
This is a postprint version of the following published document:

Gil, G., Corujo, D. & Pedreiras, P. (7-10 Sept. 2021). 
Cloud native computing for Industry 4.0: Challenges 
and opportunities [proceedings]. 2021 26th IEEE 
International Conference on Emerging Technologies 
and Factory Automation (ETFA), Vasteras, Sweden.

DOI: 10.1109/ETFA45728.2021.9613386

 © 2021 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective 
works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works. 

https://doi.org/10.1109/ETFA45728.2021.9613386


Cloud Native Computing for Industry 4.0:
Challenges and Opportunities

Guilherme Gil12, Daniel Corujo12, Paulo Pedreiras12
,

1Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal
2Instituto de Telecomunicações, Aveiro, Portugal

Abstract—Cloud-based architectures are advantageous in as-
pects such as scalability, reliability and resource utilization
efficiency, to name just a few, thus being considered one of
the pillars of Industry 4.0. However, in this domain, cloud
computing platforms are subject to specific requirements, namely
in what concerns real-time performance, determinism and fault-
tolerance. This paper focuses on cloud native computing, which is
an emerging and promising cloud-computing paradigm, specif-
ically addressing its applicability to real-time systems. Firstly,
it introduces the architecture of cloud native applications, dis-
cussing their principles, potential advantages and challenges.
Then it addresses the opportunities and constraints of such
technologies when applied to industrial real-time systems.

Index Terms—Real-time systems, Industrial Informatics, Cloud
native, Scheduling, Quality-of-Service

I. INTRODUCTION

In recent years cloud computing has been considered one of
the leading IT technologies. Together with Internet of Things
(IoT) and Cyber-physical systems, it provides the means to
digitalize industrial processes, being in the base of what is
nowadays commonly designated as Industry 4.0. Even though
the first cloud platform only appeared in 2002, with the
launching of Amazon Web Services (AWS), the concept of
cloud computing has its origins in 1960, when John McCarthy
suggested that calculations would eventually be performed
in public infrastructures. Nowadays, cloud computing is a
widespread concept, with numerous companies actively using
this technology to provide their services in an increasingly vast
number of sectors [1].

One of cloud computing’s main features is its computation
capabilities [2], as it adopts efficient mechanisms to manage
physical and virtual resources and respond to real-time events
with parallel processing [3]. Furthermore, with the ongoing
development of new and more efficient processors, data can
now be processed faster and in larger volumes. However,
due to it’s heavy reliance on communication links to transmit
information into or from the cloud [4], its rapid growth can
instigate several issues if the underlying networks are not
properly designed to manage the communication.

Over the last years, developers started to employ a new
approach when creating and deploying applications in cloud
environments, know as Cloud Native. With this model, ap-
plications are structured as a collection of several elements

(e.g., microservices) that communicate with each other using
lightweight event-based mechanisms [5]. However, despite be-
ing more efficient than standard cloud computing architectures,
this approach still has the need for always-on components,
requiring at least one container to be continuously running for
each service.

In order to solve this issue, a cloud native development
model known as Serverless computing, has started gaining
popularity in the cloud community. According to this new
model, developers only need to create stateless cloud functions
that react to external events (e.g., HTTP requests) and deploy
them in cloud platforms, thus providing an additional ab-
stract layer. Despite making applications more flexible, Server-
less computing prompts new challenges for cloud providers,
namely regarding resource management and event schedul-
ing for real-time applications. First, serverless workloads are
extremely irregular, as function execution times can vary
from several milliseconds to a few seconds [6]. Additionally,
there is a substantial overhead that stems from container
and function initialization, a phenomenon designated as ”cold
starts” [7]. Current Serverless platforms such as AWS Lambda
and Google Cloud functions do not include mechanisms to
handle latency variations in workloads, which makes them
unfitted for real-time applications [8].

Due to the success and wide acceptance of cloud computing,
several authors already reviewed and studied this technology
[9] [10], and specifically cloud resource management [11]
[12]. Microservice based applications [13] [14] and con-
tainerization management was also addressed by others [15].
Nevertheless, there is still a lack of scientific contributions that
review cloud native Serverless architectures that guarantee the
requirements imposed by industrial real-time systems. Hence,
this work provides a study of several cloud-based mechanisms
that strive to provide such features, focusing specifically on
resource management and scheduling.

The remainder of this document is structured as follows.
Section II introduces the main cloud computing and cloud
native concepts. Section III presents an overview of scientific
contributions that address real-time features of cloud platforms
and services, summarizing the most relevant challenges that
must be addressed in order to allow the adoption of these
technologies in the scope of industrial applications. Lastly,
Section IV presents this work’s conclusions.

1



Fig. 1. Differences between the resource models of three cloud paradigms:
a) virtual machines; b) microservices; c) Serverless, when developing cloud
applications.

II. BACKGROUND

This section briefly reviews basic concepts about cloud
computing technologies, essential for the scope of this work.

A. Cloud Computing

Cloud computing is a technology where developers transfer
their data and applications to the cloud, which can then be
globally accessed through Internet services. According to the
NIST definition of Cloud computing, IT resources are provided
to consumers through three different service models [16]:

• Infrastructure as a Service (IaaS): cloud providers
supply physical and virtual IT resources (e.g., computing,
storage and memory) to cloud consumers;

• Platform as a Service (PaaS): cloud providers provide
cloud platforms where consumers can deploy their ap-
plications and utilize ready-to-use services. Consumers
cannot control the underlying infrastructure and nor its
operating system;

• Software as a Service (SaaS): offers applications running
in cloud environments while hiding the underlying infras-
tructure. Consumers have no control over this infrastruc-
ture and most of the provided software (e.g., Office 365).

Figure 1 depicts an overview of different resource models
used in cloud-based applications. Initially, these were deployed
in bare metal server infrastructures. Machine virtualization
eventually emerged, providing a more efficient means of
handling physical resources. However, each virtual machine
would still need an operating system image, adding memory
overhead and increasing the overall system complexity. With
the development of containerization and microservices, virtual
machines were quickly dropped, as these new approaches were
lighter and easier to manage. Finally, Serverless computing
emerged, allowing developers to make better use of virtual
resources. With a new scale-to-zero strategy, container units
only execute if they have requests to process and only for the
amount of time it takes to handle them [17].

B. Cloud native: Microservices vs Serverless computing

Generally, cloud-native applications comprise a set of com-
ponents known as microservices. These microservices are
deployed in self-contained deployment units (i.e., containers)

Fig. 2. General architecture for Serverless platforms (adapted from [14] [19]
[20]).

[17]. This approach is more lightweight when compared to
conventional virtual machines [14], however, it still had the
issue that existed in standard cloud computing of always-
on components while, at the same time, inciting additional
challenges related to the deployment and scalability of each
microservice. A new cloud-native model named Function-as-
a-Service (FaaS), or Serverless computing, was proposed as
a means to solve these problems. In [18] the authors state
that, in Serverless computing, applications are deployed in
event-triggered containers that may only activate once and are
managed by a third party. While in SaaS, developers have no
control over the cloud infrastructure, in FaaS, users have to
deal with the logic of their applications using cloud functions.

Serverless applications rely on an event-based communi-
cation system, which forces deployment platforms to include
mechanisms to manage and process these events as quickly
as possible while guaranteeing scalability and fault tolerance.
Serverless platforms may vary on the type of workflow em-
ployed. Usually, these comprise an event queue to store events,
a dispatcher unit for scheduling and resource management,
and workers (computational units where functions execute)
(Figure 2). Regarding the events themselves, these can be, for
example, HTTP requests, messages, emails, and so forth. Ex-
amples of current Serverless platforms include AWS lambda,
OpenWhisk. Marbot is an example of a serverless application
used by Slack to communicate with Amazon Web Services.

Serverless platforms provide several benefits. From a con-
sumer perspective, it reduces implementation and maintenance
constraints as developers are now only responsible for creating
the applications’ code, thus shortening lead times. There are
also fewer risks of resource misusage when scaling applica-
tions and higher flexibility with auto-scaling services [18].
However, no technology comes without its limitations, and
Serverless computing is no exception. The main issues in
Serverless platforms are related to latency constraints between
inter-component communications and ”cold starts”. Moreover,
there is also a lack of control over the deployed cloud infras-
tructure that is managed by third parties, security difficulties,
testing complexity, and raises vendor lock-in situations [18].

III. CLOUD TECHNOLOGIES FOR REAL-TIME SYSTEMS

With the introduction of Industry 4.0 and the corresponding
massive digitalization of industrial processes, cloud computing
provides the means for computational systems and sensors to
be logically integrated, creating opportunities for new services,

2



a concept known as Cloud of Things (CoT). However, in
order to meet the requirements of industrial applications, these
systems require complex architectures with specific mecha-
nisms for resource provisioning and real-time computations
and communications. Consequently, by taking advantage of the
modular structure of cloud native applications, developers can
now split their systems into several microservices/serverless
functions, where each one can be updated and managed
individually, thus providing flexibility in terms of scalability
and resource provisioning.

According to Varghese and Tandur [21], Industry 4.0 com-
prises three main components: i) The application layer, re-
sponsible for all the automation processes that exist within
the factory; ii) The network layer, which includes network
control and data storage and processing in the cloud, and; iii)
The physical layer, responsible for acquiring and computing
data using sensors and actuators. Despite providing several
benefits to manufacturers, Industry 4.0 also brings several chal-
lenges regarding its supporting infrastructure. For example, the
authors describe the necessity of reliability and longevity in
wireless communications for industrial environments. Other
challenges involve dynamic resource provisioning and fast
(i.e., low latency) communications. Cloud native approaches
can tackle some of these issues and provide additional benefits
to industrial environments. An important advantage of cloud
native is the reliability and fault-tolerance provided by its
architectures. The decomposition of the system into isolated
elements results in errors being contained within a single
component. Furthermore, element replacement/modification is
cost-efficient and effortless, meaning that factories can easily
adapt without being financially constrained. Lastly, with auto-
scaling mechanisms, cloud native architectures provide easier
and faster means for manufacturers to scale their factories
while only requiring the resources to maintain the applications.

A. Resource Management

Several works report different algorithms and architectures
for cloud resource management and scheduling in order to
provide the characteristics required to support real-time appli-
cations. For example, Mangla et al. [11] published a survey
about resource scheduling in cloud environments. Their study
was centered around four features: energy efficiency, vir-
tual machine allocation, cost-effectiveness, and Service-Level
Agreement (SLA). However, to achieve adequate resource pro-
visioning in Serverless architectures, there are some additional
issues to consider. Firstly, Serverless functions can have signif-
icant complexity differences, which vary their resource usage
and compel applications to have specific resource schedulers.
Then, there is also the matter of cold starts which causes severe
latency increments due to the operations executed when a new
function is invoked (i.e., container initialization, setting the
run time environment, and function initialization). A feasible
solution may involve the deployment of more containers
than the assigned concurrency limit. This, however, leads to
inappropriate usage of the available resources.

B. Scheduling in the cloud
Timeliness is one of the core dimensions of Quality-of-

Service (QoS) in real-time systems. Providing suitable and
guaranteed response times to critical tasks, even in peak load
scenarios, is usually achieved through scheduling mechanisms
that prioritize, in this case, certain functions or microservices.
Even though some frameworks support the utilization of
priority queues to handle events [22], these services are rather
simplistic and can lead to lower priority packet losses and high
latency. Thus, some authors proposed QoS-driven scheduling
approaches for the cloud [23] [24].

Current Serverless platforms lack mechanisms to prioritize
stateless functions, as most of them have fairly simple schedul-
ing policies that do not guarantee service-level objectives
(SLOs) [25]. Another issue, already mentioned, that prompts
several scheduling challenges is cold starts. Because most
platforms are reactive, they must wait for a new event to
reuse a worker instance (warm container with function) or
initiate a new one (cold container). This setup time may
vary significantly, depending on the current workload, which
highly impacts the scheduling and response-time of events.
Other problems that stem from the lack of QoS guarantees in
Serverless computing are [26]:

• Incorrect concurrency limits: Defined as the number of
parallel functions operating at the same time, incorrect
concurrency can stem from limits under/overestimate. It
can lead to sudden request drops or resource misusage;

• Mid-chain drops: Occur whenever function invocations
are not being handled. This results, for example, from
exceeding concurrency limits, leading to request drops. It
can lead to resources being wasted on incomplete function
chains or other pressing issues when developers rely on
function chains to complete a service.

• Burst intolerance: Bursts are specific workloads char-
acterized by a continuous reception of requests in short
time windows. If not correctly handled, they can lead to
service delays and packet losses. This type of workload is
hard to manage in Serverless platforms due to cold starts.

C. Discussion
The Cloud Native model is an effective approach to de-

compose complex software applications into smaller and more
manageable parts. This design pattern allows structuring an
application as a set of loosely coupled stateless services,
combined with stateful backing services, being a promising
architecture to handle the increasing complexity of industrial
applications in the context of Industry 4.0.

Despite being widely used by the general public, Server-
less platforms such as AWS Lambda and Microsoft Azure
Functions are not designed to support real-time applications
and require additional scheduling mechanisms. For instance,
AWS Lambda only allows 100 parallel executions per account
[27], which may not be enough to handle burst workloads.
The scientific literature reports several attempts to address
these limitations. Regarding resource management, Serverless
platforms may be extended with a form of monitoring systems

3



[28], which provides real-time information about the current
resource utilization and, based on that information, limit the
utilization or allocate more resources, when required. In order
to solve cold starts, a solution may involve maintaining warm
containers to prevent invocation delays [29]. What concerns
Serverless scheduling, the main objective is to provide better
execution times while minimizing cost. This requires the
adoption of a centralized or decentralized scheduler, together
with specific scheduling algorithms for function prioritization.
Several authors opted for the function’s deadlines as a schedul-
ing policy (e.g., [30]), thus ensuring the system timeliness.

IV. CONCLUSION

Cloud native is gaining momentum in cloud-based tech-
nologies. Its architecture, which fosters a design pattern that
decomposes complex software applications into smaller and
more manageable parts, seems particularly appealing to han-
dle the increasing complexity brought by the Industry 4.0
paradigm. However, the roots of Serverless computing, a
cloud-native model, are not in the industrial world, thus some
aspects must be tackled to enable its use in this scope. Such
challenges include cold start overheads, which can drastically
increase the overall service latency, and unsuitable scheduling
and communication mechanisms, which combined with a
lack of suitable resource management schemes, don’t allow
attaining a deterministic application execution. The literature
reports several contributions that address these issues, though
partially, showing that, with due effort, this emerging paradigm
may eventually be a solid base for the development of indus-
trial applications, bringing advantages with respect to current
approaches in terms of ease of development and deployment,
maintenance, scalability, reliability and security, to name just
a few. Future work includes carrying out a thorough char-
acterization of existing platforms and develop a framework
integrating methods to address the existing limitations, with
the goal of obtaining a cloud native platform able to provide
deterministic services.

ACKNOWLEDGEMENT

This work has been supported by EC H2020 5GPPP
5Growth project (Grant 856709)

REFERENCES

[1] O. Ali, A. Shrestha, J. Soar, and S. F. Wamba, “Cloud computing-
enabled healthcare opportunities, issues, and applications: A systematic
review,” International Journal of Information Management, vol. 43,
no. April, pp. 146–158, 2018.

[2] J. Lee, “A view of cloud computing,” International Journal of Networked
and Distributed Computing, vol. 1, no. 1, pp. 2–8, 2013.

[3] S. Marston, Z. Li, S. Bandyopadhyay, and A. Ghalsasi, “Cloud comput-
ing - The business perspective,” in Proceedings of the Annual Hawaii
International Conference on System Sciences, pp. 1–11, 2011.

[4] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing:
architecture, key technologies, applications and open issues,” Journal of
Network and Computer Applications, vol. 98, pp. 27–42, 2017.

[5] J. Gilbert, Cloud Native Development Patterns and Best Practices. Packt
Publishing, 2018.

[6] A. Singhvi, M. D. Shaikh, K. Houck, S. Venkataraman, A. Balasubra-
manian, and A. Akella, “Archipelago: A scalable low-latency serverless
platform,” arXiv, 2019.

[7] M. Stein, “The Serverless Scheduling Problem and NOAH,” arXiv, 2018.
[8] H. D. Nguyen, C. Zhang, Z. Xiao, and A. A. Chien, “Real-time Server-

less: Enabling application performance guarantees,” in WOSC 2019
- Proceedings of the 2019 5th International Workshop on Serverless
Computing, Part of Middleware 2019, pp. 1–6, 2019.

[9] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: An overview,”
in Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5931
LNCS, pp. 626–631, Springer, Berlin, Heidelberg, 2009.

[10] V. V. Arutyunov, “Cloud computing: Its history of development, modern
state, and future considerations,” Scientific and Technical Information
Processing, vol. 39, no. 3, pp. 173–178, 2012.

[11] N. Mangla, M. Singh, and S. Rana, “Resource Scheduling in Cloud
Environmet: a Survey,” Advances in Science and Technology Research
Journal, vol. 10, no. 30, pp. 38–50, 2016.

[12] R. Weingärtner, G. B. Bräscher, and C. B. Westphall, “Cloud resource
management: A survey on forecasting and profiling models,” Journal of
Network and Computer Applications, vol. 47, pp. 99–106, 2015.

[13] D. Gannon, R. Barga, and N. Sundaresan, “Cloud-Native Applications,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 16–21, 2017.

[14] N. Kratzke, “A brief history of cloud application architectures,” Applied
Sciences (Switzerland), vol. 8, no. 8, pp. 1–26, 2018.

[15] J. Kosińska and K. Zieliński, “Autonomic Management Framework for
Cloud-Native Applications,” Journal of Grid Computing, vol. 18, no. 4,
pp. 779–796, 2020.

[16] P. Mell and T. Grance, “The NIST-National Institute of Standars and
Technology- Definition of Cloud Computing,” NIST Special Publication
800-145, p. 7, 2011.

[17] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud Container
Technologies: a State-of-the-Art Review,” IEEE Transactions on Cloud
Computing, vol. 7, no. 3, pp. 677–692, 2017.

[18] M. Roberts and J. Chapin, “What is Serverless?.” O’Reilly: Sebastopol,
CA, USA, 2016.

[19] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
“Serverless computing: Current trends and open problems,” Research
Advances in Cloud Computing, pp. 1–20, 2017.

[20] M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey on scheduling
strategies for workflows in cloud environment and emerging trends,”
ACM Computing Surveys, vol. 52, no. 4, 2019.

[21] A. Varghese and D. Tandur, “Wireless requirements and challenges
in Industry 4.0,” in Proceedings of 2014 International Conference on
Contemporary Computing and Informatics, IC3I 2014, pp. 634–638,
Institute of Electrical and Electronics Engineers Inc., jan 2014. doi:
10.1109/IC3I.2014.7019732.

[22] “Implementing priority queueing with Amazon DynamoDB — AWS
Database Blog.” Oct. 16, 2019. Accessed on: Jan. 17, 2021. [Online].
Available: https://aws.amazon.com/pt/blogs/database/implementing-
priority-queueing-with-amazon-dynamodb/.

[23] X. Wu, M. Deng, R. Zhang, B. Zeng, and S. Zhou, “A task scheduling
algorithm based on QoS-driven in Cloud Computing,” Procedia Com-
puter Science, vol. 17, pp. 1162–1169, 2013.

[24] G. F. da Silva, F. Brasileiro, R. Lopes, F. Morais, M. Carvalho, and
D. Turull, “QoS-driven scheduling in the cloud,” Journal of Internet
Services and Applications, vol. 11, no. 1, 2020.

[25] S. Shillaker, “A Provider-Friendly Serverless Framework for Latency-
Critical Applications,” in EuroSys Doctoral Workshop (EuroDW),
pp. 10–13, 2018.

[26] A. Tariq, A. Pahl, and E. Rozner, “Sequoia : Enabling Quality-of-Service
in Serverless Computing,” in SoCC ’20: Proceedings of the 11th ACM
Symposium on Cloud Computing, pp. 311–327, 2020.

[27] R. A. P. Rajan, “A review on serverless architectures-Function as a
service (FaaS) in cloud computing,” Telkomnika (Telecommunication
Computing Electronics and Control), vol. 18, no. 1, pp. 530–537, 2020.

[28] Z. Li, Q. Chen, S. Xue, T. Ma, Y. Yang, Z. Song, and M. Guo, “Amoeba:
QoS-Awareness and Reduced Resource Usage of Microservices with
Serverless Computing,” in Proceedings - 2020 IEEE 34th International
Parallel and Distributed Processing Symposium, IPDPS 2020, pp. 399–
408, 2020.

[29] E. Hunhoff, S. Irshad, V. Thurimella, A. Tariq, and E. Rozner, “Proactive
serverless function resource management,” arXiv, pp. 61–66, 2020.

[30] A. Das, A. Leaf, C. A. Varela, and S. Patterson, “Skedulix: Hybrid Cloud
Scheduling for Cost-Efficient Execution of Serverless Applications,”
arXiv, no. iv, 2020.

4




