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Abstract

Failure in solar external receivers is mainly originated from the thermal

stress, caused by the high non-uniform transient solar flux. The heat-up

and cooldown of tube receivers in daily cycles produces low-cycle fatigue

that limit the lifetime of tubes. The corrosion of tube materials produced by

incompatibility between the decomposed heat transfer fluid and tube material

may increase this issue.

The temperature spatial distribution in these tubes has strong variations

in radial, circumferential, and axial directions. The stress field, produced

by the temperature gradients, has been commonly analyzed using bidimen-

sional models in isolated tube cross sections, without taking into account the

axial temperature variation, the mechanical boundary conditions, and the

temperature-dependent thermomechanical properties.
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In this work a three dimensional finite element model has been devel-

oped in order to calculate the stress field distribution, without performing

any geometrical simplification. In addition, appropriate mechanical bound-

ary conditions have been imposed in order to adequately simulate the tube

behavior. Besides, radial, circumferential and axial temperature variations

have been studied separately to analyze how each of them influences the max-

imum stress distribution. This 3D model has been compared with analytical

solutions for the two-dimensional thermal stress problem in circular hollow

cylinders.

The results show that the boundary conditions have a significant effect

in the tube stresses, increasing the axial stress component and therefore the

equivalent stress.

The analysis of each of the temperature variations showed that the cir-

cumferential variation temperature is the one that produces most of the

stress, since it tries to strongly bend the tube, which is impeded by the

boundary conditions.

The results also present that 2D models are not capable of obtaining the

correct stress distribution along the tube, since they are supposing that the

temperature does not vary axially. By contrast, the maximum stress can be

obtained with confidence using the analytical stress solution of the angular

and radial temperature variation around a hollow circular cylinder.

Keywords: Solar external receiver; Thermal stress; Temperature gradients;

Thin-walled cylinder
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1. Introduction

Molten salt external receivers are tubular heat exchangers subjected to

complex thermo-mechanical loads. The cyclic and non-homogeneous heat

flux distribution is responsible for temperature gradients and thermal stresses,

and the boundary conditions of the tubes caused by the supports increase

these stresses. The most important role of solar central receivers is to keep

the intercept solar flux within the tube mechanical safety limits.

Thermal stresses are produced when a temperature variation of the ma-

terial occurs in presence of constraints (Barron and Barron, 2011). Solids

present internal constraints that originate thermal stresses; they appear be-

cause strong temperature gradients promotes different dilatation displace-

ments for vicinity material points.

Thermal stresses could be produced also by external constraints, like

supports. These constraints prevent some displacements of the system in

presence of temperature gradients. Reaction forces appear in the supports

to prevent the displacement of the system, which must be limited to avoid

shades and contact between tubes, since it may cause overcooling and over-

heating respectively.

Nowadays, the direct measurement of the incident solar flux distribution,

the tube wall temperature and the stress profiles is impracticable during the

receiver operation. An inaccurate estimation of the tube wall temperature

and the stresses can damage the tubes, risking the whole power plant opera-

tion. Therefore, the development of thermo-mechanical models to predict the

temperature and the stresses in the tubes of the receiver is of great interest.

Numerous are the thermal and mechanical models that can be found in
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the literature to analyze solar receivers. However, most of them are only

focus in the thermoelastic behavior of these systems, forgetting the mechani-

cal restrictions: Kent and Ark (1931) analyzed thermal stress in thin-walled

cylinders, with temperature variation in radial and axial directions, however,

not in the circumferential one. Goodier (1937, 1957), studied the thermal

stress in thin-walled cylinders whose thickness and temperature distribution

may vary around the circumference. Sauer (1996) developed formulae for

the analysis of axial stress in pipes due to thermal stratification, but with

no radial temperature variation. Wagner (2008) developed a complete model

to analyze the receivers behavior, however he considered no circumferential

variation on the wall temperature of the tubes. Du et al. (2016) developed

a model to analyze the thermal stresses and the fatigue in molten salt re-

ceivers using basic thermal elasticity equations and they compared it with

numerical simulations; they considered circumferential variation of the inci-

dent solar flux, but they did not take into account the mechanical restric-

tions of the tubes. Neises et al. (2014) developed an approach to calculate

the thermal and pressure stresses on the receivers, without considering me-

chanical constraints. Marugán-Cruz et al. (2016) carried out a numerical

study of the stresses in thin-walled pipes subjected to a non-uniform heat

flux using Gatewood (1941) formulation. They highlighted the importance

of the Reynolds, Prandtl and Biot numbers in the problem; however, they

did not consider the external constraints. Irfan and Chapman (2009) cha-

racterized the thermal stresses in radiant tubes due to axial, circumferential

and radial temperature gradients; although these tubes were not part of a

solar receiver, they showed very interesting results, even if they assumed no
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mechanical restrictions in the tubes. Recently, Logie et al. (2018) calculated

the 2D thermoelastic stress in concentrating solar receiver tubes employing

classical thermoelasticity equations.

There are other studies related to the stress in solar receivers that are not

focus on the tube characterization. For example, Wang et al. (2012) studied

how to select the most adequate material in the receiver as a function of the

thermal stresses; they pointed that stainless steel has a high failure ratio,

however, it is the most typical material in the receivers. Uhlig et al. (2017)

considered the mechanical restrictions of the receiver, focusing their analysis

in the stresses that occur in the panel headers due to the ovens heating.

This study is focused on the characterization of the thermal stresses pro-

duced by the two types of constraints, internal and external, in molten salt

solar receivers. The stress origin will be studied in order to understand how

these constraints affect the stress distribution. Besides, the importance of

internal and external constraints has been studied separately considering or

not the supports along the tubes.

This work is organized as follows: in the following section the receiver

geometry and constraints have been defined. In section 3 the models used to

characterize the thermal and mechanical behavior of the receiver have been

described. In section 4 the methodology developed by Logie et al. (2018) to

calculate thermal stress is introduced. Section 5 shows the results obtained

with the numerical model, for different boundary conditions. Besides, nu-

merical and analytical results are compared in section 5. Finally, the main

conclusions of this study are presented in section 6.
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2. Studied geometry

To calculate the thermal stresses in a receiver tube, a solar power tower

with molten salt as heat transfer fluid, similar to Gemasolar, has been ana-

lyzed.

Gemasolar solar plant is located in Fuentes de Andalućıa, Spain, at 37.56◦

north latitude. Its solar field is radial staggered layout slightly biased to the

north, with the highest radius equal to 850 m. Gemasolar field consists of

2650 square heliostats of 10.95 m side, which are distributed in three different

zones: the inner one has a radial cornfield configuration and the two external

zones are staggered. The position of each heliostat has been determined with

scaled aerial images of the solar plant. The reflectivity, the cleanliness and

the tracking errors of the mirrors have been obtained from Sánchez-González

et al. (2017).

Gemasolar receiver tower is 120 m high. The solar receiver is a cylindrical

absorber with 10 m height and an aspect ratio of 1.17. The circular perimeter

is composed by 18 vertical panels of 1.5 meters width, integrated each of them

by 60 tubes of 2.24 cm external diameter and 1.2 mm thickness. Stainless

steel with high nickel content is the preferable material in solar receivers;

since no information of the tube material has been obtained, alloy 800H has

been selected as the tube material. To increase the tubes absorptivity, they

are coated on the outside face with black Pyromark.

The receiver tubes intercept the solar radiation reflected by the heliostats

and transmit it to the heat transfer fluid (HTF) that flows inside them. In

Gemasolar, the HTF is solar salt (60% NaNO3 - 40% KNO3) that enters in

the receiver at 290 ◦C and exits at 565 ◦C. The mass flow rate of molten salt
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in the receiver depends on the incident solar flux. For the case studied in this

work, the total mass flow rate in the receiver is 257.7 kg/s which corresponds

to the solar noon of the Spring Equinox.

Tubes are joined to an inlet and an outlet header in all the panels. The

header located at the top of the receiver is attached to the receiver support

frame. The receiver panel support frame is a close tolerance structural ele-

ment that supports and guides the tube header assembly at the top, allowing

free expansion of the tubes and bottom header (in the downward direction).

The tubes in the panels are separated between them only 2.5 mm (Litwin,

2002), thus to avoid overheating of the tubes by contact, the frame restrains

the tubes from bowing outwards and laterally, and also prevents the appear-

ance of gaps between the tubes and the backside of the receiver. To achieve

that, each tube is periodically guided over their entire length by clips (Mc-

Dowell and Miner, 2013), see Fig. 1. These clips are individually welded to

each tube. The attachment of the tube clips to the tubes it is designed and

tested to assure that the applied weld procedure limits the penetration to the

tube wall to the minimum amount necessary to assure complete fusion. Full

penetration, pinholes, and burn-through are not permitted (Zavoico, 2001).

In order to take into account the mechanical boundary conditions pre-

viously mentioned, the upper part of the tubes has been considered encastred,

and the opposite end of the tube can displace freely. Besides, the tube clips

have been assumed as mobile supports that only allow 1 degree of freedom

in the movement (axial direction); the distance between clips is 2 m. All the

boundary conditions and the geometry of the tube are shown in Fig. 2.
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Fig. 1: Schematic of a receiver panel and detail of the clips.
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Fig. 2: Tube geometry used in the thermoeslastic model, measurement in meters. It is
rotated 90◦ from its original vertical position

3. Methodology

3.1. Optical and thermal model

The optical model FluxSPT1 developed by Sánchez-González and San-

tana (2015) has been used to calculate the incident solar flux distribution on

the receiver. The concentration ratio is calculated with a projection method,

and the flux distribution is based on a circular Gaussian resulting from the

convolution of the sunshape and the heliostat slope. This model has low

1ise.uc3m.es/research/solar-energy/fluxspt
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computational cost and can be adapted to different solar fields and receiver

geometries. Besides, it allows modifying the aiming strategy. In this case,

it has been assumed that all the heliostats aim to the center of the receiver

(equatorial aiming).

Once the incident solar flux on the receiver is known, the thermal model

developed by Rodŕıguez-Sánchez et al. (2014) has been used to characterize

the heat exchange and the temperature profile in the tubes of the receiver.

This model obtains the temperature profiles in the inner and outer wall of

the tubes and in the molten salt solving the radiative and convective heat

transfer in the tubes of the receiver, the tube conduction in the tube walls,

and the internal convection of the HTF (see Fig. 3).

Molten salt

Receiver tube

Sky

Solar radiation

 

Convection

Conduction

Radiation

Convection

i

i-1

i+1

 
Δθ Δθ

Molten salt

Receiver tube

Sky

i

i+1

θ=0º

θ=180º

Fig. 3: Optical-thermal conversion process in a receiver tube.

To reduce the computational cost, the thermal model only solves one

representative tube per panel, assuming that in each panel all the tubes

have the same behavior. However, it takes into account the heat exchange

between adjacent tubes and the surroundings. One of the main characteristic
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of this model is that considers circumferential and axial variations of the

incident heat flux and the wall temperature, which will be essential for the

characterization of the stresses that appear in the receiver tubes.

For the calculations, the tubes have been divided in 39 vertical segments,

and 72 circumferential sections. This model also takes into account the pro-

perties variation with the temperature of the HTF (Zavoico, 2001) and the

tube material (American Society of Mechanical Engineers, 2010). Typical

ambient conditions of Seville (where Gemasolar is located) have been con-

sidered to carry out the simulations.

This model also takes into account the properties variation with the tem-

perature of the HTF (Zavoico, 2001) and the tube material (American Society

of Mechanical Engineers, 2010). Typical ambient conditions of Seville (where

Gemasolar is located) have been considered to carry out the simulations.

3.2. Thermoelastic model with solid and shell elements

Although the thermal model solves the whole receiver, for the thermo-

elastic model only the first panel of the receiver has been analyzed, because

it receives the highest solar flux intensity. Therefore, the tubes of this panel

have the highest temperature gradient, that implies higher thermal stresses

and deformations.

Temperature distribution (inner and outer tube wall temperature) of this

first panel is exported to a thermoelastic model, developed in the finite e-

lement program Abaqus/Standard, as a boundary condition. The thermoe-

lastic model computes the temperature through the tube thickness and the

resultant stresses and deformations. A coupled thermal-displacement analy-

sis has been used in stationary state.
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(a) (b)

Fig. 4: Temperature-dependent properties of 800H alloy (American Society of Mechanical
Engineers, 2010) used in the simulation (a) Young’s modulus and Poisson’s ratio, (b) linear
thermal expansion coefficient and thermal conductivity.

Tube material has been studied in a linear elastic regime, because tubes

do not suffer plastic deformation in the present working conditions. Fig. 4

depicts the temperature-dependent material properties taken from the Amer-

ican Society of Mechanical Engineers (2010).

In order to obtain the 3D stress tensor, solid elements should be used.

Since at least five elements have to be placed along the thickness, keeping

the aspect ratio of the element in circumferential and axial directions would

lead to a prohibitive number of elements (∼ 107). Since the thickness is

much smaller than the radius, shell elements are recommended, however,

shell elements do not provide the complete stress tensor.

To overcome this issue, an intermediate solution can be adopted. The

tube has been modelled using shell elements but one ”slice” of 12 mm thick
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(10 times the tube thickness) has been discretized using solid elements, placed

where the highest temperature value is located. Shell-to-solid coupling inter-

action has been used in order to couple the displacement of the shell edge to

the adjacent solid face. Therefore, stresses can be analyzed in the solid slice

taking into account the complete stress tensor.

There are thirty-six 4-node linear shell elements (with five integration

points through the thickness) in the circumferential direction, and five thou-

sand in the axial direction (element size 2 mm). On the other hand, the solid

slice has been discretized in order to have five 20-node quadratic elements

in its radial direction, so the number of integration points along the thick-

ness is doubled in the solid slice compared to the shell part. This condition

creates solid elements of 0.24 mm size. The total number of elements used

is 276240 (231840 shell elements and 44400 solid elements). If all the tube

were discretized with solid elements, it would have 3.7 million elements per

meter.

4. Analytical approach to thermal stresses calculation

A method presented by Logie et al. (2018), which uses the approximation

of two-dimensional thermoelasticity from Timoshenko and Goodier (1951),

Boley and Weiner (1997) and Hetnarski and Eslami (2010), has been used

to calculate analytically the stresses in hollow cylinders and to compare the

results with the three dimensional model proposed in the present work.

To use the analytical solution, the inner and outer wall temperature dis-

tributions of the tubes have to be described using Fourier series as follows:
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Ti = T i +
∞∑
n=1

B′n cosnΘ +D′n sinnΘ (1)

To = T o +
∞∑
n=1

B′′n cosnΘ +D′′n sinnΘ (2)

Only terms of n = 0 and n = 1 are the only ones that produce stress,

since the net heat flow corresponding to terms cos 2Θ, sin 2Θ and higher

harmonics is zero (Timoshenko and Goodier, 1951). The expressions for

average geometrical surface temperatures are:

T i =
1

2π

∫ 2π

0

TidΘ (3)

T o =
1

2π

∫ 2π

0

TodΘ (4)

The circumferentially varying temperature for every point of the tube

cross section is defined as:

TΘ = T (r, Θ) − (T i − T o)
ln b

r

ln b
a

− T o (5)

The stress equations for non-axisymmetrical heating are:

σr = K
αE

2(1 − ν)

[
−ln

b

r
− a2

b2 − a2

(
1− b

2

r2

)
ln
b

a

]
+KΘ

αE

2(1 − ν)

(
1−a

2

r2

)(
1− b

2

r2

)
(6)

σΘ = K
αE

2(1 − ν)

[
−ln

b

r
− a2

b2 − a2

(
1− b

2

r2

)
ln
b

a

]
+KΘ

αE

2(1 − ν)

(
3−a

2 + b2

r2
−a

2b2

r4

)
(7)

where the K term is related to the mean radial temperature variation as
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follows:

K =
T i − T o

ln b
a

(8)

The contribution of the circumferential temperature variation, comes

from KΘ, which in terms of the Fourier series coeffcients from Eqs 1 and

2 corresponds to:

KΘ =
rab

b2 − a2

[(
B′1b−B′′1a

a2 + b2

)
cosΘ +

(
D′1b−D′′1a

a2 + b2

)
sinΘ

]
(9)

If the assumption of zero axial force is given, the integration of axial

stress σz over the tube cross section is equal to zero (
∫
A
σzdA = 0), and

when external mechanical loads are also zero, the axial stress is given by the

generalised plane strain equation (εz = constant):

σz = ν(σr + σΘ) + αE(T − T ) (10)

The axial stress can be calculated substituting Eqs. 6 and 7 in Eq. 10:

σz = K
αE

2(1 − ν)

[
1−2 ln

b

r
− 2a2

b2 − a2
ln
b

a

]
+KΘ

αE

1 − ν

(
2− a2 + b2

r2

)
−αETΘ

(11)

Eq. 11 is valid for a cylinder that is not able to displace perpendicularly

to the axial direction (infinite clips along its length).

5. Results and discussion

For an equatorial aiming strategy, the outer and inner wall temperature

distribution of the tubes located at the first panel of the receiver has been
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obtained from the optical and thermal model. The outer temperature dis-

tribution is shown in Fig. 5. The tube surface facing the heliostats has the

coordinate Θ = 0◦, which corresponds to the highest incident flux, and then

to the maximum circumferential temperature. The highest wall temperature

is located in Θ = 0◦ and z = 5.5 m. Stress, solved in the thermoelastic

model, depends entirely on these thermal conditions.

The maximum temperature is not located at the center of the tube be-

cause the projection of the heat flux from the heliostats in the receiver

plane causes an slight vertical deviation of the resultant flux map (Sánchez-

González and Santana, 2015). Besides the ascending flow of the HTF also

contributes to the upwards displacement of the maximum temperature peak.

0°
180°

Fig. 5: Temperature profile in the outer tube wall obtained with the optical and thermal
model. The diameter is magnified for more clarity.
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The main goal of this analysis is to know the stress distribution in molten

salt receivers, and the relevance of the internal and external constraints on the

thermal stress. To carry out the analysis, two different mechanical boundary

conditions have been considered. Firstly, tube receiver has been studied

without supports along its length (without clips), with only the upper part

of the tube encastred, so the tube can displace freely and only thermal stresses

due to internal contraints because of temperature gradients appear. The tube

has also been studied considering the clips along its length, so the reactions

forces caused by the supports preventing the deflection are present in this

second case.

The thermal stresses, studied in the solid section of the model without

clips, are shown in Fig. 6. It can be observed that the highest stress compo-

nents are the axial stress σz (250 MPa, see Fig. 6c) and the circumferential

stress σΘ (-110 MPa, see 6b). Radial stress (σr) and shear stress components

differ by one order of magnitude from σz.

The temperature gradient in radial direction, whose highest value is lo-

cated at Θ = 0◦ and z = 5.5 m, does not allow the free expansion of the

outer wall, compressing it in axial direction (σz) since inner and outer wall

are not free to displace independently. The circumferential variation of the

temperature produces the tube bending (Barron and Barron, 2011), being

this circumferential variation the reason of the high tensile stress in the la-

teral part of the section (Θ = 90◦,Θ = 270◦).

The stresses showed before would produce the tube displacement shown in

Fig. 7a. It can be seen that the bottom part of the tube suffers a displacement

perpendicular to the axial direction of 7 m. Of course this displacement is
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Fig. 6: Normal stress components [MPa] a)σr, b)σΘ, c)σz and shear stress components
[MPa] d)σrΘ, e)σrz, f)σΘz in solid slice, for the tube without clips.
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prevented in the receiver using clips. Fig. 7b depicts the displacement when

the clips are attached to the tube; in this case the maximum displacement

found is 2.54 mm. Displacement is limited in the tube with clips, so reaction

forces in the constrained points appears, and therefore the stresses.

Undeformed

Deformed
7m

(a) (b)

Fig. 7: Deformation of the tube (a) without clips (scale factor 1/6 compared with unde-
formed shape) (b) with clips (scale factor 250/1 compared with undeformed shape).

When tube stress is studied with clips, the only substantial change from

the previous case occurs in the axial stress component σz, as Fig. 8 depicts.

Thermal stress only increases in the axial direction due to the influence of

reactions in the supported points of the tube (external constraints), so the

other stress components remains the same. The reaction force in the clips

compress the front part of the tube (already compressed), so the total stress

value will be the sum of the thermal stress caused by the internal and external

constraints, which takes a value of 660 MPa.

In order to understand the influence of the clips on the stress, equivalent

stress (Von Mises) for tubes with and without clips are shown in Fig. 9. Von

Mises equivalent stress expression is the following:

σVM =
√
σr2 + σΘ2 + σz2 − (σrσΘ + σΘσz + σrσz) + 3(σrΘ2 + σ2

Θz + σ2
rz)

(12)

Equivalent stress for the clips case is 583 MPa with its maximum value
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Fig. 8: Axial stress component, σz [MPa] in the tube with clips

located at the side of the cross section exposed to the heliostats (Θ = 0◦).

For the case without clips, equivalent maximum stress is 225 MPa, around

two times and a half lower, and is located at the lateral part of the cross

section (Θ = 90◦,Θ = 270◦). In Fig. 9b, the peak stress facing the heliostats

is consistent with how tubes fail, since primarly cracking occurs perpendi-

cular to maximum principal stress direction which, in this case, is the axial

direction.

225.00
206.35
187.71
169.06
150.42
131.77
113.13
94.48
75.84
57.19
38.54
19.90
1.25

225 [MPa]

(a)

583.00
540.83
491.97
442.50
393.33
344.17
295.00
245.83
196.67
147.50
98.33
49.17
0.00

583 [MPa]

(b)

Fig. 9: Von Mises stress [MPa] in solid slice (a) without clips (b) with clips.

Stress in solid and shell regions have been also compared. Fig. 10a
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depicts the equivalent stress in the shell-to-solid area. Fig. 10b.b shows the

equivalent stress at the same point for the tube discretized only with shell

elements. The difference between shell and solid equivalent stress values are

about 4%. This difference appears probably because shell elements does not

take into account some stresses tensor components.

643.36
589.75
536.13
482.52
428.91
375.29
321.68
268.07
214.45
160.84
107.28
53.61
0.00

583 MPa

643.36
589.75
536.13
482.52
428.91
375.29
321.68
268.07
214.45
160.84
107.28
53.61
0.00

583 MPa

(a)

560.70
514.00
467.20
420.50
378.80
327.10
280.30
233.60
186.90
140.20
93.45
46.72
0.00

560 MPa

(b)

Fig. 10: Von Mises stress [MPa] in outer tube wall, (a) in solid element and (b) in shell
elements, for the same point (z = 5.5 m)

As the results show, shell elements can be used instead of solid elements

for the analyzed problem, because shell elements take into account axial

and circumferential stress components, which are the most important ones,

therefore the error made is small. The computational cost of using shell

elements is also lower compared with solid elements.

In order to analyze the stress distribution along the tube length, Fig. 11

depicts the outer wall temperature and the equivalent stress at Θ = 0◦. It

can be observed that the temperature (Fig. 11a) and the stress for the case

without clips (dashed line in Fig. 11b) has a similar trend. Therefore, with

no external constraints, stress depends fully on the temperature along axial

direction. The higher is the temperature value the greater will be the stress.
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Using clips, the stress distribution (solid line in Fig. 11b) is also similar

to the shape of the temperature, but the stress slope varies every 2 m, which

coincides with the clips distribution along the tube.

(a) (b)

Fig. 11: In Θ = 0◦, (a) outer wall temperature [K] and (b) Von Mises stress [MPa] for the
case with and without clips.
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5.1. Analytical and finite element model comparison

The methodology proposed by Logie et al. (2018) has been used to calcu-

late analytically the thermal stresses in the tube, using Eqs. 6 and 7 for the

radial and circumferential stresses respectively, independly of the mechanical

boundary conditions. The stress in the axial direction z has been calculated

with Eq. 11.

Using a curve fitting tool, coefficients of Eqs. 1 and 2 have been ob-

tained from the inner and outer temperature distributions calculated with

the thermal model. The thermal expansion coefficient (Fig. 4b) used is the

corresponding to the maximum cross section temperature. Coefficients ob-

tained to characterize the temperature distribution are summarized in Table

1. Note that since the temperature distribution is almost symmetrical about

Θ = 0◦ − 180◦ axis, the contribution of sinusoidals terms are negligible.

Coefficient Value [K]

T i 661.7
T o 683.6
B′1 -109.3
B′′1 -139.2
D′1 0.03648
D′′1 1.924e-8

Table 1: Estimated coefficients for Eqs. 1 and 2.

The temperature distribution fitted corresponds to z = 5.5 m, where

the outer temperature is maximum. After determinating coefficients K (Eq.

8), KΘ (Eq. 9), and the circumferentially varying temperature values TΘ

(Eq. 5), stresses can be calculated. The results of the calculated stresses are

presented in Figs. 12.
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Max :560 MPa
Max :505 MPa

Fig. 12: Stress at the outer tube wall, corresponding to the temperature distribution
z = 5.5 m when the tube is clips attached. Solid lines indicate results of Eqs. 6, 7 and 11,
and markers indicate the results of the numerical model.

As Fig. 12 depicts, stress values from analytical equations and the finite

element model are quite similar. In both cases the maximum stress is located

at Θ = 0◦, where the tube is compressed. The discrepancy between analytical

and numerical results may be produced because Eq. 11 does not take into

account the fact that the thermal expansion coefficient α, and the other

properties are temperature-dependant variables, so the relative displacement

between points with different temperature should be higher.

5.2. Temperature influence on stress and deformation

The temperature field in the tube is highly variable, since it varies cir-

cumferentially, radially and axially. To better understand the origin of the

thermal stresses and deformations, the influence of each of these variations
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should be individually studied.

Starting from the actual temperature field obtained with the optical and

thermal model, simplified temperature distributions that do not vary in one

of the coordinates r,Θ, or z have been analyzed to obtain a simplified stress

aproximation. The different temperature profiles and their corresponding

stress distributions are shown in Fig. 13. In this section the numerical

model has only shell elements.

5.2.1. Temperature field influence without circumferential variation.

To obtain an stress estimation, simplifications are done in the temperature

distribution. The first simplification is disaggregated circumferential tempe-

rature variation, so axisymmetric temperature distribution T (r, z), has been

introduced. The temperature does not vary circumferentially, but radially

and axially, as Fig. 13a shows. The selected temperature difference is the

highest gradient between the inner and outer wall in the entire tube length:

Θ = 0◦, z = 5.5 m.

Using this temperature distribution, the outer wall, which has a higher

temperature than the inner wall, tries to expand more, but the inner wall

(colder) constraints the free motion, since they are not free to move inde-

pendently. This is the reason why outer surface is compressed and inner is

under tension (Fig. 13b).

The axisymmetric gradient means that the tube does not bend due to this

temperature gradient, therefore external constrains do not induce thermal

stress, and its value remains the same with and without clips, as the results

from Tables 2 and 3 show.

Radial temperature gradient produces stress in circumferential direction
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Fig. 13: Temperature gradient [K] in the cross section corresponding to z=5.5 m for
temperature distribution (a) T (r, z), (c) T (Θ, z) (e) T (r,Θ). Axial stress [MPa] in inner
and outer tube walls for (b) T (r, z) and maximum equivalent stress [MPa] for (d) T (Θ, z)
and (f) T (r, z).
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Θ and in axial direction z, having both the same absolute value of 147

MPa (Tables 2 and 3 ), the same result as the one that would be obtained

with Roark formulation for thin cylinders with radial temperature variation

(Young and Budynas, 2002):

σΘ = σz =
∆TαE

2(1 − ν)
(13)

5.2.2. Temperature field influence without radial variation

If temperature only varies circumferentially and axially T(Θ,z) as Fig.

13c, the tube bends under the action of the temperature variation in Θ

coordinate. At Θ = 0◦ the tube has a greater temperature than at Θ = 180◦,

thus the front face tries to expand more than the rear part of the tube

and therefore the tube will tend to bend. Thermal stress increases as a

consequence of clips, preventing the free motion of the tube.

In this case, it can be noticed in Fig. 13d that the stress distribution is

similar to the original case. Equivalent stress values are slightly lower than

in Fig. 10, where the temperature varies also radially (see Table 3). Without

temperature gradient across the thickness, there are no internal constraints

between inner and outer walls. If clips are not used the stresses decrease

considerably

5.2.3. Temperature field influence without axial variation

It is important to note the difference that implies the presence of the axial

temperature variation in the stresses. For this reason, it has been supposed

that the temperature does not change in the axial direction and it remains

constant (T (r,Θ)), with respect to the temperature gradient in z = 5.5 m
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the cross section (see Fig. 13e).

(a) (b)

Fig. 14: At Θ = 0◦, for T (r,Θ), (a) outer wall temperature and (b) Von Mises stress
[MPa].

Fig. 14a depicts the temperature distribution along the tube length (cons-

tant for the current simplification), while Fig. 14b shows the equivalent stress

with and without clips. When the deflection is not mechanically restricted,

stress remains constant along the axial direction, with a value of 180 MPa

(dashed line in Fig. 14b), the same as the maximum value of Fig. 11b dashed

line. When mechanical restrictions are present (solid line in Fig. 14b), the

stress distribution varies along the tube depending of the clips position.

The stress increases and the peak stresses are found in two different points

(2 and 8 meters), compared with the original case (5.5m, Fig 11b). The de-

flection is greater because of the temperature gradient, in the tube cross

section for T (r,Θ), is equal to the maximum reached in the original tem-

perature distribution. Obviously, the reactions in the tube supports have

changed, and the stress distribution along the axial direction is also differ-
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ent. Assuming that the temperature does not vary axially, an overestimation

of the stress due to the mechanical constraints is obtained. In fact, the max-

imum deflection without clips is larger than 7 m, the value with the real

temperature field (Fig. 7a).

5.2.4. Summarizing the stresses for temperature distribution simplifications

Tables 2 and 3 summarises the maximum stresses depending on the tem-

perature simplifications for cases without and with clips. In cases where

the temperature distribution is not axisymmetric, the stress increases in the

precense of clips.

The of Von Mises Stress for T(Θ,z) and T(r,Θ,z) differs less than 4%,

because, in both cases stress, caused by the preventend thermal bending

appears. For T(r,Θ) stresses are greater than in previos cases since the tube

bending, that the clips avoid, is also greater, so the reaction forces increase.

Without clips
Stress component T(r,Θ,z) T(Θ,z) T(r,z) T(r,Θ)

σz [MPa] 224 211 147 223
σΘ [MPa] 97 41 147 97
σVM [MPa] 191 209.2 147 191

Table 2: Maximum absolute stress values without clips for every Temperature distribution
analyzed.

With clips
Stress component T(r,Θ,z) T(Θ,z) T(r,z) T(r,Θ) T(r,Θ)Eqs.4,5,9

σz [MPa] 603 520 147 707 536
σΘ [MPa] 97 41 147 97 70
σVM [MPa] 560 539.5 147 665 505

Table 3: Maximum absolute stress values with clips for every Temperature distribution
analyzed.
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If only the tube maximum stress is needed, for example, in a fatigue anal-

ysis, the simplified temperature distribution T (Θ, z) gives a good aproxima-

tion of the stress value (see Table 3). The outer wall temperature has to

be used in order to have the greater circumferential temperature variation.

In addition, the 2D numerical approximation T(r,Θ) overestimates (20%)

the equivalent stress, whereas the analytical approximation (Eqs. 6, 7, 11)

underestimates (10%) such equivalent stress. This is because in the 2D nu-

merical approximation the thermal stress is localized at tube clips whereas

in the analytical approximation the thermal stress is uniformly distributed

along the tube (infinite clips along tube length).

6. Conclusions

In this study, a finite element analysis of thin-walled tubes belonging to

a molten salt receiver has been carried out. A finite element model has been

developed in order to analyze the stress in the tube. The tube has been

modelled mainly using shell elements; a tube slice has been modelled using

solid elements in order to capture the full stress tensor.

The analysis of the tube cross section with solid elements, allows to deter-

mine that the most significant stress component is the axial stress, which has

the highest absolute value followed by circumferential stress. The remain-

ing stress components have a much lower magnitude and may be neglected,

which reinforces the use of shell elements, because they consider these main

stress components. These results are consistent with the existing literature.

Comparing stresses in the shell and solid parts reveals a difference around

4% between them, so tubes can be modelled with shell elements without a
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significant error. Modelling tubes with shell elements allows to obtain ther-

moelastical stress distribution arised by the thermal and mechanical condi-

tions in a 3D model.

In the present study it has been proved that clips (mechanical constraints)

play an important role in the stress distribution of the receiver tubes. Re-

sults show that the stress component, that varies with the consideration of

mechanical boundary conditions, is the axial stress. Therefore, tube ther-

mal stress has two components: a component from the internal constraints,

and another from the external constraints. This last constraint comes from

the clips, which prevents thermal bending, increasing about three times the

equivalent stress.

An analytical method proposed in the literature have been tested to check

the validity to use them to calculate the thermal stresses. Results have

shown that although, it does not consider axial temperature variation, this

analytical aproach is an accurate approximation for calculating the maximum

stress in the receiver tubes, obtaining just a slightly lower equivalent stress

value respect to the finite element model.

The stresses obtained using simplified temperature distributions has been

studied. Although radial temperature variation induces thermal stress due

to the difference between inner and outer wall temperature, its influence is

lower than the stress caused by the circumferential variation. The angular

temperature distribution in the tube cross section produces a bending de-

formation, that should be prevented by mechanical restraints. Therefore,

the thermal stress produced by the clips appear. Thermal bending is the

main source of the equivalent stress, so radial temperature variation can be
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neglected as first approximation.

Finally, the tube axial temperature is a key factor in the stress distribu-

tion along the tube receiver. If circumferential and radial variations are only

taken into account, the stress distribution will be totally different from the

corresponding to a axial variations with supports. Maximum stresses can be

obtained accurately using 2D analytical aproximation. However, the assump-

tion that the temperature does not varies axially avoids obtaining the correct

temperature distribution along the tube. Note that in solar receiver tubes,

where the aiming strategy modifies the temperature distribution axially, the

stresses will also depend on the heliostats aiming.

Nomenclature

Roman symbols

A tube cross section area (m2)

a tube inner radius (m)

B,D Fourier coefficients

b tube outer radius (m)

E Young’s modulus [Pa]

K geometric thermal stress term [K]

r tolar radial coordinate [m]

T temperature [K]

T mean temperature [K]

∆T temperature difference between inner and outer surfaces of cylinder. [K]

z coordinate in the axial direction [m]
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Greek symbols

α linear thermal expansion coefficient [K−1]

ε deformation

∆ difference operator

ν Poisson’s ratio

Θ polar angular coordinate [rad]

σ stress [MPa]

Abbreviations

HTF heat transfer fluid

Subscripts

i inner surface

o outer surface

Θ circumferential component

r radial component

z axial component

VM Von Mises
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