
This is a postprint version of the following published document:

Zeydan, E., Mangues-Bafalluy, J., Baranda, J.,
Martínez, R. & Vettori, L. (2022). A Multi-criteria
Decision Making Approach for Scaling and Placement
of Virtual Network Functions. Journal of Network and
Systems Management, 30(2), 32.

DOI: 10.1007/s10922-022-09645-9

© The Author(s), under exclusive licence to Springer Science
+Business Media, LLC, part of Springer Nature 2022.

https://doi.org/10.1007/s10922-022-09645-9

Noname manuscript No.
(will be inserted by the editor)

A Multi-Criteria Decision Making Approach for

Scaling and Placement of Virtual Network Functions

Engin Zeydan⋆ · Josep Mangues-Bafalluy ·

Jorge Baranda · Ricardo Martínez · Luca

Vettori

Received: date / Accepted: date

Abstract This paper investigates the joint scaling and placement problem of net-

work services made up of Virtual Network Functions (VNFs) that can be provided

inside a cluster managing multiple Points of Presence (PoPs). Aiming at increasing

the VNF service satisfaction rates and minimizing the deployment cost, we use both

transport and cloud-aware VNF scaling as well as multi-attribute decision making

(MADM) algorithms for VNF placement inside the cluster. The original joint scaling

and placement problem is known to be NP-hard and hence the problem is solved by

separating scaling and placement problems and solving them individually. The exper-

iments are done using a dataset containing the information of a deployed digital-twin

network service. These experiments show that considering transport and cloud pa-

rameters during scaling and placement algorithms perform more efficiently than the

only cloud based or transport based scaling followed by placement algorithms. One

of the MADM algorithms, Total Order Preference By Similarity to the Ideal Solution

(TOPSIS), has shown to yield the lowest deployment cost and highest VNF request

satisfaction rates compared to only transport or cloud scaling and other investigated

⋆ Corresponding author.

Engin Zeydan, Josep Mangues-Bafalluy, Jorge Baranda, Ricardo Martínez, Luca Vettori

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC),

Castelldefels, Barcelona, Spain, 08860.

E-mail: {engin.zeydan, josep.mangues, jbaranda, rmartinez, lvettori}@cttc.cat

2 E. Zeydan et al.

MADM algorithms. Our simulation results indicate that considering both transport

and cloud parameters in various availability scenarios of cloud and transport re-

sources has significant potential to provide increased request satisfaction rates when

VNF scaling and placement using the TOPSIS scheme is performed.

Keywords scaling · orchestration · MADM · VNF · digital-twin · cloud

1 Introduction

Business needs are changing dynamically and becoming more demanding for today’s

network services. People are using applications provided by virtualized network ser-

vices and infrastructure over a wide variety of use cases ranging from low latency to

high throughput applications. Emerging mobile applications such as virtual reality

or autonomous driving demand diversified quality-of-service (QoS). For instance, a

virtual reality application can require Gbps data rate whereas an Internet of Things

(IoT) device demand can be on the order of kbps data rates. Therefore, optimizing

the QoS demands is essential when deploying network services. At the same time

given the scale of applications, it is difficult to predict and manage the traffic to the

applications and services provided by service or network infrastructure providers.

The traffic or load pattern can be in different demand patterns such as bursty,

on/off, seasonal or fast growth. Hence, the deployed service and critical infrastruc-

ture should be flexible and resilient enough in the face of varying load patterns and

against failures which occur frequently in distributed systems. This can handle high

volumes of traffic with high capacity utilization and the application instances should

be able to match the required demands using the proper amount of resources. For

this reason, a scalable solution for an application or service can be beneficial as it

can enable the satisfaction of high loads on machines during peak hours and daytime

and would reduce underutilized servers during off-peak hours during the night time.

The automation of network management can be easily enabled together with

the introduction of Network Function Virtualization (NFV)/Software-Defined Net-

working (SDN) paradigms inside the underlying network infrastructure. At the same

time, containers are making the packaging and orchestration of applications within

Title Suppressed Due to Excessive Length 3

its infrastructure (via Kubernetes, LXC or Mesos) easier. For example, automated

container deployment, scaling, and management platforms, like Kubernetes can man-

age up to 5000 servers in a cluster and 150, 000 pods (containers)1. For this reason,

most of the existing solutions or platforms on Management and Network Orchestra-

tion (MANO) rely on the network flexibility provided by these technologies. On the

other hand, MANO platforms should also rely on intelligent network management

and orchestration algorithms to better automate network operations. For example

for scaling, network services requiring scaling need to be auto-scaled intelligently so

that the Service Level Agreements (SLAs) between the service providers and users

can be satisfied in dynamic environments. In case auto-scaling is not an available

option for network services, a lot of time and manual effort need to be given to pre-

dict the exact traffic demand, provision servers, manage the infrastructure, monitor

and control the deployment cost. Even so, there can be corner cases where network

services can be either under-provisioned or over-provisioned. In under-provisioning

case, the necessary computing and network resources can reject some of the incoming

traffic loads and therefore can detriment the overall network service performance.

In resource over-provisioning case, idle resources can be available resulting in higher

cost for service providers. However, together with the introduction of auto-scaling

feature for network services, several advantages can be obtained. Some of them are

related to managing sudden bursts in traffic (e.g. during festivals, Christmas) grace-

fully, enhancing fault tolerance, availability and cost efficiency of the deployment,

reducing human error and finally instant deployment of new services.

For all these reasons, as the infrastructure grows in volume, complexity, traffic,

etc., MANO systems require auto-scaling capabilities to avoid or minimize SLA vi-

olation by the offered services and in the worst-case scenario avoid their downtime.

At the same time, the scaling must be done in every dimension, geographically, in

number of nodes, in requests per second, in data size, in number of tenants, etc. For

example, auto-scaling mechanisms can be proactively triggered to mitigate the ef-

fects of high demand events to the offered services provided by the infrastructure as

1 https://kubernetes.io/blog/2017/03/scalability-updates-in-kubernetes-1-6/, Accessed:

May-2021

4 E. Zeydan et al.

a whole. In traditional auto-scaling operations, first the relevant information needs

to be collected (central processing unit (CPU) or memory utilization, load average,

queue length, etc) and compared with respect to target utilization values. Later,

whether a need for scaling is determined based on algorithm design. Note that in

some cases, target values may result from a prediction of what a service is expect-

ing in the future. There are various papers that discuss how to predict the future

attributes of services on different scales, e.g. via Machine Learning (ML) in [1] to

predict future NFV requests or forecasting the future evolution of metrics in an NFV

infrastructure as done in [2].

1.1 Related Work

In the literature, there are contributions considering the scaling on transport or

cloud domains and container/Virtual Machines (VMs)2 placement problems as two

distinct topics or combining them together.

In scaling, many of the approaches concentrate on cloud environments and are

still an active area of research. In open source community, the Kubernetes container

orchestration system3 offers mainly three types of scaling:

1. Cluster autoscaling — Adjust the number of worker nodes in the cluster auto-

matically via the Cluster Autoscaler to optimize your nodes’ resources as given

in Fig. 14. Cluster autoscaling mechanism ensures to scale over cluster which can

be geographically distributed, i.e. in different Point of Presences (PoPs). Pods

(smallest deployable units in Kubernetes) are placed according to the available

CPU and memory metrics of each node so that new instances can run without

issues. Therefore, Kubernetes can add more servers to the current cluster in case

cluster autoscaling needs more servers depending on the availability of pending

pods and node utilization metric. More specifically, cluster autoscaling adjusts

2 In the rest of paper, we interchangeably use both containers and VMs when referring to

scaling.
3 https://kubernetes.io/, Accessed: May-2021
4 https://thenewstack.io/kubernetes-deployments-work/, Accessed: May-2021

Title Suppressed Due to Excessive Length 5

the Kubernetes cluster size (i.e. the number of nodes) in case (i) there is pod

failures in the cluster due to insufficient resources, (ii) some pods in the cluster

are underutilized for an extended period of time and their pods can be placed on

other existing nodes.

2. Horizontal pod autoscaling — Adjust the number of pods in your deployment via

the Horizontal Pod Autoscaler based on the pods’ CPU and memory utilization.

In case the current physical host cannot accommodate the updated CPU and

memory requirements, pods will be evicted and a new one will be scheduled. In

this mechanism, the number of replicas deployed increases or decreases depending

on specific observed and target metrics as also outlined in the rest of the paper.

Horizontal scaling can occur either in cluster or in individual microservice level.

In this paper, we assume it occurs in individual microservice level. Additionally,

in cases more replicas are going to be deployed, load balancers are required to

balance the traffic among the replicas so that the observed metrics (e.g. CPU)

can be reduced into desired or targeted values. Horizontal scaling also refers to

scale in/out operation.

3. Vertical pod autoscaling — Adjust the CPU and memory of your pods to meet the

application’s real usage. Vertical scaling also refers to scale up/down operation.

Horizontal scaling is usually more desirable than vertical scaling due to higher

flexibility. However, building a software to scale horizontally is more complex than

vertical scaling. On the other hand, vertical scaling cost increases exponentially after

a certain threshold [3]. Even horizontal scaling can have some limits in CPU and

memory. In that case, it would be preferable either to upgrade the processing power

through vertical scaling or switch to cluster scaling. Microservices based applications

can be scaled in multiple ways since they provide more granular controls over the

application performance than monolithic scaling which are less likely to scale hori-

zontally, i.e. inside the same VM/container. The authors in [4] propose an Integer

Linear Programming (ILP) approach and a greedy heuristic to address this NP-Hard

Virtual Network Function (VNF) scaling problem. They considered both horizontal

(scale out/in) and vertical (scale up/down) scaling and show that together with suc-

6 E. Zeydan et al.

cessful scalings and VNF migrations, more users into the system can be accepted.

The paper in [5] investigates the problem of selecting the most appropriate perfor-

mance metrics to enable more accurate scaling decisions. An enhanced version of

the Kubernetes horizontal pod scaling auto-scaling algorithm is proposed to control

the application response time and to keep it according to service level objectives.

The authors in [6] investigate solutions to control the horizontal and vertical scal-

ability of container-based applications using reinforcement learning RL algorithms.

The results indicate the benefits and flexibility of RL based solutions, especially

the model-based approach, where the best adaptation policy based on user-defined

deployment targets can successfully be learnt.

However, the auto-scaling solutions to scaling problems are either based on rule

or threshold based approaches (e.g. Ceilometer, the monitoring component of Open-

Stack5) considering only simple compute metrics (i.e. CPU, Random Access Memory

(RAM) or storage utilization) while mostly ignoring network measurements or do

not consider placement decisions after scaling. At the same time, Kubernetes is also

working on extending its solutions to accommodate other customized metrics via

Application Programming Interface (API)6. Due to automatic increase or decrease

of the number of computing resources assigned to the application based on the ser-

vice demands at any given time, auto-scaling has been an essential feature provided

by many industrial cloud companies such as Amazon, Google, etc. Serverless and

event-driven cloud platforms such as Cloud Functions7 and Cloud Run8 provided

by Google Inc. enable the creation of highly scalable applications. The main advan-

tage of using serverless cloud platforms is that infrastructure details are left to cloud

providers and application developers only focus on their own application code and let

them auto-scale after deployment. On the other hand, a failure in auto-scaling can

also be costly (e.g. loss of sales for retail) to cloud providers [7]. The authors in [8]

5 OpenStack’s Ceilometer https://docs.openstack.org/ceilometer/latest/, Accessed: May-

2021
6 https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/instrumentation/custom-metrics-api.md, Accessed: May-2021
7 https://cloud.google.com/functions, Accessed: May-2021
8 https://cloud.google.com/run, Accessed: May-2021

Title Suppressed Due to Excessive Length 7

improves Kubernetes default auto-scaling paradigm by considering different metrics

such as memory and number of undelivered messages in the queue. The paper in

[9] experiments horizontal pod auto-scaling of Kubernetes through diverse aspects

such as latency, request processing, cluster size, metric collection, etc. to obtain its

operational behaviours. A hierarchical architecture for controlling the elasticity of

microservice based applications with a Kubernetes extension is studied in [10]. The

authors in [11] propose a Kubernetes scaling engine that makes the auto-scaling

decisions using various machine learning forecast methods.

Fig. 1: Kubernetes deployment for cluster auto-scaling

In placement, many methods with different objectives have been proposed from

the container/VNF placement point of view [12]. Some typical examples are the

minimization of operational cost and service latency [13,12], optimizing the host uti-

lization and the communication cost while considering load balancing [14], jointly

optimizing cloud data center energy usage and resource utilization in [15], balancing

the access, switching and communication delay via access network selection and ser-

vice placement in [16]. Hosting all VNFs on the same host can minimize the cost [13]

while latency minimization can be achieved by replicating VNF instances through

load balancing [12]. The authors in [17] have addressed network aware placement of

virtual computing and data components in data centers. Many of the open-source

8 E. Zeydan et al.

community platforms such as OpenStack or Kubernetes rely on container/service

instance placement in a node within a cluster based on some simplistic metrics such

as CPU or memory of each node. Kubernetes considers this as scheduling process

that is managed by scheduler by which pods are matched to available resources.

Transport-awareness, i.e. network-aware scheduler is shown to decrease the job com-

pletion times of Hadoop clusters in comparison to default scheduler of Hadoop in

[18]. The authors in [19] have defined VNF placement problem as a potential game

to maximize the number of allocated VNF requests with minimum overall deploy-

ment cost. Finally, a summary of VM placement methods that are classified as either

dynamic or static, including their objectives, and their metrics is given in [20,21].

A VM placement algorithm considering their priorities as well as guaranteed band-

width requirements to reduce network congestion is studied in [22]. The authors in

[23] present a multi-objective VM placement scheme that utilizes an Artificial Bee

Colony optimization algorithm for power and network-aware assignment of VMs onto

physical machines to minimize the network traffic between interacting VMs as well

as power dissipation of the data center switches and physical machines.

In joint scaling and placement, the authors in [24] are investigating the dynamic

placement of VNFs after scaling decisions both at edge nodes and cloud data cen-

ters using ML classifier models and obtain low end-to-end latency as well as reduce

latency violations. The authors in [25] address the VNF placement problem with

the goal of minimizing service chain deployment as well as end-to-end latency mini-

mization considering the location requirements. The authors in [26] have considered

auto-scaling services while considering network QoS metrics as well. The authors

in [27] worked on extending the OpenStack scheduler to consider a network-aware

placement of VMs considering ingress and egress bandwidth constraints to nodes

and utilize it via a prototype. However, the performance gains of the approach are

based on “flavour” (the instance type) settings rather than actual measurements and

the benefits are not quantified in large-scale numerical evaluations.

Multiple attribute decision making: Multiple Attribute Decision Making (MADM)/

Multiple Criteria Decision Making (MCDM) algorithms have been extensively used

in the network scenarios to achieve the best trade-off between the alternative choices.

Title Suppressed Due to Excessive Length 9

The authors in [28] provide an investigation of the MCDM-based service selection

methods for web service selection, composition, cloud service selection, and Cloud

Service Provider (CSP) selection. The authors in [29] have applied MADM algorithms

that are also used in this paper for the selection of best network and Device-to-Device

(D2D) communications to exploit the user proximity in crowded environments. The

authors in [30] have done performance evaluation of various MADM-based methods

for best network selection in terms of anytime and anywhere connection. A flexible

hybrid MADM heterogeneous network selection algorithm consisting of fuzzy an-

alytic hierarchy process (FAHP), standard deviation, and Grey relational analysis

(GRA) is proposed in [31] to reduce the number of vertical handovers and ping-pong

effects.

To summarize, traditional cloud auto-scaling solutions do not consider the net-

work requirements of service when scaling and placing the service instances. However,

it is important to consider both network and cloud parameters when deploying com-

posite services and applications with many inter-connecting micro-services where

placement of one service in certain locations may affect the others. In fact, acquiring

and integrating different data sources enables better decision-making and service

experience in many use cases. In comparison to above works in our scaling deci-

sion process, we differentiate transport scaling and cloud scaling and also consider

the application of MADM algorithms for appropriate placement of the scaled VMs.

In case cloud and transport resources are jointly optimized, better decisions have

been made from higher perspectives during network service management. Reduced

network service deployment cost and higher VNF satisfaction rates are some of the

benefits that have been obtained in this paper in comparison to decision making

over limited observations either in cloud or transport domain. To the best of our

knowledge, this is the first transport and cloud parameter aware scaling and VNF

placement method that can be rolled out agilely to improve the overall performance

of the network infrastructure.

10 E. Zeydan et al.

Table 1

Symbols used throughout the paper

Symbol Meaning

K, K number of nodes , Node set

S, S
total number of requests, the set of requests

in the available infrastructure

Sk, Sk
number of request into node-k,

set of requests placed into node-k

F i
k, F i

k

number of NEs used to reach to node-k

for a given request-i , the set of NEs used to

reach to node-k for a given request-i

F the set of all NEs

Bi,f
k,j , Bi,fk,j

number of utilized resources at NE-f after VNF allocation,

the set of resources utilized after VNF allocation

R, R
number of different types of resources,

the type of the resource

bj j-th resource type from Bi,fk,j .

C, Cj

An R-dimensional vector capacities

for R resources , the capacity of bj

di, di(j)
Individual demand vector of request-i,

Demand of request i for resource j.

ci(j)
the resource amount allocated to

request-i for resource j.

P Target number of VMs.

E, Ei(ti)

the set of selected nodes for all the requests,

the selected access technology for the i-th

request at time instant ti

M, M
the multiple attribute set,

number of the multiple attributes

mi i-th attribute of M

wi The weight of each attribute mi

As K ×M decision matrix for a given request s ∈ S

1.2 Contributions

The main goal of this paper is to propose a framework on taking appropriate and in-

telligent scaling and placement decisions and embedding it into network management

and orchestration processes targeting a digital twin service. The proposed method is

mainly divided into four parts: The first part is the auto-scaling in cloud using the

Title Suppressed Due to Excessive Length 11

demands of each VNF and cloud level observations. The second part is the scaling

in transport where transport level requirements can be satisfied either by adding

additional links or path level optimizations (e.g. re-rerouting or upgrading the links’

quality). The third part is the application of the most suitable MADM algorithm for

each scaled container to place them into appropriate nodes in the cluster considering

the trade-off between the service demands and infrastructure level observations. The

last part is the final roll-out of the intended service that satisfy the requirements.

In the rest of the paper, first we formally formulate the joint scaling and place-

ment problem then discuss the difficulties in solving it, and present two separate

heuristic approaches to solve the proposed optimization problem in scaling and

placement domain separately. We also conduct extensive simulations to compare

the performance of the proposed heuristics against simple scaling options which in-

clude either scaling in same node only (i.e. horizontal scaling) or cluster-scaling based

on different placement algorithms in various scenarios depending on the availability

of Enough Cloud Resources (ECR) and Enough Transport Resources (ETR). The

considered metrics are overall deployment cost and VNF satisfaction rates. Simula-

tion results show that a well-structured scaling and placement structure generally

decreases the overall deployment cost. More precisely, the followings are our main

contributions:

– We propose a new architecture and framework which brings together network

management and orchestration planes with Artificial Intelligence (AI)/ML plane.

– Using a digital twin dataset, we jointly utilize transport and cloud resources

(network and cloud aware schedulers for scaling and placement) that can as-

sist in taking effective and intelligent scaling and placement decisions given the

available resources and the demand requirements to satisfy the VNF service re-

quirements in a dynamic manner. During placement decision making process,

proposed methodology aims to reduce the deployment cost while considering dif-

ferent factors in both transport domain (such as latency, throughput) and in

cloud domain (CPU utilization).

12 E. Zeydan et al.

– Our simulation results indicate that considering both transport and cloud pa-

rameters in various resource limited environments has significant potential to

provide increased VNF request satisfaction rates. In particular, when VNF scal-

ing and placement using the TOPSIS scheme (one of the investigated MADM

techniques) is performed, higher improvements and enhancements (low deploy-

ment cost and high VNF satisfaction ratios) to the digital twin service can be

obtained.

The rest of the paper is summarized as follows: Section 2 is presenting the pro-

posed general network architecture for scaling and placement operations in a Service

Orchestrator (SO) as well as the scaling operation workflow. Section 3 presents the

system model and the problem formulation. Section 4 describes the digital twin use

case, the algorithm for proposed cloud and transport aware auto-scaling and summa-

rizes MADM algorithms for the considered node selection problem. Section 5 is pre-

senting the simulation environment, the dataset characteristics, and the evaluation

results and general discussions. Finally Section 6 gives the conclusions. Additionally,

Table 1 provides all symbols and their corresponding definitions used throughout

the paper.

2 General Architecture and Workflow

One of the challenges of building scalable applications and systems is to decide on how

to exchange information between system components while keeping the flexibility of

modifying the interfaces without major impact on the on the overall existing design.

Fig. 2 shows the general diagram of the proposed 5Growth 5G-enabled Growth in

Vertical Industries9 architecture operating scaling and placement operations in the

SO module. Artificial Intelligence/Machine Learning platform (AIMLP) provides a

common API to provide services for 5growth stack namely Vertical Slicer (VS), SO,

Resource Layer (RL) and Vertical Oriented monitoring system (VoMS) as detailed

in 5Growth project, hence no need for individual interfaces to each of them in case

9 https://5growth.eu/, Accessed: September-2021

Title Suppressed Due to Excessive Length 13

AI/ML-aided operations are needed. Fig. 2 also marks the data producers and con-

sumers at each module of the 5Growth stack. VoMS acts as the producer to AIMLP as

well as consumer to 5Growth infrastructure where all network devices produce data

into. AIMLP and 5Growth stack act as the consumers. According to this 5growth ar-

chitecture, which is based on the European Telecommunications Standards Institute

(ETSI) NFV architecture and specifications, the AIMLP performs model training,

while other building blocks, e.g. VS, SO orRL are responsible for the ML inference

tasks [32]. For AI/ML activities, 5Growth stack components rely on i) the available

VoMS, which is the block of the 5Growth architecture in charge of collecting mon-

itoring data from deployed network services and Network Function Virtualization

Infrastructure (NFVI); and ii) the integrated data engineering pipeline in charge of

data ingestion, data processing, analysis, visualization, and data management.

Fig. 2: 5Growth architecture with scaling and placement operations in Service Or-

chestrator.

In case ML model based solution is preferred, during AI/ML-based VNF scaling

and placement operations, together with the existence of a new information element

(IE) extending the ETSI NFV-IFA 014 Network Service Descriptor (NSD) template,

14 E. Zeydan et al.

the 5Growth SO which is in charge of the lifecycle management of network services,

is evolved to coordinate the process. This new IE is used to express the need of

interaction with the AIMLP to configure AI/ML-based decisions for a given MANO

problem (in this case “scaling”) and specifies the metrics out of the ones already

defined for this kind of network service in the NSD field ”monitoredInfo” required

by this AI/ML problem to perform its decisions. Based on some contextual informa-

tion and the required monitoring information, the 5Growth SO launches an inference

job which will decide the best instantiation level in the current network conditions,

triggering the scaling operation if the decided instantiation level does not coincide

with the current instantiation level. A complete description of the architectural evo-

lution of the 5Growth SO and its operational workflow to support the scaling-based

operation is in [32]. As an example usage of the architecture of Fig. 2, the general

flow of scaling and placement is as follows:

1. Connect to and ingest data from VoMS, The scaling process starts with

collecting the necessary measurements from the underlying system. The Virtual

Infrastructure Manager (VIM) at the 5Growth RL sends data to 5Growth VoMS

regarding radio access network (RAN)/Edge infrastructure that consists of the

domain specific network metrics and measurements. Some of the examples of

such data are CPU or I/O load, memory consumption, application specific met-

rics (number of served users, caching memory, thread queue depth, etc). Those

standard metrics are provided by NFVI or embedded platform or from stan-

dard templates. Interfaces used to collect relevant data are So-Mo (NorthBound

Interface (NBI)) for SO and Rl-Mo (NBI) for 5Growth RL. Several tools and

options are available for data collection and ingestion purposes. For data connec-

tion Kafka connect, HTTP APIs and for data ingestion purposes Apache Kafka,

Apache Pulsar, Spark Streaming or Flink Data Streams can be utilized. Some ex-

amples of underlying infrastructure related observations from 5Growth SO point

of view are:

– CPU resources: Allocated CPU Capacity, Available CPU Capacity, Re-

served CPU Capacity, Total CPU Capacity,

Title Suppressed Due to Excessive Length 15

– Memory resources: Allocated Memory Capacity, Available Memory Ca-

pacity, Reserved Memory Capacity, Total Memory Capacity,

– Storage resources: Allocated Storage Capacity, Available Storage Capacity,

Reserved Storage Capacity, Total Storage Capacity,

2. Provide data to AIMLP via general APIs: The data that needs to be

aggregated from multiple data sources are consumed by the AIMLP based on

the topic name subscription. Obtaining the training dataset to be used to build

ML models and necessary hyper-parameters to fine-tune the selected algorithm

are done in this step inside AIMLP.

3. Train ML models: In case ML model based solution is preferred, the histori-

cally collected data with labels are used for training to obtain a ML model. For

example, labelled data can be used to obtain a random-forest-classifier model

which can later be used by real-time collected data for inference purposes [32,33]

as outlined in next steps.

4. Retrieve Trained Model through REST-API interfaces So-AI interface

for SO and Rl-AI interface for RL are used to download the trained model by

communication with AIMLP via REST-APIs. An archive file (e.g. a pre-built jar

file) that includes the binary versions of the algorithm and the relevant infor-

mation to acquire related measurement data, e.g. a topic name, can be gathered

from a common message queue that is present between the AIMLP and the SO.

5. Auto-scaling Algorithms: In case algorithm based approach is selected for

scaling and placement, AIMLP calculates the scaling decisions based on the out-

come of the algorithm and also executes the placement algorithms to select the

best location of the scaled VNF. For example as described in sections below, a

cloud scaling algorithm can be used to determine the required number of VMs

for scaling and a MADM based algorithm can be used to select the optimal nodes

based on the demands and the availability of resources in the cluster.

6. Retrieve real-time monitoring data from the VoMS for continuous

evaluations: The scaling and placement algorithm subscribes to relevant inter-

nal messages received from the message queue component of VoMS and applies

scaling algorithms that may trigger autonomous scaling or suggest scaling ac-

16 E. Zeydan et al.

tions as well execute the placement algorithms to select the best available VM

locations. In this step, periodically a streaming job running on 5Growth SO in-

gests the real-time monitoring data requested from the data ingestion module.

In case ML model based solution is selected, it performs real-time inference over

the trained model using this data. In case auto-scaling and placement algorithm

based solution is selected, it executes the logic of algorithm. Later, it notifies

the result (i.e., the best scaling decision given the current context or number of

instances to remove or add, etc. as well as the best locations) to the 5Growth

SO.

7. Scaling and placement decision: The 5Growth SO checks the notification, and

if triggering the scaling and placement operation is ordered to service lifecycle

management system, performs it through the southbound interface of the 5Gr-

SO. The scaling and placement order can be either simple “scale service” type of

operation where the fixed scaling step is connected to VNF Descriptor (VNFD)

template or more complex one where the ML/AI algorithm decides how many

instance of a particular VNF, service chain component or service need to be

added or removed at selected locations. The scaling and placement decisions in-

side the clusters are provisioned if existing VMs fail to schedule on any existing

nodes due to insufficient available resources. For this reason, adding a new node

with the same specifications to the current one can redistribute the load in case

the cluster has not reached maximum node count. Note that during scaling de-

cisions, the algorithms should consider the time required for scaling as well as

the rate of change in the capacity. Moreover, the resources and instances can be

heterogeneous which may yield different maximum and instantaneous capacity.

8. Final roll-out: The scalable Virtual Network Function Container (VNFC) at

selected locations can either run as part of a VNF, executing on NFVI, or a Phys-

ical Network Function (PNF) on some infrastructure. The VNF/PNF archive

includes the algorithms and meta-data needed to support scaling and placement

of the VNFC.

Title Suppressed Due to Excessive Length 17

3 System Model and Problem Formulation

3.1 System Model

We consider a joint VNF scaling and placement problem. Our scenario addresses the

need for dynamic allocation of resources and demands for the requested network ser-

vice requirements on the network infrastructure. VNF scaling aims to scale up/down

or in/out depending on the requests and available resources in cloud servers meeting

the compute requirements of the VNF. VNF placement algorithm aims to place the

scaled VNFs with desired requirements of service both in transport (e.g. bandwidth,

latency) and cloud (e.g. CPU, RAM) domains.

Formally, we consider a set of multiple available cloud nodes given by K =

{1, 2, . . . ,K} with K nodes. Let the set of requests in the available infrastructure

is given by S = {1, 2, . . . , S} with S requests. Let Sk ⊂ S be the set of requests

placed into node-k with Sk requests. Also let the set of equipment used to reach to

node-k for a given VNF request-i be given by F i
k = {1, 2, . . . , F i

k} with F i
k equip-

ment where equipment can be edge nodes, cells, storage elements, routers, switches,

gateways, core network elements, etc. Each VNF request can be allocated using

different number of equipment. Moreover, let F = ∪k∈K ∪i∈Sk
F i

k be the set of

all equipment used to reach node-k including node-k ∈ Sk. Let Bi,f
k,j be the set of

resources utilized after VNF allocation at equipment-f ∈ F i
k with Bi,f

k,j resources

where j ∈ R = {1, 2, . . . , R} denotes the type of the resource and R is number of

different types of resources (e.g. CPU, memory and storage available at data centers

of node k, communication bandwidth available at cells and transport networks, link

capacities available at transmission network equipment). To meet the requirements

of transport and cloud network requests, each equipment-f ∈ F i
k can be selected

from a subset of the resources in Bi,f
k,j .

Let us assume that the capacities of R resources are represented by an R-

dimensional vector C where each element Cj represents the capacity of resource

bj ∈ Bi,f
k,j where subscripts k, i and f are suppressed for simplicity and node k ∈ K.

Similarly, the observed metric values are represented by an R-dimensional vector O

18 E. Zeydan et al.

where each element Oj represents the observed value of resource bj ∈ Bi,f
k,j and node

k ∈ K. We denote by di the individual demand vector of VNF request-i ∈ Sk, and

di(j) as the demand of request i ∈ S for resource type j ∈ R after VNF placement.

Similarly, we use ci(j) to denote the resource amount allocated to VNF request-i

∈ Sk for resource type j and c as the resource allocation vector for all request i ∈ S

for resource type j ∈ R. Under the light of these assumptions, we have the following

set of constraints for the VNF scaling problem for 0 ≤ j < R and 0 ≤ i < S,

ci(j) = {0, di(j)}, Cmin
j ≤

S−1∑
i=0

ci(j) ≤ Cmax
j , ∀i ∈ S, ∀j ∈ R. (1)

where Cmax
j and Cmin

j are the maximum and minimum capacities for each resource

type j.

3.2 Problem Formulation

Objective: Our final step is to determine the objective function. The high-level

goal of the scaling operation is maximize the number of allocated VNF requests

of all S VNF requests with minimum overall deployment cost, while considering

various resource type (bandwidth,latency and CPU) costs by judiciously selecting

the appropriate PoPs for each scaled VNFs. Therefore, we are interested in the

minimization of the overall average deployment cost as given by (2). For a given

resource type j, we can quantify the discrepancy for VNF request-i ∈ Sk as di(j)

and ci(j) are not the same that can be treated as the error term that needs to

be minimized. To be able to normalize the soft error terms coming from different

resources (potentially with different domains and support), this term is also divided

by di(j). In summary, this gives us the following optimization problem:

Title Suppressed Due to Excessive Length 19

Problem 1 (Original joint transport and cloud-aware node scaling)

minimize
c

S∑
i=1

R∑
j=1

⌈
βi(j)×

di(j)− ci(j)

di(j)

⌉
, (2)

subject to

ci(j) = {0, di(j)}, 0 ≤ j < R, 0 ≤ i < S, (3)

Cmin
j ≤

S−1∑
i=0

ci(j) ≤ Cmax
j , 0 ≤ j < R, (4)

βi(j) ∈ {0, 1}, i = 1, 2, . . . , S, j = 1, 2, . . . , R (5)

in which the ceiling function is used to map soft information to hard decisions “0”

for satisfied and “1” for unsatisfied states and βi(j) is zero for transport network

resources when all nodes are inside the same region (PoP), i.e. no transport domain

parameters are used for j ∈ R and i ∈ S else it is 1. Note that if the scaling decision

is not precise, it can increase the SLA violations, which increases the deployment

cost and also reduces the VNF request satisfaction rate. Then, the demand di(j) is

called satisfied if it is equal to ci(j). Then VNF average request satisfaction ratio

can be defined for the set of all requests as:

η(S) = 1

S

∑
i∈S

∏
j∈R

1 {(di(j) = ci(j))} (6)

where 1 {...} is the indicator function which takes 1 if the statement holds and 0

otherwise.

Note that in the above formulation, we assume that the demands for each re-

source are known apriori. However, it is also worth mentioning that sometimes the

demand for one resource is known apriori whereas a model can be used to predict

the demand for another resource. For example, it is sometimes easy to predict that

the incoming traffic would be higher during a specific event, but it is hard to foresee

the consequences on CPU usage and memory. As it is previously described in the

5Growth platform, all requests are assumed to be known precisely the resources that

they need. However, it is also possible to accommodate requests that only demand

some specific resources and the others are inferred from past experiences using the

models in and interaction with the AI/ML platform.

20 E. Zeydan et al.

3.3 Computational Complexity

This section analyzes the computational complexity of the considered problem. It is

shown in [34] that even the simple case when requests consist of only one VNF, each

request is compatible with every cloud data center and bandwidth is disregarded,

the problem is strongly NP-hard. One solution to the considered problem would be

to enumerate all possible joint scaling and placement options, which is challenging

because the number of possible scaling and placement options exhibits exponential

growth. In the case of placement, to compute (2), a centralized agent need to evaluate

the total network cost for KS possible request vector combinations where K is the

total number of nodes available after scaling in cloud to place each scaled VM and

S is the number of requests. For example, for a simplistic network size with K = 2

available nodes when S = 100 requests arrive, the search space is 2100 strategy

profiles. Consequently, finding the centralized VM placement is cumbersome in large-

scale networks.

The other solution is to figure out the cost of each scaling and placement options.

This part cannot be directly decomposed into smaller problems. Given its hardness,

to alleviate the complexity problem while maintaining good performance results and

cope with the complexity of the huge state space accompanied with the optimization

problem, in the following sections we divide the problem into corresponding sub-

problems (first solving scaling problem and later the placement problem) and devise

an algorithm to solve them heuristically or approximately in an iterative manner

that considers both transport and cloud parameters.

4 Algorithm Development for a Digital Twin use case

4.1 Digital Twin Use Case

Various services have different transport and cloud requirements depending on whether

they are customized applications that are compute-intensive, latency-sensitive or

both. For example, Augmented Reality (AR)/ Virtual Reality (VR) and gaming

applications demand high throughput rather than reliability, whereas e-health and

Title Suppressed Due to Excessive Length 21

vehicles may need reliability and stability rather than high throughput connectivity.

VPN-as-a-Service are both latency and bandwidth sensitive. Intrusion detection sys-

tems are compute-intensive whereas distributed DNS services are latency-sensitive

[26]. Some types of VNF (e.g. firewall or video codec [35]) can also demand different

bandwidth for inflow and outflow traffics, respectively. In this paper, we consider a

digital twin use case which has cloud (CPU) and transport (bandwidth, latency) do-

main requirements. Digital twin is essentially a virtual representation of something

which exists in the real world as physical assets, processes, people, places, systems

and devices connected in real-time thanks to continuous data streaming. It is created

and maintained to answer questions about the physical counterpart of a physical as-

set, i.e. its physical twin in a near real-time setting. For Industry 4.0 applications,

such replicas can provide a new layer of engineering insight to improve the product

performance and advance the existing ones to the next generation version.

The experimented single robot digital twin stack consists of two components

(edge server and robot manipulator) and three VNFs as given in Fig. 3. Edge server

(consisting of one VNF with digital twin app and interface layers and the third

VNF that contains the motion planning and control layers) and robot manipulator

(consisting of one VNF that contains the robot drivers.) Robot driver VNF receives

navigation commands from the motion planning and control. Robot driver VNF

directly interacts with robot hardware and ensures receiving navigation commands

from motion planning and control at the edge of network and stream sensor data

(mainly robot joint states) to edge server. Motion planning and control layer at the

edge network has two sub-layers. Control layer receives navigation commands, runs

a control loop following a given frequency towards the robot drivers and receives

robot operational states. Motion planning layer ensures finding inverse kinematics

and building a path for the robot that consists of a series of navigation commands

sent from control layer. The commands are also validated before the robot is able to

execute them. Finally, the digital twin application implements 3D models to represent

the virtual model of the physical robot while offering remote control mechanisms.

22 E. Zeydan et al.

More details about the digital twin application of the utilized experiment can be

found in [36] and European 5GPPP project H2020 5G-DIVE website10-2021.

We assume that a digital twin motion planning control application in which

adding more end-robots requires scaling in cloud and also in transport networks to

serve better the motion control of those additional robots. This is because that layer

is introducing constraints regarding the latency and resources (mainly CPU and

RAM). Therefore, we assume the scaling problem of the most demanding latency

requirements instance of motion planning layer of the digital twin service described

above. This single VNF is interacting with multiple robots. The placement of scaled

VMs depends on where to place by considering multiple factors, such as network

bandwidth, latency, privacy and security levels, etc. Therefore, the best placement

policy should create a balance between performance and cost. If we have a service

in which scaling may mean adding more computing only whilst maintaining the

transport resources, some of the discussions below would not hold. By default we

assume that when scaling out, the new VM will be deployed in the same PoP as the

original one (if there are resources). Fig. 3 also shows the illustration of scaling out

and up operations in cloud and transport based scaling over multiple potential nodes.

There are four PoPs and each one is labelled based on the condition of cloud and

transport domain parameters as Most Suitable, Less Suitable, Even Less Suitable

and Not Suitable.

4.2 Cloud-aware scaling:

One straightforward example of cloud-aware scaling is similar to an open-source

implementation in Kubernetes. The Kubernetes Horizontal Pod Autoscaler (KHPA)

controller can operate on the ratio between desired metric value and current metric

value11:

dR =

⌈
cR× cMV

dMV

⌉
10 https://5g-dive.eu/, Accessed: September
11 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Title Suppressed Due to Excessive Length 23

Fig. 3: Scaling up and out operations of the motion planning control VNF in cloud

and transport domain over multiple potential nodes.

where dR is desired number of replicas, cR is the current number of replicas, cMV

is the current value of the observed metric (e.g. CPU, RAM), dMV is the desired

value of the observed metric. For example, if cMV = 200m (millicore of CPU) which

corresponds to 20% of CPU utilization, and dMV = 100m, the number of replicas

will be doubled, since 200.0/100.0 == 2.0. If instead cMV = 50m, we’ll halve the

number of replicas, since 50.0/100.0 == 0.5. The scaling is skipped if the ratio is

sufficiently close to 1.0. When a tAV (target average value) or tAU (target average

utilization) is specified, the cMV is computed by taking the average of the given

metric across all pods in the horizontal pod autoscaler’s scale target in a given τ

rolling windowing duration.

Algorithm 1 shows the pseudo code of CA-HVA (Cloud-Aware Horizontal VM

Autoscaling) algorithm utilized in this paper for comparison purposes. The desired

CPU utilization di(j) for j = cpu, and the set of active VMs AVM , deployed

in the previous control period (τ seconds before are taken as input to KHPA and

Cmin
j and Cmax

j are defined as the minimum and maximum capacity of the server

24 E. Zeydan et al.

where the scaling occurs (e.g. the number of VMs to instantiate) for resource type

j = {cpu, ram} [5]. Target number of VMs Pcpu is defined as,

Pcpu =

⌈∑
i∈AV M ci(cpu)

di(cpu)

⌉
(7)

Example: Assume that we have the following desired requirements provided

by the digital twin service: di = (di(cpu),di(ram)) = (50%, 1GB) for a given

request-i. Assume that di(cpu) = 50% (desired CPU utilization) for a given resource

j = cpu, three application replicas are running, and the per-VM CPU utilization

is c1(cpu) = 70%, c2(cpu) = 80% and c3(cpu) = 30%, respectively. At the next

control period, the CA-HVA algorithm determines that a new VM should be deployed

P =
⌈

c1(cpu)+c2(cpu)+c3(cpu)
di(cpu)

⌉
=

⌈
70+80+30

50

⌉
= 4. The load will be distributed

among the Pcpu = 4 VMs and the estimated per-VM utilization becomes ci(j) =∑Pcpu

i=1 (ci(cpu)/Pcpu) = 45%.

Similarly for the RAM analysis, assume that di(ram) = 3GB (desired RAM

utilization), three application replicas are running, and the per-VM RAM utilization

is c1(ram) = 7GB, c2(ram) = 8GB and c3(ram) = 3GB, respectively. At the

next control period, the CA-HVA algorithm determines that a new VM should be

deployed Pram =
⌈

c1(ram)+c2(ram)+c3(ram)
di(ram)

⌉
=

⌈
7+8+3

3

⌉
= 6. The load will be

distributed among the Pram = 6 VMs and the estimated per-VM RAM utilization

becomes ci(j) =
∑P

i=1(ci(ram)/Pram) = 3.

Finally, to calculate the final number of additional links, we take the maximum

of above results, i.e. P = max(Pcpu, Pram) = max(4, 6) = 6 VMs are required to

satisfy the requirements of digital twin service.

4.3 Proposed cloud and transport-aware autoscaling:

We are interested in maximizing the service availability and favor new physical hosts

with the most available resources. After the number of VMs are selected, we need

to check desired transport level parameters observed in SO, i.e. parameters such as

available bandwidth, total bandwidth and network QoS (link cost, link delay), etc.

Note that in case scaled VM instances need to be deployed in different PoPs as a

Title Suppressed Due to Excessive Length 25

Algorithm 1: Cloud-Aware Horizontal VM AutoScaling (CA-HVA) Algo-

rithm
1: Input: di(j), ci(j), AVM , Cmin

j , Cmax
j , ∀i ∈ S, ∀j ∈ R

2: Output: P // Number of scaled VMs

3: while TRUE do

4: Set: Uj = ∅, j ∈ R

5: for i ∈ AVM do

6: Get CPU and RAM Utilization ci(cpu), ci(ram) // Average values of previous

τ sec.

7: Uj = Uj ∪ {ci(j), j ∈ R

8: end for

9: Set: Pj =
⌈
sum(Uj)

di(j)

⌉
, P = max(Pj), j ∈ R

10: if P ≥ Cmax
j then

11: P ← Cmax
j

12: else if P ≤ Cmin
j then

13: P ← Cmin
j

14: end if

wait(τ)

15: end while

result of the decision process, transport related metrics such as latency, bandwidth

will also be impacted at each PoP.

Let E = {E1(t1), . . . , ENO
(tNO

)} denote the set of selected nodes for all the re-

quests based on the values of the multiple attribute set M, where Ei(ti) ∈ E denotes

the selected access technology for the i-th request at time instant ti. The multiple

attribute set is denoted by M = {m1,m2, ...,mM} which consists of elements such

as throughout, average latency of the target node for the given application, CPU

utilization etc. values where D refers to size of the multiple attribute set M. We

define the weight of each attribute mi as wi.

MADM Algorithms for Node Selection: The node selection is subject to com-

putation resource (CPU, RAM) and transport (bandwidth and latency), hence the

location constraints. As the first part of the optimization step in the framework, the

best placement of containers to selected nodes after scaling in cloud is decided based

on MADM algorithms. MADM methods are widely used for making preference deci-

26 E. Zeydan et al.

sions when there are several options and conflicting aspects (attributes) under given

priorities (weights). In the literature, several algorithms are shown to be useful for

ideal placement of a container problem. In the following sections we describe Total

Order Preference By Similarity to the Ideal Solution (TOPSIS) [37,38], simple ad-

ditive weighting (SAW), multiplicative exponent weighting (MEW) [39], GRA [40]

and ELimination and Choice Expressing REality (ELECTRE) [41,42] algorithms.

A good simulator showcasing the outcome of some of MADM algorithms can be

found in this website12 and more details about those MADM algorithms are given

in Appendix A.

A general flow diagram of the proposed scheme is also given in Fig. 4. A summary

of the proposed extended version of the algorithm named as CTA-CVA (Cloud and

Transport Aware Cluster VM Autoscaler) is provided as follows following 7 steps:

0. Check SLA conditions: The service providers or Mobile Network Operators

(MNOs) check whether the SLA conditions are met for the requested demands;

1. Collect: The observations and demands from MNOs and service providers are

collected in this step;

2. If ECR and ETR: There are ECR in original PoP to deploy new VM/or to

scale up ECR as given in YES step-2 of Fig 4(a) as well as ETR towards original

PoP to make the old traffic not be distorted by the new one and to make the

new one reach the new VM without SLA violations as given YES in step-2 of Fig

4(a).

– Scale out: In this case, we simply scale out in the same PoP and “scale” the

transport by adding the new logical link towards the rest of the VNFs of this

same NS placed in other PoPs. We also add load balancers in cloud.

– Scale up: If scaling up transport and cloud is done together, we also need to

add transport resources (e.g. to serve more robots that need digital twins.)

(a) Scaling in Cloud: At the given location, trigger scaling operation using

CA-HVA Algorithm 1,

12 https://decision-radar.com/

Title Suppressed Due to Excessive Length 27

(b) Scaling in Transport: Scaling out/in the number of possible paths

between demanded and all physical nodes based on bandwidth, latency,

etc demands and the available utilization.

3. IF ECR and NOT ETR:

– Scale out: The new VM must be deployed in another PoP and a new Logical

Link (LL) towards that PoP is selected and connected to the rest of PoPs with

VNFs of this service. If the original VNF and the new one must be connected

and not ETR are available for this communication, the scaling operation is

not possible.

– Scale up: In the scale up example, this would imply a migration of the VMs

(and scaling up) to a new location with ECR and ETR, removal of old LL to

old PoP and setting up the new LL to the new PoP.

(a) Scaling in Cloud: Similar to step-2.

(b) Scaling in Transport: Similar to step-2.

4. IF NOT ECR and ETR:

– Scale out: Deployment of VM in new PoP with ECR and selection of LL to

connect it to rest of VNFs of this service located in other PoPs

– Scale up: Migration of the VM (and scaling up) to new PoP with ECR and

ETR and removal of old LL towards old PoP and set up of new one.

(a) Scaling in Cloud: Similar to step-2.

(b) Scaling in Transport: Similar to step-2.

(c) Place w/MADM: If the remaining resource in node can satisfy the new

required capacity demands after scaling in cloud, go to step 5, else for

the given service observations and demand, run MADM algorithms using

pseudo-code given Algorithm 2 and find a set of neighboring physical

candidate nodes. If node capacity and type constraints are not met, move

to step-2 else go to step-5 to finalize the rollout in infrastructure.;

5. IF NOT ECR and NOT ETR: Exactly the same as case ECR and not ETR

given in step-3.

6. Final roll out of the VMs: to optimal locations inside the infrastructure.

28 E. Zeydan et al.

(a)

(b)

Fig. 4: (a) General diagram of flow of the proposed scheme. (b) Multiple PoP and

Single PoP scaling.

Title Suppressed Due to Excessive Length 29

Algorithm 2: Utilized methodology to run each MADM Algorithms for

given nodes, requests and resource types.

1: Input: E, di(j), ci(j), ∀i ∈ S, ∀j ∈ R ; // Set of nodes to place VMs, demands and

capacities for all requests and resource types

2: Output: e∗(s), ∀s ∈ S ; // Set of selected nodes of VMs best satisfying the

request di

3: for s ∈ 1...S do

4: for i ∈ 1...K do

5: for j ∈ 1...R do

6: if j ∈ {cpu, throughput} then

7: Calculate: aij = Cj −Oj ; // available resources for throughput and

cpu

8: Obtain: aij = aij − di(j)

9: else

10: Calculate: aij = Cj if (Oj ≥ Cj) else Oj ; // available resources for

latency

11: Obtain: aij = 1
|di(j)−aij |

if (di(j) > aij) else di(j)− aij

12: end if

13: end for

14: end for

15: Obtain As = [aij]K×M ; // Build the availability matrix

16: Run MADM algorithms in Section 4.3 for As

17: Find e∗(s) ; // Get the optimum locations for given request and available

resources

18: end for

Note that the above proposed algorithms can either be implemented in a separate

module (e.g. similar to a building block AI/ML outside the 5growth architecture of

Fig. 2) or can be directly embedded as a functionality inside the service orchestrator

(SO) as a new building block as also described in the given architectural figure. For

example, AI/ML-aided scaling algorithms are already trained inside AI/ML building

block and served inside SO in previous works of [43,44,32]. In our proposed archi-

tecture, scaling and placement decisions are taken by algorithms implemented at the

SO level.

30 E. Zeydan et al.

5 Simulation Environment, Dataset Characteristic and Evaluation

Results

We used Python 3.6 to simulate all the studied schemes under evaluation. For imple-

mentation of the MADM algorithms given above, namely SAW, MEW, TOPSIS and

ELECTRE we use PyPI13-2021 and pyDevisions14-2021 libraries. For evaluations,

for PoP-1 we used links with maximum link capacity of 30 GB/s and 1.5 GB/s in

case of ETR and Not ETR cases respectively. We used those selected values to create

resource constraint environments in both cloud and transport domains considering

the VNF requests and the available resources in the simulations. For latency cases,

we used links with a maximum link latency of 1 ms and 100 ms in case of ETR and

Not ETR cases respectively. In cloud, in case of ECR and Not ECR, we assumed 3

and only 1 active CPU cores respectively. For PoP-2 and PoP-3, we selected two and

twenty times of the PoP-1’s maximum link capacities respectively. PoP-2 and PoP-3

are also assumed to have 10 ms and 1 ms maximum link latency values respectively.

One-hop connection assumed between the VNF requester and the server, hence no

new routing opportunities are considered. In cloud, PoP-2 and PoP-3 are assumed

to use 2 and 3 active CPU cores respectively. For comparisons, we use CA-HVA

algorithm given in Algorithm 1 for cloud-based scaling and the methodology given

in Algorithm 2 to select the best nodes after cloud scaling, transport scaling or cloud

and transport scaling depending on the considered scenario.

5.1 Digital Twin Dataset

The goal of the digital twin dataset generation process is to obtain a valid dataset for

VNF scaling and placement of robot manipulator based digital twin service. Results

are obtained within the collaboration of eDge Intelligence for Vertical Experimenta-

tion (5G-DIVE) and 5Growth projects.

Experimental methodology and dataset creation: To find the threshold of the

motion planning and control VNF and knowing that the control frequency of the
13 https://pypi.org/project/mcdm/, Accessed: September
14 https://github.com/Valdecy/pyDecisions, Accessed: September

Title Suppressed Due to Excessive Length 31

robot manipulator is 20 ms, latency threshold for the digital twin service is set to 20

ms. During the first step of the experiments, the number of digital twins that will

disrupt the latency, i.e. exceeding the 20 ms threshold in the Motion planning and

Control layers VNF is investigated. After the threshold that disrupts the latency is

found, the experiment is executed to obtain the the data set. To create the dataset,

a new robot instance is instantiated on every 3600 s. The dataset features consist

of: “timestamp, node, latency, action, CPU, RAM, transmitted bits, received bits,

number of instances”. Each entry is obtained based on the pre-selected time windows.

The action field consists of:

– Move Down is an interface layer interaction via higher control loop where in-

terface layer is a high-level abstraction of the motion planning and control func-

tionality (move down in this case) and can be regarded as a gateway between

the remote operator and physical robot to facilitate their interactions via a set

of APIs,

– Pick is a control layer interaction via smaller control loop, i.e. receiving pick

command and running a control loop following a given frequency towards the

robot drivers,

– Move Up is an interface layer interaction via higher control loop where move

up motion planning functionality is abstracted via interface layer.

– Place is a control layer interaction via smaller control loop where place command

is sent towards robot drivers.

In the generated dataset, the latency of both the control and interface VNFs

are available. They can be distinguished by the action command. “Move Up” and

“Move Down” actions refer to the interface VNF (having a latency around 400 ms)

and “pick” and “place” actions refer to the control VNF (with latency around 40

ms). Fig. 5 shows the heatmap for the number of observations for each instantiated

robot instances. Note that due to real-world experiment observations, the amount of

data collected for each robot instance may vary. From Fig. 5, the maximum amount

of observations are obtained when the number of robot instances was five and the

minimum amount of observations are when the number of robot instances was nine.

32 E. Zeydan et al.

Without loss of generality, in the evaluation results we have used latency and trans-

mitted bits as transport level parameters and CPU level as cloud level parameter

during cloud & transport based auto-scaling and placement decision making process.

(a)

Fig. 5: Heatmap for number of observations for each instantiated robot instances

observed during digital twin experiments.

5.2 Evaluation Results

Requests to PoPs: Fig. 6 shows the boxplot as well as the bar plot of median values

with 95% confidence interval (CI) of observed transmitted bits per second, latency

and CPU versus increasing number of robots in the considered digital twin dataset.

Note that, as a general trend, when the number of robot instances increases, CPU

utilization, latency and transmitted bits per second increase. However as observed in

Fig. 6e, the latency values are slightly lower when we have more than seven numbers

of robot instances. This is in fact due to the low number of real-world observations

especially for robot instances of eight and nine (as observed from Fig. 5). When we

observe the median values’ CI ranges, we can notice that CI ranges are in fact larger

Title Suppressed Due to Excessive Length 33

for the number of robot instances larger than seven. During our experiments, we

have selected the requests from the median values of each robot instance. Therefore,

there are a total of nine distinct randomly selected VNF requests over the considered

observation period.

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Boxplot and barplot with 95% CI for increasing number of robot instances

versus (a) Transmitted bits. (b) CPU (%) (c) Latency (ms).

34 E. Zeydan et al.

Observations at each PoP: In our placement algorithm, the decisions to scale and

place are taken every τ seconds and the values obtained are the rolling averages based

on the observed metrics including CPU and memory status of the container, latency,

transmitted bps, etc. Fig. 7a, Fig. 7b and Fig. 7c show the transmitted bits, CPU

consumption and latency values, respectively. The values are either instantaneous or

window rolling averages over τ = 120 seconds as each robot instances are added over

time. In our analysis, the observations for each server are selected randomly from

the rolling average of each of these transmitted bits, CPU and latency values and a

total of 14793 observations are used.

Fig. 7 fluctuations are instantaneous observed values. Note that the digital twin

application emulates the physical/end side, while utilizing resources at the vir-

tual/computing side. Therefore, as the number of robot instances at the end side

increases (due to the necessity of a higher number of robots), the amount of commu-

nication traffic between the control layer at edge and the robot driver increases as

well. However, this increase is not strictly linear but fluctuates. One of the reasons

for the spikes in Fig. 7 (more clearly visible in CPU consumption) is due to booting

effects, because each time new robot instances are emulated, new processes are ini-

tiated by the system. Note that in our evaluations, we used averaged observations.

Therefore behaviours such as CPU peaks every time a new instance is created as in

Fig. 7b do not have a major effect on the observed metrics such as unsatisfied VNF

requests or deployment cost.

Fig. 8 shows the unsatisfied VNFs request percentages for no scaling, only cloud

scaling, only transport scaling and transport & cloud scaling scenarios for (ECR

and Not ETR), (Not ECR and ETR) and (Not ETR and Not ECR) cases when

only one PoP is utilized, i.e. the case for horizontal or single PoP scaling scenario.

Note that the cost values are calculated based on (6). In the case of (not ECR and

ETR), we can observe that no scaling and only transport scaling cases gives the

same 7.14% unsatisfied request VNF rates out of all considered VNFs requests. The

reason is that in this case, there is ETR but doing only transport scaling does not

reduce the unsatisfaction rates. However, performing only cloud scaling can reduce

the percentage of unsatisfied requests to 3.45%. In cloud & transport scaling, we can

Title Suppressed Due to Excessive Length 35

(a)

(b)

(c)

Fig. 7: Plots for observed values and their moving (window rolling) averaged mean

values with τ = 120 seconds versus time for (a) Transmitted (bits). (b) CPU (Con-

sumption %) (c) Latency (ms).

36 E. Zeydan et al.

Fig. 8: Unsatisfied VNF requests percentages for no scaling, only cloud scaling, only

transport scaling and transport and cloud scaling scenarios for (ECR and Not ETR),

(Not ETR and ECR) and (Not ETR and Not ECR) cases under single PoP scenario.

observe the same 3.45% unsatisfied rate as with only cloud scaling. The reason is

again due to ETR case where additional scaling in transport does not help to reduce

the unsatisfaction ratios.

In the scenario of (ECR and Not ETR) of Fig. 8, as expected no scaling option

gives the highest unsatisfaction ratio of 58.31%. Scaling in cloud only reduces unsat-

isfaction ratio to 56.54% and scaling only in transport further reduces it into 7.46%.

The reason for high VNF unsatisfaction ratios observed in only cloud scaling in (ECR

and not ETR) case is the following. Even though all the cloud based requests are

satisfied thanks to cloud scaling, some of the transport based requests will still be

unsatisfied due to not ETR. Therefore, this can result in higher final unsatisfaction

ratios since final unsatisfaction ratio depends on the satisfaction ratios of both cloud

and transport domains. On the other hand, scaling in both transport & cloud fur-

ther reduces the unsatisfaction ratio to 3.76%. In the scenario of (Not ECR and Not

ETR), similarly no scaling has the highest unsatisfaction ratio (with 58.3%) followed

by cloud only (with 56.52%), transport only (with 7.21%) and cloud & transport

scaling (with 3.52%). Note also that the case of (ECR and ETR) is not shown since

all VNF requests can be satisfied in this scenario. In summary, the results in Fig. 8

indicate that joint cloud & transport scaling can reduce the unsatisfied VNF request

considerably.

Title Suppressed Due to Excessive Length 37

Fig. 9 shows the comparisons of obtained average deployment cost values of

different MADM schemes with (ECR and Not ETR), (Not ECR and ETR) and (Not

ECR and Not ETR) cases where all out of 179848 scaled requests are satisfied (both

in transport and cloud domains after executing) cluster scaling. Note that the cost

values are calculated based on (2) and transport & cloud level scalings are done

before VNF placements. The deployment cost values in Fig. 9 are normalized with

respect to horizontal scaling. In horizontal scaling scheme, no placement of VNFs

are done, hence all new scaled containers remain inside the same server. Therefore,

certain VNF unsatisfaction rates are visible as observed from Fig. 8 previously.

Fig. 9: Average cost of VNF placements using different MADM schemes after cluster

auto-scaling normalized with respect to horizontal scaling in (ECR and Not ETR),

(Not ETR and ECR) and (Not ETR and Not ECR) cases.

Note that in Fig. 9, TOPSIS algorithm yields the lowest cost of 0.41, 0.60 and

0.60 in (ECR and Not ETR), (Not ECR and ETR) and (Not ECR and Not ETR)

cases respectively. This is followed by MEW and GRA algorithms where MEW per-

formance is approximately equal to the performance of TOPSIS in (Not ECR and

Not ETR) and (Not ECR and ETR) cases with slightly higher cost in (ECR and Not

ETR) case. On the other hand, SAW and ELECTRE give higher average deployment

38 E. Zeydan et al.

cost values. More specifically, SAW yields 0, 41, 0.98 and 0.98 average deployment

cost values in (ECR and Not ETR), (Not ECR and ETR) and (Not ECR and Not

ETR) cases respectively. At the same time, using ELECTRE has given the highest

average cost values of 1.04, 2.60 and 2.90 in (ECR and Not ETR), (Not ECR and

ETR) and (Not ECR and Not ETR) cases respectively. These values in ELECTRE

algorithm are equal or worse than the horizontal scaling average deployment cost val-

ues. However, horizontal scaling has 3.52% VNF unsatisfaction ratio as given in Fig.

8. whereas all MADM algorithms that employ VNF cluster scaling and placement

have satisfied all the VNF requests (i.e. has 0% VNF unsatisfaction ratio).

In summary, the above analysis results signify that an appropriate selection of

the MADM algorithm is quite critical as not optimized algorithms (e.g. ELECTRE)

can yield worse performance than simple horizontal scaling with no VNF placing

schema. However, the results indicate the advantage of cluster scaling in terms of

VNF satisfaction ratios (0% VNF unsatifaction ratio) compared to horizontal scaling

(3.52% VNF unsatisfaction ratio) even in the case of higher deployment cost in all

the considered cases (i.e. (ECR and Not ETR), (Not ECR and ETR) and (Not ECR

and Not ETR)).

5.3 Discussion on Evaluation Results

Note that cluster auto-scaling has some advantages in terms of lower deployment

cost and VNF request unsatisfaction ratios. Additional advantages include higher

resilience capability to random hardware failures and outage due to existence of mul-

tiple servers, automatic upgrades in case one server goes down, hence resulting in

low downtime. On the other hand, there are also some disadvantages of cluster auto-

scaling in comparison to horizontal scaling. Cluster auto-scaling has the potential

to create higher data inconsistency due to distributed and cross-server communica-

tion, has higher cost, more required code and can have synchronization challenges.

Therefore, all these considerations should be taken into account when designing the

scaling choice of operations according to observed number of VNF requests.

Title Suppressed Due to Excessive Length 39

The results in Section 5.2 also indicated that the performance of more complex

algorithms such as TOPSIS and GRA can be relatively similar to simple algorithms

(such as MEW) that have lower complexities. However, the performance of simple

algorithms are quite sensitive to variations in the dataset. For this reason, the best

strategy to follow would be first to start investigating the performance of more simple

algorithms such as MEW and SAW and then adjust the parameters according to the

characteristics of the dataset. However, in case the dataset characteristic is variant,

it is better to select more complex and robust algorithms (such as TOPSIS) that

have the potential to give the lowest deployment cost and zero VNF un-satisfaction

rate in all the considered scenarios.

From a computational complexity perspective, TOPSIS algorithm complexity is

in the part of attribute normalization and weighting resulting in O(n2) [45]. On the

other hand, the computational overhead of MEW is shown to be about 7%, 0.8%,

and 3% more than SAW, TOPSIS, and GRA, respectively in certain simulation sce-

narios in [30]. In summary, considering the computation overhead and performance

comparisons, TOPSIS can be considered as one of the most suitable choice of MADM

algorithm in the considered scaling and placement problem.

6 Conclusions

In this paper, we studied the VNF auto-scaling and placement problem inside clus-

ters by considering transport and cloud related parameters during both scaling and

placement decision making process. Our aim was to maximize the number of allocated

VNF requests with minimum overall deployment cost, while considering bandwidth,

latency and CPU costs by judiciously selecting the appropriate PoPs in a given clus-

ter for each scaled version of VNFs. The original joint scaling and placement problem

is known to be NP-hard and hence the problem is solved by separating scaling and

placement problems and solving them individually. To evaluate the effectiveness of

the proposed approach, we first emphasized the influence of scaling in both transport

and cloud by comparing the VNF satisfaction rates. Then, to make experiments with

different numbers of VNF requests, we used the digital twin dataset where addition

40 E. Zeydan et al.

of robot instances and their corresponding cloud and transport parameters are uti-

lized. The analysis results indicated that joint transport and cloud scaling along with

TOPSIS algorithm yield the lowest deployment cost and VNF request unsatisfaction

ratios compared to only transport or cloud scaling and other MADM algorithms.

A Appendix

A.1 TOPSIS

TOPSIS algorithm consists of easy implementation steps. After a decision matrix As =

[aij]K×M is created in the first step for a given request-s ∈ S, a normalized decision ma-

trix Ns = [nij]K×M is formed in the second step (dropping the subscript s here on) as:

nij =
aij√
K∑

k=1
a2kj

. (8)

In the third step, a weighted normalized decision matrix V = [vij]K×M is created by

multiplying each column of the matrix N by a corresponding weight wi as:

vi = wi · ni (9)

where

ni = [n1i, ..., npi]
T , vi = [v1i, ..., vpi]

T , for i = 1, 2, ..,M

In the fourth step, the positive V+ and negative V− solution points are formed as:

V+ =
{
v+1 , v+2 , ..., v+m

}
=

{
max

i
vij |j ∈ {1, 2, ...,M}

}
(10)

V− =
{
v−1 , v−2 , ..., v−m

}
=

{
min
i

vij |j ∈ {1, 2, ...,M}
}

(11)

In the fifth step, the Euclidean distance L+
i of each multiple decision point from the

positive point V+ and the Euclidean distance L−
i of each multiple decision point from the

negative point V+ are calculated as:

L+
i =

√√√√ p∑
j=1

(
vij − v+j

)2
, i = 1, 2, ..,K (12)

L−
i =

√√√√ p∑
j=1

(
vij − v−j

)2
, i = 1, 2, ..,K. (13)

In the next step, the relative similarity of the alternatives from the positive and negative

point is calculated as:

Title Suppressed Due to Excessive Length 41

Ti =
L−
i

L−
i + L+

i

, i = 1, 2, ...,K. (14)

Then, the final solution e∗ (the best node selection for the placement of each containers

that are scaled) is selected as:

e∗ = ei∗ where i∗ = argmax
i

Ti, i = 1, 2, ...,K. (15)

A.2 SAW

SAW algorithm is simple and is the most popular scoring method. In SAW, the score of each

candidate node i is obtained by adding the contributions from each attribute ai,j multiplied

by the weight factors wj . Then, the selected node is

e∗ = ei∗ where i∗ = argmax
i

∑
j

wjai,j , (16)

where ai,j = ai,j/a
+
j for benefit parameters and ai,j = a−j /ai,j for cost parameters and

a+j = max
i

ai,j and a−j = min
i

ai,j .

A.3 MEW

MEW or Weighted Product Model (WPM) is another scoring method where the node scores

are determined based on weighted product of the attributes. The selected node is

e∗ = ei∗ where i∗ = argmax
i

∏
j

a
wj

i,j . (17)

A.4 GRA

GRA algorithm is basically based on building grey relationships between elements of two series

in order to compare each member quantitatively. One of the series consists of best-quality

entities and the other series contains comparative series. If the difference between two series of

the comparative series is low, then it is more preferable. A Grey relational coefficient (GRC) is

defined to be used for describing the relationships between two series and is calculated based

on the level of similarity and variability. GRA algorithm is generally implemented in six steps:

1. Apply classification of the series based on three conditions: larger-the-better, smaller-the-

better and nominal-the-best. In this paper, larger-the-better is selected as the comparison

condition. It is assumed that D series (A1,A2, . . . ,AD) are compared where each series

Ai = [ai,1, ai,2, . . . , ai,M] has M entities.

42 E. Zeydan et al.

2. The upper, lower and moderate bounds of series elements are defined. The upper bound and

lower bound are defined as uj = max{a1,j , a2,j , . . . , aD,j} and lj = min{a1,j , a2,j , . . . , aD,j}

respectively where j = 1, 2, . . . ,M .

3. Normalize the individual entities: Before calculating GRC, the decision matrix A needs to

be normalized. For normalization, following equation is used for larger-the-better condition.

aij =
aij − lj

uj − lj
, (18)

where i = 1, 2, . . . , D.

4. Define the ideal series: A reference series A0 = [a∗0,1, a
∗
0,2, . . . , a

∗
0,M] = [u1, u2, . . . , uM] is

formed which corresponds to ideal solution.

5. Calculate the GRCs: The GRC can be calculated from

Γ0,i =
1

M

M∑
j=1

wj
∆min +∆max

∆i +∆max
, i = 1, 2, . . . , D (19)

where ∆i = |a∗0,j − ai,j |, ∆max = max
i,j

(∆i) and ∆min = max
i,j

(∆i). max
i,j

() and max
i,j

() are

the functions of the maximum and minimum value of a set of numbers with varying i and

j respectively.

6. Select the alternative that has the highest GRC

e∗ = ei∗ where i∗ = argmax
i

Γ0,i. (20)

A.5 ELECTRE

ELECTRE method is based on outranking relation theory and is another method that ana-

lyzes data over the decision metric. When making a decision, the concordance and discordance

indexes are used to measure the amount of dissatisfaction during the decision making process.

After obtaining normalization decision matrix N = [nij]K×M as in (8) and weighted nor-

malized decision matrix V as in (9), the concordance and discordance sets are applied. The

set of criteria is divided into two different subsets. Denote K = {k1, k2, k3, . . . , kK} a finite

set of alternatives. In the following formulation, the data is divided into two different sets of

concordance and discordance. If the alternative k1 is preferred over alternative k2 for all the

criteria, then the concordance set is composed as follows:

C(k1, k2) = {j|vk1j > vk2j}, (k1, k2 = 1, . . . ,M and k1 ̸= k2), (21)

where C(k1, k2) denotes the collection of attributes in which k1 is better than, or equal, to k2.

Then the concordance index of (k1, k2) is defined as:

Ck1,k2
=

∑
j∗

wj , (22)

Title Suppressed Due to Excessive Length 43

where j∗ are the attributes contained in the concordance set C(k1, k2). Similarly the discor-

dance set is defined as:

D(k1, k2) = {j|vk1j < vk2j}, (k1, k2 = 1, . . . ,M and k1 ̸= k2), (23)

The discordance index Dk1,k2
represents the degree of disagreement in k1− > k2 in the

following way:

Dk1,k2
=

∑
j+) |vk1j+

− vk2j+
|∑

j) |vk1j − vk2j |
, (24)

where j+ are the attributes contained in the discordance set D(k1, k2) and vij is the weighted

normalized evaluation of the alternative i on criterion j. This method implies that k1 outranks

k2 when Ck1,k2
≥ Ĉ and, Dk1,k2

≤ D̂ where Ĉ is the averages of Ck1,k2
and D̂ is the averages

of Dk1,k2
.

Conflict of Interest Statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

B Acknowledgements

This work was partially funded by EC H2020 5GPPP 5Growth project (Grant 856709), Span-

ish MINECO grant TEC2017-88373-R (5G-REFINE), Generalitat de Catalunya grant 2017

SGR 1195 and the national program on equipment and scientific and technical infrastructure,

EQC2018-005257-P under the European Regional Development Fund (FEDER). We would

also like to thank Milan Groshev, Carlos Guimarães for providing dataset for scaling of robot

manipulator based digital twin service.

References

1. Alessio Scalingi, Flavio Esposito, Waqar Muhammad, and Antonio Pescapé. Scalable

provisioning of virtual network functions via supervised learning. In 2019 IEEE Conference

on Network Softwarization (NetSoft), pages 423–431. IEEE, 2019.

2. Tommaso Cucinotta, Giacomo Lanciano, Antonio Ritacco, Fabio Brau, Filippo Galli, Vin-

cenzo Iannino, Marco Vannucci, Antonino Artale, Joao Barata, and Enrica Sposato. Fore-

casting operation metrics for virtualized network functions. In 2021 IEEE/ACM 21st

International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages

596–605. IEEE, 2021.

44 E. Zeydan et al.

3. Richard Fox and Wei Hao. Internet infrastructure: networking, web services, and cloud

computing. CRC Press, 2017.

4. Omar Houidi, Oussama Soualah, Wajdi Louati, Marouen Mechtri, Djamal Zeghlache, and

Farouk Kamoun. An efficient algorithm for virtual network function scaling. In GLOBE-

COM 2017-2017 IEEE Global Communications Conference, pages 1–7. IEEE, 2017.

5. Emiliano Casalicchio. A study on performance measures for auto-scaling cpu-intensive

containerized applications. Cluster Computing, 22(3):995–1006, 2019.

6. Fabiana Rossi, Matteo Nardelli, and Valeria Cardellini. Horizontal and vertical scaling of

container-based applications using reinforcement learning. In 2019 IEEE 12th Interna-

tional Conference on Cloud Computing (CLOUD), pages 329–338. IEEE, 2019.

7. Eugene Kim. Amazon prime day crash: internal docs reveal scramble to fix, July 2018.

8. Abeer Abdel Khaleq and Ilkyeun Ra. Agnostic approach for microservices autoscaling

in cloud applications. In 2019 International Conference on Computational Science and

Computational Intelligence (CSCI), pages 1411–1415. IEEE, 2019.

9. Thanh-Tung Nguyen, Yu-Jin Yeom, Taehong Kim, Dae-Heon Park, and Sehan Kim.

Horizontal pod autoscaling in kubernetes for elastic container orchestration. Sensors,

20(16):4621, 2020.

10. Fabiana Rossi, Valeria Cardellini, and Francesco Lo Presti. Hierarchical scaling of microser-

vices in kubernetes. In 2020 IEEE International Conference on Autonomic Computing

and Self-Organizing Systems (ACSOS), pages 28–37. IEEE, 2020.

11. László Toka, Gergely Dobreff, Balázs Fodor, and Balázs Sonkoly. Machine learning-based

scaling management for kubernetes edge clusters. IEEE Transactions on Network and

Service Management, 18(1):958–972, 2021.

12. Francisco Carpio, Samia Dhahri, and Admela Jukan. Vnf placement with replication for

loac balancing in nfv networks. In 2017 IEEE International Conference on Communica-

tions (ICC), pages 1–6. IEEE, 2017.

13. Defang Li, Peilin Hong, Kaiping Xue, and Jianing Pei. Virtual network function place-

ment and resource optimization in nfv and edge computing enabled networks. Computer

Networks, 152:12–24, 2019.

14. Samaneh Sadegh, Kamran Zamanifar, Piotr Kasprzak, and Ramin Yahyapour. A two-

phase virtual machine placement policy for data-intensive applications in cloud. Journal

of Network and Computer Applications, 180:103025, 2021.

15. Sadoon Azizi, Mohammad Shojafar, Jemal Abawajy, and Rajkumar Buyya. Grvmp: A

greedy randomized algorithm for virtual machine placement in cloud data centers. IEEE

Systems Journal, 2020.

16. Bin Gao, Zhi Zhou, Fangming Liu, and Fei Xu. Winning at the starting line: Joint network

selection and service placement for mobile edge computing. In IEEE INFOCOM 2019-

IEEE Conference on Computer Communications, pages 1459–1467. IEEE, 2019.

Title Suppressed Due to Excessive Length 45

17. Md Hasanul Ferdaus, Manzur Murshed, Rodrigo N Calheiros, and Rajkumar Buyya. An

algorithm for network and data-aware placement of multi-tier applications in cloud data

centers. Journal of Network and Computer Applications, 98:65–83, 2017.
18. Peng Qin, Bin Dai, Benxiong Huang, and Guan Xu. Bandwidth-aware scheduling with

sdn in hadoop: A new trend for big data. IEEE Systems Journal, 11(4):2337–2344, 2015.
19. Xiangqiang Gao, Rongke Liu, and Aryan Kaushik. Virtual network function place-

ment in satellite edge computing with a potential game approach. arXiv preprint

arXiv:2012.00941, 2020.
20. Abdelquoddouss Laghrissi and Tarik Taleb. A survey on the placement of virtual resources

and virtual network functions. IEEE Communications Surveys & Tutorials, 21(2):1409–

1434, 2018.
21. Manoel C Silva Filho, Claudio C Monteiro, Pedro RM Inácio, and Mário M Freire. Ap-

proaches for optimizing virtual machine placement and migration in cloud environments:

A survey. Journal of Parallel and Distributed Computing, 111:222–250, 2018.
22. Jungmin Son and Rajkumar Buyya. Priority-aware vm allocation and network bandwidth

provisioning in software-defined networking (sdn)-enabled clouds. IEEE Transactions on

Sustainable Computing, 4(1):17–28, 2018.
23. Sayyid Shahab Nabavi, Sukhpal Singh Gill, Minxian Xu, Mohammad Masdari, and Pe-

ter Garraghan. Tractor: Traffic-aware and power-efficient virtual machine placement in

edge-cloud data centers using artificial bee colony optimization. International Journal of

Communication Systems, page e4747, 2021.
24. Tejas Subramanya and Roberto Riggio. Machine learning-driven scaling and placement

of virtual network functions at the network edges. In 2019 IEEE Conference on Network

Softwarization (NetSoft), pages 414–422. IEEE, 2019.
25. Aris Leivadeas, George Kesidis, Mohamed Ibnkahla, and Ioannis Lambadaris. Vnf place-

ment optimization at the edge and cloud. Future Internet, 11(3):69, 2019.
26. Thomas Lin and Alberto Leon-Garcia. Towards a client-centric qos auto-scaling system. In

NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, pages

1–9. IEEE, 2020.
27. Michael Scharf, Manuel Stein, Thomas Voith, and Volker Hilt. Network-aware instance

scheduling in openstack. In 2015 24th International Conference on Computer Communi-

cation and Networks (ICCCN), pages 1–6. IEEE, 2015.
28. Mehdi Hosseinzadeh, Hawkar Kamaran Hama, Marwan Yassin Ghafour, Mohammad Mas-

dari, Omed Hassan Ahmed, and Hemn Khezri. Service selection using multi-criteria deci-

sion making: a comprehensive overview. Journal of Network and Systems Management,

28(4):1639–1693, 2020.
29. A Serdar Tan and Engin Zeydan. Performance maximization of network assisted mobile

data offloading with opportunistic device-to-device communications. Computer Networks,

141:31–43, 2018.

46 E. Zeydan et al.

30. Jian Zhou and Can-yan Zhu. Compensatory analysis and optimization for madm for

heterogeneous wireless network selection. Journal of Electrical and Computer Engineering,

2016, 2016.
31. He-Wei Yu and Biao Zhang. A hybrid madm algorithm based on attribute weight and

utility value for heterogeneous network selection. Journal of network and systems man-

agement, 27(3):756–783, 2019.
32. J Baranda, J Mangues-Bafalluy, Engin Zeydan, L Vettori, Ricardo Martínez, Xi Li, Andres

Garcia-Saavedra, CF Chiasserini, C Casetti, K Tomakh, et al. On the integration of

ai/ml-based scaling operations in the 5growth platform. In 2020 IEEE Conference on

Network Function Virtualization and Software Defined Networks (NFV-SDN), pages 105–

109. IEEE, 2020.
33. Xi Li, Andres Garcia-Saavedra, Xavier Costa-Perez, Carlos J Bernardos, Carlos

Guimarães, Kiril Antevski, Josep Mangues-Bafalluy, Jorge Baranda, Engin Zeydan, Daniel

Corujo, et al. 5growth: An end-to-end service platform for automated deployment and

management of vertical services over 5g networks. IEEE Communications Magazine,

59(3):84–90, 2021.
34. Paola Cappanera, Federica Paganelli, and Francesca Paradiso. Vnf placement for ser-

vice chaining in a distributed cloud environment with multiple stakeholders. Computer

Communications, 133:24–40, 2019.
35. Sevil Mehraghdam, Matthias Keller, and Holger Karl. Specifying and placing chains of vir-

tual network functions. In 2014 IEEE 3rd International Conference on Cloud Networking

(CloudNet), pages 7–13. IEEE, 2014.
36. Milan Groshev, Carlos Guimarães, Jorge Martín-Pérez, and Antonio de la Oliva. To-

ward intelligent cyber-physical systems: Digital twin meets artificial intelligence. IEEE

Communications Magazine, 59(8):14–20, 2021.
37. Farooq Bari and Victor Leung. Multi-attribute network selection by iterative topsis for

heterogeneous wireless access. In 2007 4th IEEE consumer communications and network-

ing conference, pages 808–812. IEEE, 2007.
38. Ching-Lai Hwang, Young-Jou Lai, and Ting-Yun Liu. A new approach for multiple objec-

tive decision making. Computers & operations research, 20(8):889–899, 1993.
39. Jose D Martinez-Morales, Ulises Pineda-Rico, and Enrique Stevens-Navarro. Performance

comparison between madm algorithms for vertical handoff in 4g networks. In 2010 7th

International Conference on Electrical Engineering Computing Science and Automatic

Control, pages 309–314. IEEE, 2010.
40. Qingyang Song and Abbas Jamalipour. A network selection mechanism for next generation

networks. In IEEE International Conference on Communications, 2005. ICC 2005. 2005,

volume 2, pages 1418–1422. IEEE, 2005.
41. Babak Daneshvar Rouyendegh and Serpil Erol. Selecting the best project using the fuzzy

electre method. Mathematical Problems in Engineering, 2012, 2012.

Title Suppressed Due to Excessive Length 47

42. K Paul Yoon and Ching-Lai Hwang. Multiple attribute decision making: an introduction.

Sage publications, 1995.

43. J Baranda, J Mangues-Bafalluy, E Zeydan, C Casetti, CF Chiasserini, M Malinverno,

C Puligheddu, M Groshev, C Guimarães, K Tomakh, et al. Aiml-as-a-service for sla

management of a digital twin virtual network service. In IEEE INFOCOM 2021-IEEE

Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 1–2.

IEEE, 2021.

44. Chrysa Papagianni, Josep Mangues-Bafalluy, Pedro Bermudez, Sokratis Barmpounakis,

Danny De Vleeschauwer, Juan Brenes, Engin Zeydan, Claudio Casetti, Carlos Guimarães,

Pablo Murillo, et al. 5growth: Ai-driven 5g for automation in vertical industries. In 2020

European Conference on Networks and Communications (EuCNC), pages 17–22. IEEE,

2020.

45. Hamdani and Retantyo Wardoyo. The complexity calculation for group decision making

using topsis algorithm. In AIP conference proceedings, volume 1755, page 070007. AIP

Publishing LLC, 2016.

