reinforcement algorithm. Alternatively we can start with a linguistic situation

about spatial relations and move to another scene about object’s properties. We545

think this is a key contribution of this model because it solves the problem of a

previous design. With regard to the evolutionary algorithm, we can see in Table

2 some typical parameters with the values that we use in the experiments.

Table 2: Evolutionary Parameters

Population size 200

Maximum generations Between 100 and 500 (depending

on the number of agents in the

team)

Crossover probability 0.8

Mutation probability 0.05

Duplication probability 0.05

Fitness value 2 in the color context and 3 in the

spatial relationship context

Five initial parameters are established after some preliminary tests. The

last one depends on the current linguistic situation and it defines the maximum550

number of rules in the evolved solution grammar. It is important not to con-

fuse the terms team and population. A team is a collection of artificial agents

who want to reach a shared language. A population is the term used in the

evolutionary computation field to refer to the set of individuals or chromosomes

(solution grammars in this case). Each agent manages a population of possible555

solution grammars.

As the model is split in two stages, they will be analyzed separately: first the

23

evolutionary process that generates grammars, then, the reinforcement learning

process.

7.2.1. Evolutionary Process Results560

The evolutionary process is executed until the whole team evolves their

suitable solution grammars or the maximum number of evolutionary trials is

reached. We set this maximum value to 10 in the experiments. In order to

measure how the evolutionary process performs, we use the standard success

probability (the proportion of evolutionary runs where success is reached, out565

of the 20 or 50 total runs). Figure 6 shows results for the linguistic situation

about objects and colors grouped by team-size.

Figure 6: Success probability for the task about object-properties

Success probability is measured in terms of the whole team. Therefore,

it is an average value for the team. As we can see in the figure, the proposed

model found a solution in all the experiments (50 executions). Besides, solutions570

are found early in the evolutionary process because the model only needs a few

generations (less than 30) to develop suitable solution grammars. The team size

does not seem a significant limitation in the process and the type of suitable

solution grammars that all agents evolve include at least two rules (fitness value)

which allow them to build sentences with full sense according to the problem.575

Evolved grammars are similar to the following one:

24

<sentence> ::=

| <objectprop> <object>

|

| <object> <objectprop>

|

<object> ::= anObject

<objectprop> ::= aColor

As we can see, the model does not limit the number of production rules

to evolve, but it looks for grammars that include as many valid production

rules as it is specified in the fitness value. Valid production rules are those

that potentially can derive correct expressions to describe the communicative580

intention. However, an evolved grammar can include other production rules. In

any case, the type of evolved suitable grammars allows the agents to come into

the reinforcement learning process with similar rules, so it is possible to reach

syntactic alignment during language games. In fact, as we will show in the next

section this is what it finally happens.585

Spatial relations among objects is a slightly more complex problem because

agents need to agree about sentences with two objects and a spatial relation. As

we explained, there are three possibilities of ordering the words in the sentence.

In this case, the evolutionary process searches for suitable solution grammars

with at least the three following rules:590

<sentence> ::=

| <object> <spatialrel> <object>

|

| <spatialrel> <object> <object>

|

| <object> <object> <spatialrel>

<object> ::= anObject

<spatialRel> ::= aSpatialRelation

Figure 7 shows the success probability group by team size in this case.

25

Figure 7: Success probability for the task about spatial relations among objects

In this task, even though the Figure 7 does not show it clearly, the model

failed in a single experiment with 30 agents in the team. Failure happened

because a single agent in the team was not able to build a suitable solution

grammar with the evolutionary parameters that we set in the experiments. This595

agent failed after 10 evolutionary iterations but we think this kind of failure

could be easily solved if the number of iterations were increased. In any case, as

we can see in the figure, the model’s performance is optimum because it is also

able to find a solution with a small number of generations. It reaches around

95% of success with all team sizes in less than 250 generations.600

To summarize, Figures 6 and 7 display how the evolutionary algorithm is

able to develop suitable solution grammars for each agent in the team using

few evolutionary generations. Most importantly, the model can adapt to new

linguistic situations because the grammar is not fixed, but rather generated

(restricted by a meta-grammar). A static pre-defined grammar such as the one605

proposed in [30], cannot adapt dynamically without redefining its production

rules every time the linguistic situation changes.

7.2.2. Syntactic Alignment through Reinforcement Learning

Once the evolutionary stage has been completed, all the agents in the team

have developed a suitable solution grammar and they are ready to play language610

26

11)0, (,)
·~S, (,) -
·~0, (,) -
SS,C,) -
AO, <.<l -

~ ;~:~~ :
.? ;s,co -
"' VtJ,t:fJ i ~t:t~
C !.:,,t:fJ -
.. !.tJ,(fJ -

.i t~;~~ :
- · 2S,C,) -

20,(,) -
1S,C,) -
10,(,) -
S,C,)
0, (,) --~---~-~---~-~-~-~--

- l lJAijLf, I :

- 1'i ltr.Fl, f .t

_ , .,.r,Fl,T.'

games among them in order to find the syntactic alignment. This is where the

reinforcement learning stage starts. In the evolutionary stage each agent in the

team executes its own evolutionary algorithm. It has no interaction with other

agents, but given that they share a common communicative intention and they

watch the same referential scene, their solution grammars should be similar615

enough. In the reinforcement learning stage, agents interact with each other via

language games. In order to measure how the reinforcement learning process

is performing, we use the concept of Communicative Efficiency (CE) that we

defined in Eq. 2. The higher the Communicative Efficiency, the higher the

consensus within the team. 100% means complete syntactic alignment.620

In Figure 8 we show the learning curves considering all the experiments and

team sizes for the object properties task. The horizontal axis shows the rounds

while the vertical axis shows the CE value (percentage). The maximum number

of rounds depends on the number of agents and it ranges from 200 to 1000 for

this task.625

Figure 8: Communicative efficiency for the task about object-properties

As we can see in the figure a syntactic alignment is attained in all exper-

iments for this task. Success in reinforcement learning is conditioned by the

solution grammars evolved by agents in the previous stage, but results show

that reinforcement learning produces a fast convergence, specially with small

teams (5 and 10 agents where the syntactic alignment appears in less than 170630

rounds).

27

Figure 9 shows a similar picture for the task about spatial relations among

objects. In this case, only 20 experiments were run due to experiments being

more computationally expensive.

Figure 9: Communicative efficiency for the task about spatial relations among objects

Syntactic alignment is always reached, for all the cases where a suitable635

grammar was generated by all agents (there was such a failure for one of the

experiments with 30 agents where no suitable grammar was generated by one

of the agents). Results show a good performance in general terms because the

proposed model can reach the final syntactic alignment in a relatively small

number of language games rounds. As a curiosity, it can be observed that, once640

past 10 agents, adding more agents seems to make the learning process faster

(communicative efficiency grows quicker). This is also true to some extent for

Figure 8, past 15 agents. A similar behavior was also observed in [30] and it

could be consequence of the larger number of interactions for large team sizes

during the language games. In summary, both Figures 8 and 9 confirm that645

CE rises as rounds go by and this shows that reinforcement learning works and

complements well the previous evolutionary process.

7.3. Second Task

In a second task the agents must agree sentences to describe a linguistic

situation where they must combine words related to objects and colors and650

specify a spatial relation between two objects. As we commented in section two

28

there at least 6 different combinations of words in this case, so the the maximum

fitness value is 6 according to equation 1.

Under these conditions the evolutionary process is slower. To make it faster,

the optimum fitness value could be decreased to 3, 4 or 5. However, if the opti-655

mum fitness is smaller than the maximum fitness, the evolutionary process will

evolve solution grammars with fewer production rules and it will be less likely

that the grammars are similar enough to reach consensus in the reinforcement

learning stage. The computational cost is higher now, therefore only 20 experi-

ments have been run, with teams of 5, 10 and 15 agents. For the 5 agents group660

we set the same evolutionary parameters as in Table 2, although maximum

generations was fixed directly to 500. Optimum fitness was set to 3 for the

experiments with 5 agents in order to reduce execution time. However, after

some failed tests with this value we decided to work with the maximum fitness

(6) in the case of 10 and 15 agents. Evolutionary parameters were also changed665

for these groups and they were finally fixed according to Table 3. The main

differences between Tables 2 and 3 are in the crossover and mutation probabil-

ities. As we did in the first task, we will first show results of the evolutionary

process, then the reinforcement learning process.

Table 3: Evolutionary Parameters in Experiments with 10 and 15 agents

Population size 200

Maximum generations 500

Crossover probability 0.6

Mutation probability 0.1

Duplication probability 0.05

Fitness value 3 or 6

7.3.1. Evolutionary Results670

We set the maximum number of evolutionary trials to 10 in all the experi-

ments. Figure 10 shows results about success probability broken down by team

size.

29

Figure 10: Success probability for the task with ordering constraints

As we can see in the Figure 10 the model evolved a suitable solution grammar

for the group with 5 agents in all the experiments (100%) and it only needed675

less than 245 generations. On the other hand, it only failed in an experiment

(95%) for the group with 10 agents. Nevertheless, it failed in seven experiments

(65%) for the biggest group with 15 agents. In one of the experiments with 5

agents the evolved solution grammars were similar to the following one:

<sentence> ::=

| <object> <objectprop> <object> <objectprop> <spatialrel>

|

| <object> <objectprop> <spatialrel> <object> <objectprop>

|

| <spatialrel> <object> <objectprop> <object> <objectprop>

|

<object> ::= anObject

<objectprop> ::= <color>

<color> ::= aColor

<spatialrel> ::= aSpatialRelation

This type of solution grammar only includes 3 of the 6 combinations of words680

which are possible in this task. However, the important issue here is that all

the team can play language games with the same set of production rules or a

similar one. At minimum, to succeed in the reinforcement learning process it is

mandatory that all evolved solution grammars (one for each agent) include at

least a similar production rule. The more production rules in each grammar the685

30

100,00
9 S,OO
90,00
85,00
8 0,00

i 7S,OO
70,00

i 6 5,00
60,00

.1! SS,00

!. 50,00
4S,OO

i 40,00
3S,OO
30,00
25,00
20,00
15,00
10,00

S,00
0,00

so 100 1SO 200 250

Generation

300 350

- SAGENTS

- 10AGENTS

- 15AGENTS

400 4SO

more probabilities they will have at least a similar production rule. Of course,

the reinforcement learning is responsible for reaching the final agreement but

it depends on the quality of the evolved solution grammars. According to the

experimental results with 10 and 15 agents (which used the maximum fitness

value) we can argue that the team size could be determinant in order to evolve690

suitable grammars when more complex syntactic structures are needed.

7.3.2. Reinforcement Learning Results

Figure 11 shows the learning curve for this task. The maximum number of

rounds depends on the number of agents and it ranges from 1000 to 25000 for

this task.695

Figure 11: Communicative efficiency for the task with ordering constraints

It must be noticed that the results shown in Figure 11 do not consider

the experiments that failed in the evolutionary process just as we did in the

first task related to changing linguistic situations. This way, if we only take

into account the reinforcement learning process the results are again successful

because a 100% CE-value has been attained in groups with 10 and 15 agents700

and the group with 5 agents reached around 96%. In the last case, a single

experiment failed during the learning stage even though its evolutionary process

was successful. Despite this apparently worse performance in the smallest group,

it should not be forgotten that the fitness value was smaller in this experiment

31

than the maximum fitness that we use to evaluate higher groups. Apart from705

these details, the learning curve is essentially similar to the one we showed in

Figures 8 and 9 and it reveals that the communicative efficiency also increases

as the number of rounds increases.

We think it is important to return to the issue of failed experiments in order

to analyze how language is developed and shared in this model. Success in710

reinforcement learning is conditioned to the suitable solution grammars that

agents evolved in the previous stage. Therefore, syntactic alignment can fail for

two reasons:

1. Evolution fails and some agent cannot evolve a suitable solution gram-

mar to express its communicative intention. This is the reason why an715

experiment failed in the group of 10 agents and seven experiments failed

in the group with 15 agents. The consequence of failed evolution is the

incompetence to describe grammatically what the agent is watching.

2. Reinforcement learning fails and the team cannot agree sentences to de-

scribe the linguistic situation. Reinforcement learning is based on the720

previously evolved solution grammars. If all the agents evolve similar

grammars the reinforcement learning process would only fail because the

number of rounds was not enough for convergence. However, if there is

an agent with a completely different grammar, the reinforcement learning

process can also fail because it will be impossible for this agent to gener-725

ate sentences which coincide with the sentences that the rest of the team

utter through their own solution grammars. This is the reason why a ex-

periment failed in the group with 5 agents. If we analyze the results we

appreciate how the evolutionary process is not only more computationally

expensive but it fails more frequently than the learning process. Compar-730

ing results it seems that the competence in the language is more difficult

to reach than the performance.

Delving into differences among solution grammars we can appreciate the

effect of a well-defined fitness measure in the evolutionary process. If we use

32

the maximum value as fitness value to stop the evolution, there will be no735

difference among grammars because all of them will have similar production

rules. Otherwise, it might be that production rules were completely different,

so the syntactic alignment would be impossible. This problem did not happen

in the task about changing linguistic situations that we described initially since

we used there the maximum fitness: 2 for the context related to colors and 3740

for the situation concerning spatial relations. However, we use 3 as optimum

fitness value instead of 6 (maximum fitness value) in the second task for the

group with 5 agents. As a consequence, in an experiment the model failed in the

first evolutionary/reinforcement trial because the agents called Agent 0, Agent 1

and Agent 2 evolved similar solution grammars but agents called Agent 3 and745

Agent 4 evolved other different solution grammars. In this failed trial, three

first agents would have reached their own syntactic alignment and the two last

agents would have reached a different one if the model had allowed them to

continue, but we assume that consensus is only accepted when the complete

team agrees. Other trials failed in a similar way. Failed experiments show750

us how grammatical similarity is needed in order to share a language and it

appears in the model as consequence of a selective pressure to look for individuals

(solution grammars) with the most expressive power, according to the current

communicative intention. Finally, we show in Appendix B an example of the

final syntactic consensus in one of the valid experiments with 5 agents.755

8. Conclusions

We propose in this work a model combining evolution and learning in order

to study how a symbolic artificial language can self-emerge in a team of agents.

The model considers some theories about natural language, such as the concepts

of competence and performance in the language and the possibility of certain760

kind of innate grammatical knowledge expressed as a Universal Grammar. Com-

petence is simulated as a private event for each agent in the group by means

of an evolutionary process. The aim in this stage is to find the grammar that

33

is suitable for the current linguistic situation. Evolution provides grammatical

knowledge for the language but a shared language implies a social interaction.765

This public event is simulated in the learning component of the model, where a

reinforcement learning algorithm uses a stochastic version of the evolved solu-

tion grammar for each agent, in order to converge to a common language with

a syntactic structure. Syntactic alignment in the team is induced by means of

language games which allow the agents to interact or communicate with each770

other. Therefore, the social interaction implies performance in the language.

Once the model’s foundations have been established, a set of experiments

was designed in order to test the model in an initial changing linguistic situa-

tion, where the agents must firstly agree sentences about object properties and

secondly about spatial relations among the objects. This order is not impor-775

tant and it can be swapped. The main aim in the experiments was to prove

if the model could adapt to the change in the linguistic situation without hu-

man intervention and results showed, not only how the model could find the

syntactic alignment in both contexts, but how the model could adapt to the

change without external help. Adaptation is possible thanks to the concept of780

meta-grammar which acts as a kind of Universal Grammar as we mentioned

above. Experimental results also showed how both the evolutionary process

and reinforcement learning process can find solutions in a few generations and

rounds. A related work has previously shown the potential of the reinforcement

learning in the emergence of artificial languages, but it needs that the grammar785

is defined in advance. It cannot adapt to new linguistic situations without mod-

ifying some parameter or feature. The model proposed here shows how these

problems can be solved.

In a second task the agents had to maintain word order constraints in the

sentences they generated. The evolutionary process is more time consuming in790

this case, specially if the number of agents in the team is large. Nevertheless,

the model performed relatively well in small groups (5 and 10 agents). Besides,

in a bigger team with 15 agents, the learning process performed equally fine but

some problems were found in the evolutionary process. In any case, the model

34

shows how semantic constraints can be included in the language, so the number795

of sentences that agents can express is potentially bigger.

Appendix A. Meta-grammar Definition

We use the usual BNF notation to specify the grammatical production rules

and we adopt here the formalism proposed in [33]. In short, according to this

convention, non terminal symbols between quotation marks stand for no termi-800

nal symbols in the solution grammar level which will be created starting from

the meta-grammar’s rules. Semantic rules are showed closed between brackets.

<grammar> ::= ’<sentence>::=’ <rel-expression-def> /

’<object>::=’ <object-def> /

’<spatialrel>::=’ <spatialrel-def>805

| ’<sentence>::=’ <pro-expression-def> /

’<object>::=’ <object-def> /

’<objectprop>::=’ <objectprop-def>

| ’<sentence>::=’ <pro-rel-expression-def> /

’<object>::=’ <object-def> /810

’<objectprop>::=’ <objectprop-def> /

’<spatialrel>::=’ <spatialrel-def>

<rel-expression-def> ::= <rel-expression>

| <rel-expression> ’|’ <rel-expression-def>

<pro-expression-def> ::= <pro-expression>815

| <pro-expression> ’|’ <pro-expression-def>

<pro-rel-expression-def> ::= <pro-rel-expression>

| <pro-rel-expression> ’|’ <pro-rel-expression-def>

<object-def> ::= <object>

<spatialrel-def> ::= <spatialrel>820

<objectprop-def> ::= <objectprop>

<rel-expression> ::= <rel-word>

| <rel-word> <rel-expression>

<pro-expr-1> ::= <pro-expression>

<pro-expr-2> ::= <pro-expression>825

<pro-expression> ::= <pro-word>

| <pro-word> <pro-expression>

<pro-rel-expression> ::= <rel-concept>

<pro-expr-1>

[if NOT(checkProExpr(<pro-expr-1>))830

then {"error"}]

<pro-expr-2>

[if NOT(checkSimilarityProExpr(<pro-expr-1>,<pro-expr-2>))

35

then {"error"}]

| <pro-expr-1>835

[if NOT(checkProExpr(<pro-expr-1>))

then {"error"}]

<rel-concept>

<pro-expr-2>

[if NOT(checkSimilarityProExpr(<pro-expr-1>,<pro-expr-2>))840

then {"error"}]

| <pro-expr-1>

[if NOT(checkProExpr(<pro-expr-1>))

then {"error"}]

<pro-expr-2>845

[if NOT(checkSimilarityProExpr(<pro-expr-1>,<pro-expr-2>))

then {"error"}]

<rel-concept>

<rel-concept> ::= ’<spatialrel>’

<rel-word> ::= ’<object>’850

| ’<spatialrel>’

<pro-word> ::= ’<object>’

| ’<objectprop>’

<object> ::= anObject

<spatialrel> :: =aSpatialRelation855

<objectprop> ::= aColor

Where terminal symbols in this meta-grammar such as ′ <sentence>::=′,

′ <object>::=′, ′ <spatialrel>::=′, ′ <objectprop>::=′, ′ <spatialrel>′, ′ <object>′

and ′ <objectprop>′ will represent non terminals symbols in a solution grammar

and the symbol ′|′ stands for the alternative symbol as it is usual in BNF no-860

tation. Semantic functions such as checkProExpr and checkSimilarityProExpr

implement order constraints.

Appendix B. Syntactic Consensus in 5-agents team for a task impos-

ing order constraints

Syntactic consensus attained with the model in one of the experiments for a865

small team of 5 agents in the problem about order constraints.

SYNTACTIC STRUCTURES GENERATED AFTER THE GRAMMATICAL EVOLUTION

Agent_0: anObject aColor aSpatialRelation anObject aColor

Agent_1: anObject aColor aSpatialRelation anObject aColor

Agent_2: anObject aColor aSpatialRelation anObject aColor870

36

Agent_3: anObject aColor aSpatialRelation anObject aColor

Agent_4: anObject aColor aSpatialRelation anObject aColor

SYNTACTIC ALIGNMENT (SENTENCES) AFTER THE REINFORCEMENT LEARNING

Agent_0875

Scene 0: book blue right ball green

Scene 1: pencil yellow left glasses red

Agent_1

Scene 0: book blue right ball green

Scene 1: pencil yellow left glasses red880

Agent_2

Scene 0: book blue right ball green

Scene 1: pencil yellow left glasses red

Agent_3

Scene 0: book blue right ball green885

Scene 1: pencil yellow left glasses red

Agent_4

Scene 0: book blue right ball green

Scene 1: pencil yellow left glasses red

References890

[1] P. Vogt. Language Evolution and robotics: Issues on symbol grounding and

language acquisition. In: A. Loula, R. Gudwin, J. Queiroz (Eds.) Artificial

Cognitive Systems. Herschey, PA. Idea Group, 176-209, 2006.

[2] H. Jaeger, A. Baronchelli, T. Briscoe, M. H. Christiansen, T. Griffiths, G.

Jager, S. Kirby, N. L. Komarova, P. J. Richerson, L. Steels, J. Triesch. What895

Can Mathematical, Computational and Robotic Models Tell Us about the

Origins of Syntax?. In: D. Bickerton and E. Szathmry (Eds.) Biological

Foundations and Origin of Syntax. The MIT Press, 2009.

[3] S. Harnard. The symbol grounding problem. Physica, D 42, 335-346, 1990.

[4] L. Steels. Perceptually grounded meaning creation. In M. Tokoro (Ed.s).900

Proceedings of the International Conference on Multi-Agent Systems, Menlo

Park CA: AAAIPress, 1996.

[5] L. Steels. The Spontaneous Self-organization of an Adaptive Language. In:

37

Muggleton, S. (ed.), Machine Intelligence 15. Oxford University Press, Ox-

ford, 1996.905

[6] L. Steels. Constructing and sharing perceptual distinctions. In Van Someren,

M. and G.Widmed (eds.) Proceeding of the European conference on Machine

Learning. Prague, April 1997. Springer-Verlag, Berlin, 1997.

[7] P. Vogt. Lexicon Grounding on Mobile Robot. Ph. D. Thesis. Vrije Univer-

siteit Brussel. 2000.910

[8] D. Jung, A. Zelinsky. Grounded Symbolic Communication between Hetero-

geneous Cooperating Robots. Autonomous Robots, vol. 8, 269-292, 2000.

[9] R. Schulz, A. Glover, M. J. Milford, G. Wyeth, J. Wiles. Lingodroids: Stud-

ies in Spatial Cognition and Language. IEEE International Conference on

Robotics and Automation, May 9-13, Shanghai, China, 2011.915

[10] M. Spranger. The Co-Evolution of Basic Spatial Terms and Categories.

In Luc Steels (Ed.), Experiments in Cultural Language Evolution, 111-141.

Amsterdam: John Benjamins. 2012.

[11] G. Werner, M. Dyer. Evolution of Communication in Artificial Organisms.

In: Langton, C., et.al. (eds.). Artificial Life II. Addison-Wesley Pub. Co.920

Redwood City, Ca., 659-687, 1991.

[12] H. Yanko, L. Stein. An Adaptive Communication Protocol for Cooperating

Mobile Robots. In: Meyer, J-A, H-L. Roitblat and S. Wilson. From Ani-

mals to Animats 2. Proceedings of the Second Interntational Conference on

Simulation of Adaptive Behavior. The MIT Press, Cambridge Ma, 478-485,925

1993.

[13] T. Hashimoto, T. Ikegami. Evolution of Symbolic Grammar Systems. In:

Moran, F, A. Moreno, J. Merelo and P. Chacon (Eds.). Advances in Arti-

ficial Life. Third European Conference on Artificial Life. Granada, Spain,

Springer-Verlag, Berlin, 812-823, 1995.930

38

[14] D. Maravall, J. de Lope, R. Domı́nguez. Self-Emergence of Lexicon Con-

sensus in a Population of Autonomous Agents by means of Binary-strings

Evolution Strategies. Hybrid Artificial Intelligence Systems, LNCS 6077, E.

Corchado, M. Graa, A. Manhaes (eds.) Springer-Verlag, 77-84, 2010.

[15] L. Wittgenstein. Philosophical Investigations. New York. Macmillan. 1953.935

[16] F. de Saussure, Cours de Linguistic Général, Payot, Paris, 1916, English

ed., McGraw-Hill. Ibidem Course on General Linguistic, New York, 1969.

[17] L. Steels (Ed.) Experiments in Cultural Language Evolution. John Ben-

jamins, 2012.

[18] J. de Beule, J. V. Looeveren, W. H. Zuidema. Grounding Formal Syntax940

in an Almost Real World. Presented at the Belgium-Netherlands Artificial

Intelligence Conference, 2002.

[19] J. V. Looveren, Design and Performance of Pre-Grammatical Language

Games. PhD Thesis. Vrije Universiteit Brussel. March 2005.

[20] J. Batali. Computational Simulations of the Emergence of Grammar. In945

Hurford, J. R. and Studdert-Kennedy, M and Knight C., editors. Approaches

to the Evolution of Language: Social and Cognitive Bases, 405-426, Cam-

bridge University Press, 1998.

[21] J. Batali. The Negotiation and Acquisition of Recursive Grammars as a

Result of Competition among Exemplars. In Linguistic Evolution through950

Language Acquisition: Formal and Computational Models, Ted Briscoe (ed-

itor), 111-172, 1999.

[22] T. Briscoe. Grammatical Acquisition: Inductive Bias and Coevolution of

Language and the Language Acquisition Device, 2000.

[23] S. Kirby. Spontaneous Evolution of Linguistic Structure: An Iterated955

Learning Model of the Emergence of Regularity and Irregularity. IEEE

Transactions on Evolutionary Computation, vol. 5, No. 2, 102-110, 2001.

39

[24] D. Roy. Learning Visually Grounded Words and Syntax of Natural Spoken

Language. Evolution of Communication 4(1), 33-56, 2001.

[25] S. Kirby. Learning, Bottlenecks and the Evolution of Recursive Syntax.960

In T. Briscoe editor, Linguistic Evolution through Language Acquisition:

Formal and Computational Models, 173-204, Cambridge University Press,

2002.

[26] D. Roy. Learning Visually-Grounded Words and Syntax for a Scene De-

scription Task. Computer Speech and Language 16(3), 353-385, 2002.965

[27] K. Smith, J. R. Hurford. Language Evolution in Populations: Extending

the Iterated Learning Model. Advances in Artificial Live. Lecture Notes in

Computer Science, vol. 2801, 507-516, 2003.

[28] M. R. McClain. Semantic Based Learning of Syntax in an Autonomous

Robot. PhD Thesis. University of Illinois at Urbana-Champaign, 2006.970

[29] M. Spranger, L. Steels. Emergent Functional Grammar for Space. In Luc

Steels (Ed.), Experiments in Cultural Language Evolution, 207-232. Ams-

terdam: John Benjamins. 2012.

[30] D. Maravall, J. M. Mingo, J. de Lope. Alignment in Vision-based Syntactic

Language Games for Teams of Robots using Stochastic Regular Grammars975

and Reinforcement Learning: The fully Autonomous case and the Human

supervised case. Robotics and Autonomous Systems, Volume 63, Part 2,

180-186, January 2015.

[31] N. Chomsky. Aspects of the Theory of Syntax, MIT Press, Cambridge,

MA, 1965.980

[32] S. C. Levinson, D. P. Wilson. The Background to the Study of the Language

of Space. In S. C. Levinson and D. P. Wilson editors. Grammars of Space.

Explorations in Cognitive Diversity. Cambridge University Press, 2006.

40

[33] M. O’Neill and C. Ryan. Grammatical Evolution by Grammatical Evolu-

tion: The Evolution of Grammar and Genetic Code. In Maarten Keijzer,985

Una-May O’Reilly, Simon M. Lucas, Ernesto Costa, and Terence Soule, ed-

itors, Genetic Programming 7th European Conference, EuroGP 2004, Pro-

ceedings, volume 3003 of LNCS, pages 138-149, Coimbra, Portugal, 5-7,

April 2004. Springer-Verlag. ISBN 3-540-21346-5.

[34] J. J. Collins, C. Ryan, M. O’Neill. Grammatical Evolution: Evolving Pro-990

grams for an Arbitrary Language. Lecture Notes in Computer Science 1391,

Proceedings of the First European Workshop on Genetic Programming.

Springer-Verlag, 83-95, 1998.

[35] C. S. Wetherell. Probabilistic Language: A Review and Some Open Ques-

tions. ACM Computing Surveys (CSUR), 12(4):361-379, 1980.995

[36] E. A. P. Hemberg. An Exploration of Grammars in Grammatical Evolution.

PhD Thesis. University College Dublin. September, 2010.

[37] K. Narendra, M. A. L. Thathachar. Learning Automata- A Survey, IEEE

Trans. on Systems, Man, and Cybernetics, 4 (4), 323-334, 1974.

[38] M. Tomasello. The Cultural Origins of Human Cognition. Harvard Univer-1000

sity Press, Cambridge, MA, 1999

[39] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques and

tools. Addison-Wesley. 1986.

[40] J. N. Shutt. Recursive Adaptable Grammars. Master’s Thesis. Worcester

Polytechnic Institute, Worcester, M. A. August 10, 1993, Emended Decem-1005

ber 16, 2003.

[41] R. Murphy. Introduction to AI Robotics. MIT Press, Cambridge. 2000.

41

