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a b s t r a c t

Critically important biological phenomena in health and disease, such as wound healing, cancer
metastasis, and embryonic development, are governed by collective cell migration. This highly complex
process depends not only on cellular features, but also on different stimuli from the local cell
environment. Cell migration is promoted by the combination of physico-chemical cues, including
the mechanical properties of the extracellular matrix (ECM). Stiffness gradients within ECM have
recently been demonstrated to result into preferred directions of cell migration. However, the specific
mechanisms driving this directed collective cell migration and their relative roles remain unclear. Here,
we develop a continuum formulation and its finite element (FE) implementation to test different
hypotheses on the cause of spatial heterogeneities during cell migration on heterogeneous-stiffness
substrates. We evaluate two key hypotheses: (i) cell polarisation is promoted by stiffness gradients
within the ECM and; (ii) propulsion forces are weighted by ECM stiffness. Ultimately, we provide a
robust in silico framework to explain experimental observations and guide future research.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During a number of biological processes such as embryonic
evelopment and wound healing, cells carry out their functions
t two levels: as individual entities and as a collective. In vivo,

cells do not exist in isolation but in constant contact with other
cells and the extracellular matrix (ECM) or basement membrane,
through which they can migrate [1]. Thus, while the under-
standing of the dynamics of individual cells is essential, the
comprehension of the dynamics of cell aggregates is often the
most physio-pathological relevant mode of migration [2]. These
multicellular processes present high complexity involving dif-
ferent physico-chemical cues, among which mechanics plays a
major role. The mechanical processes regulating collective mi-
gration include crosstalk between cell-cell and cell-ECM adhesive
interactions, and corresponding active responses from cell con-
tractility [1]. In a recent article, Alert and Trepat [3] examined
the different mechanical features occurring during collective cell
migration. These authors classified the acting forces in two main
groups: positional and orientational. Among the former, cellular
interaction forces include adhesion, friction, repulsion and active
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forces due to polarity and actomyosin-based contractility [4–
6]. Another important contribution to positional forces stems
from interactions between cells and their substrate. These forces
mainly arise from active traction forces due to cell adhesion to the
substrate and friction [7]. Moreover, interactions between cells
promote changes in their shape and polarisation alignment. This
cell polarisation induces a preferred orientation within the cell
aggregates, which is also significantly affected by the mechanical
properties of the substrate (i.e., stiffness magnitude and spatial
distribution) [8–10].

One of the most challenging problems to understand the role
of mechanics on collective cell migration is the influence of
heterogeneous stiffness and stress distributions within the cell
substrate. In this regard, an anisotropic and/or heterogeneous
ECM microstructure results into non-homogeneous external me-
chanical forces acting on the cell continuum [11]. From a mechan-
ical balance analysis, it is clear that such mechanical constraints
interplay with the internal stresses within the cell continuum
leading to cellular reorientations and guiding the collective mi-
gration. Furthermore, local cellular stresses and/or reorientations
can be transmitted over long distances within the continuum
making use of mechanical cell–cell communication [12,13]. A
consequence of mechanical balance under heterogeneous ECM

conditions, which has been experimentally demonstrated, is that
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ells trend to migrate along gradients of substrate stiffness [14].
his preferential cell movement to stiffer regions – termed duro-
axis – is postulated to contribute to cell migration in wound
ealing [15]. This process is mediated by actomyosin cellular
raction forces and focal adhesions promoting cell attachment to
CM [9]. Breckenridge et al. [9] suggested that traction forces
ould be explained by a cell polarisation process guided by stiff-
ess gradients, and postulated that this polarisation is a potential
echanism underlying durotaxis. In related work, Bun et al.

8] demonstrated that shape polarisation can be triggered and
irected by stiffness sensing through single localised integrin-
ediated cues. More recently, Sunyer et al. [16] conducted ex-
eriments to test the influence of substrate stiffness gradients
n collective cell migration. These results show that stiffness
radients within the substrate promote non-symmetric migration
owards the stiffer regions.

Motivated by these works, we propose a novel constitutive
odel formulated within a consistent finite element (FE) frame-
ork for finite deformation to simulate collective cell migration
n heterogeneous-stiffness substrates. This model incorporates
riginal dependences of external mechanical forces and cell po-
arisation on substrate stiffness. The FE model is implemented
ithin a fully implicit framework and used to simulate collective
ell migration of epithelial monolayers. The model parameters
re first identified from experimental measurements published
n the literature. Then, we simulate the experiments reported
y Sunyer et al. [16] for collective migration on homogeneous
ubstrates. After validation of the model predictions against such
xperiments, two different hypothetical driving forces guiding
on-symmetric collective migration are tested: (i) cell polarisa-
ion is promoted by stiffness gradients within the cell substrate;
ii) propulsion forces are weighted by cell substrate stiffness.
he computational results reported here suggest that polarisation
nduced by substrate stiffness gradients is sufficient to promote
on-symmetric collective migration. Overall, the proposed model
rovides good predictions of collective migration along time and
tress distribution within the cell under different substrate condi-
ions, representing a powerful tool to guide future experimental
esearch.

. Continuum model formulation

Current computational approaches describe the cell migration
rocess from different perspectives: at the cellular scale [17,18]
nd at the continuum scale [19–22]. The latter considers cell-
ggregates as a continuum body where intracellular as well as
ntercellular interactions are treated as internal stresses. Thus,
ocal mechanical stimuli at the cellular level can be globally trans-
itted in the form of mechanical waves transporting interaction

orces within the cell ‘‘continuum’’. In parallel to these mechan-
cal waves, some existing models couple other physics such as
ctomyosin concentration and cell polarisation evolution through
on-local approaches [21]. Although significant efforts have been
ade to date to model the mechanics of collective cell migration,
nly few models account for the effects of stiffness gradients
ithin the ECM or the substrate. A relevant work accounting for
hem was published by Escribano et al. [23]. This model is formu-
ated for 1D and is based on the combination of truss elements
nd a particle-based approach to simulate the dynamics of cell–
atrix adhesions and cell–cell interactions. The same research
roup published another important work [22] where a continuum
aterial model is coupled to an agent-based approach. These
orks, despite of their indisputable relevance, are computation-
lly expensive and need of discrete models running in parallel to
he continuum approach.

A significant work by Ladoux and Mège [1] highlights two
ain mechanisms as promoters of collective dynamics: collective
cell polarisation and coordinated contractile processes. Here, we
incorporate in a novel fashion the influence of substrate stiffness
gradients on cell polarisation and postulate this process as the
main promoter of non-symmetric collective migration. We pro-
pose a 3D purely continuum formulation (suitable to be simplified
to 1D) to address collective cell migration on heterogeneous-
stiffness substrates in physiological environments. To this end,
we take a recent model proposed by Banerjee and Marchetti [21]
as the starting point. Note that the present work is devoted to
the comprehension of the specific mechanisms leading to spa-
tial non-symmetries during cell migration due to heterogeneous
mechanical properties within the substrate. Hence, the proposed
modelling framework extends previous models to include such
dependencies while, without the loss of generality, simplifies
other specific features to isolate and focus the analysis. Moreover,
cell proliferation is neglected as cell division has been reported
to be independent of substrate stiffness and it is inhibited in the
experimental work taken here as reference [16]. We then formu-
late the problem on two cornerstones: mechanical balance; and
non-local evolution of cell polarisation. The mechanical balance
assumes negligible inertial effects and, in its spatial form, reads
as:

h∇ · σ + T = 0 (1)

where ∇ is the spatial gradient and h = λopho is the deformed
height of the cell monolayer, with λop and ho being the out-of-
plane stretch and the initial height, respectively. The mechanical
stress within the monolayer is described, in its deformed state,
by the Cauchy stress tensor σ. The term T describes the external
body forces per unit length.

The stress within the cell-aggregates is defined by a consti-
tutive equation. In this work, we make use of hyperelasticity to
derive the stress tensor from a free energy potential formulated
for finite deformation (essential to account for large deforma-
tions and mechanical non-linearities). This free energy can be
understood as the combination of different contributions arising
from specific mechanisms. Ideally, a complete description of the
problem should include: (1) a pure elastic component accounting
from isochoric and volumetric resistance to deformation due
to cell–cell adhesions; (2) a viscoelastic component accounting
for cell junctions remodelling; (3) a purely viscous component
accounting for cell–cell friction and repulsion forces; and (4)
an active anisotropic component related to the concentration
of contractile actomyosin. Here, we adopt a simplified energy
potential to reduce the internal cell stresses to an averaged com-
ponent due to cell–cell adhesions. This reduces the number of
model parameters to the minimum and facilitates the analysis of
substrate stiffness influence limiting other effects (i.e., relaxation
dependences, anisotropic responses). To this end, a neo-Hookean
potential in the following form is chosen:

Ψ (F ) =
µcell

2
[I1 − 3] (2)

where F is the deformation gradient, I1 = trace(F T F ) is the first
invariant of the right Cauchy–Green deformation tensor and µcell
is the apparent shear modulus of the cell aggregate describing the
‘‘stiffness’’ of the cell continuum to deform. Therefore, the contin-
uum mechanical behaviour is implicitly related to both the cell
stiffness and cell–cell adhesion. From thermodynamics principles
and assuming incompressibility, the Cauchy stress tensor can be
derived as:

σ = −Π I +
∂Ψ

∂F
F T

= −Π I + µcellFF T (3)

where I is the second order unit tensor and Π is a Lagrange mul-
tiplier (related to volumetric pressure). Note that the proposed
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framework allows for the definition of other complex constitu-
tive equations by simply changing the conceptualisation of the
energy potential Ψ . Thus, an additive composition of Ψ can
e used to add viscoelastic (see Ref. [24] for consistent contin-
um visco-hyperelastic formulation) or active components (see
ef. [21]). Regarding the external mechanical forces affecting the
ell-aggregates (T ), they are mainly due to cell-substrate inter-
ctions. Therefore, it seems convenient to split this contribution
nto a first component due to cell-substrate friction, and a sec-
nd component related to propulsion forces generated by the
ell-substrate adhesion:

= −ζ u̇ + f p (4)

where ζ is a friction coefficient, u̇ is the velocity field defined
as the time derivative of the displacement field u, p is the po-
larisation, and f is the propulsion force per unit cross-sectional
area. According to Alert et al. [20], this coefficient is related to
the maximal traction stress exerted by polarised cells on the sub-
strate. Maximum care must be taken here when formulating the
collective migration as a finite deformation problem. One impor-
tant aspect is that the effective f is expressed as a force per unit
current cross-sectional area (accounting for variations of such an
area during continuum deformation). Another important consid-
eration for this work is that such traction stress f can, a priori,
e considered dependent on the substrate stiffness as implicitly
ssumed by Sunyer et al. [16]. This hypothesis is also motivated
y experimental work which suggests that durotaxis may be
riggered by higher traction forces on stiffer substrates [9,25–27].
herefore, the external mechanical sources are rewritten here as:

= −ζ u̇ + f̃ (Es)p (5)

where f̃ (x) = fref + ξ
Es(x)
Es,ref

is the traction stress dependent on the
linearised stiffness (Young’s modulus) of the substrate Es, with
s,ref being a reference Young’s modulus of the substrate, ξ a
onstant parameter and x the spatial coordinates. This later de-
endence is assumed, as a first approach, in a similar trend than
n the model proposed by Alert and Casademunt [28]. However,
uture variations may be included to capture further effects such
s a decrease of durotaxis with an increase of average stiffness
while keeping the same stiffness gradient magnitude) [16,22].
his work focuses on the effects of stiffness gradients within the
ubstrate. This is why the variable Es(x) depends on the spatial
oordinates. The description of the substrate stiffness depending
n the spatial coordinates is based on the following assumptions:
i) the spatial distribution of the substrate stiffness can be defined
y the appropriate function, in a reference undeformed configu-
ation that depends on the substrate material coordinates X s; (ii)
during collective cell migration, although large deformations of
the cell continuum are expected, small deformations are assumed
for the substrate leading to the relation of substrate’s coordinates
xs = X s + us ≈ X s, where us is the displacement field
within the substrate; (iii) therefore, the spatial coordinates of
the cell-aggregates correspond to the material coordinates of the
substrate as x = X + u ≈ X s. Overall, we assume large deforma-
tions within the cellular substrate but small deformations within
the substrate. Therefore, as the cellular continuum migrates over
the substrate overcoming frictional forces, the cellular spatial
coordinate x will correspond to the substrate material coordinate
X s. It is worth to mention that for other cases involving very
soft substrate this assumption may be not true, but this problem
would require a different approach simulating in a lower scale
the cellular-substrate interactions.

Note that the mechanical balance depends on the polarisation
p. Therefore, the complete description of the problem requires
Table 1
Common constitutive parameters used in all simulations. These parameters are
directly identified from experimental measurements reported in the literature
[16,20,29–32].
Constitutive parameters

µcell (kPa) ζ (nNµm−3s) ξref (kPa) ho (µm) κ (µm2)
2.5 1 0.25 6 0.3

a consistent flow rule for this variable. To this end, a non-local
evolution of p is defined as:

ṗ = κ∇
2p + γ∇Es(x) (6)

where κ is a diffusion-like coefficient describing the influence of
neighbouring cells on local polarisation and γ is a coefficient de-
scribing the sensitivity of the cell-aggregates to polarise along the
stiffness gradient of the substrate. The first term is motivated by
the fact that cell–cell contact triggers cell polarisation, and these
interaction forces are transmitted within the cell continuum lead-
ing to a diffusion-like process resulting into a non-local evolution
of cell polarisation [9]. The second term is motivated by experi-
mental observations which show that stiffness sensing cues are
sufficient to trigger and direct shape polarisation [8,9,16]. Other
terms could be added to incorporate polarisation dependencies
on ATP driven processes, velocity dependent advective terms,
actomyosin concentration or relaxation processes (see Ref. [21]).

The proposed model allows for its implementation in a fully
coupled FE framework. To this end, a fully implicit integration
algorithm is formulated and implemented (see Appendix for de-
tails). Overall, the present work provides a robust FE framework
to computationally test potential effects of substrate stiffness
gradients on collective cell migration. In addition, as previously
indicated, the present formulation allows to incorporate other
relevant physical mechanisms into the global formulation.

3. Results

This section evaluates the predictive capability of the model
presented. The model parameters are first identified from exper-
imental measurements. This set of parameters is used to validate
the model against experimental data of collective cell migration
on homogeneous-stiffness substrates. Then, the model hypothe-
ses are tested and computational predictions for collective cell
migration on heterogeneous-stiffness substrates are compared to
relevant experimental data. Finally, the proposed driving forces
for non-symmetric collective cell migration are further analysed.

3.1. Model predictions for homogeneous-stiffness substrates

First, the model parameters for the specific cell continuum
modelled, the epithelial monolayer, are identified from the lit-
erature to avoid ad-hoc calibration by fitting. The initial mono-
layer height is commonly reported with a value between 5–
7 µm [16,29]. The epithelial tissue exhibits a shear modulus
ranging from 2 to 8 kPa [30]. A common maximal value of
0.2–0.5 kPa for the traction stresses (f̃ ) has been reported in
the literature [29,31]. Moreover, the friction coefficient has been
experimentally estimated with a value of 1 nNµm−3s [32]. There-
fore, the model parameters used in this work are directly defined
from reported experimental measurements, see Table 1. Note
that the diffusion-like coefficient related to polarisation is cho-
sen to consistently describe its experimental distribution within
epithelial monolayers.

To perform simulations, we need to define the FE domain and

the corresponding boundary conditions. In Fig. 1, a schematic
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Fig. 1. Schematic representation of the continuum model for: cell continuum (green) on homogeneous substrate at the initial state and after collective migration.
The polarisation boundary conditions are indicated in the right part of the figure. The 1D cell continuum (red) illustrates the representative one dimensional domain
taken for the FE simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Comparison between experimental data [16] and model predictions of collective cell migration on homogeneous substrate: (a) collective cell expansion along
ime; (b) stress traction predictions and maximum stress traction observed experimentally; (c) comparison between experimental data [16] and model predictions
f the stress tractions spatial distribution. Note that these results are independent of the model parameters γ , ξ and Es,ref .
representation of the initial and final stages of collective cell
migration on a homogeneous-stiffness monolayer is presented.
Here, the cell continuum is represented as an in-plane monolayer
with an initial constant heigh that propagates on the substrate.
Therefore, if no instabilities are considered, this domain can be
reduced to a representative 1D domain (see 1D cell continuum
in red, Fig. 1). According to this scheme, free mechanical bound-
ary conditions by means of displacement fields are imposed.
The mechanical boundary conditions are completed by defining
free stress surfaces on the leading edges, as experimentally re-
ported [16]. Furthermore, following experimental observations
and previous computational approaches [20], constant polari-
sation boundary conditions are imposed on the leading edges
equal to unit normal vector. In addition, both time and spatial
convergences have been verified in all the simulations presented.

Once the complete FE model is defined, we first simulate
cell collective migration on a homogeneous-stiffness substrate
reproducing the experiments reported by Sunyer et al. [16]. The
comparison between model predictions and experimental results
is shown in Fig. 2. These results are independent of the model
parameters γ , ξ and Es,ref , as the substrate stiffness along the
whole domain is constant. In addition, all the model parameters
used at this stage are consistent and directly identified from
experimental observations reported in the literature. In Fig. 2a,
a symmetric collective migration is observed leading to a con-
tinuous continuum expansion. The model predictions reproduce
with a very good agreement not only the experimental quanti-
tative migration, but also its evolution along time. Moreover, a
very good agreement is observed by means of stress distribution
within the cell continuum (Fig. 2b,c). The model predicts the same
maximum stresses within the cell-aggregates and also the reduc-
tion to null stress at the leading edges [16]. Overall, with direct
identification of the constitutive parameters from experimental
measurements, the model provides good predictions of the collec-
tive cell migration on homogeneous-stiffness substrates by means
of both migration evolution with time and stress distribution
within the cell continuum.
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p

Fig. 3. Schematic representation of the continuum model for: cell continuum (green) on linearly-variant stiffness substrate at the initial state and after collective
migration. The polarisation boundary conditions are indicated in the right part of the figure. The 1D cell continuum (red) illustrates the representative one dimensional
domain taken for the FE simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Comparison between experimental data [16] and model predictions of collective cell migration on stiffness-heterogeneous substrate: (a) collective cell expansion
along time; (b) stress traction predictions as a function of time and maximum stress traction observed experimentally; (c) comparison between experimental data [16]
and model predictions of the stress tractions spatial distribution. The parameters used are the ones in Table 1. In addition, for stiffness-dependent polarisation
redictions: γ = 0.01 µm/MPa; ξ = 0 Pa; and for stiffness-dependent propulsion force predictions: γ = 0 µm/MPa; ξ = 8 Pa; Es,ref = 8 kPa.
3.2. Model predictions for heterogeneous-stiffness substrates

Once the model has been tested under homogeneous-stiffness
substrate conditions, we evaluate next its capability to predict
non-symmetric migration under stiffness-heterogeneous
substrate conditions. To this end, we make use of relevant exper-
iments conducted by the same authors but employing heteroge-
neous substrates [16]. In such experiments, collective migration
in epithelial monolayers is studied on substrates with a constant
stiffness gradient of 57.5 MPa/m. A schematic representation of
these results is presented in Fig. 3. According to this scheme,
a similar reduction of the problem formulation to 1D can be
done as explained in the previous section. The mechanical and
polarisation boundary conditions applied in these simulations are
the same as those for homogeneous-stiffness substrates. How-
ever, the substrate stiffness E (x) is not constant anymore but
s
depends on the current spatial coordinate x of the cell continuum
element. Therefore, the last term of Eq. (6) is now relevant for the
polarisation evolution during the migration process. In addition,
the propulsion force in Eq. (5), f̃ (Es), is also non-constant and
depends on the current location of each cell continuum element.

The analysis conducted here aims at isolating two potential
driving forces of non-symmetric collective migration: (i) polar-
isation induced by stiffness gradients within the substrate; (ii)
propulsion force dependent on local substrate stiffness. Therefore,
a first set of simulations is conducted for the hypothesis (i)
where we adopt non null values for the parameter γ and ξ =

0 Pa (i.e., constant propulsion force within the substrate). These
simulations provide a discussion on ‘‘whether stiffness-gradient-
induced polarisation’’ can result into non-symmetric migration.
Moreover, a second set of simulations is conducted for the hy-
pothesis (ii) where we adopt non null values for the parameter ξ



6 D. Garcia-Gonzalez and A. Muñoz-Barrutia / Extreme Mechanics Letters 40 (2020) 100928

a
g
‘
s
a
c
s
b
s
v
t
m
t
p
t
s
d
c
e
b

3
c

m
s
d
f
p
m
f
t
o
a
s

n
f
o
s
ξ
a
m
t
w
o
a
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nd γ = 0 µm/MPa (i.e., polarisation independent of stiffness
radients). These simulations provide a discussion on whether
‘propulsion force dependence on stiffness’’ can result into non-
ymmetric migration. The computational results for both cases
re compared to experimental observations [16] in Fig. 4. After
alibration of these parameters, the model can accurately de-
cribe the experimentally observed collective cell migration for
oth hypotheses (Fig. 4a). Although both approaches may de-
cribe similar trends by means of collective migration, they pro-
ide differences for the stress distribution (Fig. 4b,c). Experimen-
al results for stiffness gradient substrates show almost identical
aximum values compared to homogeneous substrates [16]. In

his regard, the first hypothesis (i), stiffness-gradient-dependent
olarisation, predicts a slight increase in stress with respect to
he results provided for homogeneous substrates. However, the
econd hypothesis (ii), stiffness-dependent propulsion force, pre-
icts a more relevant increase in maximum stress within the
ell continuum. These results suggest a better fit of the hypoth-
sis (i), which is in good agreement with experiments published
y Joaquin et al. [33], and are further analysed in next section.

.3. Analysis of the potential driving forces guiding non-symmetric
ollective migration

This section provides a parametric analysis of the two relevant
odel parameters governing the two driving forces for non-
ymmetric collective cell migration: (i) γ for stiffness gradient-
ependent polarisation; (ii) ξ for stiffness-dependent propulsion
orce. From the previous section it was inferred that both ap-
roaches can provide the same results by means of effective
igration along time. However, these approaches result into dif-

erent stress distributions within the cell continuum. Therefore,
his study focuses on the effect of the aforementioned parameters
n cell stresses. To provide a relevant comparison, the parameters
re varied within a range so that both approaches predict the
ame migration levels.
Fig. 5 presents the stress distribution along the space coordi-

ates occupied by the cell continuum at the end of the simulation
or different conditions. A parametric analysis isolating the effects
f polarisation sensitivity to stiffness gradient of the substrate is
hown in Fig. 5a, where the parameter γ is changed while fixing
= 0 Pa. Higher values of γ represent a faster cell polarisation

long stiffness gradient direction resulting into larger displace-
ent of the continuum to such stiffer region. Accompanying

his stronger migration, a slight increase in stress is observed
ith a symmetric distribution within the deformed configuration
f the cell-aggregates. Moreover, Fig. 5b shows the parametric

nalysis isolating the effects of propulsion force sensitivity to
ubstrate stiffness by changing the parameter ξ and fixing γ =

µm/MPa. Higher values of ξ represent a stronger dependence
f the propulsion force on substrate stiffness and, similar to the
ffect of γ , result into larger displacement of the continuum to
uch stiffer region. However, the stress distribution within the
ell continuum develops differently leading to a significant in-
rease in magnitude and to a non-symmetric distribution within
he deformed continuum, presenting higher values close to the
eading edge in the stiffer region. Overall, these results show that
ifferent mechanisms can equally explain the collective migration
rocesses but they will have completely different consequences
n the mechanical balance. The stress distribution within the
ell continuum is very relevant as may open stretch activated
hannels or promote biological processes such as the rate and
rientation of cell division [34]. This computational model could
erve as an in silico tool helping at elucidating potential mech-
nisms involved in collective cell migration and guiding future
xperimental research.

. Conclusions

Collective cell migration is an essential process during im-
ortant biological events such as wound healing and embryonic
evelopment. This process has been demonstrated to significantly
epend on mechanical cues. Although significant efforts have
een made to date proposing computational models to simulate
uch events, only few works account for stiffness gradients within
he cell substrate [16,22,23]. Here, we postulate that the influence
f substrate stiffness gradients on cell polarisation is the main
romoter of non-symmetric collective migration and incorpo-
ate it in a continuum formulation. To this end, we propose a
onsistent constitutive model for finite deformations, incorpo-
ating original dependences on substrate stiffness, and provide
he corresponding finite element (FE) formulation. This FE model
s implemented within a fully implicit framework and used to
imulate collective cell migration of epithelial monolayers. First,
he model parameters are directly identified from relevant exper-
mental observations. This set of parameters is used to simulate
he experiments reported by Sunyer et al. [16] for collective
igration on homogeneous substrates. The model predictions
rovide a very good agreement with experiments, including spa-
ial migration as a function of time and stress distribution within
he cell continuum. Then, the validated model is used to test
wo different hypothetical driving forces guiding non-symmetric
ollective migration: (i) cell polarisation is promoted by stiffness
radients within the cell substrate; (ii) propulsion forces are
eighted by cell substrate stiffness. These results along with a
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parametric study for these incorporated dependences on sub-
strate stiffness show that, although different mechanisms may
explain the collective migration, they also lead to different con-
sequences in the mechanical balance. In this regard, the first
hypothesis (i) predicts a symmetric stress distribution within the
cell continuum with a slight increase in magnitude for higher
substrate stiffness gradients. Moreover, the second hypothesis
(ii) predicts non-symmetric stress distributions and a strong in-
crease in magnitude for higher stiffness gradients. According to
experimental observations published by Sunyer et al. [16] that
show almost identical cell stresses for homogeneous and hetero-
geneous substrates, we suggest polarisation induced by substrate
stiffness gradients as a firm candidate to drive collective cell
migration.

Finally, it is worth to mention that the proposed model has
consciously been simplified to isolate the analysed effects of
substrate stiffness. In this regard, the model formulation, in its
current form, may present limitations to predict other collective
migration scenarios. However, note that this formulation allows
for the incorporation of active forces arising from actomyosin
concentration, proliferation, rate dependences along with relax-
ation processes within the cell continuum mechanical response
or further dependences of the polarisation flow rule. As closing
statement, we want to highlight the potential use of this com-
putational model as an in silico tool to help and guide future
experimental research.
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Appendix. Generalised finite element framework

Hereafter, the formulation is presented in index notation to
facilitate the implementation. Indexes with capital letters, i.e.,
{I, J, K , L}, represent material coordinates; while indexes with
lower case letters, i.e., {i, j, k, l}, represent spatial coordinates.
The independent variables of the problem are the mechanical
displacement field u, the polarisation vector p, and the Lagrange
multiplier Π . Other extensions of the model would incorporate
actomyosin concentration and viscoelastic internal variables as
independent variables as well.

A.1. Strong forms

The strong forms of the mechanical balance and the polarisa-

tion flow rule residuals, Eqs. (1) and (6), can be expressed in the
eformed configuration Ω as:

Resui = hσij,j − ζ u̇i + f̃ pi = 0 in Ω

Respi = ṗi − κ
(
pi,j
)
,j − γ Es,i = 0 in Ω

ResΠ = Π (J − 1) = 0 in Ω

(A.1)

here J = det(F ) is the Jacobian. Moreover, the deformation
radient can be written by means of the displacement field as:

iJ = ui,J + IiJ (A.2)

.2. Spatial and temporal discretisation, and weak forms

We estimate the spatial discretisation of the finite element test
unctions (δpe, δpe and δΠ e) and trial functions (ue, pe and Π e)
rom the nodal values as:

δpe
=

∑
a

Nu
a δu

e
a

ue
=

∑
a

Nu
au

e
a

δpe
=

∑
a

Np
a δp

e
a

pe
=

∑
a

Np
ap

e
a

δΠ e
=

∑
a

NΠ
a δΠ e

a

Π e
=

∑
a

NΠ
a Π e

a

(A.3)

ith a referring to nodal values and Nu, Np and NΠ being the me-
hanical, polarisation and pressure shape functions, respectively.
The time derivation of a generic variable • is computed as

∂•

∂t =
•−•

t

∆t , with • and •
t being the current variable and the

variable from the previous time step. Next, the weak forms of
the residuals are obtained integrating within the reference (un-
deformed) configuration Ωo as:

Resuia =

∫
Ωo

hoPiJNu
a,J JdV +

∫
Ωo

ζ
ui − ut

i

∆t
Nu

a JdV

−

∫
Ωo

f̃ piNu
a JdV = 0

Respia =

∫
Ωo

pi − pti
∆t

Np
a JdV +

∫
Ωo

κpi,JF−1
Kj Np

a,JF
−1
Kj JdV

+

∫
Ωo

γ EsN
p
a,IF

−1
Ii JdV = 0

ResΠa =

∫
Ωo

ΠNΠ
a (J − 1) dV = 0

(A.4)

where P = JσF−T is the first Piola–Kirchhoff stress tensor. Note
that the residual ResΠ imposes J = 1 all along the problem
ntegration.

.3. Implicit integration algorithm

We integrate the problem along time making use of an incre-
ental iterative Newton–Raphson method that reduces the total

esidual to zero:

Resu
Resp

Π

⎞⎠+

⎛⎝ K uu K up K uΠ

K pu K pp K pΠ

Π u Π p ΠΠ

⎞⎠( du
dp
dΠ

)
= 0 (A.5)
Res K K K
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here K ij are the stiffness matrices. These matrices can be de-
ived from the residuals as:

K uu
iakb =

∂Resuia
∂ukb

=

∫
Ω

(
∂PiJ
∂FkL

hoJNu
a,JN

u
b,L + hoPiJNu

a,J
∂ J

∂FkL
Nu

b,L

)
dV

+

∫
Ω

(
ζ δik

∆t
JNu

aN
u
b + ζ

ui − ut
i

∆t
Nu

a
∂ J

∂FkL
Nu

b,L

)
dV

−

∫
Ω

(
∂ f̃
∂FkL

piJNu
aN

u
b,L + f̃ piNu

a
∂ J

∂FkL
Nu

b,L

)
dV

K up
iakb =

∂Resuia
∂pkb

=

∫
Ω

f̃ δikJNu
aN

p
bdV

K uΠ
iab =

∂Resuia
∂Πb

= 0

K pp
iakb =

∂Respia
∂pkb

=

∫
Ω

δik

∆t
Np

aN
p
bdV +

∫
Ω

κδikN
p
a,JF

−1
Kj Np

b,JF
−1
Kj dV

K pu
iakb =

∂Respia
∂ukb

=

∫
Ω

pi − pti
∆t

Np
a

∂ J
∂FkL

Nu
b,LdV+∫

Ωo

(
∂
(
F−1
Kj F−1

Kj

)
∂ukb

κpi,J JN
p
a,J + κpi,JF−1

Kj Np
a,JF

−1
Kj

∂ J
∂FkL

Nu
b,L

)
dV

+

∫
Ωo

(
∂
(
F−1
Ii Es

)
∂ukb

γ JNp
a,I + γ EsN

p
a,IF

−1
Ii

∂ J
∂FkL

Nu
b,L

)
dV

K pΠ
iab =

∂Respia
∂Πb

= 0

KΠΠ
ab =

∂ResΠa
∂Πb

=

∫
Ω

NΠ
b NΠ

a (J − 1) dV

KΠu
akb =

∂ResΠa
∂ukb

=

∫
Ωo

∂ J
∂FkL

Nu
b,LΠNΠ

a dV

KΠp
aib =

∂ResΠa
∂pib

= 0

(A.6)

Note that the terms ∂PiJ
∂FkL

, ∂ f̃
∂FkL

and
∂

(
F−1
Ii Es

)
∂ukb

depends on the con-

titutive equations chosen, while the remaining terms
∂

(
F−1
Kj F−1

Kj

)
∂ukb

and ∂ J
∂FkL

are general and can be found in the literature (see, for
example, Ref. [35]).
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