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Abstract

A common feature to many problems in some of the most active fields of science is the need to calibrate

(i.e., estimate the parameters) and then forecast the time evolution of high-dimensional dynamical systems

using sequentially collected data. In this dissertation we introduce a generalised nested filtering methodology

that is structured in (two or more) intertwined layers in order to estimate the static parameters and the

dynamic state variables of nonlinear dynamical systems. This methodology is essentially probabilistic. It

aims at recursively computing the sequence of posterior probability distributions of the unknown model

parameters and its (time-varying) state variables conditional on the available observations. To be specific,

in the first layer of the filter we approximate the posterior probability distribution of the static parameters

and in the consecutive layers we employ filtering (or data assimilation) techniques to track and predict

different conditional probability distributions of the state variables. We have investigated the use of different

Monte Carlo-based methods and Gaussian filtering techniques in each of the layers, leading to a wealth of

algorithms.

In a first approach, we have introduced a nested filtering methodology of two layers that aims at

recursively estimating the static parameters and the dynamical state variables of a state space model. This

probabilistic scheme uses Monte Carlo-based methods in the first layer of the filter, combined with the use

of Gaussian filters in the second layer. Different from the nested particle filter (NPF) of [25], the use of

Gaussian filtering techniques in the second layer allows for fast implementations, leading to algorithms that

are better suited to high-dimensional systems. As each layer uses different types of methods, we refer to the

proposed methodology as nested hybrid filtering. We specifically explore the combination of Monte Carlo

and quasi–Monte Carlo approximations in the first layer, including sequential Monte Carlo (SMC) and

sequential quasi-Monte Carlo (SQMC), with standard Gaussian filtering methods in the second layer, such

as the ensemble Kalman filter (EnKF) and the extended Kalman filter (EKF). However, other algorithms

can fit naturally within the framework. Additionally, we prove a general convergence result for a class

of procedures that use SMC in the first layer and we show numerical results for a stochastic two-scale

Lorenz 96 system, a model commonly used to assess data assimilation (filtering) procedures in Geophysics.

We apply and compare different implementations of the methodology to the tracking of the state and the

estimation of the fixed parameters. We show estimation and forecasting results, obtained with a desktop

computer, for up to 5000 dynamic state variables.

As an extension of the nested hybrid filtering methodology, we have introduced a class of schemes

that can incorporate deterministic sampling techniques (such as the cubature Kalman filter (CKF) or

the unscented Kalman filter (UKF)) in the first layer of the algorithm, instead of the Monte Carlo-based

methods employed in the original procedure. As all the methods used in this scheme are Gaussian, we refer

to this class of algorithms as nested Gaussian filters. One more time, we reduce the computational cost

with the proposed scheme, making the resulting algorithms potentially better-suited for high-dimensional

state and parameter spaces. In the numerical results, we describe and implement a specific instance of the

new method (a UKF-EKF algorithm) and evaluate its average performance in terms of estimation errors

and running times for nonlinear stochastic models. Specifically, we present numerical results for a stochastic

Lorenz 63 model using synthetic data, as well as for a stochastic volatility model with real-world data.

Finally, we have extended the proposed methodology in order to estimate the static parameters and the

dynamical variables of a class of heterogeneous multi-scale state-space models [1]. This scheme combines

ix



three or more layers of filters, one inside the other. Each of the layers corresponds to the different time

scales that are relevant to the dynamics of this kind of state-space models, allocating the variables with

the greatest time scales (the slowest ones) in the outer-most layer and the variables with the smallest

time scales (the fastest ones) to the inner-most layer. In particular, we describe a three-layer filter that

approximates the posterior probability distribution of the parameters in a first layer of computation, in

a second layer we approximate the posterior probability distribution of the slow state variables, and the

posterior probability distribution of the fast state variables is approximated in a third layer. To be specific,

we describe two possible algorithms that derive from this scheme, combining Monte Carlo methods and

Gaussian filters at different layers. The first method uses SMC methods in both first and second layers,

together with a bank of UKFs in the third layer (i.e., a SMC-SMC-UKF algorithm). The second method

employs a SMC in the first layer, EnKFs at the second layer and introduces the use of a bank of EKFs in

the third layer (i.e., a SMC-EnKF-EKF algorithm). We present numerical results for a two-scale stochastic

Lorenz 96 model with synthetic data.
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1
Introduction

1.1 Motivation

Many problems in science and engineering involve the calibration of dynamical models and their subsequent

use to track and predict the evolution, over time, of a dynamical system. ‘Calibration’ may have different

implications in different problems, but most often it refers to the estimation of a set of unknown, static

parameters using real-world data. Of course, the processes of prediction and tracking, and parameter

estimation are closely related. Typically, the same data are used for both tasks and, in problems where

observations are collected sequentially and online, we would ideally like to have algorithms for joint

parameter estimation, and tracking and prediction of dynamical variables.

In this work, we address precisely the problem of joint model inference (i.e., parameter estimation) and

filtering (i.e., tracking and prediction) for the broad class of dynamical systems that can be represented

by state space models. State-space models are often used because they provide a general framework

that describes the probabilistic dependence between the latent state (dynamical) variables, the unknown

parameters and the observations. A typical state space model consists of:

• A random sequence of state vectors, xt, that contain the variables of interest for the description of

the real-world system at hand but cannot be observed (at least completely).

• A random sequence of noisy observation vectors, yt, where each observation yt can be related to the

state xt through some conditional probability distribution.

• A vector θ of static model parameters that determine the model behavior and, typically, have to be

estimated from the available data.

Many examples can be found in meteorology [22], oceanography [58] and climate modelling [27], where

current models for global weather forecasting involve the tracking of millions of time-varying state variables.
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This problem is not constrained to geophysics, though. In biochemistry it is often necessary to estimate

the evolution of populations of different types of reacting molecules, which usually involves the estimation

of the parameters that govern the interaction between them as well [41]. A similar problem needs to be

solved in ecology, forecasting the populations of prey and predator species as they interact [14, 17]. In

neuroscience we can also find problems that need state tracking and parameter estimation, such as the

ones involving the FitzHugh–Nagumo model [51] (characterizing the functioning of an excitable system

like a cell or a neuron) and the Hodgkin–Huxley model [19] (describing how action potentials in neurons

are initiated and propagated). Additionally, we can find other similar examples in other fields such as

quantitative finance and engineering. One of the most typical problems in finance is related to stochastic

volatility models [3, 54, 98] that evaluate derivative securities such as option pricing, while target tracking

[101] is a classical problem in engineering that has a wide range of applications such as surveillance, air

traffic control, aerospace, robotics, remote sensing and computer vision.

1.2 State of the art

Traditionally, model calibration (i.e., the estimation of the model static parameters θ) and the tracking and

forecasting of the time-varying state variables, xt, have been addressed separately. The problem of tracking

the state of the system using sequentially-collected observations, yt, is often termed data assimilation in

geophysics, while it is referred to as stochastic or Bayesian filtering by researchers in computational statistics

and applied probability. Classical filtering methods [5, 31, 35, 42, 88, 90], including both Kalman-based

algorithms and Monte Carlo schemes (particle filters [31, 33, 35, 42]) tackle the problem of predicting and

tracking the states xt using the observations yt, while assuming that the parameters θ are given. This is

hardly ever the case in practice, though, and the fixed parameters θ have to be estimated from the data yt

as well. The joint tracking of xt and estimation of θ involves several practical and theoretical difficulties.

Many procedures have been suggested over the years (see, e.g., [62, 2, 37, 20], as well as [53] for a

survey), however they are subject to problems related to observability (i.e., ambiguities), lack of performance

guarantees or prohibitive computational cost. Some of the most relevant techniques can be classified in one

or more of the categories below.

• State augmentation methods with artificial dynamics. The state vector, which contains the dynamical

variables xt that describe the physical system, is extended with any static unknown θ (commonly

reinterpreted as slowly changing dynamical variables) in the model [8, 46, 56, 62, 65, 105]. Standard

filtering (or data assimilation) techniques are then used in order to track and forecast the extended

state vector. Therefore, this methodology can be applied with Kalman-like methods (either extended

[65] or sigma-point-based [46] approximations) as well as particle filters (PFs) [56, 62, 64]. In the case

of PFs, artificial dynamics are usually introduced for the fixed parameters, reinterpreting them as

slow-changing dynamical variables in order to avoid the degeneracy of the Monte Carlo approximation.

Both with Kalman and particle filtering techniques, state augmentation is easy to apply but the

resulting methods are often inefficient and lack theoretical guarantees.

• Particle learning techniques. For some models, the posterior probability distribution of the static

parameters θ, conditional on the system states x0, . . . ,xt, can be computed in closed form and it

depends only on a set of finite-dimensional statistics [20, 32, 79, 93]. In a Monte Carlo setting, e.g., for

particle filters, this means that the static parameters can be efficiently represented by sampling. Then,
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the classical state-augmentation can be replaced by a two-stage procedure where one first samples

the posterior of the parameters and then the states (conditional on the parameters). Unfortunately,

this approach is restricted to very specific models (an attempt to extend this idea to a more general

setting can be found in [30]). The term particle learning was coined in [20], although the fundamental

ideas were introduced earlier [32, 93].

• Classical importance resampling methods. Several authors have studied the performance of classical

sequential importance sampling for static parameters [81, 83, 84]. Unfortunately, such algorithms

tend to degenerate quickly over time unless certain conditions are met by the prior and posterior

distributions [83, 84] or computationally heavy interpolation schemes are adopted for the static

parameters [81].

• Recursive maximum likelihood (RML) methods. As an alternative to the previous algorithms, the RML

methods [8, 9, 29, 53, 94] enable the sequential processing of the observed data as they are collected

in order to approximate the posterior probability distribution of the parameters and the states. These

techniques are well-principled and can be applied to a broad class of models. However, they do

not yield full posterior distributions of the unknowns. They only output point estimates instead.

Therefore, it is not possible to quantify the uncertainty of the estimates or forecasts. Moreover,

they are subject to various convergence (and complexity) issues, e.g., when the posterior probability

distribution is multimodal, when it contains singularities or when the parameter likelihoods cannot

be computed exactly.

Only in the last few years there have been advances leading to methods that aim at calculating the

full posterior probability distribution of all the unknown variables and parameters of the model. They are

well-principled probabilistic methods that solve the joint problem numerically and supported by rigorous

performance analyses [7, 21, 25, 68, 75]. From the viewpoint of Bayesian analysis, these conditional, or

posterior, distributions contain all the information relevant for the estimation task. From them, one

can compute point estimates of the parameters and states but also quantify the estimation error. Some

examples are the sequential Monte Carlo square (SMC2) [21], the particle Markov chain Monte Carlo

(PMCMC) [7] and the nested particle filter (NPF) [25] methods. However, both SMC2 and PMCMC are

batch (non recursive) techniques. In other words, every time a new observation arrives, the whole sequence

of observations may have to to be re-processed from scratch in order to update the estimates, leading

to a quadratic increase of the computational effort over time. As an alternative, NPFs [25] apply the

same principles as SMC2 in a recursive way. It is a scheme with two intertwined layers of Monte Carlo

methods, one inside the other, using the “inner” layer to track the dynamic state variables xt and the

“outer” layer for parameter estimation. However, since the NPF uses Monte Carlo in both layers of filters,

its computational cost becomes prohibitive in high-dimensional problems.

Recently, other algorithms with nested, or layered, structures (in the vein of SMC2 or NPF) have been

proposed in order to address inference in high-dimensional, complex models. The most recent examples are

the space-time particle filter (ST-PF) [15] and the nested sequential Monte Carlo (NSMC) method [78].

Both methods are intended to outperform classical sequential Monte Carlo (SMC) in high dimensional

systems. They rely on spatial structures within the state space (a Markov random field in [78] and an

auto-regressive structure in [15]) and, therefore, they may be useful to tackle multiple spatial scales.

However, these algorithms only address the state tracking assuming that the parameters θ are known.
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In the physics literature, approximation schemes have been proposed that exploit the conditional

dependences between the static parameters and the dynamic state variables, in a way that resembles the

SMC2 or NPF schemes. The authors of [92] introduce a two-stage filter that alternates the estimation

of static parameters (conditional on a fixed state estimate) and the tracking of the dynamic variables

(conditional on a fixed estimate of the static parameters). Another alternating scheme, that combines

Monte Carlo estimators with ensemble Kalman filters in order to handle the static parameters and dynamic

states, can be found in [38].

In [12], an expectation-maximization (EM) algorithm is used to track a particle whose dynamics are

governed by a hidden Markov model. The expectation step involves a (Monte Carlo based) forward-filtering,

backward-smoothing step that is computationally heavy and prevents the online application of the method.

The authors of [104] investigate a variational scheme (based on the Laplace integral approximation) for data

assimilation (including state and parameter estimation) and illustrate it with applications to the Lorenz 63

and Lorenz 96 models in a low dimensional setting. The same task of data assimilation with parameter

estimation is tackled in [50]. In this case, the estimation of the states and parameter is reduced to an

optimization problem that can be solved via an adjoint method for the estimation of a Hessian matrix. The

schemes in [12, 50, 104] require one to process the data in batches, rather than recursively, and hence they

are not well suited for online implementations. A sequential method, based on variational Bayes techniques,

that admits an online (recursive) implementation can be found in [100]. However, the latter contribution is

limited to the estimation of the time-varying states and does not deal with unkown static parameters.

1.3 Contribution

In this thesis we propose a general probabilistic scheme to perform the joint task of parameter estimation

and state tracking and forecasting. The methodology is Bayesian, i.e., it aims at the computation of

the posterior probability distribution of the unknowns given the available data. It involves two layers of

estimators, one for the static parameters and another one for the time-varying state variables. It can

be interpreted that the state estimators and predictors are nested, or inserted, within a main algorithm

that tackles the estimation of the parameters. The estimation of the static parameters and the dynamic

variables is carried out in a purely sequential and recursive manner. This property makes the proposed

methods well-suited for problems where long time series of data have to be handled.

It can be shown that a particular case of the proposed methodology is the NPF of [25], which relies on

a sequential Monte Carlo sampler in the parameter space and bank of particle filters [35, 42] in the space

of the dynamic variables. However, the key feature and advantage of the general scheme that we advocate

here is the ability to combine different types of algorithms in the two layers of inference (parameters and

dynamic variables). Any grid-based method (where the probability distribution of the static parameters

is represented by a set of points in the parameter space) can be employed in the first layer, while the

computationally-heavy particle filters in the second layer of the NPF can be replaced by simpler algorithms,

easier to apply in practical problems.

In Chapter 3, we investigate the use of sequential Monte Carlo and quasi-Monte Carlo [40] techniques in

the parameter estimation layer. We note that the quasi-Monte Carlo scheme is a deterministic technique,

although it formally resembles the Monte Carlo approach (hence the name). For the second layer, we have

assessed two Gaussian filters, namely the extended Kalman filter (EKF) and the ensemble Kalman filter

(EnKF). These two types of Gaussian filters have been well-studied in the geophysics literature and there
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are a number of numerical techniques to ease their practical implementation for large-scale systems (e.g.,

covariance inflation [6, 60] or localization [49, 82, 99]).

Because of the flexibility to combine estimation techniques of different types within the same overall

scheme, we refer to the resulting algorithms in general as nested hybrid filters (NHFs). Besides the

numerical examples, we also provide a theoretical analysis of the asymptotic convergence of NHFs that use

a sequential Monte Carlo scheme in the first layer (for the static parameters) and finite-variance estimators

of the state variables in the second layer. Our analysis shows that the NHF can be biased if the filters in

the second layer are so (as it is the case in general with approximate Gaussian filters). However, it also

ensures that the approximate posterior distribution of the parameters generated by the NHF, consisting of

N samples in the parameter space, converges to a well-defined limit distribution with rate O
(︂
N− 1

2

)︂
under

mild assumptions.

To illustrate the performance of the methodology, we present the results of computer simulations

with a stochastic two-scale Lorenz 96 model [11] with underlying chaotic dynamics. In meteorology, the

Lorenz 96 model is commonly used as a benchmark system for data assimilation [59, 85] and parameter

estimation techniques [43, 87] because it displays the basic physical features of atmospheric dynamics

[11] (e.g., convection and sensitivity to perturbations) and its dimension (number of state variables) can

be selected arbitrarily, so it is possible to make the system as high-dimensional as one wishes. We have

implemented, and compared numerically, four NHFs that combine Monte Carlo, quasi-Monte Carlo, EKF

and EnKF schemes in different ways. All the combinations that we have tried yield significant reductions

of running times in comparison with the NPF for this model, without a significant loss of accuracy. We

report simulation results for systems with up to 5,000 dynamical variables to track and forecast.

In Chapter 4, we extend the NHF methodology to enable the use of non-Monte Carlo schemes in both

layers of the nested filtering procedure, resulting in a new set of algorithms that we refer to as nested

Gaussian filters (NGFs). The new scheme, therefore, is a methodological extension of the algorithms

in [23, 25, 91] that comprises a broad class of nested filters for which it is possible to use and combine

Gaussian or particle filters in any of the two layers. The new algorithms remain purely recursive and yield

numerical approximations of the posterior probability of the unknown state variables and parameters using

the sequentially collected observations.

To be specific, in this chapter we explain in detail the use of a deterministic-sampling Gaussian

approximation (such as the unscented Kalman filter (UKF) [90] or the cubature Kalman filter (CKF) [10])

in the outer layer of the nested filtering scheme. Either particle or Gaussian (Kalman-based) filters can be

easily plugged into the inner layer (we implement extended Kalman filters in our experiments for simplicity).

The key difficulty to be tackled when using non-Monte Carlo methods in the outer layer is to keep the

algorithm recursive. This was achieved for the Monte Carlo methods in [25] and [91] using a “jittering”

procedure that cannot be extended to Gaussian filters in a practical way. Instead, we place a condition

on the update of the filter in the outer layer that depends on a distance defined on the parameter space.

When the distance between consecutive parameter updates falls below a prescribed threshold the algorithm

operates in a purely recursive manner. This approach can work adequately when the posterior probability

distributions of the state variables are continuous with respect to (w.r.t.) the unknown parameters, and we

prove that this is the case under regularity assumptions on the state-space model.

In order to assess the performance of the proposed nested methods we have implemented a recursive

scheme that employs a UKF in the outer layer (for parameter estimation) and a bank of EKFs in the inner

layer (for state tracking). We have carried out a simulation study to compare the performance of this
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algorithm with two state-augmented Gaussian filters (a UKF and an EnKF [36]) as well as another nested

algorithm that combines a particle filter in the outer layer with EKFs in the inner layer [91]. The methods

are applied in two examples: the first one consists in tracking a stochastic Lorenz 63 model with three

unknown parameters in the state equation, while in the second one we perform inference on a stochastic

volatility model using real-world time-series data (namely, euro-to-USD exchange rates between 2014 and

2016).

In Chapter 5, we introduce a further generalization of the NHF methodology aimed at performing

recursive Bayesian inference for a class of heterogeneous multi-scale state-space models [1] that can be

numerically approximated with a micro-macro solver [96, 102]. We analyze the case of a Lorenz 96 system

that displays three time scales (static parameters, slow dynamic state variables at the macro-scale and fast

dynamic state variables at the micro-scale), but the methodology works in the same way for more general

examples (namely, systems with n scales either in time or space).

The new scheme can be described as a three-layer nested smoother that approximates, in a recursive

manner, the posterior probability distributions of the parameters and the two sets of state variables given

the sequence of available observations. Specifically, we approximate the posterior probability distribution

of the parameters in a first layer of computation, the posterior probability distribution of the slow state

variables in a second layer, and the posterior probability distribution of the fast state variables in a third

layer. The computations in the second layer are conditional on the candidate parameter values generated on

the first layer, while the calculations on the third layer are conditional on the candidates drawn at the first

and second layers. The inference techniques used in each layer can vary, leading to different computational

costs and degrees of accuracy. As examples that illustrate the methodology, we propose two methods. The

first one uses SMC algorithms in the first and second layers, intertwined with a UKF [90] in the third layer.

Similarly, the second method uses a SMC algorithm in the first layer, but incorporates the use of EnKFs

[36] and an EKFs in the second and third layers of the scheme, respectively.

1.4 Organization of the thesis

The rest of the thesis is organized as follows. After a brief comment on notation, we describe in Chapter 2

the standard filtering techniques (mainly Kalman-based filters in Section 2.2 and Monte Carlo filters in

Section 2.3) that are used in the layers of the proposed methodology. In addition, we include in Section

2.4 the description of the NPF, since it can be considered as a specific configuration of the methodology

explained in this thesis.

In Chapter 3, NHFs are introduced. To be specific, they are derived in Section 3.2, followed by the

discussion of an asymptotic convergence theorem which is stated in Section 3.3. The Lorenz 96 model,

which is described in Section 3.4, is used in the simulations presented in the numerical results in Section 3.5.

In Chapter 4, we introduce the NGFs. We describe the class of state-space models with unknown

parameters to be studied in Section 4.1. Then, we describe the family of nested Gaussian filters with

sigma-point approximations in the outer layer in Section 4.2. In Sections 4.3 and 4.4, numerical results are

presented.

Multi-scale nested filters are introduced in Chapter 5. In Section 5.1, we describe the class of heteroge-

neous multi-scale state-space models. Then, in Section 5.2 we define the optimal smoother for multi-scale

systems with static parameters and two sets of dynamic state variables. In Section 5.3, we describe two

specific methods derived from the general methodology and, finally in Section 5.4 we illustrate the numerical
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results for the stochastic two-scale Lorenz 96 model.

Finally, Chapter 6 is devoted to the conclusions, including a brief summary of the obtained results and

an outlook on possible future work.

1.5 Notation

We denote vectors and matrices by bold-face letters, either lower-case (for vectors) or upper-case (for

matrices). Scalar magnitudes are denoted using regular-face letters. For example, d ∈ N and x ∈ R are

scalars, x ∈ Rd is a vector and X ∈ Rd×d is a matrix.

Most of the magnitudes of interest in this paper are random vectors (r.v.’s). If x is a d-dimensional r.v.

taking values in Rd, we use the generic notation p(x) for its probability density function (pdf). This is an

argument-wise notation. If we have two r.v.’s, x and y, we write p(x) and p(y) for their respective pdfs,

which are possibly different. In a similar way, p(x,y) denotes the joint pdf of the two r.v.’s and p(x|y)
denotes the conditional pdf of x given y. We find this simple notation convenient for the presentation of

the model and methods and introduce a more specific terminology only for the analysis of convergence. We

assume, for simplicity, that all random magnitudes can be described by pdfs with respect to the Lebesgue

measure. Notation x ∼ p(x) is read as “the r.v. x is distributed according to the pdf p(x)”.

We also resort to a more specific notation for Gaussian pdfs. If x is a d-dimensional Gaussian random

vector with mean x̄ and covariance matrix C > 0 then we can explicitly write the pdf p(x) as

N (x|x̄,C) =
1

(2π)
d
2 |C| 12

exp

{︃
−1

2
(x− x̄)

⊤
C−1 (x− x̄)

}︃
,

where the superscript ⊤ indicates transposition and |C| denotes the determinant of matrix C.
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2
Filtering Techniques

This chapter is devoted to the standard filtering techniques that set the background of this thesis. First, we

outline a description of the state-space models we are interested in, followed by an introduction to the family

of Gaussian filters including the extended Kalman filter (EKF) [5], the ensemble Kalman filter (EnKF)

[36] and the unscented Kalman filter (UKF) [90]. Also, we introduce the Monte Carlo filters that, with

the Gaussian filters, are going to be the basis of the new algorithms. Finally, we also describe the nested

particle filter (NPF) which can be considered one specific configuration of the methodology introduced in

Chapters 3 and 4. Table 2.1 summarises the notation in this chapter.

2.1 State-space models

We are interested in the class of Markov state-space dynamical systems with additive noise that can be

described by the pair of equations

xt = f(xt−1,θ) + vt, (2.1)

yt = g(xt,θ) + rt, (2.2)

where

• t ∈ N denotes discrete time,

• the vector xt ∈ Rdx is the dx-dimensional system state,

• the vector yt ∈ Rdy is the observation at time t,

• vt and rt, which are zero-mean random variables (r.v.s) with covariances Vt and Rt respectively, are

the state and observations noises,
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• the functions f : Rdx × Rdθ −→ Rdx and g : Rdx × Rdθ −→ Rdy , dx ≥ dy, are possibly nonlinear and

• θ ∈ Rdθ is a (random but fixed) vector of unknown parameters that parameterize functions f and g.

Table 2.1: Summary of notation for Chapter 2.

C0 Initial state covariance matrix

Ct|t−1 Predictive or a priori state covariance matrix

Ct|t Updated or a posteriori state covariance matrix

Cy
t Observation covariance matrix

Cx,y
t Cross-covariance matrix

dθ, dx, dy Parameter, state and observation dimension, respectively

f(·) State transition function

F State transition matrix

g(·) Observation function

G Observation matrix

Jf ,x′ Jacobian matrix of the state transition function f evaluated in x′

Jg,x′ Jacobian matrix of the observation function g evaluated in x′

Kt Kalman gain at time t

M Number of sigma-points (in UKF), ensemble members (in EnKF)

or particles (in particle filter (PF) and NPF)

N Number of particles in the first layer of the NPF

rt Noise observation vector

t Discrete time

uit Normalised weights of the first layer (in NPF)

vt and vi
t Noise state vector

wi Weights of the sigma-points (in UKF)

wi
t Normalised weights in PF

wi,j
t Normalised weights of the second layer (in NPF)

xt State vector at time t

x̂0 Initial mean state vector

x̂t|t−1 Predictive (a priori) mean state vector

x̂t|t Updated (a posteriori) mean state vector

xi
t|t−1 and xi,j

t|t−1 Predictive state samples or particles (in EnKF, PF and NPF)

xi
t|t and xi,j

t|t Updated state samples or particles (in EnKF, PF and NPF)

Xt|t−1 and Xt|t Predictive and updated ensemble (in EnKF), respectively

yt Observation vector at time t

ŷt Mean observation vector (in UKF and EnKF)

γ Parameter for the configuration of sigma-points (in UKF)

θ Parameter vector

θi
t i-th parameter sample or particle (in NPF)

κN Kernel in the jittering step (in NPF)
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The system of Eqs. (2.1) and (2.2) can be described in terms of a set of relevant probability density

functions (pdfs), specifically

x0 ∼ p(x0), (2.3)

θ ∼ p(θ), (2.4)

xt ∼ p(xt|xt−1,θ), (2.5)

yt ∼ p(yt|xt,θ), (2.6)

where p(θ) and p(x0) are the a priori pdfs of the parameters and the state, respectively, p(xt|xt−1,θ)

is the conditional density of the state xt given xt−1 and the parameter vector θ, and p(yt|xt,θ) is the

conditional pdf of the observation yt given xt and θ. We assume that yt is conditionally independent of all

other observations (given xt and θ) and the prior pdfs of the state, p(x0), and the parameters, p(θ), are

known and the corresponding probability distributions are independent, i.e., the joint prior pdf of x0 and θ

factorizes as p(x0,θ) = p(x0)p(θ).

2.2 Kalman filters

2.2.1 Standard Kalman filter (KF)

The Kalman filter (KF) is a recursive algorithm that estimates the state variables of a dynamical system

given a sequence of noisy observations. To be specific, the KF provides the optimal Bayesian estimator of the

state, i.e., the exact pdfs p(xt|y1:t−1) and p(xt|y1:t), as long as the dynamical system is linear and the noises

in Eqs. (2.1) and (2.2) are Gaussian. Both pdfs are Gaussian, so they are completely characterized by the

mean and the covariance matrix, i.e. p(xt|y1:t−1) = N (xt|x̂t|t−1,Ct|t−1) and p(xt|y1:t) = N (xt|x̂t|t,Ct|t).

Therefore, the KF computes recursively the posterior mean and covariance matrix of the state.

The general state-space model of Eqs. (2.1) and (2.2) reduces, in the linear-Gaussian case, to

xt = Fxt−1 + vt, where vt ∼ N (vt|0,Vt), (2.7)

yt = Gxt + rt, where rt ∼ N (rt|0,Rt), (2.8)

where F is a dx × dx transition matrix and G is a dy × dx observation matrix. Note that we ignore the

parameter vector θ for simplicity.

Figure 2.1 summarizes the functioning of this algorithm, that can be divided in two main phases:

prediction and update. In the prediction phase, the a priori probability distribution of the state xt, which

is Gaussian and hence represented by its mean x̂t|t−1 and covariance matrix Ct|t−1, is computed. The

predictive estimates are obtained by propagating the previous estimation through the transition matrix F .

Once there is a new noisy observation yt available, the update phase takes place. The previous mean and

covariance matrix are updated using the Kalman gain and the innovation yt −Gx̂t|t−1. Hence, we obtain

the updated or filtered distribution, represented by the mean x̂t|t and the covariance matrix Ct|t.

Although the original KF is designed to deal with linear dynamical systems, several extensions and

generalizations have been developed to work with more complex nonlinear systems. Hereafter, we summarize

some of the most common variants: the EKF, the EnKF and the UKF.

11
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Kalman filter

Prediction

Update

x̂t|t−1 = F x̂t−1|t−1

Ct|t−1 = FCt−1|t−1F
⊤ + Vt

Kt = Ct|t−1G
⊤(GCt|t−1G

⊤ +Rt)
−1

x̂t|t = x̂t|t−1 +Kt(yt −Gx̂t|t−1)

Ct|t = (Idx −KtG)Ct|t−1

yt

t←− t+ 1

Figure 2.1: Schematic description of the Kalman filter.

2.2.2 Extended Kalman filter (EKF)

The EKF was proposed as an extension to the original Kalman filter in order to work with nonlinear

systems [5, 103]. This algorithm is not an optimal filter since a process of linearization is applied around

the current state. However, it provides reasonable performance depending on the specific problem. It

has been shown useful in applications such as radar [55], target tracking [70], state estimation of battery

charging [47] and econometrics [72].

To be specific, this linearization is applied by using the Jacobian of the nonlinear state and observation

functions (f and g) in the Kalman filter Eqs. (2.1) and (2.2) at each time step. These Jacobians replace

the state and observation transition matrices and are constructed as

Jf ,x′ =

⎡⎢⎢⎢⎢⎢⎣
∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xdx

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xdx

...
...

. . .
...

∂fdx
∂x1

∂fdx
∂x2

. . .
∂fdx
∂xdx

⎤⎥⎥⎥⎥⎥⎦ for f(x) =

⎡⎢⎢⎢⎢⎣
f1(x)

f2(x)
...

fdx
(x)

⎤⎥⎥⎥⎥⎦ , (2.9)

Jg,x′ =

⎡⎢⎢⎢⎢⎢⎣
∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xdx

∂g2
∂x1

∂g2
∂x2

. . . ∂g2
∂xdx

...
...

. . .
...

∂gdy
∂x1

∂gdy
∂x2

. . .
∂gdy
∂xdx

⎤⎥⎥⎥⎥⎥⎦ for g(x) =

⎡⎢⎢⎢⎢⎣
g1(x)

g2(x)
...

gdy
(x)

⎤⎥⎥⎥⎥⎦ , (2.10)

where Jf ,x′ is the dx × dx Jacobian matrix of function f and Jg,x′ is the dy × dx Jacobian matrix of

function g, both evaluated at the current state x′.

Algorithm 1 summarizes the EKF for the filtering of the state xt (i.e., given known parameters θ).

First, in step 1 we initialize the state from the prior pdf p(x0). We assume that this pdf is Gaussian with

mean x̂0 and covariance matrix C0. For t ≥ 1, the prediction and update phases are computed recursively.

12
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The prediction is described in step 2a, where the a priori mean x̂t|t−1 is computed by propagating the

previous state estimation through the transition function f and the predictive covariance matrix Ct|t−1

is calculated using the Jacobian Jf ,x̂t−1|t−1
as described in Eq. (2.9). The Kalman gain is approximated

in step 2(b)i using the predictive covariance matrix Ct|t−1, the Jacobian Jg,x̂t|t−1
of Eq. (2.10) and the

observation covariance matrix Rt. Finally, when a new observation yt arrives, the updated mean x̂t|t and

the updated covariance matrix Ct|t are computed in step 2(b)ii. As a result, we approximate the posterior

pdf p(xt|y1:t,θ) as Gaussian, namely, N (x|x̂t|t,Ct|t).

Algorithm 1 Extended Kalman filter

Inputs:

- A priori pdf p(x0).

- Known parameters θ.

Procedure:

1. Initialization (x0)

Assume p(x0) is Gaussian with mean x̂0 and covariance matrix C0, i.e., p(x0) = N (x|x̂0,C0).

2. Recursive step

(a) Prediction step:

Compute the predictive mean x̂t|t−1 and the predictive covariance matrix Ct|t−1:

x̂t|t−1 = f(x̂t−1|t−1,θ), (2.11)

Ct|t−1 = Jf ,x̂t−1|t−1
Ct−1|t−1J

⊤
f ,x̂t−1|t−1

+ Vt. (2.12)

(b) Update step:

i. Compute the Kalman Gain as

Kt = Ct|t−1J
⊤
g,x̂t|t−1

(︁
Jg,x̂t|t−1

Ct|t−1J
⊤
g,x̂t|t−1

+Rt

)︁−1
. (2.13)

ii. Compute the updated mean x̂t|t and the updated covariance matrix Ct|t:

x̂t|t = x̂t|t−1 +Kt(yt − g(x̂t|t−1,θ)), (2.14)

Ct|t = (Idx
−KtJg,x̂t|t−1

)Ct|t−1, (2.15)

where Idx is dx-dimensional identity matrix.

Outputs: x̂t|t and Ct|t.
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2.2.3 Unscented Kalman filter (UKF)

The UKF [52, 71] is a suboptimal filter that has been proposed as an improvement of the EKF. This

method uses a deterministic sampling technique known as the unscented transform (UT) [90] in order to

approximate the predicted and updated posterior pdfs of the state. The UT is a mathematical device that

can be used to approximate the integrals of a nonlinear function h(x) with respect to (w.r.t.) a Gaussian

distribution, that takes the form ∫︂
h(x)p(x)dx,

where p(x) = N (x|x̂,C), x ∈ Rdx , and the first and second order moments of the Gaussian vector x can

be characterised by a collection of (deterministic) sigma-points in the state space, with associated weights,

denoted {xi, wi}0≤i≤M−1, for M = 2dx + 1. This yields to the approximation∫︂
h(x)p(x)dx ≈

M−1∑︂
i=0

wih(xi) (2.16)

for any integrable test function h(·).
There are different ways in which the weighted sigma-points can be selected (see [71] for a survey). One

of the most common ways to select the set {xi, wi}0≤i≤M−1 from a pdf p(x) = N (x|x̂,C) is [71]

x0 = x̂, w0 =
γ

γ + dx
, (2.17)

xj = x̂+ (
√︁
(dx + γ)C)j , wj =

1

2(dx + γ)
, (2.18)

xj+dx = x̂+ (
√︁
(dx + γ)C)j , wj+dx =

1

2(dx + γ)
, (2.19)

where γ > −dx is a tunning parameter, j = 1, . . . , dx, and (
√︁
(dx + γ)C)j is the j-th column of the

matrix square-root of (dx + γ)C. The UKF is the scheme that results from the application of the UT to

approximate the predictive and/or the updated mean and covariance in a nonlinear state-space model.

Hence, this method is derivative-free (i.e., no need to compute Jacobians) and can be used with systems

described by non-differentiable functions. Moreover, the computational complexity of this method is O(d3x),
that is the same of the EKF [5, 103].

Algorithm 2 summarizes the UKF for state tracking given known parameters θ. First, in step 1 we

initialize the state from the prior pdf p(x0) generating a set of sigma-points and weights {xi
0, w

i}0≤i≤M−1

as in Eqs. (2.17)-(2.19). We assume this pdf is Gaussian with mean x̂0 and covariance matrix C0. For

t ≥ 1, the prediction and update phases are computed recursively. The prediction is described in steps 2(a)i

and 2(a)ii, where the sigma-points {xi
0}0≤i≤M−1 are propagated through the transition function f and

the a priori mean x̂t|t−1 and covariance matrix Ct|t−1 are computed. The previous sigma-points are also

propagated through the observation function g in order to calculate the empirical mean ŷt and covariance

matrix Cy
t in steps 2(b)i and 2(b)ii. Then, the cross-covariance matrix Cx,y

t is computed in step 2(b)iii in

order to approximate the Kalman gain Kt in step 2(b)iv. Finally, when a new observation yt arrives, the

updated mean x̂t|t and the updated covariance matrix Ct|t are computed in step 2(b)v. The approximate

posterior distribution N (xt|x̂t|t,Ct|t) is used to provide a new set of sigma-points {xi
t|t}0≤i≤M−1 in step

2(b)vi.
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Algorithm 2 Unscented Kalman filter (UKF)

Inputs:

- A priori pdf p(x0) and known parameters θ.

Procedure:

1. Initialization. Draw a set of M = 2dx + 1 points and weights {xi
0, w

i}0≤i≤M−1 as in Eqs. (2.17)–

(2.19).

2. Recursive step

(a) Prediction step:

i. For i = 0, . . . ,M − 1, propagate the sigma-points through the state equation

xi
t|t−1 = f(xi

t−1|t−1,θ).

ii. Compute the predictive mean x̂t|t−1 and the predictive covariance matrix Ct|t−1:

x̂t|t−1 =

M−1∑︂
i=0

wixi
t|t−1, (2.20)

Ct|t−1 =

M−1∑︂
i=0

wi(xi
t|t−1 − x̂t|t−1)(x

i
t|t−1 − x̂t|t−1)

⊤ + Vt. (2.21)

(b) Update step:

i. For i = 0, . . . ,M − 1, propagate the sigma-points through the observation function

yi
t = g(xi

t|t−1,θ). (2.22)

ii. Compute the empirical mean ŷt and covariance matrix Cy
t of the transformed points:

ŷt =
M−1∑︂
i=0

wiyi
t, (2.23)

Cy
t =

M−1∑︂
i=0

wi(yi
t − ŷt)(y

i
t − ŷt)

⊤ +Rt. (2.24)

iii. Additionally, compute the cross covariance matrix Cx,y
t as

Cx,y
t =

M−1∑︂
i=0

wi(xi
t|t−1 − x̂t|t−1)(y

i
t − ŷt)

⊤. (2.25)

iv. Compute the Kalman Gain as Kt = Cx,y
t

(︁
Cy

t

)︁−1
.

v. Compute the updated mean x̂t|t and the updated covariance matrix Ct|t:

x̂t|t = xt|t−1 +Kt(yt − ŷt), (2.26)

Ct|t = Ct|t−1 −KtC
y
t K

⊤
t . (2.27)

vi. Calculate new sigma-points {xi
t|t}0≤i≤M−1 from N (xt|x̂t|t,Ct|t), as in Eqs. (2.17)–(2.19).

Outputs: x̂t|t, Ct|t and the set of sigma-points {xi
t|t}0≤i≤M−1.
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2.2.4 Ensemble Kalman filter (EnKF)

The EnKF [36] is another version of the Kalman filter that was originated to deal with nonlinear high-

dimensional systems. While in problems with a large number of variables other nonlinear Kalman filters

struggle with evolving the covariance matrix of the state, in the EnKF this matrix is not propagated

explicitly. Instead, this information is encoded in an ensemble of state samples, i.e., a collection of state

vectors that represents the distribution of the state x. The ensemble is denoted as

Xt =
[︁
x1
t . . . ,x

M
t

]︁
=
[︁
xi
t

]︁
. (2.28)

where Xt is an dx ×M matrix whose columns are the ensemble members for i = 1, . . . ,M .

Similar to the UKF, the ensemble is used to approximate integrals of a function h(x) w.r.t. the posterior

probability distribution of the state vector xt. For example, if Xt|t−1 =
[︂
xi
t|t−1

]︂
denotes the ensemble for

the one-step-ahead predictive pdf p(xt|y1:t−1) then we can approximate∫︂
h(xt)p(xt|y1:t−1)dx ≈

1

M

M∑︂
i=1

h(xi
t|t−1) (2.29)

for any integrable test function h(·).
Algorithm 3 summarizes the EnKF for the state tracking of the dynamical system assuming the

parameter vector θ is known. First, we initialize the state from the prior pdf p(x0) in step 1, generating the

samples {xi
0}1≤i≤M that form the ensemble X0. For t ≥ 1, the prediction and update phases are computed

in a recursive manner. The prediction is described in steps 2(a)i and 2(a)ii, where the samples {xi
0}1≤i≤M

are propagated through the state Eq. (2.1) and the predictive mean x̂t|t−1 and predictive covariance matrix

Ct|t−1 are computed1. The previous ensemble Xt|t−1 is also propagated through the observation function

g in order to calculate the empirical mean ŷt and covariance matrix Cy
t in steps 2(b)i and 2(b)ii. Then,

the cross-covariance matrix Cx,y
t is approximated in step 2(b)iii in order to compute the Kalman gain Kt

in step 2(b)iv. Finally, with a new observation yt, the ensemble can be updated as well as the mean x̂t|t

and the covariance matrix Ct|t in steps 2(b)v and 2(b)vi. These yield an approximation of the posterior

density p(xt|t|yt,θ) as a Gaussian pdf N (xt|t|x̂t|t,Ct|t).

The use of this ensemble of samples in the EnKF makes this method better-suited for high-dimensional

nonlinear systems (i.e., dx >> 1) than the UKF and the EKF. However, when the dimension of the

observation dy is also very large, the computation of the inverse matrix
(︁
Cy

t

)︁−1
in Eq. (2.39) becomes a

bottleneck. In order to alleviate this operation there is an alternative formula to compute this inverse that

turns out advantageous when the dimension of the observation dy is large compared to the number of ensemble

members (i.e., dy >> M) but the inversion of the observation noise covariance matrix Rt is computationally

cheap to obtain (or it has to be done just once, if Rt = R). Using the Sherman–Morrison–Woodbury

formula [66] we can rewrite the Kalman gain in Eq. (2.39) as

Kt = Cx,y
t

(︁
R−1

t −R−1
t

1

M
Ỹ t|t−1

(︁
IM + Ỹ

⊤
t|t−1R

−1
t

1

M
Ỹ t|t−1

)︁−1
Ỹ

⊤
t|t−1R

−1
t

)︁
, (2.31)

where Ỹ t|t−1 = Yt|t−1 − ŷt1
⊤
M and IM is a M -dimensional identity matrix.

1Note that x̂t|t−1 and Ct|t−1 are the ensemble mean and covariance matrix respectively, i.e.,

x̂t|t−1 =
1

M

M∑︂
i=1

xi
t|t−1 and Ct|t−1 =

1

M − 1

M∑︂
i=1

(xi
t|t−1 − x̂t|t−1)(x

i
t|t−1 − x̂t|t−1)

⊤. (2.30)
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Algorithm 3 Ensemble Kalman filter (EnKF)

Inputs:

- A priori pdf p(x0).

- Known parameters θ.

- The number of ensemble members M .

Procedure:

1. Initialization

Draw a set of M ensemble members from the prior p(x0) to form the ensemble X0 =
[︁
xi
0

]︁
as in Eq.

(2.28), for 1 ≤ i ≤M .

2. Recursive step

(a) Prediction step:

i. For i = 1, . . . , N , propagate the ensemble members through the transition function

xi
t|t−1 = f(xi

t−1|t−1,θ) + vi
t for vi

t ∼ N (vt|0,Vt), (2.32)

in order to obtain the predictive ensemble Xt|t−1 =
[︂
xi
t|t−1

]︂
, for 1 ≤ i ≤M .

ii. Compute the predictive mean x̂t|t−1 and the predictive covariance matrix Ct|t−1:

x̂t|t−1 =
1

M
Xt|t−11M , (2.33)

Ct|t−1 =
1

M − 1
X̃t|t−1X̃

⊤
t|t−1, (2.34)

where 1M = [1, . . . , 1]⊤ is anM -dimensional column vector and X̃t|t−1 = Xt|t−1−x̂t|t−11
⊤
M .

(b) Update step:

i. For i = 1, . . . ,M , propagate the ensemble members through the observation function

yi
t|t−1 = g(xi

t|t−1,θ) (2.35)

in order to obtain the predictive ensemble Yt|t−1 =
[︂
yi
t|t−1

]︂
, for 1 ≤ i ≤M .

ii. Compute the mean ŷt and covariance matrix Cy
t :

ŷt =
1

M
Yt|t−11M , (2.36)

Cy
t =

1

M − 1
Ỹ t|t−1Ỹ

⊤
t|t−1 +Rt, (2.37)

where Ỹ t|t−1 = Yt|t−1 − ŷt1
⊤
M .

iii. Additionally, compute the cross covariance matrix Cx,y
t as

Cx,y
t =

1

M − 1
X̃t|t−1Ỹ

⊤
t|t−1. (2.38)
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iv. Compute the Kalman Gain as

Kt = Cx,y
t

(︁
Cy

t

)︁−1
. (2.39)

v. With a new available observation yt, compute the updated ensemble Xt|t

Xt|t = Xt|t−1 +Kt(Y̌ t − Yt|t−1), (2.40)

where Y̌ t =
[︁
y̌i
t

]︁
, for 1 ≤ i ≤M , and

y̌i
t = yt + rit for rit ∼ N (rt|0,Rt). (2.41)

vi. Compute the updated mean x̂t|t and the updated covariance matrix Ct|t:

x̂t|t =
1

M
Xt|t1M , (2.42)

Ct|t =
1

M − 1
X̃t|tX̃

⊤
t|t, (2.43)

where X̃t|t = Xt|t − x̂t|t1
⊤
M .

Outputs: x̂t|t, Ct|t and the ensemble Xt|t =
[︂
xi
t|t

]︂
, for 1 ≤ i ≤M .

The EnKF can be seen as a sequential Monte Carlo (SMC) method (in the vein of the algorithms to

be described in Section 2.3 below) that targets only the first (x̂t|t) and second (Ct|t) order moments of

the posterior pdf. It is particularly efficient when the observation Eq. (2.2) is linear, as the computations

reduce to a (nearly) classical Kalman update for the members of the ensemble. This is outlined in Fig. 2.2.

Ensemble Kalman filter

Prediction

Update

Xt|t−1 =
[︂
xi
t|t−1

]︂
=
[︂
f(xi

t−1|t−1,θ) + vi
t

]︂

Kt = Cx,y
t

(︁
Cy

t

)︁−1

Xt|t = Xt|t−1 +Kt(Y̌ t −GXt|t−1) yt

t←− t+ 1

Figure 2.2: Schematic description of the EnKF.
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2.3 Sequential Monte Carlo methods

Sequential Monte Carlo methods or PFs are a collection of Monte Carlo algorithms that, based on Bayesian

theory, aim at computing recursively the posterior probability distributions generated by the state space

model [31, 33, 35, 42]. In particular, they solve the filtering problem by approximating the posterior

probability distributions with discrete random measures composed of samples of the unknown states

{xi
t}1≤i≤M (called particles) and associated weights {wi

t}1≤i≤M .

The set of particles and weights, that resembles the sigma-points of the UKF and the ensemble of the

EnKF, is used to approximate integrals of a function h(x) w.r.t. the posterior probability of xt, namely

E[h(xt)|y1:t] ≈
M∑︂
i=1

wi
th(x

i
t) (2.44)

This approximation converges with rate M− 1
2 for a broad class of integrable test functions h(·). For

example, at time t and with the weighted particle set {xi
t|t, w

i
t}1≤i≤M , we can compute the estimates

x̂t|t =

M∑︂
i=1

wi
tx

i
t|t, (2.45)

Ct|t =

M∑︂
i=1

wi
t(x

i
t|t − x̂t|t)(x

i
t|t − x̂t|t)

⊤, (2.46)

where x̂t|t is the mean and Ct|t is the covariance matrix of xt given y1:t.

Although the extensions of the Kalman filter described in Section 2.2 are designed for nonlinear state-

space models and even some of these methods use samples or sigma-points to integrate w.r.t. a pdf,

they make the assumption that all posterior probability distributions are Gaussian2 and so restrict the

computations to the mean and covariance of xt. Particle filters are an alternative to these algorithms,

avoiding linearizations around current estimates and providing accurate performance in nonlinear and

non-Gaussian problems. Also, there are many variations of this methodology that have been proposed

to deal with different types of problems, such as the auxiliary particle filter (APF) [86], the sequential

importance resampling (SIR) algorithm [63] and the Bao-Blackwellised PF [35]. Moreover, PFs offer

other advantages such as their easy implementation and the possibility of parallelization [24, 76, 97]. Its

computational cost is the main disadvantage, though. It is often necessary to generate a large number of

particles M in order to obtain accurate results (specially for high-dimensional systems).

In Algorithm 4 we describe the bootstrap filter [42] (see also [34]) for the state estimation of the

dynamical system (again, assuming known parameters θ). First, the state is initialized from the prior pdf

p(x0) in step 1, drawing the samples {xi
0}1≤i≤M . For t ≥ 1, the filter works recursively using importance

sampling and resampling. The particles are propagated through the state Eq. (2.1) in step 2a, to yield a set

o predictive samples {xi
t|t−1}1≤i≤M . With a new observation yt available in step 2b, we can compute the

pdf p(yt|xi
t|t−1) as well as the weights w̃i

t. Finally, with the normalized weights wi
t, the set {xi

t|t−1}1≤i≤M

can be replaced by {xi
t|t}1≤i≤M in step 2c by resampling [61]. Figure 2.3 shows a schematic of the bootstrap

filtering algorithm.

2Or can be well approximated by Gaussians, at any rate.
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Algorithm 4 Bootstrap filter

Inputs:

- A priori pdf p(x0).

- Known parameters θ.

- The number of particles M .

Procedure:

1. Initialization

Draw a set of M particles {xi
0}1≤i≤M from the prior p(x0).

2. Recursive step

(a) Draw M particles xi
t|t−1 ∼ p(xt|xi

t−1|t−1), i.e., propagate the particles through the state Eq.

xi
t|t−1 = f(xi

t−1|t−1,θ) + vi
t, (2.47)

for i = 1, . . . ,M .

(b) For i = 1, . . . ,M , with a new observation yt, compute the weights

w̃i
t ∝ p(yt|xi

t|t−1), (2.48)

and normalize them as

wi
t =

w̃i
t∑︁M

i=1 w̃
i
t

. (2.49)

(c) Resampling: set xm
t|t = xi

t|t−1 with probability wi
t for each m = 1, . . . ,M ,

Outputs: {xi
t|t}1≤i≤M .

2.4 Nested particle filter (NPF)

The NPF [25] aims at approximating the posterior probability distribution of the static parameters θ and

the state variables xt based on the PF of Section 2.3. Different from the previous sections in this chapter,

the fixed parameters are unknown and the approximation of the posterior p(θ|y1:t) is the main goal of this

algorithm.

Figure 2.4 displays a schematic of the NPF. This method has two layers of particle filters, or SMC

methods, one inside the other forming a nested structure. The algorithm works recursively, approximating

the posterior probability distribution of the parameters p(θ|y1:n) in the first layer, and the posterior

probability distribution of the dynamical state variables conditional on the parameters p(xn|y1:n,θ) in the

second layer.

Algorithm 5 describes the NPF for the joint estimation of the static parameters θ and the dynamical

state variables xt. First, we initialize the filter in step 1 drawing N parameter samples or particles from the
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Particle filter

For i = 1, . . . ,M :

Sampling

Weights

Resampling

xi
t|t−1 ∼ p(xt|xi

t−1|t−1)

w̃i
t ∝ p(yt|xi

t|t−1)

wi
t =

w̃i
t∑︁M

i=1 w̃i
t

For m = 1, . . . ,M :

xm
t|t = xi

t|t−1 with probability wi
t

yt

t←− t+ 1

Figure 2.3: Schematic description of the PF.

prior pdf p(θ) and N ×M state samples from the prior pdf p(x0) to form the set {θi
0, {x

i,j
0 }1≤j≤M}1≤i≤N .

For t ≥ 1 and for i = 1, . . . , N , we perform a jittering (step 2(b)i) where particles θ̃
i

t are drawn from the

kernel κN (dθ|θi
t−1). With a new observation yt (step 2(b)ii), we can compute the pdf p(yt|xi,j

t|t−1, θ̃
i

t) and

approximate the weights of the second layer w̃i,j
t . Also, we can approximate the pdf p(yt|y1:t−1, θ̃

i

t) and

hence the weights of the first layer ũit. After normalizing the weights in step 2(b)iii , we can use them

in the resampling step in order to obtain the set of state particles {xi,j
t|t}1≤j≤M (step 2(b)iv). Finally,

in the first layer of the filter, the normalised weights {uit}1≤i≤N are obtained in step 2c. We resample

the parameter particles as well as the sets of state particles attached to them, obtaining the whole set

{θi
0, {x

i,j
t|t}1≤j≤M}1≤i≤N in step 2d.

A key ingredient of the NPF is the jittering step 2(b)i.As opposed to the state xt, the parameters θ

does not evolve through a transition function and are not directly observed either. A naive approach to

the approximation of p(θ|y1:t) by particle filtering would be to actually fix the particles on the parameter

space by making θn = θn−1. This leads to degeneracy, because the diversity of the values of the particles

is drastically reduced after a few resampling steps. In order to avoid this poor approach, some artificial

dynamics (or jittering) are introduced in the parameter θ. At every time step we can generate new

particles {θi
t
˜ ∼ κN (dθ|θi

t−1)}1≤i≤N , where κN (dθ|θ′) is a Markov kernel, i.e., a probability distribution for

θ conditional on θ′. With this kernel we can jitter a few particles of the set with an arbitrary variance

or jitter all of them with a controlled variance. The selection of the kernel and the variance must be

done carefully [25]. Using N and M particles in the first and second layers respectively, we can obtain a

convergence error of O(N− 1
2 ∨M− 1

2 ) [25].
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Nested particle filter

For i = 1, . . . , N :
1st layer

For j = 1, . . . ,M :
2nd layer

Jittering

Sampling

Weights

Weights

Resampling

Resampling

θ̃
i

t ∼ κN (dθ|θi
t−1)

xi,j
t|t−1 ∼ p(xt|xi,j

t−1|t−1, θ̃
i

t)

w̃i,j
t ∝ p(yt|xi,j

t|t−1, θ̃
i

t) and wi,j
t =

w̃i,j
t∑︁M

j=1 w̃i,j
t

ũit =
∑︁M

j=1 w̃
i,j
t

For m = 1, . . . ,M :

xi,m
t|t = xi,j

t|t−1 with probability wi,j
t

uit =
ũi
t∑︁N

i=1 ũi
t

For m = 1, . . . , N :

{θm
t , {x

m,j
t|t }1≤j≤M} = {θ̃

i

t, {x
i,j
t|t}1≤j≤M}

with probability uit

yt

t←− t+ 1

Figure 2.4: Schematic description of the NPF.
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Algorithm 5 Nested particle filter (NPF)

Inputs:

- A priori pdfs p(x0) and p(θ0).

- The number of particles N (for the parameters) and M (for the state).

Procedure:

1. Initialization.

Draw a set of N particles {θi
0}1≤i≤N from the prior p(θ), and per each one of these particles, draw a set

of M particles {xi,j
0 }1≤j≤M from the prior p(x0). This creates the whole set {θi

0, {x
i,j
0 }1≤j≤M}1≤i≤N .

2. Recursive step

(a) Draw θ̃
i

t ∼ κN (dθ|θi
t−1) for i = 1, . . . , N , where κN (dθ|θ′) is a Markov kernel.

(b) For i = 1, . . . , N :

i. Draw M particles xi,j
t|t−1 ∼ p(xt|xi,j

t−1|t−1, θ̃
i

t), i.e., for j = 1, . . . ,M propagate the particles

through the transition function

xi,j
t|t−1 = f(xi,j

t−1|t−1, θ̃
i

t) + vi,j
t . (2.50)

ii. For j = 1, . . . ,M , with a new observation yt, compute the weights w̃i,j
t and the approximate

likelihood ũit as

w̃i,j
t ∝ p(yt|xi,j

t|t−1, θ̃
i

t) and (2.51)

ũit =
M∑︂
j=1

w̃i,j
t ∝ p(yt|y1:t−1, θ̃

i

t). (2.52)

iii. Normalize weights as

wi,j
t =

w̃i,j
t∑︁M

i=1 w̃
i,j
t

. (2.53)

iv. For each m = 1, . . . ,M , set xi,m
t|t = xi,j

t|t−1 with probability wi,j
t .

(c) Normalize the approximate likelihood

uit =
ũit∑︁N
i=1 ũ

i
t

, for i = 1, . . . , N. (2.54)

(d) For each m = 1, . . . , N , set {θm
t , {x

m,j
t|t }1≤j≤M} = {θ̃

i

t, {x
i,j
t|t}1≤j≤M} with probability uit.

Outputs: The set {θi
t, {x

i,j
t|t}1≤j≤M}1≤i≤N .
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3
Nested Hybrid Filters

This chapter is dedicated to the description of a class of nested hybrid filters (NHFs), that estimate the

posterior probability distribution of the unknown static parameters and the dynamical state variables of

a state-space system by using a structure of two intertwined layers of filtering methods. To be specific,

within this framework we introduce the use of different types of Monte Carlo methods, namely sequential

Monte Carlo (SMC) and sequential quasi-Monte Carlo (SQMC) in the first layer of the algorithm, while

non-Monte Carlo methods are applied in the second layer including extended Kalman filters (EKFs) and

ensemble Kalman filters (EnKFs). A detailed description of the proposed methodology is outlined in

Section 3.2, after the introduction to the class of (stochastic) dynamical systems of interest in Section 3.1.

An asymptotic convergence theorem is stated and discussed in Section 3.3. In Section 3.4, the stochastic

Lorenz 96 model which is used in the simulations is described, and some illustrative numerical results

are presented in Section 3.5. Finally, the conclusions are stated in Section 3.6. Table 3.1 summarizes the

notation of this chapter.

3.1 Dynamical model and problem statement

The goal is to design methods for the recursive estimation of both the static parameters θ and the states

xt, for t ∈ N, of the state-space model described by Eqs. (2.3)-(2.6), reproduced below for convenience:

x0 ∼ p(x0), (3.1)

θ ∼ p(θ), (3.2)

xt ∼ p(xt|xt−1,θ), (3.3)

yt ∼ p(yt|xt,θ). (3.4)
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Table 3.1: Notation of Chapter 3.

a Vector of coefficients that characterize the polynomial ℓ(x, a)

B, C, F and H Parameters of the Lorenz 96 model

dv and dw State noise dimension (for x and z respectively)

dx, dy and dθ State, observation and parameter dimension

f(·) State function (continuous time)

F (·) State function (discrete time)

Fm(·) State function F applied m consecutive times

g(·) Observation function

h(·) Inverse of Hilbert curve

n Discrete-time step in the time scale of the states (τ = n∆, n ∈ N)
ℓ Polynomial of degree 2 of x

m Number of discrete-time steps between each new observation

M Number of samples (or ensemble members) in the second layer

N Number of particles in the first layer of the NHF

P i
t Estimate of the posterior covariance matrix of the state xt given the

parameters θi
t

PN
t Estimate of the posterior covariance matrix of the parameters

q Order of the discretization method

rt Observation noise at time step t

t Discrete-time step in the time scale of the observations (τ = tm∆, t ∈ N)
ut Likelihood p(yt|θ,y1:t−1)

v̄n and vt State (x) noise at discrete-time n and t, respectively

wi
t Normalised importance weights at time step t

w̄n and wt State (z) noise at discrete-time n and t, respectively

x̄n and xt State vector at discrete-time n and t, respectively

yt Observation vector at discrete-time t

z̄n and zt Fast state vector at discrete-time n and t, respectively

δθ′ Dirac delta allocating probability 1 at point θ′

∆ Fixed integration step

θi
t i-th particle or parameter sample at time step t

κN Markov kernel of the jittering step

µt Posterior probability distribution of the parameter vector θ at time step t

µN
t Monte Carlo approximation of µt

πt Joint probability distribution of θ and x

ρi
t i-th vector of quasi Monte Carlo (QMC) samples at time step t

σo Scale parameter that controls the stochastic perturbations of the observation

τ Continuous time

ψ(·) Discrepancy-preserving bijection map
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In this model, p(x0) and p(θ) are, respectively, the a priori pdfs of the system state and the parameter

vector at time t = 0 (τ = 0 as well), p(xt|xt−1,θ) is the conditional pdf of xt given the state xt−1 and

the parameters in θ, and p(yt|xt,θ) is the conditional pdf of the observation given the state and the

parameters.

We note that:

• The priors p(x0) and p(θ) can be understood as a probabilistic characterization of uncertainty

regarding the system initial condition. If the initial condition x0 were known exactly, p(x0) could be

replaced by a Dirac delta allocating probability 1 at that point.

• The pdf p(xt|xt−1,θ) may not have, in general, a closed-form expression. However, it is usually

straightforward to simulate xt given xt−1 and θ and this is sufficient for many methods to work.

• The observations are conditionally independent given the states and the parameters. If the observa-

tional noise rt is Gaussian, then p(yt|xt,θ) = N (yt|g(xt,θ), σ
2
oIdy ).

From a Bayesian perspective, all the information relevant for the characterization of θ and xt at discrete

time t is contained in the joint posterior pdf p(θ,xt|y1:t), where y1:t = {y1,y2, . . . ,yt}. The latter density

cannot be computed exactly in general and the goal of this paper is to describe a class of flexible and

efficient recursive methods for its approximation.

We will show that one way to attain this goal is to tackle the approximation of the sequence of posterior

pdfs of the parameters, p(θ|y1:t), n ∈ N, in the vein of the nested particle filter (NPF) of [25] (see Section

2.4). This yields, in a natural way, approximations for p(θ,xt|y1:t) and p(xt|y1:t) for each t.

3.2 Nested Hybrid Filtering

3.2.1 Importance sampling for parameter estimation

In order to introduce the proposed scheme of nested hybrid filters, let us consider the approximation of the

t-th posterior probability distribution of the parameters, with pdf p(θt|y1:t), using classical importance

sampling [89]. In particular, let qt(θ) be an arbitrary proposal pdf for the parameter vector θ and assume

that qt(θ) > 0 whenever p(θ|y1:t) > 0.

Assume that the posterior at time t− 1, p(θ|y1:t−1), is available. Then the posterior pdf at time t can

be expressed, via Bayes’ theorem, as

p(θ|y1:t) ∝ p(yt|θ,y1:t−1)p(θ|y1:t−1), (3.5)

where the proportionality constant, p(yt|y1:t−1), is independent of θ. Equation (3.5) enables the application

of the importance sampling method to approximate integrals w.r.t. the posterior pdf p(θ|y1:t) (i.e., to

approximate the statistics of this probability distribution). Specifically, if we

• draw N independent and identically distributed (i.i.d.) samples from qt(θ), denoted θi
t, i = 1, . . . , N ,

• compute importance weights of the form

w̃i
t =

p(yt|θi
t,y1:t−1)p(θ

i
t|y1:t−1)

qt(θi
t)

,
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and normalize them to obtain

wi
t =

w̃i
t∑︁N

k=1 w̃
k
t

, i = 1, . . . , N,

then it can be proved [89] that

lim
N→∞

N∑︂
i=1

wi
tf(θ

i
t) =

∫︂
f(θ)p(θ|y1:t)dθ almost surely (a.s.) (3.6)

for any integrable function f : Rdθ → R under mild regularity assumptions. In this way one could estimate

the value of θ, e.g.,

θN
t =

N∑︂
i=1

wi
tθ

i
t ≈

∫︂
θp(θ|y1:t)dθ =: E[θ|y1:t],

where E[θ|y1:t] denotes the expected value of θ conditional on the observations y1:t. We could also estimate

the mean square error (MSE) of this estimator, as

MSEN
t =

N∑︂
i=1

wi
t∥θi

t − θ̂t∥2 ≈
∫︂
∥θi

t − E[θ|y1:t]∥2p(θ|y1:t)dθ. (3.7)

The choice of qt(θ) is, of course, key to the complexity and the performance of importance sampling

schemes. One particularly simple choice is qt(θ) = p(θ|y1:t−1), which reduces the importance sampling

algorithm to

1. drawing N i.i.d. samples θi
t, i = 1, . . . , N , from p(θ|y1:t−1), and

2. computing normalized importance weights wi
t ∝ p(yt|θi

t,y1:t−1), i = 1, ..., N.

Unfortunately, this method is not practical because

• it is not possible to draw exactly from p(θ|y1:t), since this pdf is unknown, and

• the likelihood function p(yt|θi
t,y1:t−1) cannot be evaluated exactly either.

In the sequel we tackle the two issues above and, in doing so, we obtain a general scheme for the

approximation of the posterior distribution of the parameter vector θ and the state vector xt, i.e., the

distribution with pdf p(θ,xt|y1:t).

3.2.2 Sequential Monte Carlo hybrid filter

It is well known that the likelihood ut(θ) := p(yt|θ,y1:t−1) can be approximated using filtering algorithms

[7, 57]. To be specific, function ut(θ) can be written as the integral

ut(θ) =

∫︂
p(yt|xt,θ)p(xt|θ,y1:t−1)dθ (3.8)

where, in turn, the predictive density p(xt|θ,y1:t−1) is

p(xt|θ,y1:t−1) =

∫︂
p(xt|θ,xt−1)p(xt−1|θ,y1:t−1)dxt−1 (3.9)
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and

p(xt−1|θ,y1:t−1) ∝ p(yt−1|θ,xt−1)p(xt−1|θ,y1:t−2). (3.10)

Given a fixed parameter vector θ and a prior pdf p(x0|θ), the sequence of likelihoods ut(θ) can be computed

by recursively applying Eqs. (3.8), (3.9) and (3.10) for t = 1, 2, . . ..

Let us now assume that we are given a sequence of parameter vectors θ0, . . . ,θk−1,θk and we are

interested in computing the likelihood of the last vector, θk = θ′. Following [25], one can compute a

sequence of approximate likelihoods ût(θt), t = 1, . . . , k, using the recursion

p̂(xt−1|θt−1,y1:t−1) ∝ p(yt−1|θt−1,xt−1)p̂(xt−1|θt−1,y1:t−2) (3.11)

p̂(xt|θt,y1:t−1) :=

∫︂
p(xt|θt,xt−1)p̂(xt−1|θt−1,y1:t−1)dxt−1 (3.12)

ût(θt) :=

∫︂
p(yt|θt,xt)p̂(xt|θt,y1:t−1)dxt (3.13)

which starts with the initial density p̂(x0|θ0) := p(x0|θ0). It can be proved, using the same type of

continuity arguments in [25], that the approximation error

|uk(θ′)− ûk(θ′)|, (3.14)

can be kept bounded, for any k, provided some simple assumptions on the state space model and the

sequence θ1, . . . ,θt are satisfied. Note that, in expression of Eq. (3.14), uk(θ
′) is the actual likelihood

calculated by iterating Eqs. (3.8), (3.9) and (3.10) for t = 1, ..., k, while ûk(θ
′) is the approximation

computed using the sequence θ0, . . . ,θk−1,θk = θ′ and recursion of Eqs. (3.11)–(3.13).

The recursive approximation scheme for ût(θ) can be combined with the “naive” IS procedure of Section

3.2.1 to yield a general (and practical) method for the approximation of the sequence of a posteriori

probability distributions of the parameter vector θ, hereafter denoted as

µt(dθ) := p(θ|y1:t)dθ.

We refer to the proposed scheme as an NHF and provide a detailed outline in Algorithm 6.

Algorithm 6 is essentially a SMC method, often known as a particle filter [28, 42, 63]. At each time step

t, the output of the algorithm is an estimate of the posterior probability distribution µt(dθ) = p(θ|y1:t)dθ.

Specifically we construct the discrete and random probability measure

µN
t (dθ) =

1

N

∑︂
δθi

t
(dθ) (3.15)

that can be used to approximate any integrals w.r.t. the true probability measure µt(dθ) = p(θ|y1:t)dθ.

For example, one can estimate any posterior expectations of the parameter vector θ given the observations

y1:t, namely

E[θ|y1:t] =

∫︂
θµt(dθ) ≈

∫︂
θµN

t (dθ) =
1

N

∑︂
i

θi
t =: θN

t . (3.16)

Since we have constructed a complete distribution, statistical errors can be estimated as well. The a

posteriori covariance matrix of vector θ can be approximated as

E
[︂
(θ − E[θ|y1:t]) (θ − E[θ|y1:t])

⊤ |y1:t

]︂
≈ 1

N

N∑︂
i=1

(︁
θi
t − θN

t

)︁ (︁
θi
t − θN

t

)︁⊤
=: PN

t . (3.17)
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Algorithm 6 Nested hybrid filter (NHF)

Inputs:

- N (number of Monte Carlo samples to generate).

- A priori pdfs p(θ) and p(x0).

- A Markov kernel κN (dθ|θ′) which, given θ′ ∈ D, generates jittered parameters θ ∈ Rdθ .

Procedure:

1. Initialization

Draw θi
0, i = 1, . . . , N , i.i.d. samples from µ0(dθ) = p(θ)dθ.

2. Recursive step

(a) For i = 1, . . . , N :

i. Draw θ̄
i
t from κN (dθ|θi

t−1).

ii. Approximate p̂(xt|θ̄
i
t,y1:t−1) using a filtering algorithm.

iii. Use this approximation to compute the estimate

ût(θ̄
i
t) =

∫︂
p(yt|θ̄

i
t,xt)p̂(xt|θ̄

i
t,y1:t−1)dxt (3.18)

and let wi
t ∝ ût(θ̄

i
t) be the normalized weight of θ̄

i
t.

(b) Resample the discrete distribution

µ̃N
t (dθ) =

N∑︂
i=1

wi
tδθ̄i

t
(dθ) (3.19)

N times with replacement in order to obtain the particle set {θi
t}Ni=1 and the approximate

probability measure µN
t (dθ) = 1

N

∑︁N
i=1 δθi

t
(dθ).

Outputs: A set of particles {θi
t}Ni=1 and a probability measure µN

t (dθ).

As a byproduct, Algorithm 6 also yields an approximate predictive pdf for xt, namely

p̂(xt|y1:t−1) =
N∑︂
i=1

wi
tp̂(xt|θi

t,y1:t−1).

Given the approximate filters p̂(xt|θi
t,y1:t−1), the joint probability distribution of θ and xt conditioned on

y1:t (denoted πt(dθ × dxt)) can be approximated as

πN
t (dθ × dxt) =

N∑︂
i=1

wi
tp̂(xt|θ,y1:t)δθ̄i

t
(dθ)dxt.
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The scheme of Algorithm 6 is referred to as nested because the SMC algorithm generates, at each time

step t, a set of samples {θ1
t , . . . ,θ

N
t } and, for each sample θi

t, we embed a filter in the state space Rdx in

order to compute the pdf p̂(xt|θ̄
i
t,y1:t−1) and the approximate likelihood ût(θ

i
t). The term hybrid is used

because the embedded filters need not be Monte Carlo methods –a variety of techniques can be used and

in this work we focus on Gaussian filters, which are attractive because of their (relative) computational

simplicity. A scheme with nested particle filters was introduced and analysed in [23, 25].

Let us finally remark that the NHF scheme relies on two approximations:

• Jittering of the parameters: The difficulty of drawing samples from µt−1(dθ) = p(θ|y1:t−1)dθ can be

circumvented if we content ourselves with an approximate sampling step. In particular, if we compute

a Monte Carlo approximation µN
t−1(dθ) =

1
N

∑︁N
i=1 δθi

t−1
(dθ) at time t− 1 (with some of the samples

replicated because of the resampling step) then we can generate new particles θ̄
i
t ∼ κN (dθ|θi

t−1),

i = 1, . . . , N , where κN (dθ|θ′) is a Markov kernel, i.e., a probability distribution for θ conditional on

θ′. See Section 3.3 for guidelines on the selection of this kernel. Intuitively, we can either jitter a few

particles with arbitrary variance (while leaving most of them unperturbed) or jitter all particles with

a controlled variance that decreases as N increases.

• Estimation of likelihoods: The sequential approximation of Eqs. (3.11)–(3.13) yields biased estimates

of the likelihoods ut(θt) [25]. This is discussed in Section 3.3. In Appendix A we provide details

on the computation of the estimates p̂(xt|θ̄
i
t,y1:t−1) and ût(θt) using both the EnKF and the EKF.

Other techniques (e.g., particle filters as in [25] or sigma-point Kalman filters [4, 10]) can be used as

well.

3.2.3 Sequential quasi Monte Carlo hybrid filter

The SMC method in the first layer of Algorithm 6 can be replaced by other schemes that rely on the

point-mass representation of the posterior probability distribution µt(dθ). It is possible to devise procedures

based, for instance, on an unscented Kalman filter [52] or other sigma-point Kalman methods [4, 10] to

obtain a Gaussian approximation of µt(θ). This approach, that is specifically exploited in Chapter 4, may

bring computational savings but it is based on the assumption that the posterior pdf p(θ|y1:t) is unimodal.

In this subsection, we describe an NHF method (hence, of the same class as Algorithm 6) where the

SMC scheme is replaced by a SQMC procedure of the type introduced in [40]. The term QMC refers to a

class of deterministic methods for numerical integration [80] that employ low-discrepancy point sets (e.g.,

Halton sequences [44] or Sobol sequences [18]), instead of random sample sets, for the approximation of

multidimensional integrals. In the context of QMC, discrepancy is defined to quantify how uniformly the

points in a sequence are distributed into an arbitrary set S. Hence, the lowest discrepancy is attained when

these points are equi-distributed. The main advantage of (deterministic) QMC methods over (random)

Monte Carlo schemes is that they can attain a faster rate of convergence relative to the number of points

in the grid, N . Within an NHF, the use of QMC should lead to a better performance/complexity trade-off

as long as the parameter dimension, dθ, is relatively small. This is illustrated numerically for a stochastic

two-scale Lorenz 96 model in Section 3.5.
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Algorithm 7 Sequential quasi Monte Carlo nested hybrid filter

Inputs:

- N (number of Monte Carlo samples to generate).

- A priori pdfs p(θ) and p(x0).

- A Markov kernel κN (dθ|θ′) which, given θ′, generates jittered parameters θ ∈ Rdθ .

Procedure:

1. Initialization

(a) Generate QMC uniform samples {ρi
−1,ρ

i
0}Ni=1 in [0, 1)dθ . Draw θi

0 ∼ p(θ|ρi
−1), i = 1, . . . , N .

2. Recursive step, t ≥ 1.

(a) For i = 1, . . . , N :

i. If t = 1, then draw θ̄
i
1 ∼ κN (dθ|θi

0,ρ
i
0), else draw θ̄

i
t ∼ κN (dθ|θi

t−1, ρ̃
c(i)
t−1), for t ≥ 2.

ii. Approximate p̂(xt|θ̄
i
t,y1:t−1).

iii. Use this approximation to compute the estimate

ût(θ̄
i
t) =

∫︂
p(yt|θ̄

i
t,xt)p̂(xt|θ̄

i
t,y1:t−1)dxt. (3.20)

and let wi
t ∝ ût(θ̄

i
t) be the normalized weight of θ̄

i
t.

(b) Generate a QMC point set {ρi
t}Ni=1 in [0, 1)dθ+1; let ρi

t = (ρit, ρ̃
i
t) ∈ [0, 1)× [0, 1)dθ .

(c) Hilbert sort: find a permutation b such that

(h ◦ ψ)(θ̄b(1)
t ) ≤ . . . ≤ (h ◦ ψ)(θ̄b(N)

t ), if dθ ≥ 2

θ̄
b(1)
t ≤ . . . ≤ θ̄

b(N)
t , if dθ = 1.

(d) Resampling: find a permutation c such that ρ
c(1)
t ≤ . . . ≤ ρc(N)

t . For i = 1, . . . , N , set θi
t = θ̄

j
t if,

and only if,
j−1∑︂
k=1

w
b(k)
t < ρ

c(i)
t ≤

j∑︂
k=1

w
b(k)
t , j ∈ {1, . . . , N}.

Outputs: A set of particles {θi
t}Ni=1 and a probability measure µN

t (dθ) = 1
N

∑︁N
i=1 δθi

t
(dθ).

The NHF based on the SQMC methodology of [40] can be obtained from Algorithm 6 if we replace the

sampling and resampling steps typical of the SMC schemes by the generation of low-discrepancy point sets.

Let {ρi
t}Ni=1 be a Halton sequence of low-discrepancy (deterministic) uniform samples in the set [0, 1)dθ+1

[44]. These uniform samples can be used to generate low-discrepancy variates from other distributions
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via a number of methods1. For example, the Box-Muller transformation [16] can be used to generate

pairs of independent, standard, normally distributed pseudo-random numbers. We explicitly indicate the

use of low-discrepancy uniform numbers, ρi
t, in the generation of samples with general distributions by

conditioning on ρi
t. Hence, drawing the i-th sample from the prior parameter pdf, θi

0 ∼ p(θ), is now

replaced by θi
0 ∼ p(θ|ρi

0). In order to propagate the i-th sample at time t− 1, θi
t−1, into time t, we draw

from the kernel κN (θt|θi
t−1,ρ

i
t). If sampling is needed in the second layer of filters (in order to compute

the estimates p̂(xt|θ̄
i
t,y1:t−1) and ût(θ̄

i
t)) we use additional Halton sequences in a similar way.

In order to keep the low-discrepancy property across the resampling step, we additionally introduce the

following functions (see [40] for details).

• A discrepancy-preserving bijective map ψ : Rdθ → [0, 1]dθ . Several choices are possible for this

function. Following [40], here we assume

ψ(θ̄
i
t) =

[︄
1 + exp

(︄
− θ̄

i
t − θ−

t

θ+
t − θ−

t

)︄]︄−1

, (3.21)

where θ−
t and θ+

t are the dθ-dimensional vectors whose j-th components are, respectively,

[θ−
t ]j = mN

t,j − 2s2Nt,j and [θ+
t ]j = mN

t,j + 2s2Nt,j ,

whereas mN
t,j =

∑︁N
i=1 w

i
t[θ̄

i
n]j and s2Nt,j =

∑︁N
i=1 w

i
t

(︂
[θ̄

i
t]j −mN

t,j

)︂2
, j = 1, . . . , dθ, are component-wise

means and variances.

• The inverse of the Hilbert curve, h : [0, 1]dθ −→ [0, 1], which is a continuous fractal space-filling curve

that provides a locality-preserving map between a 1-dimensional and a dθ-dimensional space [45, 77].

The SQMC-based NHF is outlined in Algorithm 7.

3.3 Convergence analysis

The nested filtering schemes of Section 3.2 admit various implementations depending on how we choose to

approximate the conditional pdf p(xt|y1:t−1,θ) which, in turn, is needed to estimate the likelihood function

and compute the importance weights wi
t ∝ û(θ̄

i
t) ≈ ut(θ̄

i
t), i = 1, . . . , N .

For each choice of approximation method, the estimate ût(θ) may behave differently and yield distinct

convergence properties. Here we assume that ût(θ) is a r.v. with finite mean ūt(θ) = E[ût(θ)] <∞ and

finite moments up to some prescribed order p ≥ 1. Specifically, we make the following assumption.

A. 1 Given θ ∈ Rdθ , the estimator ût(θ) is random and can be written as

ût(θ) = ūt(θ) +mt(θ), (3.22)

where mt(θ) is a zero-mean r.v. satisfying E[mt(θ)
p] ≤ σp <∞ for some prescribed p ≥ 1. Furthermore,

the mean ūt(θ) = E [ût(θ)] has the form

ūt(θ) = ut(θ) + bt(θ), (3.23)

where bt(θ) is a deterministic and absolutely bounded bias function.

1One can use a number of techniques used to produce random samples from a given uniform source. See [69] for a

comprehensive description of the field, both for single and multivariate distributions.
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From here on, we use D ⊆ Rdθ to denote the support set of the parameter vector θ. Given a real

function a : D → R, its absolute supremum is indicated as ∥a∥∞ := supθ∈D |a(θ)|. The set of absolutely

bounded real functions on D is denoted B(D), i.e., B(D) := {(a : D → R) : ∥a∥∞ <∞}. For our analysis
we assume that ut ∈ B(D) and, since we have also assumed the bias function bt to be bounded, it follows

that ūt ∈ B(D), i.e., ∥ūt∥∞ <∞. To be precise, we impose the following assumption.

A. 2 Given a fixed sequence of observations y1:t, the family of functions {ūt(θ),θ ∈ D} satisfies the

following inequalities for each t = 1, 2, ...:

1. ūt ∈ B(D), and

2. ūt(θ) > 0 for any θ ∈ D.

Since ∥ut∥∞ <∞, A.2.1 follows from assumption A.1. Similarly, if ut(θ) > 0 for all θ ∈ D then A.2.2

is a natural assumption (since û(θ) is an estimator of a positive magnitude).

We shall prove that, because of the bias bt(θ), the approximation µN
t converges to the perturbed

probability measure µ̄t induced by the mean function ūt, instead of the true posterior probability measure

µt induced by the true likelihood function ut.

To be specific, the sequence of posterior measures µt, t ≥ 1, can be constructed recursively, starting

from a prior µ0, by means of the projective product operation [13], denoted µt = ut · µt−1. When u is a

positive and bounded function and µ is a probability measure, the new measure u · µ is defined in terms of

its integrals. In particular, if a ∈ B(D) then∫︂
a(θ)(u · µ)(dθ) :=

∫︁
a(θ)u(θ)µ(dθ)∫︁
u(θ)µ(dθ)

.

For conciseness, hereafter we use the shorthand

(a, µ) :=

∫︂
a(θ)µ(dθ)

for the integral of a function a(θ) w.r.t. a measure µ(dθ). With this notation, we can write

(a, µt) = (a, ut · µt−1) =
(aut, µt−1)

(ut, µt−1)
. (3.24)

If, instead of the true likelihood ut, we use the biased function ūt = ut + bt to update the posterior

probability measure associated to the parameter vector θ at each time t then we obtain the new sequence

of measures

µ̄0 = µ0, µ̄t = ūt · µ̄t−1, t = 1, 2, ...,

where, according to the definition of the projective product,

(a, µ̄t) =
(aūt, µ̄t−1)

(ūt, µ̄t−1)

for any integrable function a(θ). Note that the two sequences, µt and µ̄t, start from the same prior µ0.

Obviously, we recover the original sequence, i.e, µ̄t → µt, when the bias vanishes, bt → 0.

In this section we prove that the approximation µN
t generated by a generic nested filter that satisfies

A.1 and A.2 converges to µ̄t in Lp, for each t = 1, 2, ..., under an additional regularity assumption on the

jittering kernel κN .
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A. 3 The kernel κN used in the jittering step satisfies the inequality

sup
θ′∈D

∫︂
|h(θ)− h(θ′)|κN (dθ|θ′) ≤ cκ∥h∥∞√

N
(3.25)

for every h ∈ B(D) and some constant cκ <∞ independent of N .

A simple kernel that satisfies A.3 is [25]

κN (dθ|θ′) = (1− ϵN )δθ′(dθ) + ϵNκ(dθ|θ′),

where 0 < ϵN ≤ 1√
N

and κ(dθ|θ′) is an arbitrary Markov kernel with mean θ′ and finite variance, for

example κ(dθ|θ′) = N (θ|θ′, σ̃2Idθ
), where σ̃2 <∞ and Idθ

is the identity matrix. Intuitively, this kind of

kernel changes each particle with probability ϵN and leaves it unmodified with probability 1− ϵN .

Finally, we can state a general result on the convergence of Algorithm 6. For a real r.v. x and p ≥ 1, let

∥x∥p denote the Lp norm, i.e. ∥x∥p := E[|x|p]
1
p .

Theorem 1 Let the sequence of observations y1:to be arbitrary but fixed, with to < ∞, and choose an

arbitrary function h ∈ B(D). If assumptions A.1, A.2 and A.3 hold, then

∥(h, µN
t )− (h, µ̄t)∥p ≤

ct∥h∥∞√
N

, for t = 0, 1, . . . , to and any p ≥ 1, (3.26)

where {ct}0≤t≤to is a sequence of finite constants independent of N .

Proof: See Appendix B. □

We remark that Theorem 1 does not state that the approximate posterior probability measure output

by Algorithm 6, µN
t , converges to the true posterior measure µt, but to the biased version µ̄t. Moreover,

the latter depends on the choice of filters used in the second layer of Algorithm 6 (i.e., on the estimator

of the likelihood, ût). The value of this theorem is that it guarantees the numerical consistency of the

nested hybrid filter: as we increase the computational effort (by increasing N), the random probability

measure µN
t converges to a well defined limit (and so do any point estimators that we may derive from

it, e.g., the posterior mean estimator θN
t ). The connection between this limit measure, µ̄t, and the true

posterior measure µt is given by assumption A.1 and the projective product operation, namely,

µ̄t = (ut + bt) · µ̄t−1, while µt = ut · µt−1,

with both sequences starting with a common prior measure µ̄0 = µ0. The practical performance of the

proposed schemes (with finite N) is explored numerically in the sequel.

3.4 A stochastic Lorenz 96 model

In order to assess the proposed methods numerically, we have applied them to a stochastic, discrete-time

version of the two-scale Lorenz 96 model [11, 43, 48]. The latter is a deterministic system of nonlinear

differential equations that displays some key features of atmospheric dynamics (including chaotic behavior)

in a relatively simple model of arbitrary dimension (the number dx of dynamic variables can be scaled

as needed). The model consists of two sets of dynamic variables, x and z, which evolve according to the

equations

dx = f1(x, z,α)dτ + σxdv

dz = f2(x, z,α)dτ + σzdw
(3.27)
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where τ denotes continuous time, x(τ) and z(τ) represent the slow and fast variables, respectively, v and

w are Wiener processes, σx, σz > 0 are known scale parameters and α is a parameter vector of dimension

dα = 4. Let us assume there are dx slow variables, xj , j = 0, . . . , dx − 1, and L fast variables per slow

variable, i.e., zl, l = 0, ..., dz − 1, for dz = Ldx, overall. The maps f1 and f2 are Rdx × Rdz × Rdα → Rdx

and Rdz × Rdx × Rdα → RL functions, respectively, that can be written (skipping the time index τ) as

f1 = [f1,0, . . . , f1,dx−1]
⊤ and f1,j(x, z,α) = −xj−1(xj−2 − xj+1)− xj + F − HC

B

Lj−1∑︂
l=(j−1)L

zl,

f2 = [f2,0, . . . , f2,dxL−1]
⊤ and f2,l(x, z,α) = −CBzl+1(zl+2 − zl−1)− Czl +

CF

B
+
HC

B
x⌊ l−1

L ⌋,

(3.28)

where α contains the parameters F ,C,H and B. The forcing parameter F controls the turbulence of the

chaotic flow, C determines the time scale of the fast variables {zl}l≥0, H controls the strength of the

coupling between the fast and slow variables and B determines the amplitude of the fast variables [11].

The dynamic variables are assumed to be arranged on a circular structure, hence the operations on the j

indices are modulo dx and operations on the l indices are modulo L. This means that for any integer k,

j + k ≡ (j + k) mod dx and l + k ≡ (l + k) mod L. Notation ⌊a⌋ indicates the truncation of a positive real

number a to the closest integer smaller than a.

We apply a discretization scheme with fixed step-size ∆ > 0 in order to obtain a discrete-time version

of the two-scale Lorenz 96 model. To be specific, we numerically integrate Eq. (3.27) by means of the

stochastic difference equations

x̄n = x̄n−1 + F1

(︁
x̄n−1, z̄n−1,α,∆, σxv̄n

)︁
,

z̄n = z̄n−1 + F2

(︁
x̄n−1, z̄n−1,α,∆, σzw̄n

)︁
,

(3.29)

where n ∈ N denotes discrete time, x̄n ≈ x(n∆) is the system state at time τ = n∆ and v̄n and w̄n are

zero-mean Gaussian r.v.s of dimension dv ≥ dx and dw ≥ dz with covariance matrices ∆Idv and ∆Idw ,

respectively. The functions F1 and F2 depend on the choice of discretization scheme. The simplest one is

the Euler-Maruyama method, which yields [39]

x̄n = x̄n−1 +∆f1(x̄n−1, z̄n−1,α) + σxv̄n,

z̄n = z̄n−1 +∆f2(x̄n−1, z̄n−1,α) + σzw̄n,
(3.30)

i.e., the noise is additive, with dv = dx and dw = dz, and F1(x̄n−1, z̄n−1,α,∆, σxv̄n) =

∆f1(x̄n−1, z̄n−1,α) + σxv̄n and F2(x̄n−1, z̄n−1,α,∆, σzw̄n) = ∆f2(x̄n−1, z̄n−1,α) + σzw̄n. For a Runge-

Kutta method of order q, as a more sophisticated example, the functions F1 and F2 result from applying f1

and f2 q times, with a Gaussian perturbation passing through the nonlinearity at each of these intermediate

steps. To be specific, we apply the 4th order Runge-Kutta (RK4) method [39] (q = 4). See [39] for details

on various integration methods for stochastic differential equations (SDEs).

We assume that the system of Eq. (3.29) can be observed every m discrete-time steps (i.e., every m∆

continuous-time units). Therefore, we re-write the state equations in the time scale of the observations (i.e.,

discrete-time t rather than n) as

xt = xt−1 + Fm
1

(︁
xt−1, zt−1,α,∆, σxvt

)︁
,

zt = zt−1 + Fm
2

(︁
xt−1, zt−1,α,∆, σzwt

)︁
,

(3.31)
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t ∈ N, where the notation Fm
1 and Fm

2 indicates that Eqs. in (3.29) are applied m consecutive times in

order to move from xt−1 = x̄(t−1)m to xt = x̄tm and zt−1 = z̄(t−1)m to zt = z̄tm.

We assume that the observations are linear but only 1 out of K slow variables can be observed. Therefore,

the observation process has the form

yt =

⎡⎢⎢⎢⎢⎣
xK,t

x2K,t

...

xdyK,t

⎤⎥⎥⎥⎥⎦+ rt, (3.32)

where t = 1, 2, ... and rt is a sequence of i.i.d. r.v.s with common pdf N (rt|0, σ2
oIdy). Note that fast

variables are not observed.

In our computer experiments, system of Eq. (3.31) is often employed to generate both ground-truth

values for the slow variables {xt}t≥0 and synthetic observations, {yt}t≥1. However, since in real world

problems models are inherently imperfect (modelling errors always exist to some extent), a different and

simpler version of the Lorenz 96 model is used in order to implement the NHFs. In this simpler version,

the contribution of the fast variables to the j-th equation is substituted by a polynomial function of the

slow variable xj . To be specific, the set of functions f1 and f2 is replaced by the map

f̄ = [f̄0, . . . , f̄dx−1]
⊤ and f̄ j(x,θ) = [−xj−1(xj−2 − xj+1)− xj + F − ℓ(xj , a)], j = 0, ..., dx − 1,

(3.33)

where a = [a1, a2]
⊤ is a (constant) parameter vector, θ = [F, a⊤]⊤ contains all the parameters in the

simplified model, and the function ℓ(xj , a) ∈ R is a polynomial ansatz for the coupling term HC
B

∑︁Lj−1
l=(j−1)L zl

in Eq. (3.28). Note that in this simplified model we have removed the fast variables completely. In this

paper we assume that ℓ(xj , a) is a polynomial in xj of degree 2, characterized by the coefficients a1 and a2

as

ℓ(xj , a) = a1x
2
j + a2xj .

Then, the system of Eq. (3.31) can be replaced by

xt = xt−1 + F̄
m
(xt−1,θ,∆, σxvt) (3.34)

where F̄
m

is the RK4 approximation of the function f̄ = [f̄0, . . . , f̄dx−1]
⊤ in Eq. (3.33). Assuming rt is a

sequence of i.i.d. noise terms with Gaussian probability distribution, p(r) = N (r|0, σ2
oIdy

), then

p(yt|xt,θ) = N (yt|xt, σ
2
oIdy ) (3.35)

which denotes a dy-dimensional Gaussian density with mean xt and covariance matrix σ2
oIdy

, where Idy
is

the dy × dy identity matrix.

3.5 Numerical results

We have conducted computer simulations to illustrate the performance of the proposed NHF methods.

In particular, we have carried out computer experiments for six different schemes: the NPF of [25], the

two-stage filter of [92] and four NHFs that rely on the SQMC and the SMC, both in combination with

EKFs or EnKFs. Then, two different versions of Algorithm 6 (SMC-EKF, SMC-EnKF) and Algorithm

7 (SQMC-EKF, SQMC-EnKF) are simulated. The simulation setup is described below, followed by the

discussion of our numerical results in Section 3.5.
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3.5.1 Simulation setup

For our computer experiments we have used the two-scale Lorenz 96 model of Eq. (3.27), in order to

generate

• reference signals x̃n, n = 0, 1, . . ., used as ground truth for the assessment of the estimators, and

• sequences of observations, yt, t = 1, 2, . . . as in Eq. 3.21.

The model is integrated using the RK4 method with Gaussian perturbations [39] (as outlined in Eq.

(3.31)). The integration step is set to ∆ = 5× 10−3 continuous-time units through all experiments and the

fixed model parameters are F = 8, H = 0.75, C = 10 and B = 15. For all experiments, we assume that

there are L = 10 fast variables per slow variable, hence the total dimension of the model is (L+1)dx = 11dx

(with different values of dx for different experiments). The noise scaling factors are σx = ∆
4 = 1.25× 10−3,

σz = ∆
16 = 3.125 × 10−4 and σo = 4, all assumed known. We assume that half of the slow variables are

observed in Gaussian noise, i.e., K = 2.

We assess the accuracy of the estimation algorithms in terms of the MSE of the predictors of the

dynamic variables. For the NHFs, these estimators take the form

x̂t =

N∑︂
i=1

wi
tx

i
t, (3.36)

where xi
t is the posterior-mean estimate obtained from the approximate filter p̂(xt|y1:t,θ

i
t), that can be

expressed as N (xt|xi
t,P

i
t ), since the approximation is Gaussian. In the plots, however, we show the

empirical MSE per dimension resulting directly from the simulations,

MSEt =
1

dx
∥ xt − x̂t ∥2 . (3.37)

averaged over 100 independent simulation runs, being all of them of 40 continuous-time units of duration,

which amount to 40
∆ = 8000 discrete time steps.

The simulations presented below include running times for the different methods. They have been

coded in Matlab R2016a and run on a computer with 64 GB of DRAM and equipped with two Intel Xeon

E5-2680 processors (running at 2.80GHz) with 10 cores each and HyperThreading as well as an Intel Xeon

Phi co-processor.

3.5.2 Results

Table 3.2 shows a comparison of the performance of the NPF, the two-stage filter and the four NHFs, based

on the use of SMC, SQMC, EKF and EnKF schemes as described in Section 3.2, in terms of their running

times and the MSE of the state estimators (averaged over time and dimensions). We have carried out this

computer simulation for a model with dimension dx = 40 and a gap between observations of m∆ = 0.05

continuous-time units (m = 10). For all of the algorithms compared, N represents the number of particles

or samples in the first layer of computation, while M is the number of samples in the second layer of the

filter. All NHFs algorithms work with N = 100 particles for the approximation of the posterior distributions

of the fixed parameters, using M = dx = 40 samples per each EnKF in the second-layer. Despite the

larger number of particles in the NPF (N =M = 800), this method achieves the highest error and takes

the longest running time. The NPF is followed by the two-stage filter method2, that can run three times

2Algorithm introduced in [92] that alternates the estimation of static parameters (conditional on a fixed state estimate)

and the tracking of the dynamic variables (conditional on a fixed estimate of the static parameters).
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faster but cannot outperform any of the NHFs in terms of error. Both NHFs using EKF attain the least

MSE with the smallest running time. In order to improve the performance of the NPF, the numbers of

particles M and N would have to be considerably increased, but this would increase the running times

correspondingly (the complexity of the NPF is O(NM) [25]).

Algorithm Running time (minutes) MSE

NHF: SQMC-EKF 2.16 0.46

NHF: SMC-EKF 2.27 0.49

NHF: SQMC-EnKF 6.83 0.62

NHF: SMC-EnKF 7.12 0.95

Two-Stage Filter (N = 600,M = 400) 6.85 4.59

NPF (N =M = 800) 17.96 11.91

Table 3.2: Running times and average MSE (over time and state dimensions) for the NPF, the two-stage filter and

four NHFs, based on the SQMC, the SMC, the EKF and the EnKF, respectively.

In the next experiment we assess the performance of the different NHFs depending on the number of

particles used in the first-layer of the filter, in order to choose appropriately this number to carry out the

following computer experiments. For this purpose, we consider a model with dimension dx = 100, a gap

between observations of m∆ = 0.05 continuous-time units (m = 10) and a number of particles that ranges

from 50 to 400. Figure 3.1 shows the numerical results for this experiment. We observe that the MSE

for the four algorithms stabilizes quickly. At the sight of these results, we set N = 100 for all remaining

experiments. Additionally, Fig. 3.1 also shows the difference between the NHFs. Specifically, we see

that using SQMC in the first-layer we can slightly improve the performance. For this reason, in the next

experiments we only simulate NHFs that rely on SQMC. Moreover, it is easy to observe that the filters

that use EKFs (instead of EnKFs) in the second-layer obtain better results.
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SQMC-EKF

Figure 3.1: MSE of the different NHFs depending on the number of particles N used in the first-layer of the filter.

In the next set of computer experiments we compare the SQMC-EKF and the SQMC-EnKF methods

in terms of their average MSE and their running times for different values of the state dimension dx and
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the gap between consecutive observations m (in discrete time steps). For each combination of dx and m we

have carried out 100 independent simulation runs. The number of particles in the parameter space is fixed,

N = 100, for all simulations, but the size of the ensemble in the EnKFs is adjusted to the dimension. In

particular, we set M = dx.

Figure 3.2 shows (a) the running times and (b) the average MSE attained by the two SQMC NHFs

when the state dimension dx ranges from 100 to 800. The gap between observations is fixed to m = 20 (i.e.,

0.1 time units versus 0.05 in Figure 3.1). We observe that the SQMC-EKF method attains significantly

lower running times compared to the SQMC-EnKF, since the former increases linearly with dimension

while the latter increases its cost exponentially. However, the SQMC-EKF obtains an MSE that increases

with the dimension dx, while the values of MSE for the SQMC-EnKF method are steady w.r.t. dx.
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Figure 3.2: Comparison of the SQMC-EKF (red lines) and SQMC-EnKF (blue lines) in terms of their running time

(plot 3.2a) and their MSE (plot 3.2b) as the state dimension dx increases, with a fixed gap between observations of

m = 20 discrete time steps.

Next, Fig. 3.3 displays the running times and the average MSEs attained by the two NHFs as we

increase the gap between observations from m = 10 to m = 100 (hence, from m∆ = 0.05 to m∆ = 0.50

continuous time units). The dimension of the state for this experiment is fixed to dx = 100. Note that, as

the gap m increases, less data points are effectively available for the estimation of both the parameters and

the states. We observe, again, that the SQMC-EnKF is computationally more costly than the SQMC-EKF,

however it attains a consistently smaller MSE when the gap between observations increases, suggesting

that it may be a more efficient algorithm in data-poor scenarios.

Finally, we show results for a computer experiment in which we have used the SQMC-EnKF method

to estimate the parameters F and a and track the state variables of the two-scale Lorenz 96 system with

dimension dx = 5, 000 and a gap between consecutive observations of m∆ = 0.05 continuous-time units

(m = 10). As in the rest of computer simulations, the number of particles used to approximate the sequence

of parameter posterior distributions is N = 100.

Figure 3.4 shows the true state trajectories, together with their estimates, for the first two slow state

variables of the two-scale Lorenz 96 model. We note that the first variable, x1(τ), is observed in Gaussian

noise (with σo = 4) while the second variable, x2(τ), is not observed. The accuracy of the estimation

is similar, though, over the 20 continuous-time units of the simulation run (corresponding to 20
∆ = 4000

discrete time steps), achieving and MSE ≈ 0.87. Taking into account the steadiness of MSE w.r.t. dimension
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Figure 3.3: Comparison of the SQMC-EKF (red lines) and SQMC-EnKF (blue lines) in terms of their running

time (plot 3.3a) and their MSE (plot 3.3b) as the gap between observations m increases, with fixed state dimension

dx = 100.

of SQMC-EnKF in Figure 3.2b and the values of MSE shown in Figure 3.3b for the gap selected in this

experiment (m = 10), the results obtained are within the expected range.

In Figure 3.5 we observe the estimated posterior pdfs of the fixed parameters F , a1 and a2, together

with the reference values. Note that the value F = 8 is ground truth, but the values of a1 and a2 are

genie-aided least-squares estimates obtained by observing directly the fast variables of the two-scale model.

Figure 3.5a displays the approximate posterior pdf of the parameter F (red dashed line) together with the

true value F = 8 (vertical black line). We observe that nearly all probability mass is allocated close to the

true value. In Fig. 3.5b we compare the approximate pdf of the coefficients a = [a1, a2]
T produced by the

NHF (dashed contour lines) with a kernel density estimator computed from the least-squares genie-aided

estimates obtained from 100 independent simulations with the same setting (solid contour lines). The

modes of the two pdfs are slightly shifted but the two functions are otherwise similar. The genie-aided

estimate of a is located in a high probability region of the density function computed by the NHF.
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Figure 3.4: Sequences of state values (black line) and estimates (dashed red line) in x1 (plot 3.4a) and x2 (plot

3.4b) over time. Variable x1 is observed (in Gaussian noise), while x2 is unobserved.
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Figure 3.5: Posterior density of the parameters a = [a1, a2]
⊤ and F at τ = 5 in a 5,000-dimensional Lorenz 96 model

(red dashed lines). The true value of F (in plot 3.5a) is indicated by a black vertical line, while the location of

reference values of a (in plot 3.5b) is marked by a black star. Note that there is no ground truth for the parameters

in a.

3.6 Conclusions

We have introduced a nested filtering methodology to recursively estimate the static parameters and the

dynamic variables of nonlinear dynamical systems. The proposed framework combines a recursive Monte

Carlo approximation method to compute the posterior probability distribution of the static parameters

with a variety of filtering techniques to estimate the posterior distribution of the state variables of the

system. In particular, we have investigated the use of Gaussian filters in the second layer of the nested

structure, as they admit fast implementations that can be well suited to high dimensional systems. As a

result, we have proposed a class of nested hybrid filters that combine Monte Carlo and quasi Monte Carlo

schemes for the (moderate dimensional) unknown static parameters of the dynamical system with either

EKFs or EnKFs for the (higher dimensional) time-varying states. Additionally, when SMC is applied in

the first layer of the NHF scheme, we have proved that the algorithm converges with rate O
(︂
N− 1

2

)︂
to

a well defined limit distribution. We have presented numerical results for a two-scale stochastic Lorenz

96 system, a model commonly used for the assessment of data assimilation methods in geophysics. We

illustrate the average performance of the methods in terms of estimation errors and running times, and

show numerical results for a 5,000-dimensional system.

42



4
Nested Gaussian Filters

This chapter is devoted to the extension of the nested hybrid filters (NHFs), introduced in Chapter 3. To

be specific, we devise methods that employ non-Monte Carlo schemes in both layers of the nested filtering

structure. This results in a new set of algorithms that we refer to as nested Gaussian filters (NGFs). The

problem statement and the state space models are introduced in Section 4.1, followed by the detailed

description of the NGFs in Section 4.2. In Sections 4.3 and 4.4, we present numerical results for the

stochastic Lorenz 63 model and a stochastic volatility model, respectively. Conclusions are explained in

Section 4.5. The key notation for this chapter is summarized in Table 4.1.

4.1 Problem Statement

We tackle the same inference problem as in Chapter 3. In particular, we look into state-space dynamical

systems with additive noise that can be described by the pair of equations

xt = f(xt−1,θ) + vt, (4.1)

yt = g(xt,θ) + rt, (4.2)

where t ∈ N denotes discrete time, xt ∈ Rdx is the dx-dimensional system state, f : Rdx ×Rdθ −→ Rdx and

g : Rdx × Rdθ −→ Rdy , dx ≥ dy, are possibly nonlinear functions parameterized by a (random but fixed)

vector of unknown parameters, θ ∈ Rdθ , yt ∈ Rdy is the observation vector at time t and vt and rt are

zero-mean random vectors playing the roles of state and observation noises.
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Table 4.1: Notation of Chapter 4.

Ĉ
x

t|t−1,θ′ Predictive state covariance matrix estimate conditional on θ′ at time t

Ĉ
x

t|t,θ′ Posterior state covariance matrix estimate conditional on θ′ at time t

Ĉ
θ

t Parameter covariance matrix estimate at time t

dx State dimension

dy Observation dimension

dθ Parameter dimension

f and g State transition and observation function, respectively

Jf,x′ Jacobian matrix of function f evaluated at point x′

Jg,x′ Jacobian matrix of function g evaluated at point x′

ko Parameter of the observation equation of the Lorenz 63 model

M Number of reference points or samples (in the first layer)

Mo Number of times steps between each observation

rt Observation noise vector

R Observation noise covariance matrix

t Discrete-time steps

T Length of the simulation run in continuous-time

vt State noise vector

V State noise covariance matrix

xt State vector

x̂t|t−1,θ′ Predictive mean state estimate conditional on the parameter θ′ at time t

x̂t|t,θ′ Posterior mean state estimate conditional on the parameter θ′ at time t

yt Observation vector

∆ Integration step

θ Parameter vector

θ̂t Mean parameter estimate

θi
t Sample or reference point of the parameters

λ Threshold for activate the iterative mode of the algorithm

τ Continuous time

The same as in previous chapters, we also resort, when needed, to a specification of the state space

model in terms of the relevant pdfs, namely

x0 ∼ p(x0), θ ∼ p(θ), (4.3)

xt ∼ p(xt|xt−1,θ), (4.4)

yt ∼ p(yt|xt,θ), (4.5)

where p(θ) and p(x0) are the a priori pdfs of the parameters and the state, respectively, p(xt|xt−1,θ)

is the conditional density of the state xt given xt−1 and the parameter vector θ, and p(yt|xt,θ) is the

conditional pdf of the observation yt given xt and θ. We assume that yt is conditionally independent of all

other observations (given xt and θ) and the prior pdfs of the state, p(x0), and the parameters, p(θ), are

known and the corresponding probability distributions are independent.
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4.1.1 Model inference

The key difficulty in this class of models is the same as in the nested particle filter (NPF) [25] (see Section

2.4): the Bayesian estimation of the parameter vector θ. Therefore, we aim at computing the posterior pdf

p(θ|y1:t), that can be written as

p(θ|y1:t) =

∫︂
p(θ,xt|y1:t)dxt, (4.6)

leading naturally to approximations for p(θ,xt|y1:t) for each t. This means that when computing p(θ|y1:t)

we may not only estimate the parameter vector θ, but we may also implicitly track the state dynamical

variables. The main aim in this chapter is to obtain a Gaussian approximation of p(θ|y1:t) within a nested

Gaussian filtering scheme, whose second layer of filters will provide, in addition, Gaussian approximations

for p(xt|y1:t,θ).

4.2 Nested Gaussian filters

In this section, we introduce a class of nested filter for state-space models with unknown parameters

that combine different types of Gaussian approximations in the inner and outer layers. We outline the

methodology used to obtain the Gaussian approximations of p(θ|y1:t) (in the outer layer) and p(xt|y1:t,θ)

(in the inner layer).

We keep using p(·) to denote the actual pdfs. We aim, however, at constructing Gaussian approximations

of the posterior pdfs induced by the state-space model of Eqs. (4.3)-(4.5) and the sequence of observations.

In particular, we show how to recursively compute approximations p(θ|y1:t) ≈ N (θ|θ̂t, Ĉ
θ

t ), p(xt|y1:t,θ) ≈
N (xt|x̂t|t,θ, Ĉ

x

t|t,θ) and p(xt|y1:t) ≈ N (xt|x̂t, Ĉ
x

t ).

4.2.1 Sequential Gaussian approximation

Let us aim at computing expectations of the form E[f(θ)|y1:t] =
∫︁
f(θ)p(θ|y1:t)dθ for some test function

of the parameters, f(θ). Different choices of f(·) enable us to compute different statistics, e.g., for f(θ) = θ

we obtain the posterior mean θ̄t = E[θ|y1:t] while if we let

f(θ) =
(︁
θ − θ̄t

)︁⊤ (︁
θ − θ̄t

)︁
then we obtain the posterior covariance matrix of θ. Using Bayes’ rule, we can express the posterior pdf of

θ as

p(θ|y1:t) =
p(yt|y1:t−1,θ)

p(yt|y1:t−1)
× p(θ|y1:t−1), (4.7)

hence, we can rewrite the posterior expectation as

E[f(θ)|y1:t] =

∫︂
ψ(θ)p(θ|y1:t−1)dθ, (4.8)

where the function ψ(θ) is constructed as

ψ(θ) :=
f(θ)p(yt|y1:t−1,θ)

p(yt|y1:t−1)
. (4.9)

If we assume that p(θ|y1:t−1) is Gaussian, then we can approximate the integral of Eq. (4.8) using cubature

rules [10] or the unscented transform (UT) [90]. Specifically, a Gaussian approximation N (θ|θ̂t−1,C
θ
t−1) ≈
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p(θ|y1:t−1) can be represented at time t by a set of reference points and weights, {θi
t−1, w

i
t−1}0≤i≤M−1,

M = 2dθ + 1 (see Section 2.2.3), which in turn we may use to approximate the integral in Eq. (4.8) as∫︂
ψ(θ)p(θ|y1:t−1)dθ ≈

M−1∑︂
i=0

ψ(θi
t−1)w

i
t−1. (4.10)

On the other hand, the pdf in the denominator of Eq. (4.9), p(yt|y1:t−1), can be written as

p(yt|y1:t−1) =

∫︂
p(yt,θ|y1:t−1)dθ, (4.11)

where the joint pdf of yt and θ given all previous observations can be decomposed as

p(yt,θ|y1:t−1) = p(yt|θ,y1:t−1)p(θ|y1:t−1). (4.12)

Then, the integral in Eq. (4.11) can also be approximated using the same set of reference points and

weights as

p(yt|y1:t−1) ≈
M−1∑︂
i=0

p(yt|y1:t−1,θ
i
t−1)w

i
t−1. (4.13)

Finally, we can approximate the pdf p(yt|y1:t−1,θ
i
t−1), i = 0, . . . ,M − 1, using a bank of M Gaussian filters

placed in the second layer of the nested filter as shown in Chapter 3. Once these densities are computed,

we can approximate p(yt|y1:t−1) as in Eq. (4.13).

The argument above enables us to approximate any integral
∫︁
f(θ)p(θ|y1:t)dθ. We can compute

the mean vector and covariance matrix of a pdf p(θ|y1:t) ≈ N (θ|θ̂t, Ĉ
θ

t ) by taking f(θ) = θ and

f(θ) = (θ − θ̂t)(θ − θ̂t)
⊤, respectively, where

θ̂t =

∫︂
θp(θ|y1:t)dθ. (4.14)

Specifically, we obtain the formulation for approximating the mean parameter vector, θ̂t, and its covariance

matrix, Ĉ
θ

t , sequentially as

θ̂t ≈
M−1∑︂
i=0

θi
t−1

p(yt|y1:t−1,θ
i
t−1)

p(yt|y1:t−1)
wi

t−1 and (4.15)

Ĉ
θ

t ≈
M−1∑︂
i=0

(θi
t−1 − θ̂t)(θ

i
t−1 − θ̂t)

⊤ p(yt|y1:t−1,θ
i
t−1)

p(yt|y1:t−1)
wi

t−1. (4.16)

We outline the procedure for the sequential computation of the Gaussian approximations N (θ|θ̂t, Ĉ
θ

t ) ≈
p(θ|y1:t), t = 1, 2, . . ., in Algorithm 8. The calculations done in the second layer of filters are summarized

in step 2a. Notice that, at any time t ≥ 1, we update the reference points θi
t−1, i = 0, . . . ,M − 1, and,

therefore, we need to run the M Gaussian filters in the second layer from scratch (i.e., from n = 0 to n = t)

in order to (approximately) evaluate the densities p(yt|y1:t−1,θ
i
t−1). Thus, Algorithm 8 is sequential but

not recursive and, as a consequence, not well suited to handle long sequences of observations.
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Algorithm 8 Nested Gaussian filters.

Inputs:

- Prior pdfs p(x0) and p(θ). Assume that either p(x0) is Gaussian or a Gaussian approximation is

available.

Procedure:

1. Initialization

(a) Generate M reference points, θi
0, from p(θ) ≈ N (θ|θ0,Cθ

0 ) for i = 0, . . . ,M − 1, with weights

wi
0.

2. Sequential step, t ≥ 1.

(a) For each i = 0, . . . ,M − 1, use a Gaussian filter to approximately compute p(yt|y1:t−1,θ
i
t−1).

(b) Compute θ̂t and Ĉ
θ

t via Eqs. (4.15) and (4.16).

(c) Generate new reference points θi
t and weights wi

t, i = 0, . . . ,M − 1, from θ̂t and Ĉ
θ

t .

Outputs: θ̂t and Ĉ
θ

t .

4.2.2 Recursive algorithm

For every new observation vector yt, in Algorithm 8 the pdfs p(yt|y1:t−1,θ
i
t−1) are computed by running

the nested filters from time 0 until the current time t, which makes the computational cost increase with

t2. However, the entries of the covariance matrix, Ĉ
θ

t , also tend to stabilize over time, which makes

the difference between consecutive reference points, θi
t−1 − θi

t−2, decrease. If we also assume that the

function p(yt|y1:t−1,θ) is continuous in θ, then we can make the computation recursive by assuming that

p(yt|y1:t−1,θ
i
t−1) ≈ p(yt|y1:t−1,θ

i
t−2) when θi

t−1 ≈ θi
t−2. For the sake of clarity we summarize the steps

for computing p(yt|y1:t−1,θ
i
t−1) in Algorithm 9, relying on a bank of extended Kalman filters (EKFs) for

the second layer of the scheme. Let us remark that this second layer can be implemented using a variety of

filters, e.g., particle filters as in [25] or Gaussian filters as in 3, including unscented Kalman filters (UKFs)

as we have done for the first layer. We choose a bank of EKFs simply because it is the computationally less

demanding alternative.

Algorithm 10 outlines a recursive nested Gaussian filter with a UKF/cubature Kalman filter (CKF) in

the first layer and EKFs in the second layer. It can be seen as a recursive and explicit implementation

of Algorithm 8. The initialization remains the same (step 1a), computing M reference points θi
0 and

weights wi
0, i = 0, . . . ,M − 1, from the prior p(θ) ≈ N (θ|θ0,Cθ

0 ). Also, we initialize the state and its

covariance matrix in every Gaussian filter of the second layer (step 1b) by setting x̂i
0 = x̂0 and Ĉ

x,i

0 = Cx
0 ,

i = 0, . . . ,M − 1, from the prior p(x0) = N (x0|x̂0,C
x
0 ).

47



CHAPTER 4. NESTED GAUSSIAN FILTERS

Algorithm 9 Extended Kalman filter conditional on θi
t−1, used in the second layer of the nested filter.

Inputs:

- Prior pdf p(x0) and parameter vector θi
t−1.

- State-space model described in Eqs. (4.1) and (4.2). In particular, f(·) denotes the transition function

in the state Eq. (4.1) and g(·) is the observation function in Eq. (4.2). The covariance of the state

noise is denoted V and the covariance of the observation noise is denoted R.

Procedure:

1. Initialization

(a) Assume p(x0) is Gaussian with mean x̂0 and covariance Ĉ
x

0 , i.e., p(x0) ≈ N (x0|x̂0, Ĉ
x

0 ).

2. Sequential step, t ≥ 1.

(a) Prediction step. Compute

x̂t|t−1,θi
t−1

= f(x̂t−1|t−1,θi
t−1
,θi

t−1), (4.17)

Ĉ
x

t|t−1,θi
t−1

= Jf,x̂
t−1|t−1,θi

t−1

Ĉ
x

t−1|t−1,θi
t−1

J⊤
f,x̂

t−1|t−1,θi
t−1

+ V ,

where Jf,x̂
t−1|t−1,θi

t−1

is the Jacobian matrix of f(·) evaluated at x̂t−1|t−1,θi
t−1

.

(b) Approximate p(xt|y1:t−1,θ
i
t−1) ≈ N (xt|x̂t|t−1,θi

t−1
, Ĉ

x

t|t−1,θi
t−1

) and compute

p(yt|y1:t−1,θ
i
t−1) =

∫︂
p(yt|xt,θ

i
t−1)p(xt|y1:t−1,θ

i
t−1)dxt (4.18)

≈
∫︂
p(yt|xt,θ

i
t−1)N (xt|x̂t|t−1,θi

t−1
, Ĉt|t−1,θi

t−1
)dxt.

(c) Update step. Compute

x̂t|t,θi
t−1

= x̂t|t−1,θi
t−1

+Kt(yt − g(x̂t|t−1,θi
t−1
,θi

t−1)), (4.19)

Ĉ
x

t|t,θi
t−1

= (Idx
−KtJg,x̂

t|t−1,θi
t−1

)Ĉ
x

t|t−1,θi
t−1
, (4.20)

Kt = Ĉ
x

t|t−1,θi
t−1

J⊤
g,x̂

t|t−1,θi
t−1

(Jg,x̂
t|t−1,θi

t−1

Ĉ
x

t|t−1,θi
t−1

J⊤
g,x̂

t|t−1,θi
t−1

+R)−1,

where Jg,x̂
t|t−1,θi

t−1

is the Jacobian matrix of g(·) evaluated at x̂t|t−1,θi
t−1

. Approximate

p(xt|y1:t,θ
i
t−1) ≈ N (xt|x̂t|t,θi

t−1
, Ĉ

x

t|t,θi
t−1

).

Outputs: x̂t|t,θi
t−1

, Ĉ
x

t|t,θi
t−1

and p(yt|y1:t−1,θ
i
t−1).
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Algorithm 10 Recursive nested Gaussian filters.

Inputs:

- Prior pdfs p(x0) and p(θ).

- A fixed threshold λ > 0.

Procedure:

1. Initialization

(a) Generate M reference points, θi
0, for p(θ) ≈ N (θ0,C

θ
0 ), i = 0, . . . ,M − 1, with weights wi

0.

(b) If p(x0) = N (x0|x̂0,C
x
0 ), then set x̂i

0 = x̂0 and Ĉ
x,i

0 = Cx
0 for i = 0, . . . ,M − 1.

2. Sequential step, t ≥ 1.

(a) For i = 0, . . . ,M − 1:

i. If ∥θi
t−1 − θi

t−2∥p < λ∥θi
t−2∥p, then compute p(xt|y1:t−1,θ

i
t−1) from p(xt−1|y1:t−1,θ

i
t−1) ≈

p(xt−1|y1:t−1,θ
i
t−2), where p(xt−1|y1:t−1,θ

i
t−2) ≈ N (xt−1|x̂t−1|t−1,θi

t−2
, Ĉ

x

t−1|t−1,θi
t−2

).

Else, approximate p(xt|y1:t−1,θ
i
t−1) from the prior p(x0).

ii. Use p(xt|y1:t−1,θ
i
t−1) to compute p(yt|y1:t−1,θ

i
t−1).

(b) Compute θ̂t, Ĉ
θ

t , x̂t and Ĉ
x

t from Eqs. (4.15), (4.16), (4.27) and (4.28), respectively.

(c) Generate reference points θi
t and weights wi

t from θ̂t and Ĉ
θ

t for i = 0, . . . ,M − 1.

Outputs: x̂t, θ̂t, Ĉ
x

t and Ĉ
θ

t .

The sequential procedure starts by approximating p(xt|y1:t−1,θ
i
t−1) with the second layer of Gaussian

filters (step 2(a)i). This is done differently depending on whether we assume θi
t−1 ≈ θi

t−2 or not. To

be specific, the norm1 ∥θi
t−1 − θi

t−2∥p is computed and compared against a prescribed relative threshold

λ > 0 in order to determine whether the prediction and update steps in the second layer of filters can be

performed recursively or not. Specifically:

1Although other metrics d(θi
t−1,θ

i
t−2) could be used, we adopt p-norms of the difference θi

t−1 − θi
t−2 for this work. This

is a flexible setup that admits several variants, e.g.,

∥θi
t−1 − θi

t−2∥1 =

dθ∑︂
j=1

|θi
t−1,j − θi

t−2,j |, (4.21)

∥θi
t−1 − θi

t−2∥2 =

⌜⃓⃓⃓
⎷ dθ∑︂

j=1

(θi
t−1,j − θi

t−2,j)
2 and (4.22)

∥θi
t−1 − θi

t−2∥∞ = max
1≤j≤dθ

|θi
t−1,j − θi

t−2,j |; (4.23)

i.e., the taxicab norm or Manhattan norm (p = 1), the Euclidean norm (p = 2) and the maximum norm (p = ∞) respectively.
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• If ∥θi
t−1 − θi

t−2∥p < λ∥θi
t−2∥p is not satisfied for θi

t−1, the i-th filter runs from scratch following the

scheme in Algorithm 9.

• When ∥θi
t−1 − θi

t−2∥p < λ∥θi
t−2∥p is satisfied for θi

t−1, only one prediction and update step (from

time t− 2 to time t− 1) is needed. In particular, we make the approximation p(xt−1|y1:t−1,θ
i
t−1) ≈

p(xt−1|y1:t−1,θ
i
t−2).

In either case, we use p(xt|y1:t−1,θ
i
t−1) in order to compute p(yt|y1:t−1,θ

i
t−1) as in step 2b of Algorithm 9.

Finally, we can compute the mean vector θ̂t and the covariance matrix Ĉ
θ,i

t at time t in step 2b, by using

Eqs. (4.15) and (4.16). We prepare the new reference points θi
t and their weights wi

t from N (θ̂t, Ĉ
θ,i

t ) for

the next time step.

4.2.3 State tracking

We can take advantage of the filters in the second layer in order to provide state estimates as well. Let us

write the expectation of xt as

E[xt|y1:t] =

∫︂
D

[︂ ∫︂
X
xtp(xt|θ,y1:t)dxt

]︂
p(θ|y1:t)dθ, (4.24)

where D ⊆ Rdθ and X ⊆ Rdx denote the support sets of the parameter θ and the state x, respectively, and

the integral in square brackets can be approximated by the M Gaussian filters of the second layer. In

this case, we assume they are the EKFs of Algorithm 9 conditional on θ = θi
t−1. This yields a Gaussian

approximation p(xt|θi
t−1,y1:t) ≈ N (xt|x̂t|t,θi

t−1
, Ĉt|t,θi

t−1
), where

x̂t|t,θi
t−1

≈ E[xt|θi
t−1,y1:t] and (4.25)

Ĉ
x

t|t,θi
t−1

≈ E[(xt − x̂t|t,θi
t−1

)(xt − x̂t|t,θi
t−1

)⊤|y1:t,θ
i
t−1]. (4.26)

Then, a Gaussian approximation p(xt|y1:t) ≈ N (xt|x̂t, Ĉ
x

t ) can be constructed, where

x̂t ≈
M−1∑︂
i=0

x̂t|t,θi
t−1

p(yt|y1:t−1,θ
i
t−1)

p(yt|y1:t−1)
wi

t−1 and (4.27)

Ĉ
x

t ≈
M−1∑︂
i=0

(x̂t|t,θi
t−1
− x̂t)(x̂t|t,θi

t−1
− x̂t)

⊤ p(yt|y1:t−1,θ
i
t−1)

p(yt|y1:t−1)
wi

t−1. (4.28)

4.2.4 Continuity of the conditional filter pdf

The key to keep Algorithm 10 recursive is the test in step 2a, which sets

p(xt−1|y1:t−1,θ
i
t−1) ≈ N (xt−1|x̂t−1|t−1,θi

t−2
, Ĉ

x

t−1|t−1,θi
t−2

) (4.29)

when
∥θi

t−1−θi
t−2∥p

∥θi
t−2∥p

< λ for some prescribed threshold λ > 0. This step relies on the assumption that

p(xt−1|y1:t−1,θ) ≈ p(xt−1|y1:t−1,θ
′) when θ ≈ θ′, i.e., we are assuming that the conditional filtering pdf

p(xt|y1:t,θ) is a continuous function of the parameter θ. In this section we state sufficient conditions for

the conditional filter p(xt|y1:t,θ) to be Lipschitz-continuous.
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For conciseness, let us denote

πt(xt|θ) := p(xt|y1:t,θ), (4.30)

ξt(xt|θ) := p(xt|y1:t−1,θ), and (4.31)

ηt(yt|θ) := p(yt|y1:t−1,θ). (4.32)

Hereafter we assume that the observation sequence {yt, t ≥ 1} is arbitrary but fixed (i.e., deterministic).

Additionally, we impose the following regularity assumptions:

A. 4 The conditional pdfs πt(xt|θ), ξt(xt|θ) and ηt(yt|θ) exist for every t ≥ 1, every xt ∈ X ⊆ Rdx and

every parameter vector θ ∈ D ⊆ Rdθ , where D denotes the parameter space.

A. 5 The transition pdf p(xt|xt−1,θ) is Lipschitz w.r.t. θ, i.e., there exists a constant 0 < L <∞ such

that

sup
xt−1∈X

∫︂
|p(xt|xt−1,θ)− p(xt|xt−1,θ

′)|dxt < L∥θ − θ′∥ (4.33)

for every t ≥ 1 and every pair (θ,θ′) ∈ D ×D.

Remark 1 In Assumption 5, we denote ∥θ − θ′∥ =
√︂∑︁dθ

i=1(θi − θ′i)2, the Euclidean distance between θ

and θ′.

A. 6 The conditional pdfs p(yt|xt,θ) are strictly positive and uniformly Lipschitz w.r.t. θ. In particular,

p(yt|xt,θ) > 0 and

sup
xt∈X

|p(yt|xt,θ)− p(yt|xt,θ
′)|

ηt(yt|θ)
< Gt∥θ − θ′∥ (4.34)

for some positive Gt <∞.

A. 7 The ratio p(yt|xt,θ)
ηt(yt|θ) is bounded. Specifically, there exist finite constants 0 < Mt <∞ such that

sup
θ∈D

xt−1∈X

p(yt|xt,θ)

ηt(yt|θ)
< Mt. (4.35)

Assumptions 4 and 5 are rather mild and easy to check for a given state-space model. Assumptions 6

and 7, on the other hand, may be restrictive in some problems. We note, however, that for fixed yt, t ≥ 1,

and a compact parameter support D ⊂ Rdθ , the factor ηt(yt|θ) can often be bounded away from 0, while

p(yt|xt,θ) is typically upper bounded. In any case, Assumptions 4-7 lead to the result below regarding the

continuity of the filter, πt(xt|θ), and predictive, ξt(xt|θ), pdfs w.r.t. the parameter vector θ.

Proposition 1 : If Assumptions 4 to 7 hold, there exist sequences of finite constants L̃t and Lt such that,

for t ≥ 1, ∫︂
|ξt(xt|θ)− ξt(xt|θ′)|dxt ≤ L̃t∥θ − θ′∥, and (4.36)∫︂
|πt(xt|θ)− πt(xt|θ′)|dxt ≤ Lt∥θ − θ′∥. (4.37)

Proof: See Appendix D. □
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4.3 Example: the stochastic Lorenz 63 model

4.3.1 Stochastic Lorenz 63 model

Consider the 3-dimensional continuous-time stochastic process x(τ) = [x1(τ), x2(τ), x3(τ)]
⊤, where τ ∈

(0,∞) denotes continuous time, taking values on R3, whose dynamics are described by the system of

stochastic differential equations (SDEs)

dx1 = −S(x1 − x2) + σdv1, (4.38)

dx2 = Rx1 − x2 − x1x3 + σdv2, (4.39)

dx3 = x1x2 −Bx3 + σdv3, (4.40)

where the vi’s are independent 1-dimensional Wiener processes, σ > 0 is a known scale parameter and

S,R,B ∈ R are unknown static model parameters. Eqs. 4.38-4.40 are a stochastic version of the Lorenz 63

model [67, 73]. Using the Euler-Maruyama scheme in order to integrate the SDEs of Eqs. (4.38)–(4.40), it

is straightforward to cast them into the discrete-time state equation

xt+1 = f∆(xt,θ) +
√
∆σvt, t = 1, 2, . . . (4.41)

where f∆ : Rdx × Rdθ → Rdx (dx = dθ = 3) is the function defined by

f1,∆(xt,θ) = x1,t −∆S(x1,t − x2,t),

f2,∆(xt,θ) = x2,t +∆[(R− x3,t)x1,t − x2,t],

f3,∆(xt,θ) = x3,t +∆(x1,tx2,t −Bx3,t),

∆ is the integration time-step (given in continuous-time units), θ = (S,R,B)⊤ is the 3 × 1 vector of

unknown parameters and vt is a sequence of 3-dimensional Gaussian independent random vectors with zero

mean and covariance matrix I3 (with Id denoting the d× d identity matrix). Hence, the state transition

density p(xt|xt−1,θ) is Gaussian and can be written down as p(xt|xt−1,θ) = N (xt|f∆(xt−1,θ), σ
2∆Idx

).

This function is Lipschitz on θ.

In order to complete the specification of a state space model, we need to characterize the observations.

For our simulation setup we assume linear observations of the form

yt = ko

[︄
x1,t

x3,t

]︄
+ rt, (4.42)

where ko is a fixed parameter and rt ∼ N (rt|0, σ2
yI2) is a 2-dimensional additive noise with zero mean and

covariance function σ2
yI2. Therefore, the conditional part of the observations (and hence the likelihood

function) is also Gaussian and can be written as p(yt|xt) = N (yt|Gxt, σ
2
yI2), where G =

[︄
ko 0 0

0 0 ko

]︄
is

the observation matrix. This function has a finite upper bound independent of θ.

Observations are not collected at every time t. Instead we assume that an observation vector is received

every Mo steps of the state Eq. (4.41) (every ∆×Mo continuous-time units). Therefore, we can rewrite

the observations as

yt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ko

⎡⎣x1,t
x3,t

⎤⎦+ rt if t = kMo, k ∈ Z

rt if t ̸= kMo

. (4.43)
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4.3.2 Simulation setup

For our computer experiments we have used the stochastic Lorenz 63 model outlined in Eqs. (4.41)

and (4.42) in order to generate signals xt and yt, t = {0, 1, . . .}, used as the ground truth and the data,

respectively, for the assessment of the algorithm. We integrate the model with the step-size ∆ = 2× 10−4

continuous-time units. The true parameters for the generation of the signal and data are S = 10, R = 28

and B = 8
3 (which yield underlying chaotic dynamics); while the initial state is Gaussian with mean2

x̂0 = [−6,−5.5,−24.5]⊤ and covariance matrix I3, i.e., p(x0|x̂0, I3) . The noise scale factors, σ2 = 0.1 and

σ2
y = 1, as well as the constant ko = 5, are assumed known.

For the estimation task we use Algorithm 10. We assume a Gaussian prior distribution for the unknown

parameters, namely p(θ) = N (θ|µθ, σ
2
θI3), where the a priori mean µθ is drawn at random from a uniform

distribution U(θ⋆ − ϵ,θ⋆ + ϵ) for each independent simulation and σ2
θ = 1. θ⋆ = [10, 28, 83 ]

⊤ is the true

parameter vector and the offset vector is ϵ = [3, 1, 0.5]⊤. The algorithm does not collect an observation at

every time step, but every Mo = 5 discrete-time steps (i.e., every Mo ×∆ = 10−3 continuous-time units).

Hence, the prediction step of the state variables at the second layer of the nested filter corresponds to

Mo = 5 discrete-time steps of the difference Eq. (4.41). When an observation yt (at discrete time t = kMo,

for some k ∈ Z) arrives, both the state and parameter distributions are updated. The length of each

simulation run is T = 40 continuous-time units, which amounts to T
∆ = 2× 105 discrete-time steps of the

state Eq. (4.41).

We have assessed the ability of several Bayesian computation algorithms to jointly track the state xt

and estimate the parameters θ = (S,R,B)⊤ of this model. To be specific, we have coded and run the

following schemes:

• The proposed Algorithm 10 using a UKF in the first layer and a bank of EKFs in the second layer.

• A UKF [90] algorithm with state augmentation [46, 65] where the parameters are added to the state

vector.

• An ensemble Kalman filter (EnKF) [36] algorithm with state augmentation as well.

• An NHF [91] with a sequential Monte Carlo (SMC) algorithm in the first layer and a bank of EKFs

in the second layer.

Table 4.2 summarizes the computational complexity of the different algorithms that we have compared

in our study. For the comparison, we have assumed a “roll-back probability” q that corresponds to the

probability of the event

∥θi
t−1 − θi

t−2∥p ≥ λ∥θi
t−2∥p

in step 2(a)i of Algorithm 10 for large t. In other words, q represents the average probability of Algorithm

10 to have to approximate the density p(xt|y1:t−1,θ
i
t−1) starting from the prior p(x0) at time t (an action

which has a cost of order t2). In practice, our simulations show that q << 1 for sufficiently large t.

The accuracy of the various algorithms is compared in terms of the normalized mean square error

(NMSE) of the predictor of the state and the predictor of the parameters. We assess the empirical NMSE

2In order to obtain the initial vector x̂0, we simulate a deterministic version of the Lorenz 63 model of Eq. (4.41) (σ = 0)

for 20 continuous-time units. We set the initial state as the values of the variable x at the last time step of this simulation.

This initialization is used in all simulations of this computer experiment in order to generate the “ground truth” sequence of

xt and the associated sequences of observations yt.
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Algorithm Computational complexity

UKF with state augmentation O((dθ + dx)
3d3yt)

EnKF with state augmentation O((dθ + dx)d
3
yMt)

NPF O(MNt)

NHF (SMC-EKF) O(d2xd3yNt)
Algorithm 10 (UKF-EKF) O

(︁
d3θd

2
xd

3
y

[︁
qt2 + (1− q)t

]︁)︁
Table 4.2: Computational complexity of the algorithms compared in the numerical study. For the EnKF with

state-augmentation, M is the number of ensemble elements. For the NPF, N is the number of particles in the first

layer and M is the number of particles in the second layer. For the SMC-EKF scheme, N is the number of particles

in the first layer. For the UKF-EKF algorithm, q is the average “roll-back” probability in step 2(a)i of Algorithm 10.

resulting directly from the simulations, namely,

NMSEx,t =
∥xt − x̂t∥2

∥xt∥2
, NMSEθ,t =

∥θt − θ̂t∥2

∥θt∥2
, (4.44)

as well as the averages

NMSEx =
∆

T

T
∆−1∑︂
t=0

NMSEx,t and NMSEθ =
∆

T

T
∆−1∑︂
t=0

NMSEθ,t.

Finally, Table 4.3 presents a summary of the model and algorithm parameters, and their values, as

needed to reproduce the simulation results in this section.

Parameter Value

S 10

R 28

B 8
3

∆ 2× 10−4

T 40

Mo 5

ko 5

θ⋆ [10, 28, 83 ]
⊤

x̂0 [−6,−5.5,−24.5]⊤

σ2 0.1

σ2
y 1

σ2
θ 1

ϵ [3, 1, 0.5]⊤

λ 10−3

M 10

N 120

Table 4.3: Model and algorithm parameters for the simulation setup of Section 4.3.3.
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4.3.3 Numerical Results

In the first computer experiments we study the choice of norm ∥θi
t−1− θi

t−2∥p in step 2(a)i of Algorithm 10.

Specifically, we have considered a setup where the model parameters θ = (S,R,B)⊤ are assumed known

and the goal is to track the state xt using an EKF. We first generate a sequence of observations y1:T from

the model with parameters θ = (10, 28, 83 )
⊤. Then, for this sequence, the EKF runs with a perturbed set of

parameters of the form θ′ = θ+ ϵ, where ϵ ∼ N (0, σ2
e) is a zero-mean Gaussian perturbation. We carry out

100 independent simulations for each value of σ2
e for σ2

e = {10−1, 10−2, 10−3, 10−4, 10−5}.
Fig. 4.1 summarizes the outcome of this experiment. In particular, it displays the NMSE in the tracking

of xt, averaged over all 100 simulation runs, versus the average norms ∥θ − θ′∥2 and ∥θ − θ′∥∞. The plot

illustrates that:

1. The NMSEx is an increasing magnitude w.r.t. the perturbation ∥θ − θ′∥p, both with Euclidean or

maximum norms. The NMSEx remains below 10−4 when ∥θ − θ′∥p is approximately below 10−2.

2. The NMSEx is slightly higher when the parameter perturbation is given in terms of the norm

∥θ − θ′∥∞.

10−4 10−3 10−2
2×10−5

4×10−5

6×10−5

8×10−5
10−4

2×10−4

∥θ′ − θ∥p

N
M
S
E
x

∥ · ∥2
∥ · ∥∞

Figure 4.1: EKF performance with known parameters, θ′, that are obtained by modifying the true parameters, θ.

In the abscissa axis, we represent the average distance of the simulation runs to the ground truh.

In a second experiment, Fig. 4.2 shows the results of using Algorithm 10 with both ∥ · ∥2 and ∥ · ∥∞
norms for several values of λ. Again, each point of the graphs represents the average of 80 independent

simulation runs. We display NMSEθ, NMSEx and run-times in minutes3 in Figs. 4.2a, 4.2b and 4.2c,

respectively. In Fig. 4.2a, we see that NMSEθ increases with λ. This is as expected because the larger λ,

the worse the approximation p(xt−1|y1:t−1,θ
i
t−1) ∼ p(xt−1|y1:t−1,θ

i
t−2). We also see that the Euclidean

norm ∥ · ∥2 yields a smaller error. However, in the results obtained for NMSEx in Fig. 4.2b, we observe

that below λ = 10−3 there is almost no improvement in the error, and the curve is similar to the one in Fig.

4.1. Finally, Fig. 4.2c shows that the runtime of the nested filtering Algorithm 10 increases significantly

when λ < 10−3 (because the algorithm takes longer to become strictly recursive). The comparison of the

3The algorithms have been coded in MATLAB R2017a and run on a computer with 128 GB of DRAM and equipped with

two Intel Xeon Gold 5115 10-Core CPU processors (running at 2.40 GHz).
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(a) NMSEθ for different values of λ.
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(b) NMSEx for different values of λ.
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(c) Average simulation runtime.

Figure 4.2: The average NMSE and average time of simulation in minutes over 80 simulation runs for different

values of λ, using the Euclidean norm ∥ · ∥2 (in blue) and the maximum norm ∥ · ∥∞ (in red).

NMSE values in Figs. 4.2a and 4.2b with the run-time in Fig. 4.2c enables us to select the value of the

threshold λ in order to attain a certain trade-off between computational cost and accuracy of the estimates

provided by Algorithm 10. For the rest of the experiments in this section we set λ = 10−3. When applied

to different models, the effect of λ on the performance of Algorithm 10 can be different and adequate

trade-offs may be attained for different values of the threshold. In a practical application, one may run a

computer experiment with synthetic data in order to reproduce Figs. 4.2a, 4.2b and 4.2c for the model of

interest and then choose the suitable value of λ to be used with real data.

In the next experiment we compare the proposed nested Gaussian filters (Algorithm 10) with two

classical methods: the unscented Kalman filter (UKF) [52] and the ensemble Kalman filter (EnKF) [36],

both relying on the state-augmentation technique [8, 64] to incorporate the unknown parameters. To be

specific, this approach implies that the system state xt is extended with the parameter vector to obtain the

augmented state x̃t =

[︄
xt

θ

]︄
. The UKF and EnKF algorithms are used to track x̃t instead of xt.

We have carried out two sets of computer simulations. In the first one we assume that the observation

vectors are of the form yt = koxt+rt, i.e., all the state variables are observed in Gaussian noise. The results

are displayed in Figs. 4.3a and 4.3c, which show the NMSE for the parameters θ and the state xt over time,
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(a) NMSEθ,t observing [x1, x2, x3]⊤.
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(b) NMSEθ,t observing [x1, x3]⊤.
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(c) NMSEx,t observing [x1, x2, x3]⊤.
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(d) NMSEx,t observing [x1, x3]⊤.

Figure 4.3: Performance of UKF (red), EnKF (blue) and UKF-EKFs (yellow) for two different setups, averaged

over 50 independent simulation runs. Figs. 4.3a and 4.3c show NMSEθ,t and NMSEx,t respectively, where the

whole state vector is observed. In Figs. 4.3b and 4.3d, the error is plotted for a setup where only the first and third

components of the state (x1 and x3) are observed.

respectively, for the three competing algorithms. The nested scheme outperforms the augmented-state

methods clearly in terms of parameter estimation (Fig. 4.3a) and by a smaller margin in terms of state

tracking (Fig. 4.3c). When the observations are reduced to two state variables yt = ko

[︄
x1,t

x3,t

]︄
+ rt, in

Gaussian noise, the advantage of the nested scheme becomes larger, as shown in Figs. 4.3b and 4.3d.

Next, for the same simulation setup of Figs. 4.3b and 4.3d, we compare the performance of the UKF-EKF

nested filter (Algorithm 10) with one of the nested hybrid filters in [91]. The latter method consists of

a SMC filter with N = 120 particles for the first layer and a bank of EKFs for the second layer. Figs.

4.4a and 4.4b show the NMSEθ,t and the NMSEx,t respectively, for both the SMC-EKF (violet line) and

the UKF-EKF (yellow line) methods. Although the time of convergence of the SMC-EKF scheme can be

reduced, the UKF-EKF algorithm converges clearly faster. Also, once it converges, the estimation error for

both parameters and states is slightly lower for the UKF-EKF method. However, the greatest improvement

is related to the computational cost. For this experiment the UKF-EKF algorithm is three times faster

(4.5 minutes run-time versus 14.8) than the SMC-EKF scheme. Therefore, it considerably reduces the

computational cost while obtaining similar or slightly better results in estimation error.
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(a) Averaged NMSEθ,t.
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Figure 4.4: Performance of a SMC-EKF (violet) and a UKF-EKF (yellow) averaged over 100 simulation runs. The

SMC scheme propagates N = 120 samples over time. Fig. 4.4a shows NMSEθ,t and Fig. 4.4b shows NMSEx,t.

For the next computer experiment, Fig. 4.5 shows the parameter estimates obtained by running 50

independent simulations of the proposed UKF-EKF nested filter. The three dimensions of θ̂t are displayed

over time (Figs. 4.5a–4.5c) in order to illustrate how they converge as observations are collected. Although

the length of the simulations is T = 40 continuous-time units, we have plotted just the intervals of time

where the estimates converge. The interval varies from one plot to another because the time of convergence

is not the same for all parameters (having shorter times for B and longer times for S). In spite of that, this

figure shows how all parameters converge to the true values for different initializations. In the same vein,

Fig. 4.6 illustrates the evolution of the three entries (σ2
S,t,σ

2
R,t and σ

2
B,t) on the diagonal of the covariance

matrix Ĉ
θ

t over time (the plots are an average of 50 independent simulation runs). The same as the mean

values shown in Fig. 4.5, the estimated variances of the parameters S,R and B stabilize over time at similar

rates, albeit with different steady-state values.

Fig. 4.7a, on the other hand, illustrates the accuracy of state estimates, x̂t, by averaging the NMSEx,t

obtained for the same set of 50 simulation runs as in Fig. 4.5. The error NMSEx,t decreases with time as

the parameter estimates get closer to their true values, and its value stabilizes around t = 5. By that time,

all parameter estimates in Fig. 4.5 have already converged (or at least got closer to their steady values)

and, consequently, the state estimates become reliable.

In Figs. 4.7b, 4.7c and 4.7d, the estimated marginal pdfs of each element in θ̂t at time t = 40 are

plotted for a typical simulation run. These plot illustrates the uncertainty associated to each parameter.

The means of these Gaussian pdfs are close to the true parameters, in agreement with results seen in Fig.

4.5. In addition, the variances are small, hence all the probability distributions are tightly packed around

the ground truth.

Fig. 4.8 displays the average performance of the UKF-EKF nested filter for different observation noise

variances, σ2
y. While all the previous experiments are done with σ2

y = 1, in Fig. 4.8a we obtain similar

results of NMSEθ for σ2
y = 2 and slightly worse errors for σ2

y = 4 and σ2
y = 10. Although the errors increase

for values of σ2
y greater than one, the general performance of the algorithm is still accurate for larger values

of the variance in the observation noise.

Finally, Fig. 4.9 illustrates the average performance of the proposed nested filter (UKF-EKF) in terms

of NMSEθ and NMSEx given different prior distributions of the form p(θ) = N (θ|µθ, σ
2
θI3). In Figs. 4.9a
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Figure 4.5: Sequences of posterior-mean estimates, θ̂t, over time obtained from 50 independent simulation runs.

and 4.9b we depict the NMSEθ and NMSEx, respectively, as the prior variance σ2
θ is increased and the a

priori mean µθ is drawn at random from a uniform distribution U(θ⋆ − ϵ,θ⋆ + ϵ) for each independent

simulation, where ϵ = [3, 1, 0.5]⊤. Changes in the variance of the prior distribution p(θ) slightly degrade

the performance of the nested filter in terms of NMSEθ and NMSEx, obtaining comparable results for

values of σ2
θ from 1 to 3. Similarly, in Figs. 4.9c and 4.9d the variance is fixed (σ2

θ = 1) but the priori mean

µθ is drawn from a uniform distribution of the form U(θ⋆ − kϵ,θ⋆ + kϵ) with increasing values of k, while

keeping ϵ = [3, 1, 0.5]⊤. The NMSEs obtained in this way increase approximately linearly with k, to yield

an NMSEθ of almost one order of magnitude higher for k = 3 (but still below 10−2).

4.4 Example: a stochastic volatility model with real data

In this section, we assess the performance of the proposed algorithm (UKF-EKF) for the task of estimating

the parameters of a stochastic-volatility model using real-world time-series data (namely, euro-USD exchange

rates between December 2014 and December 2016).
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independent simulation runs.

4.4.1 Stochastic Volatility model

We assume the stochastic volatility state-space model [54]

x0 = µ+

√︄
σ2
v

1− ϕ2
v0, (4.45)

xt = µ+ ϕ(xt−1 − µ) + σvvt, (4.46)

yt = xt +
√
ωrt, (4.47)

where θ = [µ, σ2
v , ϕ]

⊤ ∈ R × R+ × [−1, 1] is the vector of static unknown parameters and the state xt

represents the log-volatility of the time-series of observations yt, t = 0, . . . , T . The noise series vt and rt are

i.i.d. Gaussian sequences and the variance of the observation noise ω = π2

2 is assumed known.

Given the historical EUR-USD exchange rate data sequence s0, . . . , sT from 2014-12-31 to 2016-12-31

(obtained from www.quandl.com), we generate the time series of log-returns yt following the same procedure

as in [3, 26, 95]. To be specific, at time t we compute

ȳt = 100 log

(︃
st
st−1

)︃
, (4.48)

for 1 ≤ t ≤ T . Then, we further transform the log-returns into

yt = log(ȳ2t ) + 1.27, (4.49)

in order to obtain the observations as described in Eq. (4.47) [54].

4.4.2 Simulation setup

Similar to Section 4.3, we have assessed several algorithms for the estimation of the parameters θ = [µ, σ2
v , ϕ]

⊤

and the state xt of the stochastic volatility model. In particular, we have implemented the following methods:

• The proposed Algorithm 10, using a UKF and a bank of EKFs in the first and second layers of the

filter, respectively.
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Figure 4.7: The mean NMSEx,t of 50 simulation runs over time is plotted in Fig. 4.7a. Figs. 4.7b, 4.7c and 4.7d

show the posterior density of parameters (dashed lines) at time t = T and their true values (black vertical lines).

• An EnKF algorithm [36] with state augmentation (running N = 100 ensembles).

• An NHF [91] using a SMC scheme in the first layer (with N = 100 particles) and a bank of EKFs in

the second layer.

• An NPF [25] with N = 100 particles in the SMC scheme of each layer (i.e., 10, 000 particles overall).

We recall that the computational complexity of these algorithms is outlined in Table 4.2.

For the UKF-EKF scheme we assume a Gaussian prior distribution for the unknown parameters,

namely p(θ) = N (θ|µθ, 10
−2I3), where the a priori mean is drawn at random from a normal distribution

µθ ∼ N (µθ|[0.85, 0.05, 0]⊤, 10−2I3). For the rest of the methods, the prior distribution for the unknown

parameters is p(θ) = N (θ|[0.9, 0.2, 0]⊤, 10−1I3). The prior distribution for the state variable xt is given

conditional on the parameters, namely p(x0) = N
(︂
x0|µ, σ2

v

1−ϕ2

)︂
for all the different methods used in this

section.

We have assessed the performance of the algorithms in terms of the marginal log-likelihood (MLL)

estimated for the model, since there is no available ground truth for either the state or the parameters. We

also illustrate the performance of the algorithms with the marginal pdfs of the three parameters at the

final discrete time step T . For all methods, the marginal densities are averaged over 40 simulation runs.

61



CHAPTER 4. NESTED GAUSSIAN FILTERS

1 2 4 10

8×10−7

10−6

2×10−6

σ2
y

N
M
S
E
θ

(a) NMSEθ for different σ2
y .

1 2 4 10

4×10−5

6×10−5

8×10−5

10−4

2×10−4

σ2
y

N
M
S
E
x

(b) NMSEx for different σ2
y .

Figure 4.8: NMSEθ (4.8a) and NMSEx (4.8b) of UKF-EKF, averaged over 50 simulation runs, for different values

of the noise variance σ2
y.

4.4.3 Numerical results

Fig. 4.10 shows the averaged marginal pdfs of the parameters at the end of the simulation runs (at discrete

time T = 513) for the different algorithms compared here (NPF in blue, SMC-EKF in red, the proposed

UKF-EKF in yellow and EnKF in violet). In general, all the algorithms obtain pdfs that overlap significantly,

showing that the estimation task yields coherent similar results independently of the method applied.

However, it is seen from Fig. 4.10c that the NPF and NHF methods yield pdfs which are non-Gaussian.

Moreover, the estimates of the marginal pdfs output by the UKF-EKF method are narrower than the

densities estimated by the other methods. This suggests that the UKF-EKF scheme may yield rather

accurate point estimates for the parameters but possibly underestimate their variance.

Fig. 4.11 shows the marginal log-likelihood (MLL) as estimated using the same four methods. The

smaller estimated variance for the parameters of the UKF-EKF algorithms reflects on a higher confidence

on the model (i.e., a larger MLL). As for the dispersion on the MLL estimates, we should note that the

UKF-EKF scheme is a deterministic method, hence the only source of variance is the randomness in the

prior that we have introduced for the simulations. All other algorithms are stochastic and so display a

larger variability of the estimates.

Finally, Fig. 4.12 illustrates the run-times averaged over 40 simulation runs. The use of Gaussian filters

reduces considerably the computational cost, since the NPF is 2 orders of magnitude slower than any of the

other algorithms. These run-times have been obtained running MATLAB R2018 on a MacBook Pro laptop

computer with a 2,3 GHz Dual-Core Intel Core i5processor and 16 GB 2133 MHz LPDDR3 of RAM.

4.5 Conclusions

We have introduced a generalization of the NHF methodology of [91] that, using long sequences of

observations collected over time, estimates the static parameters and tracks the stochastic dynamical

variables of a state space model. This scheme combines two layers of filters, one inside the other, in order to

compute the joint posterior probability distribution of the parameters and the states. In this generalization

of the methodology, we introduce the use of deterministic sampling techniques in the first layer of the
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Figure 4.9: NMSEθ (4.9a) and NMSEx (4.9b) of UKF-EKF, averaged over 60 simulation runs, for different values

of the σ2
θ . Also, NMSEθ (4.9c) and NMSEx (4.9d) for greater values of the ϵ and fixed variance (σ2

θ).

algorithm (the cubature Kalman filter (CKF) or the unscented Kalman filter (UKF)), instead of Monte

Carlo methods, describing in detail how the algorithms can work sequentially and recursively. We have

presented numerical results for a stochastic Lorenz 63 model with synthetic data and for a stochastic

volatility model with real-world data, using a scheme with a UKF for the parameters in the first layer, and

EKFs for the time-varying state variables in the second layer. We have introduced and assessed the values of

a relative threshold that enables the algorithm to work recursively, and we have evaluated the performance

of the algorithm in terms of the normalized mean square errors for the parameters and the dynamic state

variables. We have also compared these results with other algorithms, such as the EnKF or the UKF,

that implement state augmentation (i.e., an extended state that includes both parameters and state), and

also with an NHF (with a SMC in the first layer and EKFs in the second layer) and an NPF. The use of

Gaussian filters in the two layers of the algorithm not only leads to a significant reduction in computational

complexity compared to Monte Carlo-based implementations but also increases the accuracy compared to

state-augmented Gaussian filters. Additional research is still needed for an analytical characterization of

the performance, possibly under suitable regularity conditions that enable a theoretical study.
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Figure 4.10: Pdfs of the unknown parameters θ = (ϕ, σ2
v, µ)

⊤ at time T = 513, averaged over 40 simulation runs. We

have assessed four different algorithms: the NPF (blue), the SMC-EKF (red), the EnKF (violet) and the UKF-EKF

(yellow).
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Figure 4.11: Marginal log-likelihood at time T , obtained from 40 simulation runs, for the NPF, the SMC-EKF, the

UKF-EKF and the EnKF with state augmentation.
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Figure 4.12: Running time in seconds, averaged over 40 simulation runs, for the NPF, the SMC-EKF, the UKF-EKF

and the EnKF with state augmentation.

65



CHAPTER 4. NESTED GAUSSIAN FILTERS

66



5
Multi-Scale Nested Filters

This chapter is dedicated to a further generalization of the nested hybrid filters (NHFs); we aim at

performing recursive Bayesian inference for a class of heterogeneous multi-scale state-space models [1].

The new scheme can be described as a three-layer nested smoother that approximates, in a recursive

manner, the posterior probability distributions of the parameters and two sets of state variables given

the sequence of available observations. To be specific, in a first layer of computation we approximate

the posterior probability distribution of the parameters, in a second layer we approximate the posterior

probability distribution of the slow state variables, and the posterior probability distribution of the fast

state variables is approximated in a third layer. The inference techniques used in each layer can vary,

leading to different computational costs and degrees of accuracy. In Section 5.1 we state the problem to be

addressed, introducing heterogeneous multi-scale state-space models. In Section 5.2, we describe the optimal

smoother for multi-scale systems with static parameters and two sets of dynamic state variables. Two

specific methods derived from the general methodology are introduced in Section 5.3. Finally, numerical

results for the stochastic two-scale Lorenz 96 model are shown in Section 5.4. The notation for this chapter

is summarized in Table 5.1.

5.1 Problem Statement

5.1.1 State space models

In this chapter we place our attention on state space models that result from the analysis of physical

systems that display (intertwined) dynamical features at different time scales. To be specific, let us consider

the class of multidimensional stochastic differential equations (SDEs) that can be written as
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dx = fx(x,θ)dτ + gx(z,θ)dτ +Qxdv, (5.1)

dz = fz(x,θ)dτ + gz(z,θ)dτ +Qzdw, (5.2)

where

• τ denotes continuous time,

• x(τ) ∈ Rdx and z(τ) ∈ Rdz are the slow and fast states of the system, respectively,

• fx : Rdx × Rdθ → Rdx , gx : Rdz × Rdθ → Rdx , fz : Rdx × Rdθ → Rdz and gz : Rdz × Rdθ → Rdz are

(possibly nonlinear) transition functions parameterized by a fixed vector of unknown parameters,

θ ∈ Rdθ ,

• Qx and Qz are known scaling matrices that control the intensity and covariance of the stochastic

perturbations,

• and v(τ) and w(τ) are vectors of independent standard Wiener processes with dimension dx and dz,

respectively.

Equations (5.1)–(5.2) do not have closed form solutions for general nonlinear functions fx, fz, gx and

gz and they have to be discretized for their numerical integration. In order to handle the slow and fast time

scales, we apply a macro-micro solver [96, 102] that runs an Euler-Maruyama scheme for each set of state

variables, albeit with different integration steps. To be specific, we use ∆z as the integration step of z while

∆x ≫ ∆z is the integration step of x. Then, we can simulate x and z using the pair of difference equations

xt = xt−1 +∆x(fx(xt−1,θ) + gx(z̄t,θ)) +
√︁
∆xQxvt, (5.3)

zn = zn−1 +∆z(fz(x⌊n−1
h ⌋,θ) + gz(zn−1,θ)) +

√︁
∆zQzwn, (5.4)

where xt ≈ x(t∆x) and zn ≈ z(n∆z) are the state signals, t ∈ N denotes discrete time in the time scale of

the slow variables, n ∈ N denotes discrete time in the fast time scale, h = ∆x

∆z
∈ Z+ is the number of fast

steps (in the scale of z) per slow step (in the scale of x), vt and wn are Gaussian r.v.s of zero mean and

covariance matrices Idx
and Idz

respectively, and z̄t is an average of the fast signal computed as

z̄t =
1

h

ht∑︂
i=h(t−1)+1

zi. (5.5)

We assume that the available observations may be directly related to both sets of state variables xt

and zn, but only in the (slow) time scale of x. To be specific, the t-th observation is a dy-dimensional r.v.,

yt ∈ Rdy , which we model as

yt = l(zht,xt,θ) + rt, (5.6)

where l : Rdz × Rdx × Rdθ → Rdy is a transformation that maps the states into the observation space, and

rt is a zero-mean observational-noise vector with covariance matrix R.
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Table 5.1: Notation of Chapter 5.

Ci,j
t (y) and Č

i,j

t (x) Predictive covariance matrices of the observation and the slow state, respectively

Ci,j
t (x,y) Cross-covariance matrix of the slow state and the observation

Ci,j
t (z,y) Cross-covariance matrix of the fast state and the observation

Č
i,j

n (z) and Ĉ
i,j

n (z) Predictive and posterior covariance matrices of the fast state, respectively

dx, dy, dz, dθ Slow state, observation, fast state and parameter dimension, respectively

fx(·) and gx(·) Slow state transition functions

fz(·) and gz(·) Fast state transition function

h Number of fast state steps per slow state steps

Hi,j
t (z) and J i,j

n (z) Jacobian matrices of the observation function and the fast state transition

function, respectively

J Number of particles or ensemble members in the second layer

Kt(x) and Kt(z) Kalman gain for the slow and fast state respectively

l(·) Observation function

L Number of sigma-points in the third layer of the algorithm

n Discrete-time steps in the time scale of z

N Number of particles in the first layer of the algorithm

rt Observation noise vector at time step t

R Covariance matrix of the observation noise

t Discrete-time steps in the time scale of x

ũi,jt and ṽit Non-normalized weights of the second and first layers, respectively

vt and wn Slow and fast state noise vectors at time steps t and n, respectively

w̃i,j,l
t Approximate likelihood computed in the third layer at time step t

xt Slow state vector at time step t

xi,j
t Posterior samples of the slow state at time step t

x̌i,j
t and x̂i,j

t Predictive and posterior mean of the slow state at time step t

x̄i,j
t and x̃i,j,l

t Predictive samples of the slow state in the second and third layers

X̄
i
t and X̂

i

t Predictive and posterior ensemble with J samples of the slow state

yt Observation vector

ŷt Predictive mean of the observation vector

ỹi,j
t and ỹi,j,l

t State samples or sigma-points projected into the observation space

Y i
t Observation ensemble

zn Fast state vector at time step n

z̄t Average of the fast state variables from n = h(t− 1) + 1 to n = ht

ži,j
n and ẑi,j

n Predictive and posterior mean of the fast state

z̆i,j,l
n and zi,j,l

n Predictive and posterior fast state sigma-points at time step n

∆x and ∆z Integration steps of x and z respectively

θi
t Posterior i-th particle or parameter sample at time step t

κθ
′

N Markov kernel of the jittering step

λi,j,ln Weights of the sigma-points in the UKF of the third layer

τ Continuous time
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5.1.2 Model inference

Similar to Chapter 4, we aim at performing joint Bayesian estimation of the parameters, θ, and all states,

x and z, for the state-space model described by Eqs. (5.3)-(5.4) and (5.6). Typically, the three vectors of

unknowns are tightly coupled. The estimation of the fixed parameters is necessary to track both sets of

state variables and, at the same time, tracking the slow state variables is needed for predicting the time

evolution of the fast states and vice versa.

While in many practical applications one is typically interested in filtering, i.e., the computation of the

posterior pdf of θ, xt and zn (for n = ht) given the data sequence y1:t = {y1,y2, . . . ,yt}, we find more

convenient to tackle the smoothing pdf p(zh(t−1)+1:ht,x0:t,θ|y1:t). Using the chain rule, we can factorize

the latter density as

p(zh(t−1)+1:ht,x0:t,θ|y1:t) = p(zh(t−1)+1:ht|x0:t,y1:t,θ)p(x0:t|y1:t,θ)p(θ|y1:t), (5.7)

where we identify the three key conditional distributions that we seek to compute (or approximate). Each

one of these pdfs can be handled in a different layer of computation. Hence, we aim at designing a nested

inference algorithm (in the vein of [91]) with three layers. In the first layer we compute p(θ|y1:t), in the

second one we obtain p(x0:t|y1:t,θ), and in the third layer we tackle p(zh(t−1)+1:ht|x0:t,y1:t,θ).

Hereafter we describe the methodology for the optimal (yet impractical) calculation of the posterior pdf in

Eq. (5.7) as well as two approximate numerical solutions that admit feasible computational implementations.

5.2 Optimal nested smoother

We introduce the optimal nested smoothing algorithm, consisting of three layers, that computes each

of the pdfs in Eq. (5.7). The scheme is summarized in Fig. 5.1. As a result, we obtain the posterior

smoothing density p(zh(t−1)+1:ht,x0:t,θ|y1:t) which, in turn, can be used to compute the optimal filtering

pdf, p(zht,xt,θ|y1:t), by marginalization if necessary. When the exact computations demanded by this

algorithm are not feasible (for general nonlinear and/or non-Gaussian dynamical systems) it serves as a

template for approximate numerical schemes, as shown in Section 5.3.

5.2.1 First layer: static parameters

The aim of this layer is to compute the posterior pdf of the parameters, p(θ|y1:t), recursively. We assume

that the a priori density p(θ) is known.

At time t, assume that p(θ|y1:t−1) has been calculated. When a new observation, yt, is obtained, we

need to compute the likelihood p(yt|y1:t−1,θ) in order to obtain the posterior pdf of θ at time t as

p(θ|y1:t) ∝ p(yt|y1:t−1,θ)p(θ|y1:t−1). (5.8)

However, the parameter likelihood p(yt|y1:t−1,θ) cannot be computed directly. Instead, we decompose it as

p(yt|y1:t−1,θ) =

∫︂
p(yt|x0:t,y1:t−1,θ)p(x0:t|y1:t−1,θ)dx0:t, (5.9)

where p(yt|x0:t,y1:t−1,θ) and p(x0:t|y1:t−1,θ) are the likelihood and the predictive pdf of the state sequence

x0:t, respectively, conditional on the previous observations and the parameters. These pdfs are computed

in the second layer of the algorithm.
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Figure 5.1: Schematic depiction of the optimal smoother. Each column represents a layer of computation and

the dependencies among pdfs are indicated by arrows. The dashed arrows are used to show relations among

different layers while the solid arrows represent dependencies in the same layer. Arrows a and b indicate that some

intermediate computations are needed to relate both pdfs.

5.2.2 Second layer: slow states

Computations in this layer are conditional on the parameter vector θ. We seek to compute the smoothing pos-

terior p(x0:t|y1:t,θ) as well as the predictive density p(x0:t|y1:t−1,θ) and the likelihood p(yt|x0:t,y1:t−1,θ),

which are needed in the first layer –see Eq. (5.9). We assume that the prior density p(x0) is known and the

posterior pdf of the slow states at time t− 1 (conditional on θ), p(x0:t−1|y1:t−1,θ), is available at time t.

We first seek the predictive density of x0:t, namely,

p(x0:t|y1:t−1,θ) = p(xt|x0:t−1,y1:t−1,θ)p(x0:t−1|y1:t−1,θ), (5.10)

which is obtained recursively from the posterior at time t−1, p(x0:t−1|y1:t−1,θ), but requires the evaluation
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of the marginal density p(xt|x0:t−1,y1:t−1,θ). The latter is not directly available. It has to be computed

as an integral w.r.t. the fast state variables, in particular

p(xt|x0:t−1,y1:t−1,θ) =

∫︂
p(xt|zh(t−1)+1:ht,x0:t−1,y1:t−1,θ)×

p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ)dzh(t−1)+1:ht. (5.11)

The two densities in the integrand of Eq. (5.11), which involve the fast state variables zh(t−1), . . . ,zht, are

calculated in the third layer. Recall that h is the number of discrete-time steps of the fast states per each

single time step of the slow variables (i.e., the zn’s are h time faster than the xt’s).

As for the likelihood, when yt becomes available we update the posterior density of x0:t (conditional on

θ) as

p(x0:t|y1:t,θ) ∝ p(yt|x0:t,y1:t−1,θ)p(x0:t|y1:t−1,θ). (5.12)

In the equation above, the likelihood p(yt|x0:t,y1:t−1,θ) can be computed as an integral w.r.t. the fast

state variables, specifically,

p(yt|x0:t,y1:t−1,θ) =

∫︂
p(yt|zh(t−1)+1:ht,x0:t,y1:t−1,θ)p(zh(t−1)+1:ht|x0:t,y1:t−1,θ)dzh(t−1)+1:ht

=

∫︂
p(yt|zht,xt,θ)p(zh(t−1)+1:ht|x0:t,y1:t−1,θ)dzh(t−1)+1:ht. (5.13)

The likelihood function p(yt|zht,xt,θ) can be obtained directly from the state-space model described by

Eqs. (5.3)-(5.6), while the conditional pdf of the subsequence zh(t−1)+1:ht can be further decomposed as

p(zh(t−1)+1:ht|x0:t,y1:t−1,θ) =
p(xt|zh(t−1)+1:ht,xt−1,θ)

p(xt|x0:t−1,y1:t−1,θ)
× p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ). (5.14)

Both the likelihood p(yt|x0:t,y1:t−1,θ) of Eq. (5.13) and the predictive density

p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ) of Eq. (5.14) are explicitly computed in the third layer.

5.2.3 Third layer: fast states

Computations on this layer are conditional on the parameter vector θ and the sequence of slow states x0:t.

In particular, we seek to compute the conditional posterior pdfs of zh(t−1)+1:ht, including the predictive

densities,

p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ) and p(zh(t−1)+1:ht|x0:t,y1:t−1,θ),

as well as the updated density p(zh(t−1)+1:ht|x0:t,y1:t,θ). We also evaluate the plain likelihood function

p(yt|zht,xt,θ). We assume that the prior pdf of the fast states, p(z), is known and the posterior up to

time t− 1, p(zh(t−2)+1:h(t−1)|xt−1,y1:t−1,θ), is available to enable recursive computations.

The first predictive pdf is computed recursively from the posterior up to time t− 1 as the integral

p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ) =

∫︂
p(zh(t−1)+1:ht|zh(t−2)+1:h(t−1),x0:t−1,y1:t−1,θ)×

× p(zh(t−2)+1:h(t−1)|x0:t−1,y1:t−1,θ)dzh(t−2)+1:h(t−1)

=

∫︂
p(zh(t−1)+1:ht|zh(t−1),xt−1,θ)×

× p(zh(t−2)+1:h(t−1)|x0:t−1,y1:t−1,θ)dzh(t−2)+1:h(t−1), (5.15)
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where the transition pdf p(zh(t−1)+1:ht|zh(t−1),xt−1,θ) is obtained immediately by iterating Eq. (5.3) in the

state-space model h times and p(zh(t−2)+1:h(t−1)|x0:t−1,y1:t−1,θ)dzh(t−2)+1:h(t−1) is the posterior pdf of

the fast states in the previous time step. Besides, the second predictive density, p(zh(t−1)+1:ht|x0:t,y1:t−1,θ),

is obtained by substituting the first predictive pdf of Eq. (5.15) into Eq. (5.14)1.

Finally, when the observation yt becomes available, we compute the plain likelihood p(yt|zht,xt,θ)

(from Eq. (5.6) in the state-space model) and then update the conditional posterior pdf of the fast state

variables, namely,

p(zh(t−1)+1:ht|x0:t,y1:t,θ) =
p(yt|zht,xt,θ)p(xt|zh(t−1)+1:ht,xt−1,θ)

p(yt|x0:t,y1:t−1,θ)p(xt|x0:t−1,y1:t−1,θ)
× p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ)

or, simply,

p(zh(t−1)+1:ht|x0:t,y1:t,θ) ∝ p(yt|zht,xt,θ)p(xt|zh(t−1)+1:ht,xt−1,θ)p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ)

(5.16)

if we skip the normalization constant that is typically not needed explicitly for numerical implementations.

5.2.4 Outline of the optimal nested smoother

The optimal nested smoother uses each layer of computation to track a subset of r.v.s that evolve over

their own time scale, by computing the corresponding predictive and updated pdfs (when observations are

collected), as well as the necessary likelihoods. To be specific:

• The third layer tracks the fast state variables, zn, and computes the predictive pdf

p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ) of Eq. (5.15) and the likelihood p(yt|zht,xt,θ). They are used

to track the conditional posterior density p(zh(t−1)+1:ht|x0:t,y1:t,θ) of Eq. (5.16).

• The second layer takes the pdf p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ) and the likelihood p(yt|zht,xt,θ) in or-

der to compute the predictive pdf p(x0:t|y1:t−1,θ) in Eq. (5.10) and the likelihood p(yt|x0:t,y1:t−1,θ)

in Eq. (5.13). These are used to track the posterior pdf of the slow state, p(x0:t|y1:t,θ), of Eq. (5.12).

• The first layer takes the pdfs p(x0:t|y1:t−1,θ) and p(yt|x0:t,y1:t−1,θ) to track the posterior pdf of

the parameters, p(θ|y1:t), of Eq. (5.8).

Finally, the three conditional posterior pdfs are needed to compute the joint smoothing density

p(zh(t−1)+1:ht,x0:t,θ|y1:t) in Eq. (5.7).

Figure 5.1 is a schematic representation of the optimal smoother, which displays each layer in a different

column. Most of the pdfs that need to be computed are included in this scheme, showing the dependencies

among them with arrows. These relations are direct except for the arrows labeled a and b, which require one

or more intermediate computations. In the case of arrow a, the predictive pdf p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ)

is used to compute p(xt|x0:t−1,y1:t−1,θ) in Eq. (5.11), that is necessary to calculate the predictive density

p(x0:t|y1:t−1,θ) of the second layer in Eq. (5.10). As for the arrow labeled b, the predictive density

p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ) is used to compute the pdf p(zh(t−1)+1:ht|x0:t,y1:t−1,θ) in Eq. (5.14), that

is used, in turn, to obtain the likelihood p(yt|x0:t,y1:t−1,θ) in Eq. (5.13).

1Note that, in Eq. (5.14), the density p(xt|x0:t−1,y1:t−1,θ) is the normalization constant for the conditional pdf

p(zh(t−1)+1:ht|x0:t−1,y1:t−1,θ), while p(xt|zh(t−1)+1:ht,xt−1,θ) results from the iteration of Eq. (5.3).
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5.3 Approximate smoothing algorithms

The optimal algorithm described in Section 5.2 cannot be implemented exactly for most practical models.

Instead, one needs to devise suitable approximations that can be implemented numerically in an efficient

way. One possible approach is a full-blown sequential Monte Carlo (SMC) implementation that extends the

nested particle filter of [25]. However, such a scheme with three layers of computation results in a prohibitive

computational cost. Instead, we introduce herein two different algorithms that combine SMC and Gaussian

approximations at the different layers. The resulting algorithms can be implemented numerically in a more

efficient manner and are suitable for parallelization, which leads to very fast runtimes.

The first method involves using SMC schemes both at the first and second layer, together with a bank

of unscented Kalman filters (UKFs) [52, 71] to approximate (as Gaussians) the conditional densities to

be computed at the third layer. This implementation has great potential for parallelization, but it is

computationally costly nevertheless. Hence, we also introduce a second, less demanding scheme that utilizes

the same SMC scheme at the first layer but employs ensemble Kalman filters (EnKFs) [36] at the second

layer and simple extended Kalman filters (EKFs) [5] to approximate the densities needed in the second

and third layer, respectively. A numerical study of performance is carried out in Section 5.4 for both

implementations.

5.3.1 First scheme

We introduce a numerical approximate smoother where the probability measures p(θ|y1:t)dθ and

p(x0:t|y1:t,θ)dx0:t are approximated using SMC while we replace the conditional smoothing pdf

p(zh(t−1)+1:ht|x0:t,y1:t,θ) by a sequence of Gaussian approximations of the densities p(zn|x0:t,y1:t,θ), for

n = h(t− 1) + 1, . . . , ht, computed using a bank of UKFs.

First layer Algorithm 11 describes the first layer of the nested smoother, which aims at the approximation

of the posterior distribution of the parameters. It receives as inputs the prior pdfs of the parameters, p(θ),

and the two subsets of state variables, p(x0) and p(z0). In the initialization step, they are used to generate

starting Monte Carlo particles (for the SMC schemes) and sigma-points (for the UKFs) needed at each

layer. Specifically, we generate N parameter samples {θi
0}1≤i≤N , J slow state particles per each parameter

sample, {xi,j
0 }1≤j≤J , and L sigma-points of the fast state per each slow state sample, {zi,j,l

0 }0≤l≤L−1, to

obtain a set of the form {θi
0, {x

i,j
0 , {zi,j,l

0 }0≤l≤L−1}1≤j≤J}1≤i≤N . All particles are independent at time

t = n = 0, provided the priors are independent.

Additionally, a Markov kernel κθ
′

N (dθ) is needed for the jittering of parameter samples [25], i.e., to draw

a new set of particles, {θ̄i
t}1≤i≤N , at each discrete-time step. This is needed to preserve the diversity of the

particles, otherwise after a few resampling steps the parameter particles would be reduced to just a few

distinct values and the filter would collapse. The choice of this kernel has been discussed in Chapter 3.

At every time step t (in the slow time scale), we compute the approximate likelihood for each particle

θ̄
i
t, namely

p̂J,L(yt|y1:t−1, θ̄
i
t) ≈ p(yt|y1:t−1, θ̄

i
t),

in order to obtain the non-normalized weights {ṽit}1≤i≤N . The superscripts J and L indicate the dependence

of the approximation on the number of particles generated for the second layer (J) and the number of

sigma-points employed by the UKFs in the third layer (L). The states {xi,j
t−1, {z

i,j,l
h(t−1)}0≤l≤L−1}1≤j≤J are
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propagated to time t in the nested layers of filtering in step 2b. Finally, we normalize the weights in order

to resample not only the parameter particles θ̄
i
t, but also their associated sets of state variables.

Algorithm 11 SMC approximation of p(θ|y1:t) in the first method

Inputs

- Prior distributions p(θ), p(x0) and p(z0).

- A Markov kernel κθ
′

N (dθ) which, given θ′, generates jittered parameters θ ∈ Rdθ .

Initialization: this is a joint initialization for all three layers.

- Draw N i.i.d. sample θi
0, i = 1, . . . , N from the prior distribution p(θ).

- Draw J i.i.d. samples xi,j
0 , i = 1, . . . , N , j = 1, . . . , J , from the prior distribution p(x0).

- Compute L = 2dz+1 sigma-points, zi,j,l
0 , with their respective weights, λi,j,l0 , i = 1, . . . , N , j = 1, . . . , J ,

l = 0, . . . , L− 1, from the prior distribution p(z0|ẑ0,C0(z)) as

zi,j,0
0 = ẑ0, λi,j,00 =

1

1 + dz
,

zi,j,l
0 = ẑ0 + Sl, λi,j,l0 =

1− λi,j,00

2dz
,

zi,j,l+dz

0 = ẑ0 − Sl, λi,j,l+dz

0 =
1− λi,j,00

2dz
,

for l = 1, . . . , dz, where Sl is the l-th row or column of the matrix square root of dz

1−λi,j,0
0

C0(z).

Procedure For t ≥ 0:

1. Draw N i.i.d samples θ̄
i
t from κ

θi
t−1

N (dθ).

2. For i = 1, . . . , N :

(a) Compute

ṽit = p̂J,L(yt|y1:t−1, θ̄
i
t), (5.17)

where the approximate likelihood is evaluated at layer 2.

(b) Obtain new particles {xi,j
t , {zi,j,l

ht }0≤l≤L−1}1≤j≤J at time t (from layers 2 and 3).

(c) Normalize the weights

vit =
ṽit∑︁N
i=1 ṽ

i
t

. (5.18)

3. Resample: set for each m = 1, . . . , N and with probability vit

{θm
t , {x

(m,j)
t , {zm,j,l

ht }0≤l≤L−1}1≤j≤J} = {θ̄
i
t, {x

(i,j)
t , {zi,j,l

ht }0≤l≤L−1}1≤j≤J}. (5.19)

Outputs: {θi
t, {x

(i,j)
t , {zi,j,l

ht }}1≤j≤J}1≤i≤N .
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Second layer Algorithm 12 describes the implementation of a bank of conditional SMC schemes in the

second layer of the multi-scale nested smoother, one for each particle θ̄
i
t, i = 1, . . . , N . In this second layer

we approximate the posterior distribution with density p(x0:t|y1:t, θ̄
i
t). The procedure is similar to the one

in Algorithm 11, starting with the generation of the particles x̄i,j
t , j = 1, . . . , J , the computation of the

approximate likelihood

p̂L(yt|x̄i,j
t ,xi,j

0:t−1,y1:t−1, θ̄
i
t) ≈ p(yt|x̄i,j

t ,xi,j
0:t−1,y1:t−1, θ̄

i
t)

and the non-normalized weights {ũi,jt }1≤j≤J in step 1a. By averaging the latter weights we can obtain ṽit for

its use in the first layer2. After propagating the fast state variables in the third layer (as described below),

one can resample the set {xi,j
0:t, {z

i,j,l
ht }0≤l≤L−1}1≤j≤J using the normalized weights {ui,jt }Jj=1 obtained in

step 1c.

Third layer Algorithm 13 outlines the implementation of a bank of UKFs [52] conditional on each

parameter sample θ̄
i
t and the set of slow states {x̄i,j

t } ∪ xi,j
0:t−1. If we follow the template of the optimal

smoother, then we should seek an approximation of the density p(zh(t−1)+1:ht|xi,j
0:t−1,y1:t−1, θ̄

i
t). However,

performing this calculation with a UKF-like scheme implies that the dimension of the filter should be dz×h,
in order to include the whole subsequence of states zh(t−1)+1:ht. Such approach would demand 2dzh+ 1

sigma-points for each conditional UKF algorithm, and the computation of NJL covariance matrices with

dimension 2dzh × 2dzh each, which is impractical even for moderate dz and h. For simplicity, in order

to avoid operations with large matrices, we choose to compute Gaussian approximations of the marginal

predictive densities p(zq|xi,j
0:t−1,y1:t−1, θ̄

i
t), for q = h(t − 1) + 1, . . . , ht, and then use these marginals to

estimate the average of the fast states z̄t which is necessary in the micro-macro solver of Eq. (5.3). The

complete procedure is outlined in Algorithm 13, with further details below.

Step 1 of Algorithm 13 generates new sigma-points in the space of fast states, z̃i,j,l
q , for q = h(t− 1) +

1, . . . , ht and l = 0, . . . , L− 1, conditional on the parameters θ̄
i
t and slow variables xi,j

t−1. At each time q,

we compute a predictive mean and a covariance matrix as

ži,j
q =

L−1∑︂
l=0

λi,j,lq−1z̃
i,j,l
q and (5.20)

Č
i,j

q (z) =
L−1∑︂
l=0

λi,j,lq−1(z̃
i,j,l
q − ži,j

q )(z̃i,j,l
q − ži,j

q )⊤ +∆zQz, (5.21)

where the λi,j,lq−1’s are the weights3 of the sigma points z̆i,j,l
q−1 and ∆zQz is the covariance matrix of the noise

in Eq. (5.4). The mean in Eq. (5.20) and the covariance in Eq. (5.21) yield the approximation

N (zq|ži,j
q , Č

i,j

q (z)) ≈ p(zq|xi,j
0:t−1,y1:t−1, θ̄

i
t) (5.22)

and we compute a new weighted set of sigma-points {z̆i,j,l
q , λi,j,lq } to represent the Gaussian density in Eq.

(5.22).

2The average ṽit =
1
J

∑︁J
j=1 ũ

i,j
t is an approximation of the integral of Eq. (5.9).

3These weights are deterministic and can be computed a priori in different ways. See [71] for a survey of methods.
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Algorithm 12 SMC approximation of p(x0:t|y1:t,θ)

Inputs

- Known parameter θ̄
i
t and known initial states, xi,j

t−1 and zi,j,l
h(t−1), for j = 1, . . . , J and l = 0, . . . , L− 1.

Procedure For t ≥ 0:

1. For j = 1, . . . , J :

(a) Compute

ũi,jt = p̂L(yt|x̄i,j
t ,xi,j

0:t−1,y1:t−1, θ̄
i
t), (5.23)

ṽit =
1

J

J∑︂
j=1

ũi,jt , (5.24)

where the new particle x̄i,j
t is generated, and the approximate likelihood is evaluated, at layer 3.

(b) Obtain new particles {zi,j,l
ht }0≤l≤L−1 at time t, from layer 3.

(c) Normalize the weights

ui,jt =
ũi,jt∑︁J
j=1 ũ

i,j
t

. (5.25)

2. Resample: set

{xi,m
t , {zi,m,l

ht }0≤l≤L−1} = {x̄i,j
t , {zi,j,l

ht }0≤l≤L−1} (5.26)

with probability ui,jt for each m = 1, . . . , J .

Outputs: {xi,j
t , {zi,j,l

ht }0≤l≤L−1}1≤j≤J and ṽit.

Algorithm 13 UKF approximation of p(zh(t−1)+1:ht|x0:t,y1:t,θ)

Inputs

- Integration steps ∆x, ∆z and time scale ratio h = ∆x

∆z
∈ Z+.

- Known parameter vector θ̄
i
t and initial slow state xi,j

t−1. Weighted sigma-points for the fast state at

time h(t− 1), denoted {zi,j,l
h(t−1), λ

i,j,l
h(t−1)}

L−1
l=0 .

Procedure For t > 0:

1. Set z̆i,j,l
h(t−1) = zi,j,l

h(t−1). For l = 0, . . . , L− 1 and for q = h(t− 1) + 1, ..., ht:
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(a) Integrate with step ∆z

z̃i,j,l
q = z̆i,j,l

q−1 +∆z(fz(z̆
i,j,l
q−1, θ̄

i
t) + gz(x

i,j
t−1, θ̄

i
t)), (5.27)

and compute the predictive mean, ži,j
q , and the predictive covariance matrix, Č

i,j

q (z), using Eqs.

(5.20) and (5.21).

(b) Approximate the predictive pdf of the fast states as Gaussian density,

p(zq|xi,j
0:t−1,y1:t−1, θ̄

i
t) ≈ N (zq|ži,j

q , Č
i,j

q (z)).

Represent this Gaussian distribution by a set of weighted sigma-points denoted {z̆i,j,l
q , λi,j,lq }L−1

l=0 .

2. In the space of the slow state variables:

(a) For l = 0, . . . , L− 1, project the sigma-points z̆i,j,l
h(t−1)+1:ht to obtain sigma-points in the space of

the slow states,

x̃i,j,l
t = xi,j

t−1 +∆x(fx(x
i,j
t−1, θ̄

i
t) + gx(z̄

i,j,l
t , θ̄

i
t)), (5.28)

where z̄i,j,l
t = 1

h

∑︁ht
q=h(t−1)+1 z̆

i,j,l
q . Then, compute a mean vector x̌i,j

t and a covariance matrix

Č
i,j

t (x) using Eqs. (5.34) and (5.35).

(b) Sample x̄i,j
t ∼ N (xt|x̌i,j

t , Č
i,j

t (x)).

3. Once we collect a new observation yt,

(a) For l = 0, . . . , L− 1, project the sigma-points z̆i,j,l
ht and the new sample x̄i,j

t into the observation

space,

ỹi,j,l
t = l(z̆i,j,l

ht , x̄i,j
t , θ̄

i
t), (5.29)

then compute the mean vector ŷi,j
ht and the covariance matrix Ci,j

t (y) using Eqs. (5.36) and

(5.37).

(b) Compute w̃i,j,l
t = p(yt|z̆i,j,l

ht , x̄i,j
t , θ̄

i
t)p(x̄

i,j
t |z̆

i,j,l
h(t−1)+1:ht,x

i,j
t−1, θ̄

i
t) and the weights for the second

layer

ũi,jt =
L−1∑︂
l=0

λi,j,lht w̃i,j,l
t . (5.30)

4. Update the mean and the covariance matrix of the fast variables

Kt(z) = Ci,j
t (z,y)

(︁
Ci,j

t (y)
)︁−1

, (5.31)

ẑi,j
ht = ži,j

ht +Kt(z)
(︁
yt − ŷi,j

t

)︁
and (5.32)

Ĉ
i,j

ht (z) = Č
i,j

ht (z) +Kt(z)C
i,j
t (y)

(︁
Kt(z)

)︁⊤
, (5.33)

where Ci,j
t (z,y) is the cross-covariance matrix computed in Eq. (5.38).

5. From the new Gaussian pdf N (zht|ẑi,j
ht , Ĉ

i,j

t (z)), generate L = 2dz + 1 sigma-points and weights

{zi,j,l
ht , λi,j,lht }0≤l≤L−1.

Outputs: {zi,j,l
ht }0≤l≤L−1, x̄

i,j
t and ũi,jt .
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In step 2 of Algorithm 13 we use the sigma-points at time q = ht to generate new particles for the slow

states at time t. Specifically, we project the z̆i,j,l
ht ’s through the state equation of the slow state variables to

obtain sigma-points in the space of the slow variables, denoted x̃i,j,l
t . From these sigma-points, we obtain a

mean vector and a covariance matrix, respectively,

x̌i,j
t =

L−1∑︂
l=0

λi,j,lht x̃i,j,l
t and (5.34)

Č
i,j

t (x) =
L−1∑︂
l=0

λi,j,lht (x̃i,j,l
t − x̌i,j

t )(x̃i,j,l
t − x̌i,j

t )⊤ +∆xQx, (5.35)

where ∆xQx is the covariance matrix of the noise in Eq. (5.3). Eqs. (5.34) and (5.35) yield a Gaussian

approximation of the predictive pdf of the slow states, namely,

p(xt|xi,j
0:t−1,y0:t−1, θ̄

i
t) ≈ N (x|x̌i,j

t , Č
i,j

t (x)).

We generate the new particle x̄i,j
t from this Gaussian density.

In step 3 of the algorithm we propagate the sigma-points z̆i,j,l
ht and the particle x̄i,j

t through the

observation function l(·) to obtain projected sigma-points (on the observation space) {ỹi,j,l
t }0≤l≤L−1. We

use these projected sigma-points to obtain a predictive mean and covariance matrix for the observation yt,

namely,

ŷi,j
t =

L−1∑︂
l=0

λi,j,lht ỹi,j,l
t and (5.36)

Ci,j
t (y) =

L−1∑︂
l=0

λi,j,lht (ỹi,j,l
t − ŷi,j

t )(ỹi,j,l
t − ŷi,j

t )⊤ +R, (5.37)

where R is the covariance matrix of the noise in the observation equation. At this step we also compute

the non-normalized importance weight ũi,jt which is output to layer 2.

In step 4, we compute the Kalman gain using the observation covariance matrix of Eq. (5.37) and the

cross-covariance matrix

Ci,j
t (z,y) =

L−1∑︂
l=0

λi,j,lht (z̆i,j,l
ht − ži,j

ht )(ỹ
i,j,l
t − ŷi,j

t )⊤. (5.38)

Then we update the mean, ẑi,j
ht , and covariance matrix, Ĉ

i,j

ht (z), of the fast state variables to obtain the

approximation

p(zht|x̄i,j
t ,xi,j

0:t−1,y1:t, θ̄
i
t) ≈ N (zht|ẑi,j

ht , Ĉ
i,j

ht (z)). (5.39)

Finally, in step 5 we generate new weighted sigma-points to characterize the Gaussian pdf in Eq. (5.39).

5.3.2 Second scheme

The method in Section 5.3.1 may still have a prohibitive computational cost, as it generates a total of

N × J × L particles in the joint space of the parameters, the slow states and the fast states (if we count

sigma-points as deterministic particles). In this section we describe a computationally-lighter procedure

that replaces the SMC procedure in layer 2 by an EnKF [36] and the UKF in layer 3 by a simpler EKF [5].

The complete procedure is described below.
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First layer We describe the use of a SMC algorithm for the first layer of the nested algorithm in order

to approximate p(θ|y1:t). This is the same as in Algorithm 11, except that we need to take into account

the initializations needed for layers 2 and 3. Algorithm 14 receives as inputs the prior distributions of the

parameters, p(θ), and both subsets of state variables, p(x0) and p(z0). They are used to generate

• the initial particles from p(θ) for the SMC scheme, denoted {θi
0}Ni=1,

• the samples from p(x0) utilized to build the ensembles Xi
0, i = 1, . . . , N , for the EnKFs in the second

layer,

• and the mean and covariance matrix of z for the EKFs in the third layer, denoted zi,j
0 = E[z0] and

Ci,j
0 (z) = Cov(z0), respectively (note that they are the same for all i and j).

The rest of the procedure is the same as in Algorithm 11.

Second layer In Algorithm 15 we employ an EnKF to obtain ensemble approximations of p(xt|y1:t−1, θ̄
i
t)

and p(xt|y1:t, θ̄
i
t). The ensembles are denoted X̄

i
t and Xi

t , respectively, and they are used to approximate

the computations that involved the joint pdfs p(x0:t|y1:t−1, θ̄
i
t) and p(x0:t|y1:t, θ̄

i
t) in the optimal smoother.

Note that all calculations are conditional on the i-th parameter particle, θ̄
i
t.

The scheme is similar to Algorithm 12. At step 1a, we retrieve the new samples x̄i,j
t and the approximate

likelihood ũi,jt from layer 3, and compute the non-normalized importance weight ṽit which is output to layer

1.

At steps 2 and 3 we generate the predictive ensemble for the slow states, X̄
i
t, and the observations,

Y i
t , respectively. These ensembles are then used, when the new observation yt is collected, to compute

an updated ensemble Xi
t which yields non-weighted particle approximation of the distribution with pdf

p(xt|y1:t, θ̄
i
t). The update step of the EnKF can be implemented in different ways. Here we follow the

scheme in [66] (as explained in Section 2.2.4) which avoids the direct computation of the inverse of the

covariance observation matrix (dy × dy), being better suited for high-dimensional systems.

Third layer In Algorithm 16 we describe how to use an EKF to obtain Gaussian approximations

N (zq|žq, Čq(z)) ≈ p(zq|xi,j
t−1,y1:t−1, θ̄

i
t), q = h(t−1)+1, . . . , ht, and the updated pdfN (zht|ẑi,j

ht , Ĉ
i,j

ht (z)) ≈
p(zht|x̄i,j

t ,xi,j
t−1,y1:t, θ̄

i
t). We also generate the new slow states at time t, denoted x̄i,j

t , and the likelihood

estimates ũi,jt ≈ p(yt|x̄i,j
t ,xi,j

0:t−1,y1:t−1, θ̄
i
t). Note that all computations in this layer are conditional on

xi,j
t−1 and θ̄

i
t.

In step 1, the algorithm propagates the mean, ẑi,j
h(t−1), and the covariance matrix, Ĉ

i,j

h(t−1)(z), for

q = h(t− 1) + 1, . . . , ht, conditional on the parameters θ̄
i
t and slow variables xi,j

t−1. At each time step q, we

obtain a predictive mean, ži,j
q , and the predictive covariance matrix, Č

i,j

q (z). The average of the predictive

means, z̄i,j
t = 1

h

∑︁ht
q=h(t−1)+1 ž

i,j
q , is then used to propagate the slow state xi,j

t−1 and generate the new

sample x̄i,j
t from the Gaussian approximation

N (xt|x̌i,j
t ,∆xQx) ≈ p(xt|xi,j

t−1,y1:t−1, θ̄
i
t)

at step 2. Note that the covariance of the zi,j
q ’s is neglected for simplicity in this computation and we use

just the covariance matrix ∆xQx of the slow state in Eq. (5.3).
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In step 3 we project the predictive mean ži,j
ht and the sample x̄i,j

t into the observation space to obtain

the predictive observation ŷi,j
t . When the actual observation yt is available we also estimate the likelihood

p(yt|x̄i,j
t ,xi,j

0:t−1,y1:t−1, θ̄
i
t) as

ũi,jt = p(yt|ži,j
ht , x̄

i,j
t , θ̄

i
t)p(xt|ži,j

h(t−1)+1:ht,x
i,j
t−1, θ̄

i
t).

Note that we use the predictive means ži,j
h(t−1):ht for simplicity, instead of actually integrating w.r.t. the

random states zh(t−1):ht.

Finally, in step 4, we compute the Kalman gain using the predictive covariance matrix of Eq. (5.50)

and the Jacobian matrix Hi,j
t (z). Then, we update the mean, ẑi,j

ht , and covariance matrix, Ĉ
i,j

ht (z), of the

fast variables for the next time step.

Algorithm 14 SMC approximation of p(θ|y1:t) in the second method Inputs

- Prior distributions p(θ), p(x0) and p(z0).

- A Markov kernel κθ
′

N (dθ) which, given θ′, generates jittered parameters θ ∈ Rdθ .

Initialization: this is a joint initialization for all three layers.

- Draw N i.i.d. sample θi
0, i = 1, . . . , N from the prior distribution p(θ).

- Draw NJ i.i.d. samples xi,j
0 , i = 1, . . . , N , j = 1, . . . , J , from the prior distribution p(x0), and build

the ensembles Xi
0, i = 1, . . . , N , as

Xi
0 = [xi,1

0 , . . . ,xi,J
0 ]. (5.40)

- Set ẑi,j
0 = z̄0 and Ĉ

i,j

0 (z) = C0, for i = 1, . . . , N , j = 1, . . . , J , where z̄0 and C0 are the prior mean

and prior covariance of z0, respectively, obtained from the prior density p(z0).

Procedure For t ≥ 0:

1. Draw N i.i.d samples θ̄
i
t from κ

θi
t−1

N (dθ).

2. For i = 1, . . . , N :

(a) Retrieve

ṽit = p̂J(yt|y1:t−1, θ̄
i
t), (5.41)

where the approximate likelihood is evaluated at layer 2.

(b) Obtain new particles {X̂
i

t, {ẑ
i,j
ht , Ĉ

i,j

t (z)}1≤j≤J} at time t (from layers 2 and 3).

(c) Normalize the weights

vit =
ṽit∑︁N
i=1 ṽ

i
t

. (5.42)

3. Resample: set for each m = 1, . . . , N

{θm
t ,X

m
t , {ẑ

m,j
ht , Ĉ

m,j

t (z)}Jj=1} = {θ̄
i
t, X̂

i

t, {ẑ
i,j
ht , Ĉ

i,j

t (z)}Jj=1} (5.43)

with probability vit.

Outputs: {θi
t,X

i
t , {ẑ

i,j
ht , Ĉ

i,j

t (z)}Jj=1}Ni=1.
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Algorithm 15 EnKF approximation of p(xt|y1:t,θ)

Inputs

- Parameter vector θ̄
i
t; ensemble of slow states, Xi

t−1 = [xi,1
t−1, . . . ,x

i,J
t−1]; mean vector ẑi,j

h(t−1) and the

covariance matrix Ĉ
i,j

t−1(z), for j = 1, . . . , J .

Procedure For t ≥ 0:

1. For j = 1, . . . , J :

(a) Retrieve the new sample x̄i,j
t and the likelihood estimate ũi,jt from layer 3 and compute the

non-normalized importance weight

ṽit =
1

J

J∑︂
j=1

ũi,jt , (5.44)

(b) Obtain the new mean ẑi,j
ht and covariance matrix Ĉ

i,j

t (z) at time t, from layer 3.

2. Compute the predictive mean x̌i
t and construct the predictive ensemble X̄

i
t as

x̌i
t =

1

J

J∑︂
j=1

x̄i,j
t and X̄

i
t = [x̄i,1

t , . . . , x̄i,J
t ]. (5.45)

3. Obtain predictive observations ỹi,j
t from layer 3, then compute the mean ŷi

t and the ensemble Y i
t as

ŷi
t =

1

J

J∑︂
j=1

ỹi,j
t and Y i

t = [ỹi,1
t , . . . , ỹi,J

t ], for j = 1, . . . , J. (5.46)

4. Update the ensemble of slow variables

Ci
t(x,y) =

1

J
X̃

i

t(Ỹ
i

t)
⊤,

(︁
Ci

t(y)
)︁−1

= R−1 −R−1 1

J
Ỹ

i

t

(︃
IJ + (Ỹ

i

t)
⊤R−1 1

J
Ỹ

i

t

)︃−1

(Ỹ
i

t)
⊤R−1,

Kt(x) = Ci
t(x,y)

(︁
Ci

t(y)
)︁−1

, (5.47)

X̂
i

t = X̄
i
t +Kt(x)

(︁
yt1dy×J + T i

t − Y i
t

)︁
, (5.48)

where X̃
i

t = X̄
i
t − x̌i

t1dx×J and Ỹ
i

t = Y i
t − ŷi

t1dy×J , C
i
t(x,y) is the cross covariance matrix, Ci

t(y)

is the covariance matrix of the observation, R is the covariance matrix of the noise in the observation

equation, 1a×b is a a× b matrix of ones and T i
t =

[︁
r1t , . . . , r

J
t

]︁
with rjt ∼ N (rt|0,R) is a matrix of

Gaussian perturbations.

Outputs: X̂
i

t, {ẑ
i,j
ht , Ĉ

i,j

t (z)}Jj=1 and ṽit.
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Algorithm 16 EKF approximation of p(zht|xt,y1:t,θ)

Inputs

- Integration steps ∆x, ∆z and time scale ratio h = ∆x

∆z
∈ Z+.

- Parameter vector θ̄
i
t; slow states xi,j

t−1 (i.e. the j-th column of Xi
t−1) and mean fast state ẑi,j

h(t−1)

with covariance matrix Ĉ
i,j

t−1(z).

Procedure For t ≥ 0:

1. Set ži,j
h(t−1) = zi,j

h(t−1) and Č
i,j

q (z) = Ci,j
h(t−1)(z).

For q = h(t− 1) + 1, ..., ht, compute

ži,j
q = ži,j

q−1 +∆z(fz(ž
i,j
q−1, θ̄

i
t) + gz(x

i,j
t−1, θ̄

i
t)), (5.49)

Č
i,j

q (z) = J i,j
q (z)Č

i,j

q−1(z)
(︁
J i,j
q (z)

)︁⊤
+∆zQz, (5.50)

where J i,j
q (z) is the Jacobian matrix of the transition function of z and ∆zQz is the covariance

matrix of the noise in Eq. (5.4).

2. In the space of the slow state variables:

(a) Project the predictive means ži,j
h(t−1)+1:ht into the space of slow variables,

x̌i,j
t = xi,j

t−1 +∆x(fx(x
i,j
t−1, θ̄

i
t) + gx(z̄

i,j
t , θ̄

i
t)), (5.51)

where z̄i,j
t = 1

h

∑︁ht
q=h(t−1)+1 ž

i,j
q .

(b) Sample x̄i,j
t ∼ N (xt|x̌i,j

t ,∆xQx), where ∆xQx is the covariance matrix of the noise in Eq. (5.3).

3. When a new observation yt is collected:

(a) Project the predictive mean ži,j
ht and the slow state x̄i,j

t into the observation space

ỹi,j
t = l(ži,j

ht , x̄
i,j
t , θ̄

i
t). (5.52)

(b) Compute ũi,jt = p(yt|ži,j
ht , x̄

i,j
t , θ̄

i
t)p(xt|ži,j

h(t−1)+1:ht,x
i,j
t−1, θ̄

i
t). This is an estimate of the likelihood

p(yt|x̄i,j
t ,xi,j

0:t−1,y1:t−1, θ̄
i
t).

4. Update the mean and the covariance matrix of the fast variables

Kt(z) = Č
i,j

ht (z)H
i,j
t (z)⊤

(︃
Hi,j

t (z)Č
i,j

ht (z)H
i,j
t (z)⊤ +R

)︃−1

, (5.53)

ẑi,j
ht = ži,j

ht +Kt(z)
(︁
yt − ỹi,j

t

)︁
and (5.54)

Ĉ
i,j

ht (z) =

(︃
Idz −Kt(z)H

i,j
t (z)

)︃
Č

i,j

ht (z), (5.55)

where Hi,j
t (z) is the Jacobian matrix of function l(·, x̄i,j

t , θ̄
i
t) w.r.t. ži,j

ht and R is the covariance

matrix of the noise in the observation equation. We obtain the approximation N (zht|ẑi,j
ht , Ĉ

i,j

ht (z)) ≈
p(zht|x̄i,j

t ,xi,j
0:t−1,y0:t, θ̄

i
t).

Outputs: ẑi,j
ht ,Ĉ

i,j

ht (z), x̄
i,j
t and ũi,jt .

83



CHAPTER 5. MULTI-SCALE NESTED FILTERS

5.4 Example

5.4.1 Stochastic two-scale Lorenz 96 model

In order to illustrate the application of the methods described in Section 5.3, we consider a stochastic

version of the two-scale Lorenz 96 model [11], which depends on a set of fixed parameters, a set of fast

variables and a set of slow variables4. The slow variables are represented by a dx-dimensional vector, x,

while the fast variables, z, are dz-dimensional. Let us assume there are R fast variables per slow variable,

therefore dz = Rdx. The system is described, in continuous-time τ , by the SDEs

dxj =

[︃
− xj−1(xj−2 − xj+1)− xj + F − HC

B

∑︁Rj−1
l=(j−1)R zl

]︃
dτ + σxdvj , (5.56)

dzl =

[︃
− CBzl+1(zl+2 − zl−1)− Czl + CF

B + HC
B x⌊(l−1)/R⌋

]︃
dτ + σzdwl, (5.57)

where j = 0, . . . , dx− 1, l = 0, . . . , dz − 1; v = (v0, . . . , vdx−1)
⊤ and w = (w0, . . . , wdz−1)

⊤ are, respectively,

dx- and dz-dimensional vectors of independent standard Wiener processes; σx > 0 and σz > 0 are known

scale parameters and θ = (F,H,C,B)⊤ ∈ R are static model parameters. Using a micro-macro solver

[96, 102] that runs an Euler-Maruyama scheme at each time-scale to integrate Eqs. (5.56)–(5.57), the

discrete-time state equation can be written as

xt+1,j = xt,j +∆x(fx,j(xt,θ) + gx,j(z̄t+1,θ)) +
√︁
∆xσxvt+1,j , (5.58)

zn+1,l = zn,l +∆z(fz,l(x⌊n
h ⌋,θ) + gz,l(zn,θ)) +

√︁
∆zσzwn+1,l, (5.59)

where

xt = (xt,0, . . . , xt,dx−1)
⊤ and zn = (zn,0, . . . , zn,dz−1)

⊤

are the discrete-time slow and fast variables, respectively; z̄t is the time-average

z̄t =
1

h

ht∑︂
n=h(t−1)+1

zn

and we denote z̄t = (z̄t,0, . . . , z̄t,dz−1)
⊤; the terms vt,j and wn,l are independent Gaussian variables with

identical N (·|0, 1) pdf for all t, j, n and l, and the functions

fx,j : Rdx × Rdθ → Rdx ,

gx,j : Rdz × Rdθ → Rdx ,

fz,l : Rdx × Rdθ → Rdz and

gz,l : Rdz × Rdθ → Rdz

can be expressed as

fx,j(xt,θ) = −xt,j−1(xt,j−2 − xt,j+1)− xt,j + F,

gx,j(z̄t,θ) = −
HC

B

Rj−1∑︂
l=(j−1)R

z̄t,l,

4This is the same set of SDEs in the simulations of Chapter 3. The way in which fast variables are handled is totally

different, though.
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fz,l(xt,θ) =
HC

B
xt,⌊(l−1)/R⌋ and

gz,l(zn,θ) = −CBzn,l+1(zn,l+2 − zn,l−1)− Czn,l +
CF

B
.

We assume that the observations are linear and Gaussian, namely,

yt = At

[︄
xt

zht

]︄
+ rt, (5.60)

where At is a known dy × (dx + dz) matrix and rt is a dy-dimensional Gaussian random vector with known

covariance matrix

R =

[︄
σ2
y,xIdx

0

0 σ2
y,zIdz

]︄
, (5.61)

and σ2
y,x, σ

2
y,z > 0 are known variances.

5.4.2 Numerical results

We have run simulations for the two-scale Lorenz 96 model of Section 5.4.1, with dimensions dx = 10 and

dz = 50. The time steps for the Euler-Maruyama integrators are ∆x = 10−3 and ∆z = 10−4 continuous-time

units. We set the fixed parameters as F = 8, H = 0.75, C = 10 and B = 15. In order to obtain the

initial states x0 and z0, we simulate a deterministic version of Eqs. (5.58)–(5.59) (σx = σz = 0) for 20

continuous-time units. We set the initial states as the values of variables x and z at the last time step

of this simulation. This initialization is used in all simulations of this computer experiment in order to

generate both “ground truth” sequences of xt and zn and the associated sequences of observations yt. We

set the matrix At = Idy
, for dy = dx + dz.

In the experiments, we compare the performance of both methods proposed (the first one of Section

5.3.1 and the second one of Section 5.3.2). We experiment with different number of samples N and J in

the first and second layers of the former methods. Additionally, for the first method (SMC-SMC-UKF)

we run the multi-scale hybrid filter with L = 2dz + 1 = 101 sigma-points for the UKF in the third layer.

We need to estimate θ = [F,C,H,B]⊤ (hence, dθ = 4). The prior for the unknown parameters is uniform,

namely p(θ) = U([2, 20]2), while the priors used in the filtering algorithm for both unknown state variables

are Gaussian, namely p(x0) = N (x0, 0.1Idx
) and p(z0) = N (z0, 10Idz

). The noise scaling factors, σx = 1
2 ,

σz = 1
16 , σy,x = 10−1 and σy,z = 10−3, are known. The jittering kernel is κθ

′

N (dθ) = N (θ|θ′, σ̃2Idθ
), where

σ̃2 = 0.05√
N3

is selected following [25].

We assess the accuracy of the algorithms in terms of the normalized mean square error (NMSE) of the

estimators of the parameters, the slow state variables and the fast state variables. In the plots, we show

the NMSEs computed at time t,

NMSEθ,t =
∥θt − θ̂t∥2

∥θt∥2
, (5.62)

NMSEx,t =
∥xt − x̂t∥2

∥xt∥2
, (5.63)

NMSEz,t =
∥zht − ẑht∥2

∥zht∥2
, (5.64)
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averaged over 50 independent simulation runs of 20 continuous-time units each, where the estimators take

the form

θ̂t =
N∑︂
i=1

vitθ
i, (5.65)

x̂t =
N∑︂
i=1

J∑︂
j=1

vitu
i,j
t xi,j

t and (5.66)

ẑht =
N∑︂
i=1

J∑︂
j=1

L∑︂
l=0

vitu
i,j
t λi,j,lht zi,j,l

ht , (5.67)

for the first method. For the second method the estimators of the state variables are

x̂t =
1

J

N∑︂
i=1

J∑︂
j=1

vitx
i,j
t and (5.68)

ẑht =
1

J

N∑︂
i=1

J∑︂
j=1

vitz
i,j
ht , (5.69)

where xi,j
t is the j-th member of the ensemble Xi

t in Algorithm 15.

Figure 5.2 shows the performance of the proposed methods for different values of J (number of samples

in the second layer) and N = 20. This is evaluated in terms of averaged NMSEθ, NMSEx and NMSEz

together with the running time in hours. The first method (SMC-SMC-UKF) shows an improvement in

the accuracy as the number of samples J increases, although this improvement is only significant for the

slow state (Fig. 5.2b). The second method (SMC-EnKF-EKF) remains stable with J . The second method

outperforms the first one in accuracy of the parameter estimation (Fig. 5.2a) as well as the slow state

estimation (Fig. 5.2b). However, the first method obtains a better NMSEz. Additionally, the second

method runs faster since the computational cost is considerably lower.

Figure 5.3 compares the performance of the proposed methods and the EnKF for different values of

N (number of samples in the first layer) and J = 50. This is shown with the averaged NMSEθ, NMSEx

and NMSEz together with the running time in hours. Similar to the previous figure, the first method

(SMC-SMC-UKF) shows a slight improvement in the accuracy of the slow state estimation as the number

of samples J increases (Fig. 5.3b). The second method (SMC-EnKF-EKF) remains stable with N . The

second method outperforms the first one in accuracy of the parameter estimation (Fig. 5.3a) and the slow

state estimation (Fig. 5.3b), but not for the fast state estimation (Fig. 5.3c). Again, the second method

runs faster since the computational cost is considerably lower.

Finally, we show results for a computer experiment in which we have used the SMC-EnKF-EKF method

to estimate the parameters F , C, B and H and track the state variables of the two-scale Lorenz 96 system

with dimension dx = 10 and dz = 50. The number of particles used to approximate the sequence of

parameter posterior distributions is N = 50 and the number of samples in the ensembles of the second

layer is J = 50.

Figure 5.4 shows the true state trajectories, together with their estimates, for the first slow state variable

(x1) and the first fast state variable (z1) of the two-scale Lorenz 96 model. We note that although the

accuracy of the estimation of the fast variable is similar throughout the whole simulation run (over 20

continuous-time units), we only show the last 2 continuous-time units of the simulation.
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(b) NMSEx for different number of particles/ensembles (J) in
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(c) NMSEz for different number of particles/ensembles (J) in

the second layer of the filter.
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(d) Running time for different number of particles/ensembles

(J) in the second layer of the filter.

Figure 5.2: Averaged NMSEθ (5.2a), NMSEx (5.2b), NMSEz (5.2c) and average running time (5.2d) of SMC-SMC-

UKF (in blue) and SMC-EnKF-EKF (in red), averaged over 50 simulation runs. The number of particles of the first

layer (SMC) is set to N = 20.

In Fig. 5.5 we observe the estimated posterior pdfs of the fixed parameters F , C, B and H, together

with the ground truth values. Figure 5.5a displays the approximate posterior pdf of the parameter F (red

dashed line) together with the true value F = 8 (vertical black line), Fig. 5.5b displays the approximate

posterior pdf of the parameter C (blue dashed line) together with the true value C = 10 (vertical black

line), Fig. 5.5c displays the approximate posterior pdf of the parameter B (green dashed line) together

with the true value B = 15 (vertical black line) and Fig. 5.5d displays the approximate posterior pdf of

the parameter H (magenta dashed line) together with the true value H = 0.75 (vertical black line). We

observe that for all the pdfs, nearly all probability mass is allocated close to the true values, except for the

parameter B (Fig. 5.5c). In this case, the pdf is slightly shifted w.r.t. the true value.
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(b) NMSEx for different number of particles/ensembles (N)
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(c) NMSEz for different number of particles/ensembles (N) in

the first layer of the filter.
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(d) Running time for different number of particles/ensembles

(N) in the first layer of the filter.

Figure 5.3: Averaged NMSEθ (5.2a), NMSEx (5.2b), NMSEz (5.2c) and average running time (5.2d) of SMC-SMC-

UKF (in blue) and SMC-EnKF-EKF (in red), averaged over 50 simulation runs. The number of particles/ensembles

of the second layer (SMC for the first method and EnKF for the second method) is set to J = 50.

5.5 Conclusions

We have introduced a further generalization of the NHF methodology of [91] that, using long sequences of

observations collected over time, estimates the static parameters and the stochastic dynamical variables of

a class of heterogeneous multi-scale state-space models [1]. This scheme combines three layers of filters, one

inside the other. It approximates recursively the posterior probability distributions of the parameters and

the two sets of state variables given the sequence of available observations. In a first layer of computation

we approximate the posterior probability distribution of the parameters, in a second layer we approximate

the posterior probability distribution of the slow state variables, and the posterior probability distribution

of the fast state variables is approximated in a third layer. The inference techniques used in each layer

can vary, leading to different computational costs and degrees of accuracy. To be specific, we describe two

possible algorithms that derive from this scheme, combining Monte Carlo methods and Gaussian filters

at different layers. The first method involves using sequential Monte Carlo (SMC) methods in both first

and second layers, together with a bank of unscented Kalman filter (UKFs) in the third layer (i.e., the
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Figure 5.4: Sequences of state values (black line) and estimates (dashed red line) in x1 (plot 5.4a) and z1 (plot 5.4b)

over time.
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Figure 5.5: Posterior density of the parameters (dashed lines) at time τ = 20. The true values are indicated by a

black vertical line.
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SMC-SMC-UKF). The second method employs a SMC in the first layer, ensemble Kalman filters (EnKFs)

at the second layer and introduces the use of a bank of extended Kalman filters (EKFs) in the third layer

(i.e., the SMC-EnKF-EKF). We have presented numerical results for a two-scale stochastic Lorenz 96 model

with synthetic data and we have evaluated the performance of the algorithm in terms of the normalized

mean square errors (NMSEs) for the parameters and the dynamic (slow and fast) state variables. The

proposed implementations (both of them) obtain good results in terms of accuracy, having a considerably

reduction in running time (i.e., the computational cost) with the second method. Further research is still

needed, studying the stability of the multi-layer structure when the sequence of observations are rare and/or

few. Moreover, we can compare the proposed algorithms with other methods, using the Lorenz 96 system

but also other models.
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6
Conclusions and Future Research

This chapter is dedicated to the summary of the contributions introduced in this dissertation as well as the

discussion of future research avenues. In Section 6.1 we outline the general methodology that has been

developed over Chapters 3, 4 and 5, and discuss the various feasible implementations and their relative

merits. The basic (continuity) assumptions on which the methodology relies are summed up in Section 6.2

and, in Section 6.3, we comment on the results obtained from the various computer experiments. Finally,

some promising paths for future research are discussed in Section 6.4.

6.1 The methodology

The motivation for this thesis has been the investigation of algorithms for parameter estimation and state

tracking in state space models. Traditionally, both inferential tasks have been addressed separately, and

there are few methods that calculate the full posterior probability distribution of all the unknown variables

and parameters of the model. In the last years some methods that accomplish this task have been proposed.

Among these techniques, the nested particle filter (NPF) stands out because this algorithm is not a batch

procedure, but a purely recursive (online) scheme. In other words, every time a new observation arrives,

the whole sequence of observations does not have to to be re-processed from scratch in order to update the

estimates. Instead, the updated estimates are computed from the previous ones and the new observation

alone. However, the use of two layers of intertwined sequential Monte Carlo (SMC) algorithms makes its

computational cost prohibitive in high-dimensional problems.

This algorithm was the starting point of the research of this thesis, since the first objective was to

simplify the NPF in order to create more efficient algorithms. In particular, we have studied different ways

of replacing the SMC schemes in the NPF. The first solution we have proposed is the replacement of the

SMC modules of the second layer of the algorithm by a bank of Kalman filters. We have chosen Kalman
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filters because they are one of the simplest known filtering techniques and, in addition, we have modified

the second layer of the nested scheme because the implementation in the state tracking layer is less complex.

Specifically, in Chapter 3 we have introduced a class of nested hybrid algorithms, that use Monte Carlo in

the first layer while they run Kalman filters, i.e., extended Kalman filters (EKFs) and ensemble Kalman

filters (EnKFs), in the second layer. We have also introduced a modification in the first layer of the filter,

by replacing the Monte Carlo samples by quasi Monte Carlo samples, i.e., we have substituted the SMC by

a sequential quasi-Monte Carlo (SQMC) procedure. Surprisingly, these new methods not only reduce the

computational cost compared to the NPF but they also obtained better performance in some computer

experiments.

The use of Kalman filters in the second layer of the method worked satisfactorily and this led us to the

introduction of Kalman-based filters in the first layer of the nested schemes as well. This idea is introduced

in Chapter 4, where we use an unscented Kalman filter (UKF) in the first layer while there is a bank of

EKFs in the second layer. Unfortunately, the use of non-Monte Carlo methods in the first layer leads to a

non-straightforward problem. The key difficulty is to keep the algorithm recursive. The reason for this is

that the jittering procedure (used both in the NPF and the methods of Chapter 3) cannot be employed

anymore. The jittering step consists in drawing a new set of parameter particles at each discrete-time step

even if the parameters are static. This is done with a Markov kernel, which either perturbs (jitters) a few

particles with arbitrary variance (while leaving most of them unperturbed) or jitters all particles with a

controlled variance that decreases as the number of samples increases. Without this step, the diversity

of the values of the parameter particles decreases sharply after a few resampling steps, leading to poor

approximations of the parameter posterior probability distributions.

Jittering cannot be extended to Gaussian filters in a practical way. Instead, we have made the update

of the filter in the outer layer dependent on a distance defined on the parameter space. When the distance

between consecutive parameter estimates falls below a prescribed threshold the algorithm operates in a

purely recursive manner. However, the selection of this threshold is not trivial and could vary from one

problem to another. A poor choice of the threshold may lead to two possible scenarios. First, when we set

a threshold with too small a value, the algorithm operates non-recursively more often than it should. This

increases drastically the computational cost of the resulting method. Second, when the threshold is too

high, the computational cost of the algorithm decreases in exchange for greater errors in the approximations

of the pdfs of the parameters and the state variables. We have carried out a specific study of the choice

of the threshold and shown, as a result, that the algorithm of Chapter 4 can be more efficient than the

previous nested algorithms.

An alternative way to think of the unknown parameters and the dynamic variables in a state space

model is tracking it as two sets of state variables that evolve over different time scales: the unknown

parameters are slow variables (so slow that we can work with them as if they were genuinely static) while

dynamic variables are rapidly time-varying in comparison. Following this argument, it makes sense to

extend the nested filtering methodology to general multi-scale state space models where different subsets

of state variables evolve over different time scales. This realization has led to the methods described in

Chapter 5, which apply the nested hybrid filtering methodology to a class of heterogeneous multi-scale

models by relating each relevant time scale to a layer of computation in the nested structure. In particular,

we have described a three-layer nested smoother that approximates, in a recursive manner, the posterior

probability distributions of the parameters and two sets of state variables (fast and slow ones) given the

sequence of available observations. The computations on the second layer are conditional on the candidate
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parameter values generated on the first layer, while the calculations on the third layer are conditional

on the candidates drawn at the first and second layers. As in the previous methodologies, the inference

techniques used in each layer can vary, which leads to different algorithms.

The methods and algorithms introduced in Chapters 3, 4 and 5 as well as the NPF, belong to the same

class of methods. Therefore, this thesis describes a generalised methodology that comprises all of them.

6.2 Basic assumptions and analytical results

The key difference between the methods that we have introduce and other Bayesian schemes for inference

in state space models , such as the particle Markov chain Monte Carlo (PMCMC) and the sequential Monte

Carlo square (SMC2), is that the nested algorithms presented in this thesis are recursive. Therefore, it is

not necessary to reprocess the whole sequence of observations every time a new observation arrives in order

to update the estimates, leading to algorithms that are better suited for online implementations.

This can be achieved only when the target posterior distributions (namely the posterior pdf of the state

variables conditional on the parameters) are continuous, e.g., as implied by Assumption 3 in Chapter 3 and

Assumptions 5 and 6 in Chapter 4. The continuity of these pdfs enables the introduction of the jittering

of the parameters (as in Chapter 3) and the recursive implementation of the UKF (as in Chapter 4) in

the first layer of the scheme without resetting the second-layer filters. This in turn enables the resulting

algorithms to switch from a batch technique (with a quadratic increase of the computational effort over

time) to a recursive filter (with linear cost over time).

The continuity of the posterior pdfs conditional on the parameters can be guaranteed when the basic

elements of the state space model (i.e., the transition pdf and the likelihood) satisfy themselves certain

continuity conditions, as made explicit by the assumptions in the analysis of Chapter 4. Intuitively, if the

transition density and the likelihood are “sufficiently” continuous with respect to the parameters, then the

posterior pdf of the state variables is continuous as well and this enables us to introduce small perturbations

to the parameter samples (i.e., to jitter them) in order to keep their diversity without having to reprocess

the whole set of observations as, e.g., the SMC2 method does. For this reason, in Chapter 3 the Markov

kernel of the jittering procedure needs a controlled variance to draw a whole set of new particles (or, instead,

just evolve a few particles with an arbitrary variance). In the same vein, the method of Chapter 4 can work

recursively when the distance between the new set of parameters and the previous set is below a prescribed

threshold.

Under such continuity assumptions, it is possible to obtain theoretical guarantees on the convergence of,

at least, the family of nested hybrid filters that employ Monte Carlo (or quasi Monte Carlo) in the first

layer of the nested scheme. In particular, we have proved that the approximate posterior distribution of the

parameters output by the first layer of the nested filter converges to a certain limit distribution that depends

on the algorithm used in the second layer. Note that this is not a guarantee of convergence towards the true

posterior distribution of the parameters, but possibly towards a biased probability distribution. The bias of

the latter depends on the choice of filters used in the second layer of the algorithm, being the resulting

algorithm biased if the filters in the second layer are so (as it is the case in general with approximate

Gaussian filters). However, it guarantees that a limit distribution does exist and the convergence rate is

the classical Monte Carlo rate of N− 1
2 .

The price to pay for recursivity is a performance loss compared to comparable batch methods. This

has been shown in [25] for nested particle filters. We provide numerical evidence of the errors due to the
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recursive implementation in Chapter 4. In particular, we show the performance of the nested Gaussian

filter (NGF) deteriorates quickly when the distance between the new set of parameters and the previous set

surpasses a specific threshold.

6.3 Computer experiments

In this dissertation we have presented numerical results for several nonlinear models such as the stochastic

two-scale stochastic Lorenz 96 system [11] and the Lorenz 63 system [67, 73]. These models display

underlying chaotic dynamics and are commonly used for the assessment of data assimilation methods in

geophysics [22, 27, 58]. We have also presented results for a stochastic volatility model with real-world

data (namely, euro-to-USD exchange rates between 2014 and 2016) [3, 26, 95] in Chapter 4.

In Chapter 3 we have used the two-scale stochastic Lorenz 96 system in order to assess the performance

of four nested hybrid filters that combine Monte Carlo, quasi-Monte Carlo, EKF and EnKF schemes in

different ways. Specifically, we have assessed four algorithms: SMC-EnKF, SMC-EKF, SQMC-EnKF

and SQMC-EKF. These two-layer schemes estimate the static unknown parameters as well as the slow

dynamical state variables, while the contribution of the fast variables is replaced by a polynomial ansatz

which has to be fitted as well. Within this framework, we see that the resulting algorithms outperform

other methods such as the two-stage filter [92] and the NPF. The use of Gaussian filters in the second layer

of the nested hybrid filters not only leads to a significant reduction in computational complexity compared

to the NPF, but this is attained without a significant loss of accuracy. The selection of filtering techniques

in each layer depends on the computational cost one can afford, obtaining better performance with the

most computationally complex methods. Therefore, the proposed framework enables a trade-off between

accuracy and computational cost.

In Chapter 4, we describe the use of a UKF [90] in the outer layer of the nested filtering scheme while

using EKFs in the inner layer (for simplicity). For this algorithm, we present numerical results for a

stochastic Lorenz 63 model using synthetic data, as well as for a stochastic volatility model with real-world

data (namely, euro-to-USD exchange rates between 2014 and 2016). We have introduced and assessed the

values of a relative threshold that enables the algorithm to work recursively, and we have evaluated the

performance of the algorithm in terms of the normalized mean square errors for the parameters and the

dynamic state variables. We have also compared these results with other algorithms, such as the EnKF or

the UKF, that implement state augmentation (i.e., an extended state that includes both parameters and

dynamical variables), an NPF, and also with a nested hybrid filter that incorporates a SMC scheme in the

first layer and EKFs in the second layer. The introduction of Gaussian techniques in both the first and

second layers of the algorithm entails another improvement in the performance of the nested methodology,

since we obtain similar errors as the NPF and the nested hybrid filters (NHFs), but with a further reduction

in the computational cost. Also, the accuracy of the nested Gaussian filters is considerably increased

compared to Gaussian filters that implement state augmentation.

The two-scale stochastic Lorenz 96 system has also been used for assessment in Chapter 5, although in

this case we estimate the static unknown parameters as well as both the slow and fast dynamical state

variables. In that chapter, we have studied the performance of two different algorithms with three layers of

inference. Specifically, we implement SMC-SMC-UKF and SMC-EnKF-EKF schemes. The computational

cost increases considerably compared with any algorithm of two layers, but in exchange we obtain estimates

for all the dynamical variables. The proposed implementations perform the inference task effectively but
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additional research is needed to optimise the algorithms and compare them with alternative techniques.

6.4 Future research

The nested methodology that we have introduced within this thesis can be extended in various ways. To be

specific, we can readily identify the following research topics:

• Improvement of the multi-scale filters in Chapter 5.

In Chapter 5 we have studied the performance of two different algorithms with three layers of inference.

Specifically, we have implemented SMC-SMC-UKF and SMC-EnKF-EKF schemes. Both algorithms

are evaluated for a two scale Lorenz 96 model with static parameters and a set of slow and fast state

dynamic variables. Although we obtain good results in terms of accuracy, they are still preliminary.

The methodology and the proposed methods need further analysis, e.g., a more detailed study of the

performance of the resulting algorithms compared to other existing methods. Also, it would be useful

to assess the use of the methodology in different scenarios (e.g., with very noisy observations, with

few states observed or with a a greater number of parameters to estimate) and using different models

(i.e., other heterogeneous multi-scale systems).

• Cubature schemes for NGFs.

In Chapter 4, we have introduced the class of nested Gaussian filters (NGFs). To be specific, we have

described the use of a UKF [90] in the outer layer of the nested filtering scheme while using EKFs in

the inner layer (for simplicity). However, the methodology not only enables the use of the UKF in the

first layer of the filter, but any deterministic sampling technique. In particular, we can incorporate

different cubature rules for the first layer of the NGFs and study and compare the performance of the

new algorithms.

• Recursive maximum likelihood methods.

In Chapter 4, we have introduced the NGFs, where we use deterministic sampling techniques in the

first layer of the algorithm instead of Monte Carlo methods. The motivation for this approach is the

reduction of the computational complexity of the resulting nested filters. Another way to reduce the

computational cost of the nested methods may be the introduction of recursive maximum likelihood

(RML) methods [8, 9, 29, 53, 94] in the first layer of the algorithm, since considerably less samples

would be needed. This may yield a further generalization of the proposed methodology, producing a

broader class of nested algorithms.

• Extended convergence analysis.

In Chapter 3, we obtain theoretical guarantees on the convergence of, at least, the family of nested

hybrid filters that employ Monte Carlo (or quasi Monte Carlo) in the first layer of the nested scheme.

In particular, we have proved that the approximate posterior distribution of the parameters output

by the first layer of the nested filter converges to a certain (possibly biased) limit distribution that

depends on the algorithm used in the second layer. Since there are recent developments in the

state-of-the-art error analysis of the EnKF, it would be useful to study more precisely how the

convergence is affected by the use of a bank of EnKFs in the second layer of the algorithm (i.e., study
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the bias generated by the EnKF). Also, further analysis would be possible if the EnKF is placed in

the first layer of the filter.

• Application to high-dimensional problems.

The proposed methodology has been numerically assessed in Chapters 3, 4 and 5. In most computer

experiments, we have evaluated the numerical performance for the Lorenz 63 model and the two-scale

Lorenz 96 model. As this may limit the study of the performance, it is necessary to extend the

evaluation of the proposed algorithms to other significant systems. To be specific, we would start by

applying the methodology to large-scale models coming from partial differential equations (PDEs).

These models not only describe the evolution of the state with time but also with space. This type

of models can be found quite often in geophysics, meteorology, biology and chemistry, and a good

performance in this framework can lead to solving a wide range of problems.

96



A
Summary of NHF algorithms

In this Appendix we provide details of the four versions of the nested hybrid filter (NHF) used in the

experiments of Section 3.5 (Chapter 3). The differences between the specific methods depend on whether the

posterior distribution of the parameters is approximated using either a sequential Monte Carlo (SMC) or a

sequential quasi-Monte Carlo (SQMC) scheme and whether the posterior (approximate) pdfs p̂(xt|y1:t−1, θ̄
i
t),

p̂(xt|y1:t, θ̄
i
t) and p̂(xt|y1:t,θ

i
t), are computed using either an extended Kalman filter (EKF) or an ensemble

Kalman filter (EnKF) method.

In order to implement the EKF scheme in the NHF, the state and the observation functions ( and

g) are assumed nonlinear and differentiable and, therefore, the mean xi
t and the covariance matrix P i

t

of the approximate pdf p̂(xt|y1:t,θ
i
t) = N (xt|xi

t,P
i
t ) can be directly calculated. This can be done by

computing their respective Jacobian matrices (Jf ,x,θ and Jg,x,θ) evaluated at the point x in the state

space and θ in the parameter space. In the NHF scheme that includes an EnKF [36] in the second layer,

the approximate filter p̂(xt|y1:t,θ
i
t) is represented by an ensemble of M Monte Carlo particles or ensemble

members {xi,j
t }j=1,...,M , which can be combined to yield an empirical mean x̄i

t and covariance matrix P̄
i
t.

Hence, there is no need to assume that the state or observation functions are differentiable.

Each ensemble member can be stored in a dx ×M matrix Xi
t = [xi,1

t ,xi,2
t , . . . ,xi,M

t ] =
[︂
xi,j
t

]︂
, for

j = 1, . . . ,M . The i-th mean and the i-th covariance matrix can be computed as

x̄i
t =

1

M
Xi

t1M and P̄
i
t =

1

M
X̃

i

t(X̃
i

t)
⊤,

respectively, where 1M = [1, . . . , 1]⊤ is an M -dimensional column vector and X̃
i

t = Xi
t − x̄i

t1
⊤
M is an

ensemble of deviations from x̄i
t. We hence write N (xt|Xi

t) as a shorthand for the Gaussian pdf N (xt|x̄i
t, P̄

i
t).

We assume that the prior pdf of the state is Gaussian with known mean and covariance matrix, namely

p(x0) = N (x0|x̄0, P̄ 0). (A.1)
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The noise terms in the state space model are also assumed Gaussian, with zero mean and known

covariance matrices, specifically

vt ∼ N (vt|0,V ) and rt ∼ N (rt|0,R) (A.2)

represent the state and observation noise respectively.

Below, we describe algorithms that rely on either Monte Carlo (MC) or quasi Monte Carlo (QMC)

sampling schemes. Our simulations show that QMC can attain better performance, but this is only true if

this sampling scheme is used both in the parameter space and the state space. To be specific, the methods

that we have assessed are the following:

• SMC-EKF (Algorithm 17) relies on sequential MC sampling for the parameters and uses EKFs for

the weight computation. There is no need for sampling in the EKF algorithm.

• SMC-EnKF (Algorithm 18) uses a sequential MC sampling procedure in the parameter space and a

bank of EnKFs for the computation of the weights. Sampling inside each EnKF is standard MC.

• SQMC-EKF (Algorithm 19) performs sequential QMC sampling in the parameter space and computes

weights using EKFs.

• SQMC-EnKF (Algorithm 20) uses sequential QMC sampling in the parameter space an QMC inside

the EnKFs.

The notation used in this Appendix is summarized in Tables 3.1 and A.1.

Table A.1: Notation of Appendix A.

Ci
t(y) Observation covariance matrix given θ̄

i
t

Ci
t(x,y) Cross-covariance matrix of x and y given θ̄

i
t

G Function of the EKF that computes the predictive state covariance

matrix in the time scale of n

Gm Function G applied m consecutive times

JF ,x′,θ′ Jacobian matrix of the state function g evaluated at the point x′ in

the state space and θ′ in the parameter space

Jg,x′,θ′ Jacobian matrix of the state function F evaluated at the point x′ in

the state space and θ′ in the parameter space

Ki
t Kalman gain at time step t conditional on θ̄

i
t

R Observation noise covariance matrix

xi
t Posterior mean estimate of xt given θi

t (in NHF with EKFs)

x̄i
t Posterior mean estimate of xt given θi

t (in NHF with EnKFs)

x̂i
t and x̌i

t Predictive and updated mean estimates of xt given θ̄
i
t

Xi
t Ensemble with the posterior M estimates of xt given θi

t

X̂
i

t Ensemble with the predictive M estimates of xt given θ̄
i
t

X̌
i

t Ensemble with the updated M estimates of xt given θ̄
i
t

V State noise covariance matrix
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Algorithm 17 SMC-EKF

1. Initialization: draw N i.i.d. particles θi
0 ∼ µ0(dθ) and xi

0 ∼ p(x0), for i = 1, . . . , N . Let P i
0 = P0.

2. Recursive step: at time t − 1, we have obtained µN
t−1(dθ) = 1

N

∑︁N
i=1 δθi

t−1
(dθ) and, for each i =

1, . . . , N , p̂(xt−1|y1:t−1,θ
i
t−1) = N (xt−1|xi

t−1,P
i
t−1).

(a) Prediction step:

i. Draw θ̄
i
t ∼ κN (dθ|θi

t−1), for i = 1, . . . , N .

ii. For each i = 1, . . . , N compute

x̂i
t = xi

t−1 + Fm(xi
t−1, θ̄

i
t,∆) (A.3)

P̂
i

t = Gm(P i
t−1, σx,V ) (A.4)

where V is the covariance matrix of the state and Gm denotes the composition of function

G m times (G ◦ . . . ◦G). Function G in turn, is described as

G(P i
n−1, σx,V ) = JF ,x̂i

n−1,θ̄
i
t
P i

n−1J
⊤
F ,x̂i

n−1,θ̄
i
t
+ σ2

xV . (A.5)

iii. Set p̂(xt|y1:t−1, θ̄
i
t) = N (xt|x̂i

t, P̂
i

t).

(b) Update step:

i. For i = 1, . . . , N , compute

Ci
t(y) = Jg,x̂i

t,θ̄
i
t
P̂

i

tJ
⊤
g,x̂i

t,θ̄
i
t
+R (A.6)

Ki
t = P̂

i

tJ
⊤
g,x̂i

t,θ̄
i
t

(︁
Ci

t(y)
)︁−1

(A.7)

x̌i
t = x̂i

t +Ki
t

(︁
yt − g(x̂i

t, θ̄
i
t)
)︁

(A.8)

P̌
i

t = (Idx
−Ki

tJg,x̂i
t,θ̄

i
t
)P̂

i

t (A.9)

where R = σ2
oIdy

is the measurement noise covariance.

ii. Compute û(θ̄
i
t) = N

(︁
yt|g(x̂i

t, θ̄
i
t),C

i
t(y)

)︁
and obtain the normalized weights,

wi
t =

û(θ̄
i
t)∑︁N

j=1 ût(θ̄
j
t )
, i = 1, . . . , N. (A.10)

iii. Set the filter approximation p̂(xt|y1:t, θ̄
i
t) = N (xt|x̌i

t, P̌
i

t).

(c) Resampling: draw indices j1, . . . , jN from the multinomial distribution with probabilities

w1
t , . . . , w

N
t , then set

θi
t = θ̄

ji
t , xi

t = x̌ji
t and P i

t = P̌
ji
t (A.11)

for i = 1, . . . , N . Hence p̂(xt|y1:t,θ
i
t) = N (xt|xi

t,P
i
t ) and µ

N
t (dθ) = 1

N

∑︁N
i=1 δθi

t
(dθ).
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Algorithm 18 SMC-EnKF

1. Initialization: draw N i.i.d. particles θi
0 ∼ µ0(dθ) and {xi,j

0 } ∼ p(x0), for i = 1, . . . , N , j = 1, . . . ,M .

Let Xi
0 =

[︂
xi,j
0

]︂
, for i = 1, . . . , N and j = 1, . . . ,M .

2. Recursive step: at time t − 1, we have obtained µN
t−1(dθ) = 1

N

∑︁N
i=1 δθi

t−1
(dθ) and, for each i =

1, . . . , N , p̂(xt−1|y1:t−1,θ
i
t−1) = N (xt−1|Xi

t−1).

(a) Prediction step:

i. Draw θ̄
i
t ∼ κN (dθ|θi

t−1), i = 1, . . . , N .

ii. For each i = 1, . . . , N compute

X̂
i

t = Xi
t−1 + Fm(Xi

t−1, θ̄
i
t,∆, σxV

i
t ) (A.12)

where V i
t = [vi,1

t , . . . ,vi,M
t ], i = 1, . . . , N , is a mqdx ×M matrix of Gaussian perturbations

(q denotes the order of the underlying RK integrator). This is done by generating mqdx×M
QMC random variates1 and then applying the inversion method [69] to generate the Gaussian

variates (one per uniform sample).

iii. Set p̂(xt|y1:t−1, θ̄
i
t) = N (xt|X̂

i

t).

(b) Update step:

i. For i = 1, . . . , N , compute

Ci
t(x,y) =

1

M − 1
X̃

i

t(Ỹ
i

t)
⊤ (A.13)

Ci
t(y) =

1

M − 1
Ỹ

i

t(Ỹ
i

t)
⊤ +R (A.14)

Ki
t = Ci

t(x,y)
(︁
Ci

t(y)
)︁−1

(A.15)

X̌
i

t = X̂
i

t +Ki
t

(︁
yt1

⊤
M+T i

t − Y i
t

)︁
(A.16)

where R = σ2
oIdy is the measurement noise covariance, T i

t =
[︁
r1t , . . . , r

M
t

]︁
with rjt ∼

N (rt|0,R) is a matrix of Gaussian perturbations, Y i
t = g(X̂

i

t, θ̄
i
t), and X̃

i

t and Ỹ
i

t are

calculated as

X̃
i

t = X̂
i

t − x̄i
t1

⊤
M (A.17)

Ỹ
i

t = Y i
t − ȳi

t1
⊤
M , (A.18)

where x̄i
t =

1
M X̂

i

t1M and ȳt =
1
MY i

t 1M .

ii. Compute û(θ̄
i
t) = N

(︁
yt|ȳi

t,C
i
t(y)

)︁
and obtain the normalized weights,

wi
t =

û(θ̄
i
t)∑︁N

j=1 ût(θ̄
j
t )
, i = 1, . . . , N. (A.19)

iii. Set the filter approximation p̂(xt|y1:t, θ̄
i
t) = N (xt|X̌

i

t).

1Using functions haltonset, scramble and net in Matlab you can easily obtain a Halton quasi-random point set.
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(c) Resampling: draw indices j1, . . . , jN from the multinomial distribution with probabilities

w1
t , . . . , w

N
t , then set

θi
t = θ̄

ji
t , and Xi

t = X̌
ji
t (A.20)

for i = 1, . . . , N . Hence

p̂(xt|y1:t,θ
i
t) = N (xt|Xi

t) and µN
t (dθ) =

1

N

N∑︂
i=1

δθi
t
(dθ).

Algorithm 19 SQMC-EKF

1. Initialization: generate QMC uniform samples {ρi
−1,ρ

i
0} in [0, 1)dθ and ρ̄i

−1 in [0, 1)dx . Draw

θi
0 ∼ µ0(dθ|ρi

−1) and xi
0 ∼ p(x0|ρ̄i

−1), for i = 1, . . . , N . Let P i
0 = P0.

2. Recursive step, t ≥ 1. At time t− 1, we have obtained µN
t−1(dθ) =

1
N

∑︁N
i=1 δθi

t−1
(dθ) and, for each

i = 1, . . . , N , p̂(xt−1|y1:t−1,θ
i
t−1) = N (xt−1|xi

t−1,P
i
t−1).

(a) Prediction step:

i. If t = 1, draw θ̄
i
t ∼ κN (dθ|θi

t−1,ρ
i
0), else draw θ̄

i
t ∼ κN (dθ|θi

t−1, ρ̃
c(i)
t−1), i = 1, . . . , N , for

t ≥ 2.

ii. For each i = 1, . . . , N compute

x̂i
t = xi

t−1 + Fm(xi
t−1, θ̄

i
t,∆), (A.21)

P̂
i

t = Gm(P i
t−1, σx,V ), (A.22)

where V is the covariance matrix of the state and Gm denotes the composition of function

G m times (G ◦ . . . ◦G). Function G in turn, is described as

G(P i
n−1, σx,V ) = JF ,x̂i

n−1,θ̄
i
t
P i

n−1J
⊤
F ,x̂i

n−1,θ̄
i
t
+ σ2

xV . (A.23)

iii. Set p̂(xt|y1:t−1, θ̄
i
t) = N (xt|x̂i

t, P̂
i

t).

(b) Update step:

i. For i = 1, . . . , N , compute

Ci
t(y) = Jg,x̂i

t,θ̄
i
t
P̂

i

tJ
⊤
g,x̂i

t,θ̄
i
t
+R, (A.24)

Ki
t = P̂

i

tJ
⊤
g,x̂i

t,θ̄
i
t

(︁
Ci

t(y)
)︁−1

, (A.25)

x̌i
t = x̂i

t +Ki
t

(︁
yt − g(x̂i

t, θ̄
i
t)
)︁

(A.26)

P̌
i

t = (Idx
−Ki

tJg,x̂i
t,θ̄

i
t
)P̂

i

t, (A.27)

where R = σ2
oIdy

is the measurement noise covariance.
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ii. Compute û(θ̄
i
t) = N

(︁
yt|g(x̂i

t, θ̄
i
t),C

i
t(y)

)︁
and obtain the normalized weights,

wi
t =

û(θ̄
i
t)∑︁N

j=1 ût(θ̄
j
t )
, i = 1, . . . , N. (A.28)

iii. Set the filter approximation p̂(xt|y1:t, θ̄
i
t) = N (xt|x̌i

t, P̌
i

t).

(c) Generate a QMC point set {ρi
t}Ni=1 in [0, 1)dθ+1; let ρi

t = (ρit, ρ̃
i
t) ∈ [0, 1)× [0, 1)dθ .

(d) Hilbert sort: find a permutation b such that

(h ◦ ψ)(θ̄b(1)
t ) ≤ . . . ≤ (h ◦ ψ)(θ̄b(N)

t ), if dθ ≥ 2

θ̄
b(1)
t ≤ . . . ≤ θ̄

b(N)
t , if dθ = 1.

(e) Resampling: find a permutation c such that ρ
c(1)
t ≤ . . . ≤ ρ

c(N)
t . For i = 1, . . . , N set θi

t = θ̄
j
t ,

xi
t = x̌j

t and P i
t = P̌

j

t if, and only if,

j−1∑︂
k=1

w
b(k)
t < ρ

c(i)
t ≤

j∑︂
k=1

w
b(k)
t , j ∈ {1, . . . , N}.

Hence p̂(xt|y1:t,θ
i
t) = N (xt|xi

t,P
i
t ) and µ

N
t (dθ) = 1

N

∑︁N
i=1 δθi

t
(dθ).

Algorithm 20 SQMC-EnKF

1. Initialization: generate QMC uniform samples {ρi
−1,ρ

i
0} in [0, 1)dθ and ρ̄i

−1 in [0, 1)dx . Draw

θi
0 ∼ µ0(dθ|ρi

−1) and {xi,j
0 } ∼ p(x0|ρ̄i

−1), for i = 1, . . . , N , j = 1, . . . ,M . Let Xi
0 =

[︂
xi,j
0

]︂
, for

i = 1, . . . , N , j = 1, . . . ,M .

2. Recursive step, t ≥ 1. At time t− 1, we have obtained µN
t−1(dθ) =

1
N

∑︁N
i=1 δθi

t−1
(dθ) and, for each

i = 1, . . . , N , p̂(xt−1|y1:t−1,θ
i
t−1) = N (xt−1|Xi

t−1).

(a) Prediction step:

i. If t = 1, draw θ̄
i
t ∼ κN (dθ|θi

t−1,ρ
i
0), else draw θ̄

i
t ∼ κN (dθ|θi

t−1, ρ̃
c(i)
t−1), i = 1, . . . , N , for

t ≥ 2.

ii. For each i = 1, . . . , N compute

X̂
i

t = Xi
t−1 + Fm(Xi

t−1, θ̄
i
t,∆, σxV

i
t ) (A.29)

where V i
t = [vi,1

t , . . . ,vi,M
t ], i = 1, . . . , N , is a mqdx ×M matrix of Gaussian perturbations

(q denotes the order of the underlying RK integrator). This is done by generating mqdx×M
QMC random variates2 and then applying the inversion method [69] to generate the Gaussian

variates (one per uniform sample).

2Using functions haltonset, scramble and net in Matlab you can easily obtain a Halton quasi-random point set.
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iii. Set p̂(xt|y1:t−1, θ̄
i
t) = N (xt|X̂

i

t).

(b) Update step:

i. For i = 1, . . . , N , compute

Ci
t(x,y) =

1

M − 1
X̃

i

t(Ỹ
i

t)
⊤

(A.30)

Ci
t(y) =

1

M − 1
Ỹ

i

t(Ỹ
i

t)
⊤ +R (A.31)

Ki
t = Ci

t(x,y)
(︁
Ci

t(y)
)︁−1

(A.32)

X̌
i

t = X̂
i

t +Ki
t

(︁
yt1

⊤
M + T i

t − Y i
t

)︁
(A.33)

where R = σ2
oIdy

is the measurement noise covariance, T i
t =

[︁
r1t , . . . , r

M
t

]︁
with rjt ∼

N (rt|0,R) is a matrix of Gaussian perturbations, Y i
t = g(X̂

i

t, θ̄
i
t), and X̃

i

t and Ỹ
i

t are

calculated as

X̃
i

t = X̂
i

t − x̄i
t1

⊤
M (A.34)

Ỹ
i

t = Y i
t − ȳi

t1
⊤
M , (A.35)

where x̄i
t =

1
M X̂

i

t1M and ȳt =
1
MY i

t 1M .

ii. Compute û(θ̄
i
t) = N

(︁
yt|ȳi

t,C
i
t(y)

)︁
and obtain the normalized weights,

wi
t =

û(θ̄
i
t)∑︁N

j=1 ût(θ̄
j
t )
, i = 1, . . . , N. (A.36)

iii. Set the filter approximation p̂(xt|y1:t, θ̄
i
t) = N (xt|X̌

i

t).

(c) Generate a QMC point set {ρi
t}Ni=1 in [0, 1)dθ+1; let ρi

t = (ρit, ρ̃
i
t) ∈ [0, 1)× [0, 1)dθ .

(d) Hilbert sort: find a permutation b such that

(h ◦ ψ)(θ̄b(1)
t ) ≤ . . . ≤ (h ◦ ψ)(θ̄b(N)

t ), if dθ ≥ 2

θ̄
b(1)
t ≤ . . . ≤ θ̄

b(N)
t , if dθ = 1.

(e) Resampling: find a permutation c such that ρ
c(1)
t ≤ . . . ≤ ρ

c(N)
t . For i = 1, . . . , N set θi

t = θ̄
j
t

and Xi
t = X̌

j

t if, and only if,

j−1∑︂
k=1

w
b(k)
t < ρ

c(i)
t ≤

j∑︂
k=1

w
b(k)
t , j ∈ {1, . . . , N}.

Hence p̂(xt|y1:t,θ
i
t) = N (xt|Xi

t) and µ
N
t (dθ) = 1

N

∑︁N
i=1 δθi

t
(dθ).
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The computational complexity of sampling in the parameter space increases linearly with N using either

the SMC or the SQMC methods. However, the complexity of SQMC increases also with N logN due to

the resampling step since it requires the computation of the Hilbert inverse as well as two permutations in

steps 2d and 2e, in Algorithms 19 and 20. The computational cost of the EKF method increases with rates

d3y and d2x. The former is due to the inversion of the dy-dimensional matrix Ci
t(y) in Eq. (A.7) and Eq.

(A.25) of Algorithms 17 and 19 respectively, while the product in Eq. (A.9) and Eq. (A.27), used to obtain

the predictive state covariance matrix P̌
i

t, justifies the latter. Using the EnKF method, the complexity is

also cubic with dy because of the inversion of Ci
t(y) in Eq. (A.15) and Eq. (A.32) of Algorithms 18 and

20, and it increases linearly with M and dx because Algorithms 18 and 20 do not require the computation

of the predictive state covariance matrices. In Table A.2 the complexity is summarised depending on the

filters we choose. In order to alleviate the computational cost of the inversion of the observation covariance

matrix Ci
t(y), in practice we use the approximation described in Appendix C.

Algorithm SMC SQMC

EKF O(d2xd3yN) O(d2xd3yN logN)

EnKF O(dxd3yMN) O(dxd3yMN logN)

Table A.2: Summary of the complexity of the different NHFs.
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B
Proof of Theorem 1

B.1 Outline of the proof

We need to prove that the approximation µN
t generated by a generic nested filter that satisfies assumptions

A.1, A.2 and A.3 converges to µ̄t in Lp, for each t = 1, 2, ..., n0 <∞. We split the analysis of the nested

filter in three steps: jittering, weight computation and resampling. The approximation µN
t−1 of µ̄t−1 is

available at the beginning of the t-th time step. After jittering, we obtain a new approximation,

µ̌N
t−1 =

1

N

N∑︂
i=1

δθ̄i
t
, (B.1)

that can be proved to converge to µ̄t−1 using an auxiliary result from [25]. After the computation of the

weights, the measure

µ̃N
t =

N∑︂
i=1

wi
tδθ̄i

t
(B.2)

is obtained and its convergence towards µ̄t has to be established. Finally, after the resampling step, a

standard piece of analysis proves the convergence of

µN
t =

1

N

N∑︂
i=1

δθi
t

(B.3)

to µ̄t. Below, we provide three lemmas for the conditional convergence of µ̌N
t−1, µ̃

N
t and µN

t , respectively.

Then we combine them in order to prove Theorem 1 by an induction argument.
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B.2 Jittering

In the jittering step, a new cloud of particles {θ̄i
t}Ni=1 is generated by propagating the existing samples

across the kernels κN (dθ|θi
t−1), i = 1, . . . , N . This step has been analyzed in [25] in the context of the

nested particle filter (NPF). Several types of kernels can be used. In general, there is a trade-off between

the number of particles that are changed using this kernel and the “amount of perturbation” that can be

applied to each particle. For this reason, we let the jittering kernel κN depend explicitly on N . For our

analysis, assumption A.3 is sufficient.

The convergence results to be given in this appendix are presented in terms of upper bounds for the

Lp norms of the approximation errors. For a random variable z, its Lp norm is ∥z∥p = E [|z|p]
1
p . The

approximate measures generated by the nested filter, e.g., µN
t , are measured-valued random variables.

Therefore, integrals of the form (h, µN
t ), for some h ∈ B(D), are real random variables and it makes sense

to evaluate the Lp norm of the random error (h, µN
t ) − (h, µ̄t). We start with the approximation µ̌N

t−1

produced after the jittering step at time t.

Lemma 1 Let the sequence of observations y1:t be arbitrary but fixed. If h ∈ B(D), A.3 holds and

∥(h, µN
t−1)− (h, µ̄t−1)∥p ≤

ct−1∥h∥∞√
N

(B.4)

for some p ≥ 1 and a constant ct−1 <∞ independent of N , then

∥(h, µ̌N
t−1)− (h, µ̄t−1)∥p ≤

c1,t∥h∥∞√
N

, (B.5)

where the constant c1,t <∞ is also independent of N .

Proof: The proof of this Lemma is identical to the proof of [25, Lemma 3]. □

B.3 Computation of the weights

In order to analyze the errors at the weight computation step we rely on assumption A.2. An upper bound

for the error in the weight computation step is established next.

Lemma 2 Let the sequence of observations y1:t be arbitrary but fixed, choose any h ∈ B(D) and some

p ≥ 1. If assumptions A.1 and A.2 hold, and

∥(h, µ̌N
t−1)− (h, µ̄t−1)∥p ≤

c1,t∥h∥∞√
N

(B.6)

for some constant c1,t <∞ independent of N , then

∥(h, µ̃N
t )− (h, µ̄t)∥p ≤

c2,t∥h∥∞√
N

, (B.7)

where the constant c2,t <∞ is independent of N .

Proof: We address the characterization of the weights and, therefore, of the approximate measure

µ̃N
t =

∑︁N
i=1 w

i
tδθ̄i

t
. From the definition of the projective product in (3.24), the integrals of h w.r.t. µ̄t and

µ̃N
t can be written as

(h, µ̄t) =
(ūth, µ̄t−1)

(ūt, µ̄t−1)
, and (h, µ̃N

t ) =
(ûth, µ̌

N
t−1)

(ût, µ̌
N
t−1)

, (B.8)
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respectively. From (B.8) one can write the difference (h, µ̃N
t )− (h, µ̄t) as

(h, µ̃N
t )− (h, µ̄t) =

(hût, µ̌
N
t−1)− (hūt, µ̄t−1)

(ūt, µ̄t−1)
+ (h, µ̃N

t )
(ūt, µ̄t−1)− (ût, µ̌

N
t−1)

(ūt, µ̄t−1)
,

which readily yields the inequality

|(h, µ̃N
t )− (h, µ̄t−1)| ≤

|(hût, µ̌N
t−1)− (hūt, µ̄t−1)|
(ūt, µ̄t−1)

+
∥h∥∞|(ût, µ̌N

t−1)− (ūt, µ̄t−1)|
(ūt, µ̄t−1)

(B.9)

by simply noting that |(h, µ̃N
t )| ≤ ∥h∥∞, since µ̃N

t is a probability measure. From (B.9) and Minkowski’s

inequality we easily obtain the bound

∥(h, µ̃N
t )− (h, µ̄t−1)∥p ≤ 1

(ūt, µ̄t−1)

[︁
∥h∥∞∥(ût, µ̌N

t−1)− (ūt, µ̄t−1)∥p

+∥(hût, µ̌N
t−1)− (hūt, µ̄t−1)∥p,

]︁
(B.10)

where (ūt, µ̄t−1) > 0 from assumption A.2.2.

We need to find upper bounds for the two terms on the right hand side of (B.10). Consider first the

term ∥(hût, µ̌N
t−1)− (hūt, µ̄t−1)∥p. A simple triangle inequality yields

∥(hût, µ̌N
t−1)− (hūt, µ̄t−1)∥p ≤ ∥(hût, µ̌N

t−1)− (hūt, µ̌
N
t−1)∥p + ∥(hūt, µ̌N

t−1)− (hūt, µ̄t−1)∥p. (B.11)

On one hand, since supθ∈D |h(θ)ūt(θ)| ≤ ∥h∥∞∥ūt∥∞ <∞ (see A.2.1), it follows from the assumption in

Eq. (B.6) that

∥(hūt, µ̌N
t−1)− (hūt, µ̄t−1)∥p ≤

c1,t∥h∥∞∥ūt∥∞√
N

, (B.12)

where c1,t <∞ is a constant independent of N .

On the other hand, we may note that

|(hût, µ̌N
t−1)− (hūt, µ̌

N
t−1)|p =

⃓⃓⃓⃓
⃓ 1N

N∑︂
i=1

(︂
h(θ̄

i
t)ût(θ̄

i
t)− h(θ̄

i
t)ūt(θ̄

i
t)
)︂⃓⃓⃓⃓⃓

p

. (B.13)

Let Gt be the σ-algebra generated by the random particles {θ̄i
1:t−1,θ

i
0:t−1}1≤i≤N and assume that p is even.

Then we can apply conditional expectations on both sides of (B.13) to obtain

E
[︂⃓⃓
(hût, µ̌

N
t−1)− (hūt, µ̌

N
t−1)

⃓⃓p ⃓⃓⃓Gt]︂ = E

[︄(︄
1

N

N∑︂
i=1

h(θ̄
i
t)mt(θ̄

i
t)

)︄p ⃓⃓⃓
Gt

]︄

where the expression on the right hand side has been simplified by using the assumption ût(θ) = ūt(θ)+mt(θ)

in A.1. Also from assumption A.1, the random variables mt(θ̄
i
t) are conditionally independent (given Gt),

have zero mean and finite moments of order p, E[mt(θ̄
i
t)

p] ≤ σp <∞. If we realise that

E[h(θ̄i
t)mt(θ̄

i
t)|Gt] = h(θ̄

i
t)E[mt(θ̄

i
t)|Gt] = 0

and bear in mind the conditional independence of the mt(θ̄
i
t)’s, then it is an exercise in combinatorics to

show that the number of non-zero terms in

E

[︄(︄
1

N

N∑︂
i=1

h(θ̄
i
t)mt(θ̄

i
t)

)︄p ⃓⃓⃓
Gt

]︄
=
∑︂
i1

. . .
∑︂
ip

E
[︂
h(θ̄

i1
t )mt(θ̄

i1
t ) . . . h(θ̄

ip
t )mt(θ̄

ip
t )
⃓⃓⃓
Gt
]︂
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is at most c̃pN
p
2 , for some constant c̃p <∞ independent of N and h. Since each of the non-zero terms is

upper bounded by E
[︂
(h(θ̄

i
t)mt(θ̄

i
t))

p
⃓⃓⃓
Gt
]︂
≤ ∥h∥p∞σp <∞ (using A.1 again), then it follows that

E
[︂⃓⃓
(hût, µ̌

N
t−1)− (hūt, µ̌

N
t−1)

⃓⃓p]︂
= E

[︄(︄
1

N

N∑︂
i=1

h(θ̄
i
t)mt(θ̄

i
t)

)︄p ⃓⃓⃓
Gt

]︄
≤ c̃pσp∥h∥p∞

N
p
2

(B.14)

for even p. Given (B.14), it is straightforward to show that the same result holds for every p ≥ 1 using

Jensen’s inequality. Finally, since the bound on the right hand side of (B.14) is independent of Gt, we can

take expectations on both sides of the inequality and obtain that

∥(hût, µ̌N
t−1)− (hūt, µ̌

N
t−1)∥p ≤

c̃σ∥h∥∞√
N

. (B.15)

Substituting (B.15) and (B.12) into (B.11) yields

∥(hût, µ̌N
t−1)− (hūt, µ̄t−1)∥p ≤

c′t∥h∥p∞∥ūt∥∞√
N

, (B.16)

where c′t = c1,t + c̃σ is a constant independent of N .

The same argument leading to the bound in (B.16) can be repeated, step by step, on the norm

∥(ût, µ̌N
t−1)− (ūt, µ̄t−1)∥p (simply taking h(θ) = 1), to arrive at

∥(ût, µ̌N
t−1)− (ūt, µ̄t−1)∥p ≤

c′t∥ūt∥∞√
N

. (B.17)

To complete the proof, we substitute (B.16) and (B.17) back into (B.10) and so obtain

∥(h, µ̃N
t )− (h, µ̄t−1)∥p ≤

c2,t∥h∥∞√
N

,

where the constant c2,t = ∥ūt∥∞ (2c′t) /(ūt, µ̄t−1) <∞ is independent of N . □

B.4 Resampling

The quantification of the error in the resampling step of the nested filter is a standard piece of analysis,

well known from the particle filtering literature (see, e.g., [13]). We can state the following result.

Lemma 3 Let the sequence of observations y1:t be arbitrary but fixed. If h ∈ B(D) and

∥(h, µ̃N
t )− (h, µ̄t)∥p ≤

c2,t∥h∥∞√
N

(B.18)

for a constant c2,t <∞ independent of N , then

∥(h, µN
t )− (h, µ̄t)∥p ≤

c3,t∥h∥∞√
N

,

where the constant c3,t <∞ is independent of N as well.

Proof: See, e.g., the proof of [74, Lemma 1]. □
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B.5 An induction proof for Theorem 1

Finally, we can put Lemmas 1, 2 and 3 together in order to prove the inequality (3.26) by induction in t.

At time t = 0, we draw θi
0, i = 1, . . . , N , independently from the prior µ0 = µ̄0 and it is straightforward to

show that ∥(h, µN
0 )− (h, µ̄0)∥p ≤

c0∥h∥∞√
N

, where c0 does not depend on N .

Assume that, at time t− 1,

∥(h, µN
t−1)− (h, µ̄t−1)∥p ≤

ct−1∥h∥∞√
N

where ct−1 <∞ is independent of N . Then, we simply apply Lemmas 1, 2 and 3 in sequence to obtain

∥(h, µN
t )− (h, µ̄t)∥p ≤

ct∥h∥∞√
N

for a constant ct = c3,t <∞ independent of N . □

109



APPENDIX B. PROOF OF THEOREM 1

110



C
Simplification of the inverse

The predictive covariance of the observation vector yt is a dy × dy matrix Ct(y). Inverting Ct(y) has a cost

O(d3y), which can become intractable. Assuming that variables located “far away” in the circumference of

the Lorenz 96 model have small correlation we can approximate Ct(y) as a block diagonal matrix, namely,

Ĉt(y) = Ct(y)⊙M , where ⊙ denotes element-wise product,

M =

⎡⎢⎢⎢⎢⎣
1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤⎥⎥⎥⎥⎦ (C.1)

is a mask matrix and 0 and 1 are, respectively, matrices of zeros and ones of dimension dq × dq. There

are Q blocks in the diagonal of M , hence dy = Qdq. The original matrix could contain some non-zero

values where the zero blocks of M are placed, however their values are assumed close to zero. The resulting

matrix,

Ĉ =

⎡⎢⎢⎢⎢⎣
C1 0 . . . 0

0 C2 . . . 0
...

...
. . .

...

0 0 . . . CQ

⎤⎥⎥⎥⎥⎦ , is easily inverted as Ĉ
−1

t =

⎡⎢⎢⎢⎢⎣
C−1

1 0 . . . 0

0 C−1
2 . . . 0

...
...

. . .
...

0 0 . . . C−1
Q

⎤⎥⎥⎥⎥⎦
with a computational cost O(Qd3q) = O(

d3
y

Q2 ).
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D
Proof of Proposition 1

We proceed by induction in the time index t. For t = 0 we have π0(x0|θ) = p(x0) independently of θ,

hence for any pair (θ,θ′) ∈ D ×D we obtain∫︂ ⃓⃓
π0(x0|θ)− π0(x0|θ′)

⃓⃓
dx0 =

∫︂ ⃓⃓
p(x0)− p(x′

0)
⃓⃓
= L0∥θ − θ′∥

for L0 = 0.

For the induction step, assume that∫︂ ⃓⃓
πt−1(xt−1|θ)− πt−1(xt−1

⃓⃓
θ′)|dxt−1 < Lt−1∥θ − θ′∥ (D.1)

for some Lt−1 <∞. Straightforward calculations yield∫︂ ⃓⃓
ξt(xt|θ)− ξt(xt|θ′)

⃓⃓
dxt =

=

∫︂ ⃓⃓⃓⃓ ∫︂
p(xt|xt−1,θ)πt−1(xt−1|θ)dxt−1 −

∫︂
p(xt|xt−1,θ

′)πt−1(xt−1|θ′)dxt−1

±
∫︂
p(xt|xt−1,θ)πt−1(xt−1|θ′)dxt−1

⃓⃓⃓⃓
dxt

≤
∫︂ ∫︂

p(xt|xt−1,θ)
⃓⃓
πt−1(xt−1|θ)− πt−1(xt−1|θ′)

⃓⃓
dxt−1dxt

+

∫︂ ∫︂ ⃓⃓
p(xt|xt−1,θ)− p(xt|xt−1,θ

′)
⃓⃓
πt−1(xt−1|θ′)dxt−1dxt

and reordering the integrals we obtain∫︂ ⃓⃓
ξt(xt|θ)− ξt(xt|θ′)

⃓⃓
dxt ≤
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≤
∫︂ [︃ ∫︂

p(xt|xt−1,θ)dxt

]︃⃓⃓
πt−1(xt−1|θ)− πt−1(xt−1|θ′)

⃓⃓
dxt−1

+

∫︂ [︃ ∫︂ ⃓⃓
p(xt|xt−1,θ)− p(xt|xt−1,θ

′)
⃓⃓
dxt

]︃
πt−1(xt−1|θ′)dxt−1 (D.2)

However,
∫︁
p(xt|xt−1,θ)dxt = 1 for any xt−1 and any θ, while Assumption 5 yields

∫︁
|p(xt|xt−1,θ) −

p(xt|xt−1,θ
′)|dxt ≤ L∥θ − θ′∥. Therefore, (D.2) becomes∫︂ ⃓⃓

ξt(xt|θ)− ξt(xt|θ′)
⃓⃓
dxt ≤

∫︂ ⃓⃓
πt−1(xt−1|θ)− πt−1(xt−1|θ′)

⃓⃓
dxt−1

+L∥θ − θ′∥
∫︂
πt−1(xt−1|θ′)dxt−1

≤ (Lt−1 + L)∥θ − θ′∥ (D.3)

where the second inequality follows from the induction hypothesis (D.1).

As for the difference between πt(·|θ) and πt(·|θ′), the Bayes theorem readily yields∫︂ ⃓⃓
πt(xt|θ)− πt(xt|θ′)

⃓⃓
dxt =

∫︂ ⃓⃓⃓⃓
p(yt|xt,θ)ξt(xt|θ)

ηt(yt|θ)
− p(yt|xt,θ

′)ξt(xt|θ′)

ηt(yt|θ′)

⃓⃓⃓⃓
dxt (D.4)

and the absolute difference in the integrand of (D.4) can be rewritten as⃓⃓⃓⃓
p(yt|xt,θ)ξt(xt|θ)

ηt(yt|θ)
− p(yt|xt,θ

′)ξt(xt|θ′)

ηt(yt|θ′)

⃓⃓⃓⃓
=

⃓⃓⃓⃓
p(yt|xt,θ)ξt(xt|θ)

ηt(yt|θ)
± p(yt|xt,θ

′)ξt(xt|θ′)

ηt(yt|θ)
− p(yt|xt,θ

′)ξt(xt|θ′)

ηt(yt|θ′)

⃓⃓⃓⃓
=

⃓⃓⃓⃓
p(yt|xt,θ)ξt(xt|θ)− p(yt|xt,θ

′)ξt(xt|θ′)

ηt(yt|θ)
+ πt(xt|θ′)

ηt(yt|θ′)− ηt(yt|θ)
ηt(yt|θ)

⃓⃓⃓⃓
(D.5)

where we have used the relationship πt(xt|θ′) = p(yt|xt,θ
′)ξt(xt|θ)

ηt(yt|θ′) to obtain the second identity. Now, if we

substitute (D.5) into (D.4) and then realize that⃓⃓
ηt(yt|θ)− ηt(yt|θ′)

⃓⃓
≤
∫︂ ⃓⃓

p(yt|xt,θ)ξt(xt|θ)− p(yt|xt,θ
′)ξt(xt|θ′)

⃓⃓
dxt

and
∫︁
πt(xt|θ′)dxt = 1, we obtain the upper bounds∫︂ ⃓⃓

πt(xt|θ)− πt(xt|θ′)
⃓⃓
dxt

≤ 2

ηt(yt|θ)

∫︂ ⃓⃓⃓⃓
p(yt|xt,θ)ξt(xt|θ)− p(yt|xt,θ

′)ξt(xt|θ′)

⃓⃓⃓⃓
dxt (D.6)

≤ 2

ηt(yt|θ)

[︃ ∫︂
p(yt|xt,θ)

⃓⃓
ξt(xt|θ)− ξt(xt|θ′)

⃓⃓
dxt

+

∫︂ ⃓⃓
p(yt|xt,θ)− p(yt|xt,θ

′)
⃓⃓
ξt(xt|θ′)dxt

]︃
(D.7)

where (D.7) is obtained by applying a triangular inequality in (D.6).

The first integral in (D.7) can be bounded using Assumption 7 and inequality (D.3), which together

yield, ∫︂
p(yt|xt,θ)

ηt(yt|θ)
⃓⃓
ξt(xt|θ)− ξt(xt|θ′)

⃓⃓
dxt ≤Mt

∫︂ ⃓⃓⃓⃓
ξt(xt|θ)− ξt(xt|θ)

⃓⃓⃓⃓
dxt

≤Mt(Lt−1 + L)∥θ − θ′∥, (D.8)
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while the second integral can be bounded using Assumption 6, which leads to

2

ηt(yt|θ)

∫︂ ⃓⃓
p(yt|xt,θ)− p(yt|xt,θ

′)
⃓⃓
ξt(xt|θ′)dxt ≤ 2Gt∥θ − θ′∥

∫︂
ξt(xt|θ′)dxt

= 2Gt∥θ − θ′∥. (D.9)

Plugging (D.8) and (D.9) into (D.7) yields∫︂ ⃓⃓
πt(xt|θ)− πt(xt|θ′)

⃓⃓
≤Mt(Lt−1 + L)∥θ − θ′∥+ 2Gt∥θ − θ′∥

≤ Lt∥θ − θ′∥

with Lt =Mt(Lt−1 + L) + 2Gt <∞. □
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