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Nash multiplicities and isolated points of maximum multiplicity

B. Pascual-Escudero ∗

September 18, 2018

Abstract

Let X be an algebraic variety defined over a field of characteristic zero, and let ξ ∈ Max mult(X)
be a point in the closed subset of maximum multiplicity of X. We provide a criterion, given in

terms of arcs, to determine whether ξ is isolated in Max mult(X). More precisely, we use invariants

of arcs derived from the Nash multiplicity sequence to characterize when ξ is an isolated point in

Max mult(X).

Introduction

In many situations, arc spaces are useful when one is looking for some information about the singularities
of varieties. Let X be an algebraic variety over a field k, and ξ ∈ X a point. An arc ϕ in X = Spec(B)
through ξ is a morphism

ϕ∗ : Spec(K[[t]]) −→ X

mapping the closed point to ξ or, equivalently, a homomorphism of rings ϕ : B −→ K[[t]] such that
ϕ(Pξ) ⊂ (t), where Pξ ⊂ B is the prime ideal defining ξ. The order of the arc ϕ, which we will denote by
ord(ϕ), is the greatest positive integer n such that ϕ(Pξ) ⊂ (tn). Here K may be any field extension of k.
Some examples of the study of the connections between arcs and singularities can be found, for instance,
in the works of Ein, Ishii, Mustaţă, Reguera and Yasuda among others.

The Nash multiplicity sequence

We will be interested in a sequence of positive integers attached to an arc at a given point, the so called
Nash multiplicity sequence, which was defined by M. Lejeune-Jalabert in [13] for hypersurfaces, and
generalized later by M. Hickel in [10]. This sequence can be constructed as follows. Let ξ be a point in
X and let ϕ be an arc through ξ. Also let Γ0 = ϕ × i : B × K[t] → K[[t]] be the graph of ϕ, which is
additionally an arc in X0 = X × A1 through ξ0 = (ξ, 0). Consider the following sequence of blow ups πi

at points:

Spec(K[[t]])
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❳❳❳
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X0 = X × A1 X1
π1oo . . .

π2oo Xl

πloo . . .
πl+1oo

ξ0 = (ξ, 0) ξ1 . . . ξl

(0.1)
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Here πi is the blowup at ξi−1, where ξi = Im(Γ∗
i ) ∩ π−1

i (ξi−1) for i = 1, . . . , l, . . ., and Γi is the arc in
Xi through ξi obtained by lifting Γ0. Thus, the sequence is constructed by blowing up at closed points
selected by the arcs Γi for i ≥ 0. Let us recall that the multiplicity of X at a point η ∈ X is given by an
upper semicontinuous function

mult(X) : X −→ N

η 7−→ mult(X)(η) = multη(X) = mult(OX,η),

where mult(OX,η) stands for the multiplicity of the local ring OX,η at the maximal ideal. Let us recall
that this multiplicity can be computed as ad · d!, where ad is the coefficient of the highest order term in
the Hilbert polynomial of OX,η (see [12, Ch. 11]). From a geometrical point of view, if X is defined over
C, then the multiplicty of X at η corresponds to the smallest of the ranks over the generic fiber when
considering all possible local morphisms (X, η) → (Cd, 0). If we denote by mi the multiplicity of Xi at ξi
for i = 0, . . . , l, . . ., then the Nash multiplicity sequence of ϕ in X at ξ is the sequence of positive integers

m0 ≥ m1 ≥ . . . ≥ ml = ml+1 = ... ≥ 1

(see [3, Section 2.2] for the detailed construction).

When X is a hypersurface, the Nash multiplicity sequence of an arc ϕ ∈ L(X) can be regarded as a
refinement of the multiplicity of X at ξ := ϕ(〈t〉) in the following sense: On the one hand, the multiplicity
function defines a stratification of X into locally closed subsets, and the multiplicity of X at a point
corresponds to that of the stratum containing it. If X is a hypersurface embedded in a smooth scheme
V , this stratification is determined by the order of vanishing of the partial derivatives applied to a local
equation f defining X . On the other hand, consider the spaces of i-jets of X , which we shall denote
by Li(X) for i ≥ 0, and the natural truncations from the arc space: πX,i : L(X) −→ Li(X). Hence,
πX,i(L(X)) ⊂ Li(X), for i ≥ 0, is the subset of i-jets in X which are the truncation of some arc in X .
In [13], M. Lejeune-Jalabert proved that for each i ≥ 0 there is a stratification of πX,i(L(X)) ⊂ Li(X)
into disjoint locally closed subsets: πX,i(L(X)) = ∪1≤µi≤...≤µ0Hµ0,...,µi

. The Nash multiplicity sequence
(m0, . . . ,mi, . . .) attached to the arc ϕ is determined by these stratifications: for j ≥ 0, πX,j(ϕ) ∈
Hm0,...,mj

. In particular, for j = 0, πX,0(L(X)) = ∪1≤µ0Hµ0 ⊂ X , corresponds to the stratification of X
given by the multiplicity, so m0 is just the multiplicity of X at ξ.

Throughout this paper, we use Hickel’s approach since we state and prove our results for general varieties,
not just hypersurfaces.

Our results

We will be particularly interested in the study of Nash multiplicity sequences of arcs through points of
maximum multiplicity of X . Let m := maxmult(X) be the maximum value achieved by mult(X). We
write

Maxmult(X) = {η ∈ X : multη(X) ≥ m} = {η ∈ X : multη(X) = m}
for the closed subset of the singular locus of X consisting of the points of highest multiplicity. If X is a
reduced equidimensional scheme, then X is regular if and only if the multiplicity equals one at every point
(see [7, Section 2.10]). This is why the closed subset Maxmult(X) is an object of interest in resolution of
singularities.

If X is defined over a field k of characteristic zero, one can define the order of contact of an arc ϕ (through
ξ) with Maxmult(X),

rX,ϕ ∈ Q≥1.

This order of contact is an invariant of the arc ϕ at the point ξ in X . This invariant can be computed as
the order of a particular Rees algebra (see [3, Section 3]). From rX,ϕ, one can obtain, for instance, the
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number of blow ups as in (0.1) that are needed before the Nash multiplicity sequence decreases for the
first time:

ρX,ϕ := mini∈Z>0 {i : mi < m0} = [rX,ϕ] .

We call ρX,ϕ the persistance of ϕ in X . In fact, sometimes it can be even more interesting to consider
the quotient r̄X,ϕ =

rX,ϕ

ord(ϕ) , which we refer to as the normalized order of contact of ϕ with Maxmult(X),

since in this way one gets rid of the influence of the order of the arc. For the same reason, it is convenient
to define also the normalized persistance of ϕ in X as ρ̄X,ϕ =

ρX,ϕ

ord(ϕ) . Indeed, the set

ΦX,ξ = {r̄X,ϕ}ϕ ⊂ Q≥1,

where ϕ runs over all arcs in X through ξ, is an invariant of X at ξ. This invariant reflects information
about ξ coming from arcs. In particular, it uses information provided by the Nash multiplicity sequences
of those arcs. It was proven in [3, Theorem 4.2.5] that this set has a minimum, which turns out to be

the invariant ord
(d)
ξ (X), Hironaka’s order in dimension d, which plays a key role in constructive resolution

(see for example [11], [8] and [7, Sections 13 and 25]).

In this work we try to understand better what the set ΦX,ξ can tell us about the singularities of X.
We prove that the supremum of ΦX,ξ actually allows us to determine whether ξ is an isolated point of
Maxmult(X) or not:

Theorem A. (Main Theorem) Let X be a variety over a field k of characteristic zero, and let ξ be a
point in Maxmult(X). Then ξ is an isolated point of Maxmult(X) if and only if the set ΦX,ξ is upper
bounded.

In terms of the Nash multiplicity sequence it will mean (Corollary 2.4) that, whenever ξ is an isolated
point of Maxmult(X), then no arc through ξ can be found so that its normalized persistance in X is
higher than a given integer (depending on X and ξ). On the other hand, if ξ belongs to a component of
Maxmult(X) of dimension 1 or more, then there is no bound for how big ρ̄X,ϕ will be for some arcs.

In the last section of this paper, we present an additional condition over X and isolated points of
Maxmult(X) under which the supremum of ΦX,ξ can be computed (Proposition 3.1). As we will see,
this condition is also related to an invariant of constructive resolution of singularities: the τ invariant (see
[1]). We will also show some illustrative examples there.

Acknowledgments: The author is very grateful to A. Bravo and S. Encinas for their guide and sugges-
tions, to S. Ishii and L. Narváez for fruitful conversations, and to J. M. Conde-Alonso for his suggestions
for the shaping of this paper.

1 The order of contact of ϕ with Maxmult(X)

In what follows, we will assume X to be an algebraic variety of dimension d over a field k of characteristic
zero such that maxmult(X) = b, and ξ to be a point in Maxmult(X), which for simplicity we will assume
to be closed. The notation used in this section will be the standard one through the rest of the paper.
Details about Rees algebras in resolution and basic results used here can be found, for instance, in [9].

Let R be a regular ring which is of finite type over k. For us, a Rees algebra over R (or over V = Spec(R))
is a graded ring G = ⊕i∈Z≥0

IiW
i ⊂ R[W ] with I0 = R, which is finitely generated as an R-algebra. Note

that this definition is more general than the (usual) one considering only algebras of the form R[IW ] for
some ideal I ⊂ R. The singular locus of G, Sing(G), is the subset of V composed by the points η of
Spec(R) for which νη(f) ≥ i for all fW i ∈ G, where νη(f) denotes the order of f in the regular local ring
Rη. It can be shown that Sing(G) is a closed subset of V . By the order of an element fW i ∈ G at a

point η ∈ Sing(G), we mean the quotient
νη(f)

i
=: ordη(fW

i). The order of G at η ∈ Sing(G) is defined as
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ordη(G) = inffW i∈G

{
ordη(fW

i)
}
, and can actually be computed as ordη(G) = min

{
ordη(fW

i)
}
, where

the minimum runs over a finite set of generators of G.

We say that a Rees algebra G over R represents the multiplicity of X →֒ V = Spec(R) at ξ ∈ Maxmult(X)
if

Sing(G) = Maxmult(X)

locally in a neighborhood of ξ, and this condition is stable under sequences of permissible transformations
for G, that is, after any sequence of the form

V = V0 V1
π1oo . . .

π2oo Vl

πloo

G = G0 G1
oo . . .oo Gl

oo

(1.1)

where each πj is either a smooth morphism or a blow up with center a regular closed subset of Sing(Gj−1)
for j = 1, . . . , l, as long as maxmult(Xl) = maxmult(X) if Xl is the strict transform of Xl−1 in Vl

whenever πl is a blow up, and the pullback if it is a smooth morphism. Here, the transform Gj of Gj−1,
for j = 1, . . . , l, is

Gj = ⊕i≥0Ii,jW
i where Ii,j = Ii,j−1OVj

· I(Ej)
−i (1.2)

for any i ≥ 0, being Ej the exceptional divisor of πj . By being stable, we mean that

Sing(Gj) = Maxmult(Xj)

if Xj is the strict transform (or pullback, as corresponds) of Xj−1 in Vj .

This justifies a notion of resolution of a Rees algebra. A resolution of G is a sequence as in (1.1) where
the πi are blow ups at regular closed subsets of Sing(Gl), and such that Sing(Gl) = Maxmult(Xl) = ∅ (see
[3, Sections 1.1 to 1.3]).

Remark 1.1. Given X and ξ, there is not a unique OV -Rees algebra G representing the multiplicity of
X at ξ. However, it can be shown that all Rees algebras representing the maximum multiplicity of X at
ξ are somehow equivalent: they all undergo the same resolution, and they share the same order at any
point of Maxmult(X). This is the case, for instance, of the differential closure1 of any Rees algebra GX

which represents the maximum multiplicity of X at ξ. For details about these facts, see [2].

Let us suppose, for simplicity, that X = Spec(B) is affine. Otherwise, since we will work locally, it is
enough to consider open affine subsets of X . It is possible to find a local étale immersion X →֒ Spec(R)
into a regular scheme of dimension n > d and a Rees algebra G over R, representing the multiplicity of
X locally in a neighborhood of ξ (see [14]). Under these hypotheses, we have a regular k-algebra S of
dimension d and a projection β : Spec(R) −→ V (d) = Spec(S) inducing a finite projection

βX : X −→ V (d) = Spec(S)

of generic rank b which is also transversal for G, that is, Ker(dβ) intersects the tangent space of G at ξ
(see [7, 16.1]) only at 0, dβ being the morphism induced by β between the tangent spaces. This projection
induces a homeomorphism between Maxmult(X) and its image (see [7, Apendix A]) and an injective finite
morphism of the form

S −→ B ∼= S[x1, . . . , xn−d]/I(X) = S[x1, . . . , xn−d].

We obtain in this manner a local immersion of X in a smooth n-dimensional space V (n) = Spec(R) in a
neighborhood of ξ, where R = S[x1, . . . , xn−d]. There exist f1, . . . , fn−d ∈ I(X) ⊂ R such that for certain
b1, . . . , bn−d ∈ Z>0, the Rees algebra

G = R[f1W
b1 , . . . , fn−dW

bn−d ] (1.3)

1A Rees algebra G = ⊕i≥0IiW
i is differentially closed if, for any differential opperator D of order l, 0 ≤ l ≤ i, we have

D(Ii) ⊂ Ii−l (see [16]).
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represents the multiplicity of X locally in a neighborhood of ξ, and moreover, fi is the minimal polynomial
of xi over S, and hence it is a monic polynomial in xi with coefficients in S, for i = 1, . . . , n− d (see [14]
for the result on the existence and construction of such a presentation, and [3] for notation as used here).
Each fi defines a hypersurface Xi in Spec(S[xi]). Assume that we choose the differentially closed algebra

G(n)
X = Diff(R[f1W

b1 , . . . , fn−dW
bn−d ]), (1.4)

which also represents the multiplicity of X locally in a neighborhood of ξ. We can suppose that the
maximal ideal Mξ of ξ in R is given by < x1, . . . , xn−d, z1, . . . , zd > for a regular system of parameters
{z1, . . . , zd} in S (see [7, Section 4]). The image ξ(d) of ξ by βX is then defined by the maximal ideal
Mξ(d) =< z1, . . . , zd >. Note that R −→ B is surjective, and for any i = 1, . . . , n−d the following diagram
commutes

G(n)
X R = S[x1, . . . , xn−d] // S[x1, . . . , xn−d]/(f1, . . . , fn−d) // B // 0

G(d+1)
Xi

S[xi]

OO

// S[xi]/(fi)

OO

β∗
Xi

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

G(d)
X ⊃ G(d)

Xi
S

OO 44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(1.5)

The homomorphism S −→ R happens to induce an elimination

β : V (n) = Spec(R) −→ V (d) = Spec(S)

for G(n)
X (see [14]), that is, a transversal admissible projection, defining a homeomorphism between

Sing(G(n)
X ) ⊂ V (n) and β(Sing(G(n)

X )) ⊂ V (d), and such that G(d)
X = G(n)

X ∩ S represents the multiplic-
ity of β(X) (see [5], [6], [7, 16 and Appendix A] and [15, Theorem 4.11 and Theorem 4.13] for properties
and results on elimination). Such an elimination is equivalent to the possibility of reducing a problem of
Resolution of Rees algebras in dimension n to a problem of Resolution of Rees algebras in dimension d < n.

Since G(n)
X is differentially closed, by means of the elimination via β, we have the following description for

G(n)
X (see [3, Example 1.5.4 and Example 1.5.15]):

G(n)
X = S[x1][x1W ]⊙ . . .⊙ S[xn−d][xn−dW ]⊙ G(d)

X , (1.6)

where we have used the fact that fi is a monic polynomial in xi for i = 1, . . . , n − d, and G ⊙ H de-
notes the smallest Rees algebra containing both G and H. Furthermore, one may consider, for each
i ∈ {1, . . . , n− d}, the hypersurface Xi ⊂ Spec(S[xi]) defined by fi, as it was done in [3, Section 4.2.1].

For each i, G(d+1)
Xi

= S[xi][fiW
bi ] represents the maximum multiplicity of Xi locally at βXi

(ξ). Then, G(n)
X

can be written as
G(n)
X = G(d+1)

X1
⊙ . . .⊙ G(d+1)

Xn−d
, (1.7)

and
G(d)
X = G(d)

X1
⊙ . . .⊙ G(d)

Xn−d
. (1.8)

Let ϕ be an arc in X through ξ which is not contained in Maxmult(X). We may project ϕ to an arc ϕ(d)

in V (d) through ξ(d) via βX , that is: ϕ(d) = ϕ ◦ β∗
X . We obtain a commutative diagram

OX,ξ ϕ

**❯❯❯
❯❯

❯❯
❯

K[[t]]

OV (d),ξ(d)

β∗
X

OO

ϕ(d) 44✐✐✐✐✐✐
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In particular, note that ϕ(Mξ) ⊃ ϕ(d)(Mξ(d)), so

ord(ϕ) = ordt(ϕ(Mξ)) ≤ ordt(ϕ
(d)(Mξ(d))) = ord(ϕ(d)). (1.9)

Along this paper, we will repeatedly define arcs through regular systems of parameters. For instance, to
define an arc in V (d) through ξ(d), we will do it by giving the images of a r.s.p. {y1, . . . , yd} ⊂ OV (d),ξ(d)

by the arc. The fact that this description determines the arc completely is a consequence of the continuity

of the completion map OV (d),ξ(d) −→ ̂OV (d),ξ(d) of OV (d),ξ(d) at ξ(d), which allows us to define ϕ via a map

̂OV (d),ξ(d)
∼= K[[y1, . . . , yd]] −→ K[[t]]. This map induces an arc in V (d) through ξ(d), if K is the residue

field of OV (d),ξ(d) .

We denote by ϕ(G(n)
X ) the Rees algebra over K[[t]] generated by the images of the fi in (1.4) by ϕ with

their respective weights. That is,

ϕ(G(n)
X ) = K[[t]][ϕ(f1)W

b1 , . . . , ϕ(fn−d)W
bn−d ].

Given X , ξ ∈ Maxmult(X) and an arc ϕ in X through ξ, the order of contact of ϕ with Maxmult(X),

denoted by rX,ϕ, is defined as the order of the Rees algebra ϕ(G(n)
X ). The quotient r̄X,ϕ =

rX,ϕ

ord(ϕ) gives

a more interesting version of this invariant because it avoids the influence of the order of the arc (see [3,
Section 3.2]).

In order to express ϕ(G(n)
X ) by means of the decomposition in (1.7), we may consider the projections of ϕ

over the Xi, that we shall denote by ϕ
(d+1)
i , and which are actually arcs in the corresponding Xi through

βXi
(ξ), because fi ∈ I(X) for i = 1, . . . , n− d:

B

ϕ

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

S[xi]/(fi)

β∗
Xi

OO

ϕ
(d+1)
i

=ϕ◦β∗
Xi // K[[t]]

S

OO
β∗
X

==

ϕ
(d)
i

=ϕ◦β∗
X=ϕ(d)

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

(1.10)

The following Lemma shows how rX,ϕ can be computed using the expressions in (1.6) and (1.7).

Lemma 1.2. [3, cf. Section 4] Let X be as in the beginning of this section, and let ξ be a point in
Maxmult(X). Let ϕ be an arc in X through ξ. Then

1. rX,ϕ = ordt(ϕ
(d)(G(d)

X )) and

2. ordt(ϕ(xi)) ≥ ordt(ϕ
(d)(G(d)

X )) for i = 1, . . . , n− d.

Proof. It follows from (1.6) and (1.7) that

rX,ϕ = ordt(ϕ(G(n)
X )) = mini=1,...,n−d

{
ordt(ϕ

(d+1)
i (G(d+1)

Xi
))
}
=

= min
{
ordt(ϕ(x1)), . . . , ordt(ϕ(xn−d)), ordt(ϕ

(d)(G(d)
X ))

}
≤ ordt(ϕ

(d)(G(d)
X )).

On the other hand, for each i, by [3, Lemma 4.1.2],

ordt(ϕ
(d+1)
i (G(d+1)

Xi
)) = min

{
ordt(ϕ

(d+1)
i (xi)), ordt(ϕ

(d)
i (G(d)

Xi
))
}
= ordt(ϕ

(d)
i (G(d)

Xi
)), (1.11)
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so
rX,ϕ = mini=1,...,n−d

{
ordt(ϕ

(d)
i (G(d)

Xi
))
}

.

But note that G(d)
Xi

⊂ G(d)
X and ϕ

(d)
i = ϕ(d) (see (1.8) and (1.10)). Thus,

ϕ
(d)
i (G(d)

Xi
) = ϕ(d)(G(d)

Xi
) ⊂ ϕ(d)(G(d)

X )

and
ordt(ϕ

(d)
i (G(d)

Xi
)) ≥ ordt(ϕ

(d)(G(d)
X )). (1.12)

Consequently,

ordt(ϕ
(d)(G(d)

X )) ≥ rX,ϕ ≥ ordt(ϕ
(d)(G(d)

X )),

proving 1. Now 2 is a consequence of (1.11), together with (1.12) and the fact that, for all i = 1, . . . , n−d,

ϕ
(d)
i (xi) = ϕ

(d+1)
i (xi) = ϕ(xi).

2 Proof of the main result

In order to prove Theorem A, let us divide it in two one side implications, reformulated in Propositions
2.1 and 2.3 respectively, in a way that will be more convenient for their respective proofs. We first give a
simple version of the proof of the easier one:

Proposition 2.1. Let ξ be an isolated point of Maxmult(X). Then there exists a positive integer Q ∈ Z>0,
depending on X and ξ, such that for any arc ϕ in X through ξ,

r̄X,ϕ ≤ Q.

Proof. Consider the graded structure of a Rees algebra G(n)
X representing the multiplicity of X in a neigh-

borhood of ξ as in (1.4),

G(n)
X = ⊕i≥0IiW

i.

Since G(n)
X is differentially closed, the set Maxmult(X) is determined by the zeros of the ideal I1 (see [16,

Proposition 4.4]). Therefore, Maxmult(X) being of dimension 0 is equivalent to
√
I1 being a maximal

ideal, which, for a (any) regular system of parameters {x1, . . . , xn−d, z1, . . . , zd} in OX,ξ, is also equivalent
to I1 containing some ideal of the form

(xa1
1 , . . . , x

an−d

n−d , z
an−d+1

1 , . . . , zan

d )

for some positive integers a1, . . . , an. Note that this implies that

G(n)
X ⊃ OX,ξ[x

a1
1 W, . . . , x

an−d

n−d W, z
an−d+1

1 W, . . . , zan

d W ].

Therefore,

ϕ(G(n)
X ) ⊃ OX,ξ[ϕ(x

a1
1 )W, . . . , ϕ(x

an−d

n−d )W,ϕ(z
an−d+1

1 )W, . . . , ϕ(zan

d )W ],

and

ordt(ϕ(G
(n)
X )) ≤ min {a1 · ordt(ϕ(x1)), . . . , an−d · ordt(ϕ(xn−d)), an−d+1 · ordt(ϕ(z1)), . . . , an · ordt(ϕ(zd))} .

Thus
r̄X,ϕ ≤ aj ∈ Z>0

for any j ∈ {1, . . . , n − d} such that ord(ϕ) = ordt(ϕ(xj)) or any j ∈ {n − d + 1, . . . , n} such that
ord(ϕ) = ordt(ϕ(zj−n+d)).
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The bound given by this proof is not optimal. In general, a rational number which will be smaller than
the integer given by the aj ’s can be found, yielding an optimal bound. Note that this rational number is
an invariant of X at ξ, but since it is not needed in the proof of Theorem A, we ignore it here.

Remark 2.2. For some arcs, we can say more about r̄X,ϕ: If ϕ is such that ord(ϕ) = ordt(ϕ(xj)) for
some j ∈ {1, . . . , n− d}, then r̄X,ϕ = 1. Indeed, a1 = . . . = an−d = 1 in the proof of Proposition 2.1,
because x1, . . . , xn−d ∈ I1 (see (1.6)).

In the next section, a precise upper bound will be given under some special condition over X at ξ, in

terms of orders of elimination algebras. This condition is related with the τ invariant of G(n)
X at ξ.

We prove now the most delicate implication. To make the proof easier to understand, we will deal
separately with an easy case first, even though it of course follows from the general one, which we prove
afterwards. The reader unfamiliar with the techniques of resolution used in this proof, as well as definitions
of strict and total transform of an ideal, can consult them in [4, Section 7] or [9].

Proposition 2.3. If ξ lies in a component of Maxmult(X) of dimension greater or equal to 1, then for
any q ∈ Q, one can find an arc ϕ in X through ξ such that

r̄X,ϕ > q.

Proof. Since rX,ϕ = ordt(ϕ
(d)(G(d)

X )) if ϕ(d) = ϕ ◦ β∗
X (see Lemma 1.2), our strategy here will be choosing

an arc ϕ̄(d) in V (d) through ξ(d) which gives ordt(ϕ̄
(d)(G(d)

X )) big enough first, and then lifting it via βX

to an arc ϕ in X through ξ, proving afterwards that it satisfies the statement in the Proposition.

Suppose first that there exists a smooth curve C̃ ⊂ Maxmult(X) containing ξ. Then C = βX(C̃) ⊂ V (d)

is a smooth curve containing ξ(d)(see [14, Theorem 6.3]). Assume that C is defined by a prime ideal

J ⊂ OV (d),ξ(d) . Consider the family of arcs ϕ̄
(d)
N in V (d) through ξ(d), for N ∈ Z>0, given by

ϕ̄
(d)
N : OV (d),ξ(d) −→ K[[t]],

J 7−→ tN ,

Mξ(d) 7−→ t.

This can be done because we may assume that, in this situation, J = (y2, . . . , yd) for some regular system
of parameters {y1, . . . , yd} of OV (d),ξ(d) . Then, such a family of arcs could be constructed by just defining

ϕ̄
(d)
N (y1) = t and ϕ̄

(d)
N (yj) = tN for j = 2, . . . , d. For any N ∈ N, the arc ϕ̄

(d)
N can be lifted to an arc ϕN in

X through ξ satisfying r̄X,ϕN
≥ N as follows:

Note that we are under the hypothesis d ≥ 2. Consider the ideal P = Ker(ϕ̄
(d)
N ) ⊂ OV (d),ξ(d) . There exists

a prime ideal Q in OX,ξ dominating P . We have the following commutative diagram:

Q ⊂ OX,ξ

µ // OX,ξ/Q

P ⊂ OV (d),ξ(d)
µ(d)

//

β∗
X

OO

OV (d),ξ(d)/P

β̄X
∗

OO

where the vertical arrows are finite morphisms, and both rings on the right side are 1-dimensional, so Q
defines a curve. One can find a nontrivial arc ϕ̃N : OX,ξ/Q −→ K[[t]] through µ(ξ),2 which induces also
an arc

ϕN = ϕ̃N ◦ µ : OX,ξ −→ K[[t]]

2Here K will be the residue field of OX,ξ/Q at µ(ξ).
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through ξ, and

ϕ
(d)
N = ϕN ◦ β∗

X = ϕ̃N ◦ β̄X
∗ ◦ µ(d) : OV (d),ξ(d) −→ K[[t]]

with
Ker(ϕ

(d)
N ) = P = Ker(ϕ̄

(d)
N ) = (y2 − yN1 , y2 − yj : 2 < j ≤ d) ⊂ OV (d),ξ(d) .

Since C ⊂ Sing(G(d)
X ),

ordC(IiOV (d),ξ(d)) ≥ i ∀i ≥ 0,

so IiOV (d),C ⊂ J iOV (d),C . But note that J is a regular prime in OV (d),ξ(d) defining C, so IiOV (d),ξ(d) ⊂ J i

for all i ≥ 0. Consequently,

G(d)
X ⊂ OV (d),ξ(d) [JW ],

and
ϕ
(d)
N (G(d)

X ) ⊂ ϕ
(d)
N (OV (d),ξ(d) [JW ]).

Hence, for ϕ
(d)
N constructed as above,

ordt(ϕ
(d)
N (G(d)

X )) ≥ ordt(ϕ
(d)
N (OV (d),ξ(d) [JW ])) = ordt(ϕ

(d)
N (J)).

Using also Lemma 1.2 and the fact that ord(ϕN ) ≤ ord(ϕ
(d)
N ) = ordt(ϕ

(d)
N (Mξ(d))) (see (1.9)), we arrive to

r̄X,ϕN
=

ordt(ϕ
(d)
N (G(d)

X ))

ord(ϕN )
≥ ordt(ϕ

(d)
N (J))

ord(ϕN )
≥ ordt(ϕ

(d)
N (J))

ord(ϕ
(d)
N )

=
ordt(ϕ

(d)
N (J))

ordt(ϕ
(d)
N (Mξ(d)))

.

Assume that ϕ
(d)
N (yj) = ujt

αj for j = 1, . . . , d for some uj units in K[[t]] and some αj ∈ Z>0. Then

ϕ
(d)
N (y2 − yN1 ) = 0 = ϕ

(d)
N (y2)− ϕ

(d)
N (y1)

N = u2t
α2 − uN

1 tα1·N and

ϕ
(d)
N (y2 − yj) = 0 = ϕ

(d)
N (y2)− ϕ

(d)
N (yj) = u2t

α2 − ujt
αj for 2 < j ≤ d.

Necessarily
α2 = α1 ·N and

α2 = αj for 2 < j ≤ d,

so

r̄X,ϕN
≥ ordt(ϕ

(d)
N (J))

ordt(ϕ
(d)
N (Mξ(d)))

=
mini=2,...,d {αi}
minj=1,...,d {αj}

=
α2

α1
= N

which, for a fixed q ∈ Q, can be greater than q by just choosing N big enough.

Suppose now that C̃ ⊂ Max mult(X) is not smooth. As before, assume that C = β(C̃) = V (J) ⊂ V (d)

for some ideal J ⊂ OV (d),ξ(d) . Consider the following sequence:

V (d) = V
(d)
0 V

(d)
1

π1oo . . .
π2oo V

(d)
r

πroo

∪ ∪ . . . ∪
C = C0 C′

1 . . . C′
r

ξ(d) = ξ
(d)
0 ξ

(d)
1 . . . ξ

(d)
r

(2.1)

where πi is the blow up at the point ξ
(d)
i−1, and ξ

(d)
i ∈ π−1

i (ξ
(d)
i−1)∩C′

i for i = 1, . . . , r, and such that the strict
transform C′

r of C0 by π = π1 ◦ . . . ◦ πr is a smooth curve having normal crossings with the exceptional
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divisor at ξ
(d)
r . Such a sequence can always be found, being an embedded desingularization of C. Let us

look now at the total transform Jr = JO
V

(d)
r

of the ideal J by π, which will be, locally in a neighborhood

of ξ
(d)
r , of the form

Jr = M · J ′
r,

where J ′
r is contained in the the ideal I(C′

r) defining the strict transform C′
r of C in V

(d)
r , and M is a

locally a monomial. Let us choose a family of arcs ϕ̄
(d)
N,r in V

(d)
r through ξ

(d)
r for N ∈ Z>0 such that

ϕ̄
(d)
N,r(I(C

′
r)) = tN and ϕ̄

(d)
N,r(π

∗(Mξ(d))) = ta for some a ∈ Z>0 constant, as we did for the case of

C smooth. For this, note that locally in a neighborhood of ξ
(d)
r , one can consider a regular system of

parameters in O
V

(d)
r ,ξ

(d)
r

given by

{ỹ1 = I(H1), ỹ2, . . . , ỹd} ,

so that I(C′
r) = (ỹ2, . . . , ỹd), and moreover

π∗(Mξ(d)) = I(H1)
a

for a ∈ N, where H1 = π−1
r (ξr−1) is the exceptional divisor of πr, because of the way in which the centers

of the πi are chosen. Consider ϕ̄
(d)
N,r given as

ϕ̄
(d)
N,r : OV

(d)
r ,ξ

(d)
r

−→ K[[t]],

ỹ1 7−→ t,

ỹj 7−→ tN , for j = 2, . . . , d,

which satisfies the desired properties. Note that π induces a sequence of permissible transformations of
X via βX :

X

βX��

= X0 Xr
πXoo

βXr��

V (d) = V
(d)
0 V

(d)
1

π1oo . . .
π2oo V

(d)
r

πroo

For each N ∈ Z>0, ϕ̄
(d)
N,r can be lifted to an arc in Xr through ξ

(d)
r via a diagram as in the regular case:

Q ⊂ OXr ,ξr

µ // OXr ,ξr/Q

P ⊂ O
V

(d)
r ,ξ

(d)
r

µ(d)

//

β∗
Xr

OO

O
V

(d)
r ,ξ

(d)
r

/P

β̄∗
Xr

OO

where P = Ker(ϕ̄
(d)
N,r) = Q∩O

V
(d)
r ,ξ

(d)
r

. As we did in the case of C a regular curve, we pick an arc3

ϕ̃N,r : OXr ,ξr/Q −→ K[[t]]

and obtain
ϕN,r = ϕ̃N,r ◦ µ : OXr ,ξr −→ K[[t]],

so that Ker(ϕ̄
(d)
N,r) = Ker(ϕ

(d)
N,r), where

ϕ
(d)
N,r = ϕN,r ◦ β∗

Xr
: O

V
(d)
r ,ξ

(d)
r

−→ K[[t]].

3Now K is the residue field of OXr,ξr/Q at µ(ξr).
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Note that Ker(ϕ
(d)
N,r) = (ỹ2 − ỹN1 , ỹ2 − ỹj : 2 < j ≤ d), so

ordt(ϕ
(d)
N,r(ỹ2)) = ordt(ϕ

(d)
N,r(ỹj)) = N · ordt(ϕ(d)

N,r(ỹ1))

for 2 < j ≤ d, and that

ord(ϕ
(d)
N,r) = ordt(ϕ

(d)
N,r(π

∗(Mξ(d)))) = ordt(ϕ
(d)
N,r(ỹ

a
1 )) = a · ordt(ϕ(d)

N,r(ỹ1)),

so necessarily

ordt(ϕ
(d)
N,r(I(C

′
r)))

ordt(ϕ
(d)
N,r(π

∗(Mξ(d))))
=

minj=2,...,d

{
ordt(ϕ

(d)
N,r(ỹj))

}

mini=1,...,d

{
ordt(ϕ

(d)
N,r(ỹi))

} =
N

a
. (2.2)

Finally, we obtain
ϕN : OX,ξ −→ K[[t]]

by composing ϕN,r ◦ π∗
X , and we also obtain its projection to V (d) as ϕ

(d)
N = ϕ

(d)
N,r ◦ π∗. Note that the

sequence of transformations in 2.1) is such that the multiplicity of Xi along the curve does not decrease
along the process, and hence C′

i ⊂ βXi
(Max mult(Xi)) for i = 0, . . . , r. As a consequence, it induces a

sequence of permissible transformations of Rees algebras for G(d)
X as in [15, Definition 6.1], since for all

i = 1, . . . , r, πi is a blow up at a regular closed subset of Sing(G(d)
X,i−1):

V (d) = V
(d)
0 V

(d)
1

π1oo . . .
π2oo V

(d)
r

πroo

G(d)
X = G(d)

X,0 = ⊕i≥0IiW
i G(d)

X,1
oo . . .oo G(d)

X,r = ⊕i≥0Ii,rW
ioo

(2.3)

where
IiOV

(d)
r

⊂ Ii,r

for i ≥ 0 (see (1.2)). In particular,

G(d)
X O

V
(d)
r

= ⊕i≥0(IiOV
(d)
r

)W i ⊂ ⊕i≥0Ii,rW
i.

Moreover,

ϕ
(d)
N (G(d)

X ) = ϕ
(d)
N,r(⊕i≥0(IiOV

(d)
r

)W i) ⊂ ϕ
(d)
N,r(G

(d)
X,r),

so
ordt(ϕ

(d)
N (G(d)

X )) ≥ ordt(ϕ
(d)
N,r(G

(d)
X,r)).

Since I(C′
r) is a regular prime in O

V
(d)
r ,ξ

(d)
r

defining a curve contained in Sing(G(d)
X,r),

G(d)
X,r ⊂ O

V
(d)
r ,ξ

(d)
r

[I(C′
r)W ],

and hence
ordt(ϕ

(d)
N (G(d)

X )) ≥ ordt(ϕ
(d)
N,r(G

(d)
X,r)) ≥ ordt(ϕ

(d)
N,r(I(C

′
r))). (2.4)

On the other hand,

ord(ϕN ) = ordt(ϕN (Mξ)) ≤ ordt(ϕ
(d)
N (Mξ(d))) = ord(ϕ

(d)
N ) = ordt(ϕ

(d)
N,r(π

∗(Mξ(d)))).

This, together with Lemma 1.2, (2.2), and (2.4) implies, for each N ∈ Z>0,

r̄X,ϕN
=

ordt(ϕN (G(n)
X ))

ord(ϕN )
≥ ordt(ϕ

(d)
N (G(d)

X ))

ord(ϕ
(d)
N )

≥
ordt(ϕ

(d)
N,r(I(C

′
r)))

ordt(ϕ
(d)
N,r(π

∗(Mξ(d))))
=

N

a
.

Again, it is clear that for a fixed q ∈ Q, we may choose N such that r̄X,ϕN
> q.
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As was stated in the introduction, our main result means, in terms of the Nash multiplicity sequence,
that ξ is an isolated point of Maxmult(X) if and only if there exists an upper bound for the number of
blowups as in (0.1) needed before the Nash multiplicity sequence decreases for the first time (normalized
by the order of ϕ), for any arc ϕ in X through ξ:

Corollary 2.4. Let X be a variety over a field k of characteristic zero. A point ξ ∈ Maxmult(X) is an

isolated point of Maxmult(X) if and only if supϕ

{
ρX,ϕ

ord(ϕ)

}
< ∞, where the supremum is taken over all

arcs ϕ in X through ξ.

Proof. The direct implication follows from [3, Corollary 4.3.3-1]. For the reverse one, assume that

supϕ

{
ρX,ϕ

ord(ϕ)

}
= q ∈ Q>0 and get to a contradiction: for N = [q] + 1 > q, choose ϕaN as in the

proof of Proposition 2.3, so that it satisfies r̄X,ϕaN
≥ N . This implies

ρX,ϕaN
= [rX,ϕaN

] ≥ [N · ord(ϕaN )] = N · ord(ϕaN ).

But this is equivalent to
ρX,ϕaN

ord(ϕaN )
≥ N · ord(ϕaN )

ord(ϕaN )
= N > q,

yielding a contradiction.

3 Consequences and examples

Assume now that τ
G

(n)
X

,ξ
= n− 1. Recall that τ

G
(n)
X

,ξ
is the codimension of the largest linear subspace such

that the addition of this subspace with the tangent cone4 of G(n)
X at ξ lies in the tangent cone again (see

[1, Section 4] for details). Then, for some regular system of parameters
{
x′
1, . . . , x

′
n−1, z

}
⊂ R = OV (n),ξ

for G(n)
X differentially closed representing the multiplicity of X at ξ, we have

x′
1W, . . . , x′

n−1W ⊂ G(n)
X ,

and one can find an elimination map V (n) β
(1)
X−→ V (1) (see [7, Sections 13.3 and 16.1]). This means, that

finding a resolution of the algebra G(n)
X is equivalent to finding a resolution of an algebra G(1)

X over a smooth
scheme of dimension 1, namely V (1). We may assume that, up to an étale extension, R = S′[x′

1, . . . , x
′
n−1],

where S′ is a regular ring of dimension 1. Then

G(n)
X = R[x′

1W ]⊙ . . .⊙R[x′
n−1W ]⊙ G(1)

X (3.1)

where G(1)
X ⊂ S′[W ]. Note that, in this situation:

ordξ(G(n)
X ) = 1 = ordξ(n−1)(G(n−1)

X ) = . . . = ordξ(2)(G(2)
X ) < ordξ(1)(G(1)

X ),

so ordξ(1)(G(1)
X ) is the first interesting resolution invariant in this case.

Under these hypotheses ξ is an isolated point of Maxmult(X), and hence Proposition 2.1 guarantees that
ΦX,ξ is upper bounded. It turns out that the additional condition on τ

G
(n)
X

,ξ
yields an improvement of

that result:

4The tangent cone of G
(n)
X

= ⊕i≥0IiW
i at ξ is the subspace of the tangent space of V (n) at ξ defined by the homogeneous

ideal ⊕i≥0Ii · (M
i
ξ
/Mi+1

ξ
), where Mξ is the maximal ideal of V (n) at ξ.
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Proposition 3.1. If τ
G

(n)
X

,ξ
= n− 1, then for any arc ϕ in X through ξ:

r̄X,ϕ ≤ ordξ(1)(G(1)
X ),

and this bound is sharp.

Proof. We may assume first that mini=1,...,n−1 {ordt(ϕ(x′
i))} = ordt(ϕ(x

′
1)). By (3.1), we obtain

rX,ϕ ≤ min
{
ordt(ϕ(x

′
1)), ordt(ϕ

(1)(G(1)
X ))

}
, (3.2)

where ϕ(1) is the projection of ϕ via the elimination map β
(1)
X : Spec(R) −→ Spec(S′). Note that, either

ord(ϕ) = ordt(ϕ(x
′
1)) or ord(ϕ) = ordt(ϕ(z)). In the first case,

1 ≤ r̄X,ϕ ≤
min

{
ordt(ϕ(x

′
1)), ordt(ϕ

(1)(G(1)
X ))

}

ordt(ϕ(x′
1))

≤ 1,

which implies that

r̄X,ϕ = 1 < ordξ(1)(G(1)
X )

In the second case,

r̄X,ϕ ≤ ordt(ϕ
(1)(G(1)

X ))

ordt(ϕ(z))
.

Note that ordt(ϕ
(1)(G(1)

X )) ≥ ordξ(1)(G(1)
X ) · ordt(ϕ(z)) (see [3, Lemma 4.1.6]). But actually this inequiality

is an equality here. This follows from the fact that G(1)
X ⊂ S′[W ] so, for all gW l ∈ G(1)

X , we have that

ordt(ϕ(g)) = ordz(g) ·ordt(ϕ(z)). One only needs to observe now that ϕ(1)(G(1)
X ) = K[[t]][ϕ(g)W l : gW l ∈

G(1)
X ], and the equality is clear. Hence

r̄X,ϕ ≤ ordξ(1)(G(1)
X ) · ordt(ϕ(z))

ordt(ϕ(z))
= ordξ(1)(G(1)

X ).

To see that ordξ(1)(G(1)
X ) is a sharp bound, consider an r.s.p. {x1, . . . , xn−d, z1, . . . , zd−1, zd} ⊂ R as in

Section 1. Since τ
G

(n)
X

,ξ
= n− 1, we may assume that x1W, . . . , xn−dW, z1W, . . . , zd−1W ∈ G(n)

X . We may

choose an arc ϕ̄(d) in V (d) through βX(ξ) such that ϕ̄(d)(zd) = t and ϕ̄(d)(z1) = . . . = ϕ̄(d)(zd−1) = ta, for

some a ∈ Z>0, a > ordξ(1)(G(1)
X ) > 1. This arc can be lifted to an arc ϕ in X through ξ, for which

r̄X,ϕ =
ordt(ϕ

(d)(G(d)
X ))

ord(ϕ)
≥ ordt(ϕ

(d)(G(d)
X ))

ord(ϕ(d))
=

min
{
ordt(ϕ

(d)(z1)), . . . , ordt(ϕ
(d)(zd−1)), ordt(ϕ

(1)(G(1)
X ))

}

ord(ϕ(d))

by Lemma 1.2 and (1.9), where ϕ(d) = ϕ ◦ β∗
X and ϕ(1) = ϕ ◦ (β

(1)
X )∗. Also, Ker(ϕ(d)) = Ker(ϕ̄(d)) =

(zad − z1, . . . , z
a
d − zd−1), so for i = 1, . . . , d− 1 it is clear that

ordt(ϕ
(d)(zi)) = a · ordt(ϕ(d)(zd)) > ordξ(1)(G(1)

X ) · ordt(ϕ(d)(zd)) = ordt(ϕ
(1)(G(1)

X )) > ordt(ϕ
(d)(zd)).

Thus,

ordξ(1)(G(1)
X ) ≥ r̄X,ϕ ≥ ordt(ϕ

(1)(G(1)
X ))

ordt(ϕ(d)(zd))
= ordξ(1)(G(1)

X ).
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However, under the hypothesis of Proposition 3.1, sometimes it is possible to find arcs such that ordξ(G(d)
X ) =

1 < r̄X,ϕ < ordξ(G(1)
X ). Let us show an example for this:

Example 3.2. Consider X →֒ Spec(k[x, y, z]) defined by the equation f = xy − z5 and ξ = (0, 0, 0) =
Maxmult(X), and let ϕ be the arc defined by ϕ(x) = t3, ϕ(y) = t2, ϕ(z) = t. Here

G(3)
X = Diff(k[x, y, z][fW 2]) = k[x][xW ]⊙ G(2)

X = k[x, y][xW, yW ]⊙ G(1)
X ,

where G(2)
X = k[y, z][yW, z5W 2, z4W ] and G(1)

X = k[z][z5W 2, z4W ], so ordξ(d)(G(2)
X ) = 1 and ordξ(1)(G(1)

X ) =
5/2. Note that ord(ϕ) = ordt(ϕ(z)) = 1. On the other hand,

rX,ϕ = ordt(ϕ(G(3)
X )) = ordt(ϕ

(2)(G(2)
X )) = min

{
ordt(ϕ

(2)(y)), ordt(ϕ
(1)(G(1)

X ))
}
= min {2, 5/2} = 2.

Hence, for this example 1 < r̄X,ϕ = 2 < 5/2.

Let us end our discussion with a couple of illustrative examples for Propositions 2.1 and 2.3 respectively.
The first one shows an isolated point of Maxmult(X) for which ΦX,ξ is upper bounded by 3:

Example 3.3. Let X =
{
x2y3 − z3s4 = 0

}
→֒ Spec(k[x, y, z, s]) and let ξ = (0, 0, 0, 0) = Maxmult(X).

We have

G(4)
X = Diff(k[x, y, z, s][(x2y3 − z3s4)W 5]) =

= k[x, y, z, s][xW, yW, zsW, z3W, s2W, z3sW 2, zs2W 2, zs4W 3, z2s3W 3, z3s2W 3, z3s3W 4, z3s4W 5].

Observe now that xW, yW, z3W, s2W ∈ G(4)
X , and ϕ(x)W,ϕ(y)W,ϕ(z)3W,ϕ(s)2W ∈ ϕ(G(4)

X ). Then

rX,ϕ ≤ min {ordt(ϕ(x)), ordt(ϕ(y)), 3 · ordt(ϕ(z)), 2 · ordt(ϕ(s))} .

If ord(ϕ) = ordt(ϕ(x)) or ord(ϕ) = ordt(ϕ(y)), then r̄X,ϕ = 1. If ord(ϕ) = ordt(ϕ(z)), then r̄X,ϕ ≤ 3, and
if ord(ϕ) = ordt(ϕ(s)), then r̄X,ϕ ≤ 2. In any case

r̄X,ϕ ≤ 3.

In our next example we construct, for a non isolated point of Maxmult(X), a family of arcs ϕN , N ∈ Z>0,
for which r̄X,ϕN

equals a polynomial in N , namely q(N) = N+2, showing that ΦX,ξ is not upper bounded:

Example 3.4. Let now X =
{
x2y3 − z4s5 = 0

}
, and let ξ = (0, 0, 0, 0) again. Now ξ ( Maxmult(X). In

this case,

G(4)
X = Diff(k[x, y, z, s][(x2y3−z4s5)W 5]) = k[x, y, z, s][xW, yW, zsW, s5W, zs5W 2, z2s5W 3, z3s5W 4, z4s5W 5].

Consider the following family of arcs through ξ parametrized by N ∈ Z>0:

ϕN : k[x, y, z, s]/(x2y3 − z4s5) −→ K[[t]]

x 7−→ t2N+2,

y 7−→ t2N+5,

z 7−→ t,

s 7−→ t2N+3.

Now
ϕ(G(4)

X ) = K[[t]][t2N+2W ]

and ord(ϕN ) = 1, so
r̄X,ϕ = 2N + 2,

which grows with N .
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