Universidad

ucdm | Carlosllii -Archivo
de Madrid

This is a postprint version of the following published document:

Bakhshi, B., Mangues-Bafalluy, J. & Baranda, J. (7-11
Dec. 2021). R-Learning-based admission control for
service federation in multi-domain 5G networks
[proceedings]. 2021 IEEE Global Communications

Conference (GLOBECOM), Madrid, Spain.

DOI: 10.1109/GLOBECOM46510.2021.9685936

© 2021 IEEE. Personal use of this material is permitted. Permission

from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1109/GLOBECOM46510.2021.9685936

R-Learning-Based Admission Control for Service
Federation in Multi-domain 5G Networks

Bahador Bakhshi, Josep Mangues-Bafalluy, Jorge Baranda

Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Spain

Abstract—Network service federation in 5G/B5G networks
enables service providers to extend service offering by collab-
orating with peering providers. Realizing this vision requires
interoperability among providers towards end-to-end service
orchestration across multiple administrative domains. Smart
admission control is fundamental to make such extended offering
profitable. Without prior knowledge of service requests, the
admission controller (AC) either determines the domain to deploy
the demand or rejects it to maximize the long-term average
profit. In this paper, we first obtain the optimal AC policy by
formulating the problem as a Markov decision process, which
is solved through the policy iteration method. This provides the
theoretical performance bound under the assumption of known
arrival and departure rates of demands. Then, for practical
solutions to be deployed in real systems, where the rates are not
known, we apply the Q-Learning and R-Learning algorithms to
approximate the optimal policy. The extensive simulation results
show that learning approaches outperform the greedy policy
and are capable of getting close to optimal performance. More
specifically, R-learning always outperformed the rest of practical
solutions and achieved an optimality gap of 3-5% independent
of the system configuration, while Q-Learning showed lower
performance and depended on discount factor tuning.

Index Terms—Multi-domain 5G/B5G networks, Admission
Control, Service Federation, MDP, Q-Learning, R-Learning

I. INTRODUCTION

5G and beyond networks are expected to cost-effectively
provide services with diverse quality requirements. To this
end, enabler technologies including Network Function Virtu-
alization (NFV) and Software Defined Networking (SDN) as
well as architectural principles like network slicing, and multi-
domain orchestration are incorporated in the architecture of
the networks [1], [2]. The variety of services and stakeholders
needs the definition of management and orchestration archi-
tectures for the cooperation of stakeholders that is required to-
wards end-to-end multi-domain orchestration of such services.
One clear example is service federation [3], [4].

Multi-domain orchestration enables the service provider, as
an administrative domain, to collaborate with other domains
for service provisioning in a federated environment [4]. The
federation contract between the domains provides extra re-
sources for the consumer domain at the cost of the federation.
These resources are used to deploy (segments of) the requested
network services, i.e., a network slice composed of a set of
Virtual Network Functions (VNFs) and virtual interconnecting

This work has been partially funded by the MINECO grant TEC2017-
88373-R (5G-REFINE), the EC H2020 5Growth Project (grant no. 856709),
and Generalitat de Catalunya grant 2017 SGR 1195.

links, in other domains for different reasons such as the lack of
sufficient local resources, load-balancing, and cost-efficiency.

The Admission Controller (AC) is the highest-level resource
manager. For a given service demand, it either determines
the domain to deploy the demand or rejects it. In this paper,
we consider business profit as the objective of the admission
control, and assume that there is only one provider domain
with a limited reserved quota for service federation which is
agreed in the federation contract. Under these assumptions, the
AC should decide where to deploy the requested services to
maximize the profit without knowing the future demands. This
problem is referred to as the Admission Control for Service
Federation (ACSF).

This problem is challenging, and trivial approaches like
greedily accepting every demand do not provide the optimal
solution, as shown in the simulation results. The AC should
manage the local resources of the consumer domain and the
federation quota of the provider domain to maximize the profit.
While several AC algorithms in 5G networks have already
been proposed [5], they consider single domain networks; and
consequently are not directly applicable to the ACSF problem.
This is the research gap that we aim to address.

Recently, AI/ML approaches have been extensively used in
communication networks [6]. ACFS is an instance of the prob-
lem of sequential decision making under uncertainty, which
can be efficiently approached by Reinforcement Learning (RL)
solutions where an agent learns the policy via interaction with
the environment [7]. The RL based admission control solutions
have already been developed in other contexts rather than
the multi-domain service federation problem [8]-[11]. In this
paper, we utilize a special category of reinforcement learning,
named average reward learning, to approximate the optimal
policy that maximizes the average profit of the consumer do-
main. More specifically, we make the following contributions
to the ACSF problem: i) The ACSF problem is formulated
as a Markov Decision Process (MDP), which is solved by
the Policy Iteration Dynamic Programming (DP) method to
obtain the theoretical performance bound. i) An average
reward based learning algorithm is developed to approximate
the optimal policy. 722) We show that the commonly used Q-
Learning algorithm does not perform well in ACSF due to
dependency on the discount factor.

The remainder of this paper is as follows. In Section II, we
review the related works. The system models and the MDP
formulation are presented in Section III. The model is solved
by the Policy Iteration (PI) algorithm in Section IV. We present

the learning approaches in Section V and evaluate them in
Section VI. Section VII concludes this paper.

II. RELATED WORK

Given the wide variety of stakeholders of future networks,
service federation is expected to become a relevant component
of 5G and beyond network architecture [1], since it allows de-
ploying complex services in multiple administrative domains,
whilst enabling end-to-end orchestration. At a theoretical level,
the problem of service federation is formulated as an Integer
Linear Programming model in [12], which is extended to
consider energy efficiency [13]. From an architectural point of
view, preliminary ideas of service federation were presented
in [3] and [14]. The full-fledged architecture enabling service
federation was developed in the 5G-Transformer [15] platform,
which is capable of deploying composite NFV network ser-
vices spanning across multiple domains and realizes the feder-
ation vision by designing the high-level concepts presented in
ETSI specifications [4]. However, neither the theoretical nor
the architectural research works address the admission control
problem in service federation; i.e., they assume that the service
has already been accepted and attempt to efficiently deploy it.

Using reinforcement learning for admission control has been
the topic of several previous works. Adaptive call admission
control (CAC) in multimedia networks using RL was studied
in [8]. In the case of links with variable capacity, the CAC
problem using RL was investigated in [16]. In [9], the authors
utilized RL for CAC in CDMA networks. In [10], admission
control in cellular networks, and in [17] network slice ad-
mission control were formulated as MDP. The network slice
admission control in single domain networks was studied in
[11], [18]. While these works approach the AC problem using
RL, they cannot be applied directly to the ACSF problem since
they consider single domain networks.

In [19], an initial attempt to apply Q-Learning to the
service federation problem was presented. In this paper, we
go beyond by formulating the problem as an MDP to obtain
the optimal solution and we propose a new average-reward
learning algorithm that outperforms Q-Learning under all
evaluated scenarios and whose performance is not as sensitive
to parameter tuning (e.g., discount factor) as Q-learning.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. Assumptions and System Model

In this paper, service federation between a consumer domain
and a provider domain is considered, where as mentioned,
each requested service is a network slice composed of a set
of VNFs and virtual interconnecting links. It is assumed that
in the consumer domain, only one type of the resources (e.g.,
CPU) has a limited capacity LC. The domain offers a set of
services, denoted by Z. Each service type ¢ € Z is specified
by (w;, ;) in the service catalog, where w; is the total amount
of required resources (e.g., the total number of CPU cores) by
all the VNFs of the service type, and r; is the revenue that
the provider gains if it accepts a demand of this type.

For service federation, the provider domain reserved a
resource quota with capacity PC' units, which is agreed in the
federation contract. The contract also specifies the federation
cost ¢;, which is the cost of deploying an instance of service
type ¢ in the provider domain that is paid by the consumer
domain. Demands beyond the capacity PC will be rejected.

Over time, customers request instances of the services.
The load of service type i corresponds to a traffic class
(i, i, wi, 15, @;) where \; and p; are, respectively, the arrival
and departure rates of the demands of the type, which are
assumed to be a Poisson process. Accordingly, each demand
d; of class i is determined by (73, 7§, w;, r;, ¢;) where the 7§
and 75 are the start and end time of the demand, which are
respectively specified by \; and p;.

Upon arrival of §;, the AC should determine in which
domain to deploy the demand or to reject it. To accept
the demand in the consumer domain, w; units of the local
resources are allocated to the demand and r; units of money is
earned. In the case of the federation, the demand is deployed in
the provider domain; so, no resource is consumed in the local
domain and the profit is r; — ¢;. If the demand is rejected, no
resource is used and no revenue is earned.

In ACSF, we assume there is a set D of demands, which
arrive one-by-one. At the arrival time of a demand, AC is
not aware of the future demands and also does not know the
expected life-time of the given demand. The objective is to
find an AC policy that maximizes the average profit, which is

ﬁZ(Z’"ﬁ > (ri—60), ()

i€l 6,eL 6;€F

where £ and F are, respectively, the set of the demands that
are deployed in the local consumer domain and in the federated
provider domain.

B. The MDP Model of ACSF

In this section, under the assumption of knowing A; and p;
Vi € Z, the ACSF problem is formulated as a Markov decision
process. An MDP is a 4-tuple (S, A, P,(s,s'), Rq(s,s))
where S is the set of the states, A is the set of actions, P, (s, s')
is the transition probability from state s to state s’ if the agent
takes action «a in the state s, and R, (s, s") is the reward of the
action a in state s that leads to transition to state s’.

In ACSE, the state of the environment is defined as s =
(l, f,d), where l and f are vectors wherein the i-th element is
the number of active (alive) demands of the class ¢ in the local
consumer domain and in the provider domain, respectively.
Similar to [10], d is a vector whose i-th element is +1 if a
demand of class ¢ arrives, it is —1 if a demand of class ¢ departs
the network, and is 0 otherwise. Let ST = {s| 3 s.t. d[i] =
+1} and similarly S~ = {s|3i s.t. d[{] = —1}; we have
these constrains on the states to make the problem tractable:
i) S =8TUS and ST NS~ = {}. i) State (I, f,0) is
an invalid state as there is not any arrival or departure events.

TABLE I: The Transition Probabilities and Rewards of the MDP

‘ .Cgtl:;:;;er;t ‘ A:S;):Si“ ‘ Next event after this action Next state s’ Transition probability Py (s,s’) ‘ Iie(ws?rs(}) ‘
, f,ei) reject Arrival of a demand of class j L, f,ej) /\(s’)#fhf{(s’) 0
1, f,ei) reject Departure of a demand of class j L, f,—e;) % 0
1, f,ei) accept Arrival of a demand of class j (I+ei f e A(s/)ijM(y) e
1, f,ei) accept Departure of a demand of class j 1+ ei, f,—€j) % -
1, f,ei) federate Arrival of a demand of class j (I, f +eie)) S P—
1, f,ei) federate Departure of a demand of class j (1, f +ei,—ej) % P—
(I, f,—e:) | no_action Arrival of a demand of class j (I—ei f,e)) % % A(s’)j»JM(s/) 0
, f,—e;) | no_action Arrival of a demand of class j (I, f —ei,e)) % % A,(s/)iji}q_(y) 0
1, f,—e) no_action Departure of a demand of class j (I —ei, f,—e;) z[i]lJ[:]f[l] % % 0
(I, f,—es) | no_action | Departure of a demand of class j 1, f—ei,—ej) lmff}[i] % % 0

i1i) State (I, f,d) where i, j s.t. d[i] # 0 and d[j] # 0 is an
invalid state as two events cannot occur at the same timeLv

A(/sl is the set of valid actions in state s. Define LC
and PC' as the current available capacity of resources in the
consumer and provider domains, respectively. For s € ST
where Ji s.t. d[i] = +1, A(s) includes %) reject, ii) accept
only if LC > w;, and 4i7) federate only if PC' > w;. However,
if s € & then the only valid action is an artificial action,
named no_action, since in this case, the agent does not do any
action and a demand departs the system.

As mentioned above, it is assumed that parameters \; and p;
are known and determine the transition rates. In MDP, the tran-
sition probabilities should be derived. According to the theory
of competing exponentials, the probability of a transition in a
state equals to the rate of the transition divided by the total
transition rates in the state. The total transitions rates of state
s=(l,f,d) is A(s) + M(s) where A(s) = >, Ai is the
total arrival rate of demands and M (s) = >, - (L[i] + f[i]) s
is the total departure rate of the demands in the state.

We assume the transition from s to s’ occurs in two steps. At
first, the agent makes a decision that takes place immediately
in the system, i.e., Il or f changes to I’ or f’ before occurring
the next arrival/departure event. Then, in the second step, the
environment brings up a new event, i.e., it changes d to d,
and consequently the system goes from s = (I, f,d) to s’ =
(U, f',d"). Therefore, to compute the transition probability
from s to s, the total transition rates of state s’ should be
used as the rate of the next event depends on I’ and f’.

Let e; be a vector with a 1 in the 7-th element and O in the
others. The transition probabilities and corresponding rewards
are shown in Table I. They are computed as follows. First, we
apply the action in state s that determines I’ and f’, then we
utilize the competing exponentials theorem for the given next
event. For example, the first row in the table is the case that
a new demand of class ¢ arrives, so the state is s = (I, f, e;).
The agent decides to reject it; hence, the reward is 0, I’ =1,
and f’ = f. The next event after the action is the arrival of

IPlease note that the AC only takes an action in states s € S +: however,
we consider states s € S~ in the MDP as these states correspond to the
departure of demands wherein the capacity of the resources changes. These
states are used to facilitate deriving the transition probabilities.

a demand from class j, so the next state s’ is (I, f,e;) with

probability of AT)Aj Ok If the next event is the departure

s’)+M(s’
of a demand of class j, the next state will be s’ = (I, f, —e;);
the rate of this event is (I'[j] + f'[j])u;, which is shown in

the second row of the table.

IV. OPTIMAL PoOLICY BY DYNAMIC PROGRAMMING

Given the MDP model, Dynamic Programming (DP) al-
gorithms, e.g., the Policy Iteration (PI) method, can solve it
and find the optimal policy [7]. The method is depicted in
Algorithm 1, where the parameter 6 determines the precision
and v is the reward discount factor. In the policy iteration loop,
the given policy 7 is evaluated by updating the state values
V' (s) using the transition probabilities and rewards until the
desired precision is achieved; then in the policy improvement
loop, for each state, the old action @ is compared against the
new action obtained from the updated V'(s); if they are not
the same, then these two loops are iterated.

To solve the ACSF problem using the PI algorithm, an
important issue needs to be addressed properly. The optimal
policy found by this algorithm in fact optimizes V'(s), which
is the discounted state values. Therefore, the policy is optimal
with respect to the discount factor . Different values of ~
can/may lead to different policies; e.g., v = 0 implies that the
policy only aims to maximize the one-step/immediate reward
R, (s,s"), which is exactly the greedy policy does.

In ACSF, the objective is to maximize the average profit
defined by (1), which is, indeed, the average reward rather
than the discounted reward optimized by the PI algorithm.
While some DP methods have been proposed in the literature
to find the optimal average reward policy, it is also known that
by v — 1, maximizing the discounted reward approximates the
average reward [20]. So, in the ACSF problem, we set v ~ 1
to approximate the optimal policy.

While the PI algorithm can find the optimal policy, in
most practical circumstances, the arrival and departure rates of
the demands are not known; moreover, the number of states
exponentially grows in terms of |Z|, LC, and PC. Hence, the
DP methods are not practical solutions. We will use them to
obtain the theoretical performance bound for evaluating the
practical solutions presented in the following sections.

Algorithm 1: PI(S, A, Pa, Ra,0,7)

Algorithm 2: Q-Learning(n, m, «, -, €)

1: Arbitrarily initialize V'(s) € R and 7(s) € A(s) Vs € S
2: while 7 is not stable do

3: while A > 6 do > The policy evaluation loop

4 A+0

5 for Vs € S do

6: v V(s)

7: a <+ 7(s)

8: V(s) 3. Pa(s, s')(Ra(s7 s') + ’yV(s'))

9: A <+ max(A, |V (s) —v|)

10: for Vs € S do > The policy improvement loop
11: a 7(s)

12: m(s) argmax, > Pa(s,s')(Ra(s,s") + 7V (s"))
13: if @ # m(s) then

14: stable false

15: return 7w

V. PRACTICAL SOLUTION VIA LEARNING

In this section, RL approaches are applied to the ACSF
problem to deal with the issues of the DP solutions. These
approaches instead of finding the optimal policy by exploiting
the transition probabilities, learn the policy via interaction with
the environment over time; therefore, they need neither the
transition probabilities nor enumerating all the possible states.

A. Q-Learning

Q-Learning is one of the well-known RL algorithms that
use the concept of femporal difference to iteratively solve
the Bellman optimality equations. Details of the algorithm
are depicted in Algorithm 2 [7]. It maintains a table) of
values of each action in each state, denoted by Q[s,a]. At
state s, the agent selects an action which is determined by the
values J[s,.] and the exploration strategy. Then, it observes
the next state s, gets reward R, (s, s’) from the environment,
and consequently updates the Q[s, a] as follows

Qls.a] = (1 - a)Qls.a] + a(Ra(s,5') + ymaxQls', a']),

where « is the learning rate. These interactions take place in
n learning episodes with m number of demands per episode.

The general Q-Learning algorithm is customized for the
ACSF problem as follows. Action in each state is chosen by
the e-greedy strategy [7]. At the beginning of each episode,
the values of parameters o and e are decayed to rely more
on the learned () values over time. In the beginning, the large
value of a causes the agent to learn faster and the large value
of € allows it to explore more. But later, decreasing these
parameters in subsequent episodes forces the agent to pay
more attention to the () values that it has learned.

Unlike the parameters o and ¢, the proper setting of v is
not straightforward. Similar to PI, v = O turns Q-Learning
to the greedy policy; however, v ~ 1 doesn’t work well
because of bootstrapping where the value of the next state
is overestimated as max, Q[s’,a’]. While v > 0 allows the
agent to consider expected future rewards in decision making,
v — 1 in combination with bootstrapping can cause the
value of ymax, Q[s’,a’] surpasses R,(s,s’) in the value

1: Arbitrarily initialize Q[s,a] € R Vs € S, Va € A(s)

2: for n times do

3: a4+ 0.99q, € < 0.99¢

4: s+ environment state (0,0, d)

5: for m times do

6: a action from A(s) by e-greedy strategy

7: Action a is performed by the environment

8: s',Ra(s,s’) next state and reward from the environment
9: Qls, a] (l—a)Q[s,a]—‘,—a(Ra(s,s’)—&—’ymaxaf Q[s',a'])
10: s+ &
11: w(s) argmax,Q[s,a] Vs €S
12: return

update equation; and consequently, the agent underestimates
the importance of the immediate rewards. In ACSF, it implies
that while Raccept(s,s’) > Riederate(s,s’), the agent may
prefer federate instead of accept. This is problematic in the
case of LC > > .. (Ni/pi)w; where the optimal action is
accept Vs € ST; but the Q-Learning policy incorrectly selects
federate for some states that leads to a sub-optimal policy. The
effect of ~ is evaluated in Section VI.

B. R-Learning

In this section, to resolve the issue of the discount factor,
which is needed in Q-Learning, we apply average reward RL
to the ACSF problem, where the agent directly maximizes the
average reward instead of the discounted reward [21].

The R-Learning algorithm is one of the average reward
RL solutions [20]. The details of the algorithm are shown in
Algorithm 3. Due to the similarities between the Q-Learning
and R-Learning algorithms, we omit the explanation of the
common steps and only emphasize the differences. Contrary
to the Q-Learning, the state-action values, Q[s, a], are not the
expected discounted reward. The key idea of the R-Learning
algorithm is that in the infinite horizon and ergodic MDPs,
the average reward, which is denoted by p in the algorithm, is
independent of the state. Therefore, the algorithm by Q[s, a]
keeps tracking the difference between p and the expected
average reward of action a in state s. The Q[s,a] value is
updated according to the difference between the expected
average reward p and the immediate reward R, (s, s’) and also
the value of the next state as follows:

Q[s,a] (1—a)Qls,d] —i—oz((Ra(g, s')—p) +H}3XQ[S/’ a/])

Since the average reward is not known at the beginning, the
algorithm also learns it. As seen in line 12, p is updated by the
learning rate /3. The conditional update is to avoid the skews
made due to randomness of the exploration strategy [20].

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the RL ap-
proaches in comparison to the greedy policy, where the default
action is accept; and federate is taken only if the consumer do-
main has not sufficient resources. The metrics are the average
profit (1), and the optimality gap (APpp — APay)/APpp,

Algorithm 3: R-Learning(n, m, «, (3, €)

1: Arbitrarily initialize Q[s,al € RVs € S, Va € A(s),p 0
2: for n times do
30 a+ 099, € < 0.99, 5+ 0.998

4: s environment state (0,0, d)

5: for m times do

6: a action from A(s) by e-greedy strategy

7: Action a is performed by the environment

8: s',Rq(s,s’) next state and reward from the environment

o Qlsal (1-a)Qls.al + o (Rals.) — p) +
max, Q[s’, a'])

10: if Q[s, a] = max, Q(s,a) then

1: p (1= o+ B(Rals,s) - max, Qfs,a] +

max, Q[s’, a’])
12: s« s
13: 7(s) argmax,Q[s,a] Vs €S

14: return 7w

TABLE II: The Default Simulation Settings
‘LC‘PC‘)\I‘Nl‘wl‘Tl ‘¢1‘/\2‘M2‘w2‘T2‘¢2‘
[30 [20 [1I0] 4] 2 [100][30] 5]05] 4 [20] 5 |

where AP, is the average profit of the given algorithm. In
the following, the effect of the capacity of the local and the
provider domains and also the impact of the federation cost
are investigated. In these simulations, v = 0.99 in PI, and
n = 200, m = 4000, ¢ = 0.9, and o = 5 = 0.9 in the learning
algorithms. The default configuration (if not stated otherwise)
of the domains and traffic classes are shown in Table II. The
following results are the average of 10 experiments.

A. The Effect of the Number of Episodes

The Q-Learning and R-Learning algorithms learn the policy
over time via interaction with the environment. The number
of the episodes determines the length of the learning period.
The performance of the algorithms with respect to the number
of the episodes n is shown in Figures la and 1b.

The results show that after a number of episodes, both Q-
Learning and R-Learning converge. The RL algorithm out-
performs QL not only in terms of optimality gap, which is
less than 2%, but also in terms of the number of episodes
needed to converge. These results also show the dependency
of the performance of Q-Learning on the discount factor . In
this setting, while at the beginning, QL with v = 0.5 performs
better than v = 0.9, finally QL-0.9 converges to a better result.

B. The Effect of the Consumer Domain Capacity

Efficient management of the local resources of the consumer
domain by the AC greatly influences the achievable profit.
Figures 2a and 2b show the performance of the different
policies with respect to the local domain capacity LC'. Our
simulations show the performances of the algorithms with
respect to PC' is similar (omitted due to space limitations).

The performance of the R-Learning algorithm is excellent
independent of LC. When the local domain has not suf-

7 0.25
—— DP
70 et PG --=-- QL-0.9
3= = mage= 0.20
E - ““\,.—:::::::'--' -3 L --+-- QL-0.5
O65 ¢ L m-w” \ —.— RL
o - 0.15{ \
\
ol o \
gso S © =
/
© o« O 0.10 .,
@ 551 —— DP ‘\\ R S
> --=-- QL-0.9 S T
< ~=-- QL-0. 0.051 & TNy —e-—g e gt
50 { --+-- QL-0.5 St * AR
—.-e-—- RL 0.00 T e — g —e—ey
a5
0 50 100 150 200 50 100 150 200

n n
(a) Average Profit (b) Optimality Gap

Fig. 1: The effect of the number of the episodes

70 0.35 —— DP
= 030 —%— {77 QL-0.9
£ --+-- QL-0.5
O 60 0251 v —e— RL
-8 Greedy
0.20
Ss0{ [/ g 2
I / —— DP O o.15
= ; .-
] A N e QL-0.9 0.10] Ty . — 4
2 40 --+-- QL-0.5 JRONETY
—e-— RL 0.05{ _x .
| S (ol ot deip Jyieduis 4
30 Greedy 0.00 il o gD S it o
[20 40 60 80 0 20 40 60 80
LC LC

(a) Average Profit (b) Optimality Gap

Fig. 2: The effect of the capacity of the consumer domain

ficient resource to accept all the offered load, ie., LC' <
> (w;Ai/p;), the intelligent decisions by the RL algorithms
greatly improve the performance in comparison to the greedy
policy. In the case of very large capacities, all demands can
be accepted in the consumer domain, so the greedy algorithm
is also the optimal policy. Again, QL performance is affected
by v and a single ~ is not the best choice for all cases. In
cases of small capacities, large v is better, but in the large
capacities, it should be small.

C. The Effect of the Offered Load

The AC, as the resource manager, should efficiently handle
the offered load. In this section, by scaling the arrival rates
of demands as ¢);, the performance of the algorithms is
investigated. The results are shown in Figures 3a and 3b.

In these results, it is seen that in the case of very small /,
where all demands can be accepted in the consumer domain
as LC > £> (w;\;/u;), the greedy policy performs well.
However, by increasing the offered load, some demands should
be sent to the provider domain or rejected. In these cases, the
learning algorithms outperform the greedy policy by making
smart decisions. Similar to the other results, the RL algorithm
has a near-optimal performance. These results show that the
appropriate value of the discount factor v in Q-Learning also
depends on the offered load.

D. The Effect of the Federation Cost

As mentioned, for each service type 4 that is agreed in the
federation contract, the provider domain charges the consumer
domain an amount ¢; per demand that is deployed in the
provider domain. The AC should take this cost into account.
For example, if the federation cost is very high, the optimal

70 0.30{ —— DP
= SR 025 --=-- QL-0.9
s - - -251 --+--- QL-0.5
O 65 = —.e— RL
a s . 0.20 G
N "——g reedy
9 60 ~ ©
=) - 0.15 P
© —— P . © -~
@ 557 --=-- QL-0.9 0.10{ s e -
> Rt ¥ 4= n--u--"
z --4-- QL-0.5 - -
501 —e RL 0.05 e —
b dntn gtzint il —,— T
Greedy 0.00] == —.—-o
0.5 1.0 15 2.0 0.5 10 15 2.0
? 3

(a) Average Profit (b) Optimality Gap

Fig. 3: The effect of the offered load

0.20
7001 e ~e—e —— v — —— DP
. t* B Ty —-=-- QL-0.9
Eersl N TN ~ 0.15] --+-- QL-0.5
3 SRS N Iy
Q. 65.0 D mBSg a Greedy
) © 0.10
D625(., pp 3
o ---=-- QL-0.9 e u__ e
$ s0.0 0. 0.05 . b h1
Z --+-- QL-0.5 . PP
57.5{ —--— RL <
Greedy f,-"\.-._._ oo g— o8
55.0 0.00
00 05 10 15 20 25 30 00 05 10 15 20 25 30

(a) Average Profit (b) Optimality Gap

Fig. 4: The effect of the federation cost

decision would be to reject the demand. In this section, the
admission control policies are evaluated with respect to the
cost that is scaled (¢;. Figures 4a and 4b show the average
profit and the gap of the policies with respect to (.

These results show that by increasing the federation cost, as
expected, the profits of all policies decrease. The optimality
gap of R-Learning is independent of the scale (that implies it
considers the federation cost properly in the admission control
process. The Q-Learning algorithm attempts to maintain the
gap; however, it does not perform as good as R-Learning. The
optimality gap of the greedy policy increases by enlarging ¢
since the non-optimal decisions by the greedy policy incur
more cost in the case of larger (.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the ACSF problem, where
the admission controller determines the domain to deploy the
service or rejects it in order to maximize the profit considering
the federation cost. The optimal policy under the assumption
of knowing the arrival and departure rates of the demands
was obtained by solving the MDP model of the problem
through the policy iteration algorithm. As practical solutions,
we applied the Q-Learning and R-Learning algorithms to the
problem where the former maximizes the discounted rewards
while the latter attempts to maximize the average reward. The
extensive simulations show the excellent performance of the
R-learning independent of system configuration.

For future work, the next step would be taking into account
the capacity of the intra-domain links in multiple provider
domains context. These extensions will cause the exponential
growth of the state space that needs to be handled by Deep
RL solutions.

ACKNOWLEDGMENT

We thank Andres Garcia-Saavedra for reviewing and pro-
viding feedback on the draft version of the manuscript.

REFERENCES

[1] N. Alliance, “5g end-to-end architecture framework, v3.0.8,” Tech. Rep.,
2019.

[2] E. N. ISG, “Network function virtualisation (nfv): Management and
orchestration: Report on architecture options to support multiple ad-
ministrative domains,” ETSI GR NFV-IFA, vol. 028, 2018.

[3] L. Valcarenghi, B. Martini, K. Antevski, C. Bernardos, G. Landi,
M. Capitani, J. Mangues-Bafalluy, R. Martinez, J. Baranda, I. Pascual,
et al., “A framework for orchestration and federation of 5g services
in a multi-domain scenario,” in Workshop on Experimentation and
Measurements in 5G, pp. 19-24, 2018.

[4] J. Baranda, J. Mangues-Bafalluy, R. Martinez, L. Vettori, K. Antevski,
C. J. Bernardos, and X. Li, “Realizing the network service federation
vision: Enabling automated multidomain orchestration of network ser-
vices,” IEEE Vehicular Technology Magazine, vol. 15, no. 2, pp. 48-57,
2020.

[S] M. O. Ojijo and O. E. Falowo, “A survey on slice admission control
strategies and optimization schemes in 5g network,” IEEE Access, vol. 8,
pp. 14977-14990, 2020.

[6] M. E. Morocho-Cayamcela, H. Lee, and W. Lim, “Machine learning for
5g/b5g mobile and wireless communications: Potential, limitations, and
future directions,” IEEE Access, vol. 7, pp. 137184-137206, 2019.

[7]1 R.S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[8] H. Tong and T. X. Brown, “Adaptive call admission control under quality
of service constraints: a reinforcement learning solution,” /EEE Journal
on selected Areas in Communications, vol. 18, no. 2, pp. 209-221, 2000.

[9] D. Liu, Y. Zhang, and H. Zhang, “A self-learning call admission
control scheme for cdma cellular networks,” IEEE transactions on neural
networks, vol. 16, no. 5, pp. 1219-1228, 2005.

[10] C. C. Wu and D. P. Bertsekas, “Admission control for wireless net-
works,” IEEE Transactions on Vehicular Technology, vol. 50, pp. 504—
514, 2001.

[11] P. Caballero, A. Banchs, G. De Veciana, X. Costa-Pérez, and A. Azcorra,
“Network slicing for guaranteed rate services: Admission control and
resource allocation games,” IEEE Transactions on Wireless Communi-
cations, vol. 17, no. 10, pp. 6419-6432, 2018.

[12] G. Sun, Y. Li, D. Liao, and V. Chang, “Service function chain orches-
tration across multiple domains: A full mesh aggregation approach,”
1IEEE Transactions on Network and Service Management, vol. 15, no. 3,
pp. 1175-1191, 2018.

[13] G. Sun, Y. Li, H. Yu, A. V. Vasilakos, X. Du, and M. Guizani, “Energy-
efficient and traffic-aware service function chaining orchestration in
multi-domain networks,” Future Generation Computer Systems, vol. 91,
pp. 347-360, 2019.

[14] X. Li, J. Mangues-Bafalluy, I. Pascual, G. Landi, F. Moscatelli, K. An-
tevski, C. J. Bernardos, L. Valcarenghi, B. Martini, C. F. Chiasserini,
et al., “Service orchestration and federation for verticals,” in [EEE
WCNC Workshops, pp. 260-265, 2018.

[15] H2020 5G-TRANSFORMER, “5g mobile transport platform for verti-
cals.” http://5g-transformer.eu/. Accessed: 2020-12-06.

[16] A. Pietrabissa, “A reinforcement learning approach to call admission and
call dropping control in links with variable capacity,” European Journal
of Control, vol. 17, no. 1, pp. 89-101, 2011.

[17] B. Han, D. Feng, and H. D. Schotten, “A markov model of slice
admission control,” IEEE Networking Letters, vol. 1, no. 1, 2018.

[18] M. R. Raza, C. Natalino, P. Ohlen, L. Wosinska, and P. Monti, “A slice
admission policy based on reinforcement learning for a 5g flexible ran,”
in European Conference on Optical Communication, pp. 1-3, 2018.

[19] K. Antevski, J. Martin-Pérez, A. Garcia-Saavedra, C. J. Bernardos, X. Li,
J. Baranda, J. Mangues-Bafalluy, R. Martnez, and L. Vettori, “A g-
learning strategy for federation of 5g services,” in IEEE ICC, 2020.

[20] A. Schwartz, “A reinforcement learning method for maximizing undis-
counted rewards,” in International conference on machine learning,
pp. 298-305, 1993.

[21] V. Dewanto, G. Dunn, A. Eshragh, M. Gallagher, and F. Roosta,
“Average-reward model-free reinforcement learning: a systematic review
and literature mapping,” arXiv preprint arXiv:2010.08920, 2020.

