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Abstract 

 

Fault detection is a crucial aspect to avoid catastrophic failures on mechanical systems, 

as well as to save money for companies. Currently, a number of non-destructing tests, 

signal processing analysis and artificial intelligence techniques are used for processing 

larger and larger amounts of maintenance data in all industry fields, either independently 

or combined. This manuscript presents a novel methodology for the condition monitoring 

of machinery, based on vibration analysis. The methodology is supported on two novel 

signal processing techniques: Graphical Representation of State Configurations (GRSC) 

and Chromogram of Bands of Frequency (CBF). These two new techniques apply basic 

concepts of the machine deterioration theory to the frequency spectrum. In order to prove 

the successful of the work presented, the methodology is tested against two real examples: 

vibration signals from the Case Western Reserve University (CWRU) Bearing Data 

Centre, and vibration signals from a high-speed train in normal operation. The results 

show that these new techniques can process large amounts of data without using artificial 

intelligence, identify adequately the operating condition of the tested systems and give 

precise information about that operating system by means of simple graphs and colours. 
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1. Introduction 
 

The application of condition monitoring to machines is a key aspect to get a good 

maintenance strategy that allows cost reductions in the current competitive markets. 

However, it requires reliable condition monitoring techniques and the ability to process 

an increasingly amount of data. Vibration analysis has advantages over other methods 

(like oil analysis, thermography, etc.) because it reacts immediately to changes, allows 

permanent and intermittent monitoring and, most important, a lot of signal processing 

techniques can be applied to vibration signals [1]. 

In this regard, Lee et al. review the most common used methods and algorithms 

applied to the diagnosis of rotatory mechanical systems in reference [2]. The two most 

classical methods for diagnosis are the time domain analysis and the Fourier transform. 

However, the application of these methods may not be sufficient to establish the condition 
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of the monitored system (especially with the current industrial requirements for 

mechanical elements that increasingly work in more critical conditions). As result of that, 

several techniques were developed to analyse the state of the system in the time-frequency 

domain, from a statistical point of view or using artificial intelligence methods. 

Within the time-frequency domain, techniques like the Short-Time Fourier 

Transform [3], the Wavelet Transform [4] and the Hilbert-Huang Transform [5] are 

widely used for the condition monitoring of mechanical systems. Lots of works in the 

scientific literature apply these techniques to the identification of bearing defects [6–8]. 

However, these methods are also successfully applied to the analysis of transient vibration 

signals [9]; as well the condition monitoring and the identification of defects in complex 

mechanical systems like laboratory test benches [10,11] and real systems like rail vehicles 

[12,13]. 

Over the years, several techniques based on statistical concepts arisen and are 

employed in the monitoring of mechanical systems now. Among these methods, we can 

highlight the Principal Component Analysis (PCA) [14], the Statistical Pattern 

Recognition (SPR) [15] and the Kalman filters [16]. The PCA is applied to analyse the 

degradation of bearings [17] and gears [18]. Several works of the literature apply the SPR 

for the monitoring of various mechanical elements in different engineering fields [19–

21]. Lastly, the application of Kalman filters has proved to be a useful tool for the 

isolation of specific features that allow to identify faults in such different complex 

machines like rail vehicles [22] and direct-drive wind turbines [23]. 

Frequently, the previous techniques (and other similar approaches) are combined 

with artificial intelligence methods like the Artificial Neural Networks [24], the Support 

Vector Machines [25] or the Fuzzy Logic [26]. That way, the advantages of the classical 

techniques are enhanced, so large amounts of data can be handle and thus obtain better 

results in the identification of defects in mechanical elements or systems 

[6,10,11,17,27,28]. 

Most of the works of the scientific literature apply the previous techniques to study a 

specific mechanical element. In this paper, the authors present a new methodology for 

monitoring the evolution of complex mechanical systems (made up of tens or hundreds 

mechanical elements) and detect performance changes due to faults, maintenance actions 

or other significant event. This methodology is based on the multi-level analysis and the 

development of two new signal processing techniques called Graphical Representation of 

State Configurations (GRSC) and Chromogram of Bands of Frequency (CBF). These new 

techniques combine some aspects of the methods described previously. 

The structure of the paper is as follows. The second section depicts the basic concepts 

for the methodology development briefly and also describes the proposed methodology 

and the mathematical methods. The third section presents the experimental validation 

through two examples and discuss obtained from the application of the new techniques. 

The last section states the conclusions. 

 

2. Methodology 
 

This section presents the theoretical concepts on which the designed methodology is 

supported and then, the methodology and proposed techniques for the processing of 

vibration signals are described. 

 

2.1. Theoretical concepts 

The methodology presented in this manuscript is based on the time evolution of the 

vibration level of a machine or mechanical system. According to references [29,30], three 
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periods can be distinguished in the life of a machine. The first period corresponds to the 

running-in of the machine, in which young failures may occur. During this stage, the 

overall vibration level of the machine decreases. The second period is the normal 

operation of the machine, in which the vibration level increases very slowly due to the 

normal wear. The last period corresponds to a rapid increase of the vibration level as the 

machine approaches to breakdown. The graphical representation of this evolution is 

commonly known as the ‘bathtub’ curve. 

At the third stage, a maintenance action or a repair will be needed to keep the machine 

in service. This event improves the condition of the machine and returns the state of the 

machine to the first period. 

The methodology applies these concepts to the frequency domain and develops 

mathematical methods to represent the power time evolution of different frequency bands. 

 

2.2. Methodology flowchart 

The flowchart of the proposed methodology is summarized in Figure 1 and has two 

starting points concerning to the mechanical system definition and the measurement 

conditions. The first starting point is the definition of the system to monitor. This step 

encompasses the classification of the machine type and the characterization of the 

relevant mechanical system or sub-system. The other starting point is the definition of the 

measurement conditions. Here there are two options: if laboratory tests are conducted, 

then the speeds, loads and defects on the machine are set as required. However, if the 

system operates in normal condition (real system), the measurement conditions must be 

stated according to the availability of the machine.  

The design of the measurement system takes into account the inputs from the system 

definition and the measurement conditions. The number, type, characteristics and position 

of the sensors must be established at this step; as well as the data acquisition software. 

The vibration measurements are recorded in a dedicated database. Later, the recorded 

data are extracted, grouped according to the measurement conditions and processed in the 

time, frequency and/or time-frequency domains. In this paper, we will only focus on the 

frequency domain, as it is the basis of the new proposed methods. First, the PSD of the 

signals is computed and, then the average spectra and spectral power of each signal groups 

is obtained. 

Next, the MLA (Multi-Level Analysis), GRSC and CBF techniques are applied and 

the results are analysed. 
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Figure 1. Scheme of the proposed methodology. 

 

2.3. Multi-Level Analysis (MLA) 

The first step in order to obtain the CBF is the decomposition of the frequency 

spectrum in several frequency bands or power packets. This task is made by applying the 

Multi-Level Analysis (MLA). This method divides the frequency spectrum in 2k bands, 

with k the decomposition level. Each frequency band is associated to a part of the total 

spectral power. The Figure 2 shows the decomposition procedure starting from the PSD 

of a signal. 
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Figure 2. Scheme of the decomposition process (MLA). 

 

The Equation (1) defines the decomposition algorithm for a decomposition level k of 

a PSD. The value of k must be such that the result 2k will be always less or equal to the 

number of points N in the vibration signal, that is to say, 2k ≤ N, and results an integer. 
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Where i is the index of the signal’s vector, j is the packet’s number for a 

decomposition level k, k is the decomposition level, N is the number of points of the 

signal, Sx(i) is the value of the PSD at index i, and P(k,j) is the power of the packet j for 

the decomposition level k. 

 

The algorithm can also be applied not only to the PSD, but also the spectrum of the 

envelope of the signal. So the equation (1) can be rewritten as equation (2): 
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Where all the parameters represent the same as equation (1) except SH(i), which is the 

value of the spectrum of the Hilbert transform at index i, and PH(k,j), which is the power 

of the packet (k,j) of the envelope spectrum. 

Obviously, the bandwidth of the resulting packets varies with the decomposition 

level. The higher the decomposition level, the smaller the bandwidth. The Table 1 shows 

the relation between the bandwidth and the decomposition level k (up to level k=9), taking 

as example a Nyquist frequency of 2560 Hz. 

 
Table 1. Bandwidth for different decomposition levels, taking a Nyquist frequency of 2560 Hz. 

k 0 1 2 3 4 5 6 7 8 9 

2k 1 2 4 8 16 32 64 128 256 512 

Bandwidth 

FNyquist/2k (Hz) 
2560 1280 640 320 160 80 40 20 10 5 
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2.4. Definition of the operating states 

Before the application of the new methods, three operating states must be defined. 

These operating states are established taking as reference a significant event or change in 

the mechanical system, i.e. a maintenance operation. The first operating state, called B 

(Before), groups all the measurements recorded before the significant event. The second 

operating state, named A (After), collects the measurements taken just after the significant 

event. The third and last operating state is called L (Later). This operating state groups all 

the measurements recorded after a period of time since the significant event. 

 

2.5. GRSC 

The GRSC (Graphical Representation of State Configurations) is a graphical 

representation for the time evolution of the power of each packet. This evolution is 

displayed as a triangle whose vertices are the value of the average power of the packets 

of each operating state. 

The process to build the GRSC is shown in Figure 3 and works as follows: 

Let be a data set with n vibration signals which have been decomposed in m power 

packets P(k,j). The n power packets, corresponding to a decomposition level k (n=2k) and 

a decomposition index j, are grouped in the three operating states defined above. Then, 

the average power and date of each operating state are computed, and three points (B, A, 

L) with coordinates time and power are obtained. 

Next, the significant event is marked in the time axis (step 1 of Figure 3) and the three 

points are plotted in the time-average power axes (steps 2-4 of Figure 3). Later, these 

points are joined with straight lines. 

The straight line joining the operating states B and A is always plotted in red (step 5 

of Figure 3). The operating states A and L are linked using a green line (step 6 of Figure 

3), and the states B and L are connected with a blue line (step 7 of Figure 3). 

In addition, a coding for the easy identification of the configuration of the operating 

states has been defined (step 8 of Figure 3). This coding consists of three colours (red, 

green and blue) and three letters (B, A, L) naming each of the three lines in the same order 

that are generated. These letters are written in uppercase or lowercase letters according 

the sign of the slope of the straight line joining two operating states. Uppercase letters 

correspond to slopes greater or equal to zero, while lowercase letters correspond to 

negative slopes. 

That way, taking as example a bAl configuration, that means the power of packet 

P(k,j) is reduced between states B and A, and between states B and L; however the power 

is increased between states A and L. In principle, the bAl or bal are the expected 

configurations in the analysis of a mechanical system which have been repaired recently 

(from the third period of the ‘bathtub’ curve to the first period). In case the apparition of 

a defect will be studied, the expected configurations would be BAL or BaL (from the 

second period of the ‘bathtub’ curve to the third period). The Table 2 shows all the 

configuration possibilities accompanied by an explanatory drawing and the previous 

colour coding. 
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Figure 3. Generation process of GRSC. 

 
Table 2. Possible configurations 

Configuration Shape Configuration Shape 

bal=-3 

 

Bal=1 

 

bAl=-2 

 

BAl=∄ Not possible 

baL=∄ Not possible BaL=2 

 

bAL=-1 

 

BAL=3 
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The number of configuration of states shapes is directly related to the decomposition 

level of the signal’s spectrum. As the spectrum is split in two halves each time, 2k shapes 

are obtained per k level. The Table 3 shows this phenomenon.  

 
Table 3. Increase of shape number with decomposition level 
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If we decompose the power spectrum of the signal up to, for example, level k=9, we 

will obtain 1023 shapes, as it is computed in equation (3). 
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2.6. CBF 

The aim of the CBF (Chromogram of Bands of Frequency) is to compile in one image 

all the information extracted from the MLA and GRSC. A numerical value is assigned to 

each GRSC configuration. Then the numerical value is converted in a specific colour 

according to Table 4, cold colours (light to dark blue) corresponds to negative b 

configurations, while warm colours (yellow and reds) corresponds to positive B 

configurations. 

 
Table 4. Colour coding of the possible configurations 

Configuration Shape Configuration Shape 

bal=-3 

 

Bal=1 

 

bAl=-2 

 

BAl=∄ Not possible 

baL=∄ Not possible BaL=2 

 

bAL=-1 

 

BAL=3 
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Then the energy packets are plotted in a colour map according to their frequency, 

bandwidth, decomposition level and colour. The Figure 4 shows an example of a CBF. 

For a better understanding of the CBF technique, the configurations of decomposition 

level k=2 have been marked in the figure. 

 

 

Figure 4. Example of CBF 

The presented techniques are especially developed for monitoring complex 

mechanical systems and the identification of performance changes in those system due to 

events like maintenance operation or the apparition of defects in one of the mechanical 

elements of the system, among others. 

The GRSC is a good method to oversee the trends in the evolution of the mechanical 

system, while the CBF can offer a global view of the system and highlight the critical 

frequency bands. So they can be used jointly or separately, according to the objectives of 

the monitoring. 

 

3. Experimental validation 
This section presents the experimental validation of the proposed techniques and 

methodology through two examples. The first example uses a well-known vibration 

database of bearing faults and the second one considers real signals taken from a high 

speed train (HST) during its normal operation. The subsections of both examples describe 

the experiments in first place and then discuss the obtained results. 

 

3.1. Bearing data 

Ball bearing test data from the Case Western Reserve University Bearing Data Centre 

[31] were used for the first experimental validation. These data have been widely used in 

the scientific literature and it is a de facto standard for testing new methods for detecting 

bearing defects. In reference [32], Smith and Randall conduct a benchmark over those 

data and provide very useful information about the signals. 
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3.1.1. Description of the experiment 
The test bench consist of a 2 horsepower motor, a torque transducer/encoder and a 

dynamometer. The tested bearings support the motor shaft. Vibration data were collected 

using accelerometers located at the drive and fan ends of the motor and with a sampling 

rate of 48000 samples per second. The Figure 5 shows the test rig used at CWRU for 

testing bearings. 

 

 

Figure 5. Test rig of the CWRU Bearing Data Centre [31] 

 

Of all the available data in the repository, we will focus on the ball faults data. Three 

different states were downloaded (fault diameters of 7 and 14 mils of inch, and without 

faults). These data are arranged to simulate the usual trend of a faulty machine after the 

appearing of a defect. So, the definition of the operating states is as follows: 

• State B (Before) corresponds to the baseline (no defects) signal. 

• State A (After) corresponds to the 7 mils defect signal 

• State L (Later) corresponds to the 14 mils defect signal. 

The Figure 6 shows the appearance of the vibration signals without defect and with 

7 mils defect, as well as their spectra. 

 

  

a) b) 

Figure 6. Time signal and spectrum of CWRU signals: a) normal baseline and b) ball 7mils defect. 

 



11 

 

3.1.2. Results and discussions 
Due to the fact that the bearing measurements have different lengths, they were split 

in sections of 16384 data points, resulting in 29 subsignals from each original signal. 

Then, the proposed methodology is applied to the bearing signals and the spectra are 

broken down into packets up to level k=11. The results of applying the GRSC to the drive 

end (DE) vibration signals are shown in Figure 7. 

For a decomposition level of k=0 the shape of the state configuration is the expected: 

a power increase after the apparition of the defect that grows as the defect size becomes 

bigger and bigger. This behaviour corresponds to a BAL configuration. 

The two power packets of the decomposition level k=1 show different shapes. The 

power packet between 0 and 12 kHz presents the expected BAL configuration; whereas 

the power packet between 12 and 24 kHz presents a bAl configuration, which indicates a 

power reduction from state B to state A and a power increase between state A and state 

L with a power reduction between state B and state L.  

 

 

a) 

  

b) c) 

Figure 7. GRSC of the DE vibration signals for decomposition levels k=0 (a), k=1 (b) and k=2 (c). 

For a decomposition level k=2, we obtain four power packets in the frequency bands 

0-6 kHz, 6-12 kHz, 12-18 kHz and 18-24 kHz. The first one (0-6 kHz) shows a BAL 
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configuration as expected. However, the other three power packets present a bAl 

configuration. 

According to the states definition made in section 2.5 –which are based on the time 

degradation curve explained in section 2.1 – the obtained shapes indicate the presence of 

a defect and also that this defect is more perceptible in the low frequency range. 

 

The CBF is shown in Figure 8. First, we can check that the colours of the horizontal 

strips k=0-2 matches the configurations stated in Table 4. Red colours —especially dark-

red— are the dominant colours below 4000 Hz in all the decomposition levels. The large 

frequency band between 4000 Hz and 21600 Hz is dominated by blue colours, with some 

small stripes of yellow and red. The frequency band between 21.6 kHz and 24 kHz 

presents a red strip. 

A detailed view of the 0-3000 Hz frequency band is shown in Figure 9. In this detail, 

we can see a significant zone coloured in light blue, which means a reduction of the 

vibration level between the state B (no defect) and the state A (7 mils defect). However, 

between the states B and L, the power is increased. This phenomenon could be originated 

by the measuring issues detected by Smith and Randall in reference [32]. The red colours 

in the frequency bands that contain the BSF and 2xBSF indicate a vibration level increase 

in that bands, which confirms this method can detect the ball fault and improves the 

results of the three methods proposed in [32]. 

 

 

Figure 8. CBF of the DE vibration signals. 
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Figure 9. Detail of the CBF of the DE vibration signals in the 0-3000 Hz frequency band. 

 

 

3.2. HST axle box vibrations 

The second experimental validation of the proposed methods is carried up with 

vibration data from a high speed train. The train under study is equipped with a vibration 

measuring system (composed of several accelerometers), a data acquisition system, and 

a communication system that transmits the data to the cloud (see Figure 10). Then these 

data are downloaded and processed in a computer. 

The accelerometers are placed in the axle box cover of a trailer axle. This axle is part 

of the last bogie of the last passenger car and is the nearest axle to the second power car. 

In this paper, we will only focus on the vertical accelerometer – highlighted in yellow in 

Figure 10. 

 

 

Figure 10. Diagram of the measurement system and location of the vertical accelerometer. 

 

3.2.1. Description of the experiment 
Vibration data were collected from a high speed train during its normal operation. 

Accelerometers were placed in the axle box and measurements were taken at an average 

speed of 270 km/h in a selected section of a Spanish high speed line. The vibration signals 
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were acquired at a sampling rate of 5120 Hz. Full details of the measurement system and 

conditions can be found in [33]. 

The train underwent a maintenance operation that consisted of the reprofiling the two 

wheels of the monitored axle. The vibration signals are analysed before and after the 

maintenance works. The Figure 11 shows two examples of vibration signals before and 

after the maintenance, as well as their spectra. Taking into account the maintenance date, 

three different operating states are defined: 

• State B (Before): it groups all the vibration data collected before the 

maintenance action. The average power of this state is depicted by the B 

points in Figure 12. 

• State A (After): it groups all the vibration data collected just after the 

maintenance action. In this case, the first day after returning to service. The 

average power of this state is represented by the point located in the middle 

of the images of Figure 12. 

• State L (Later): it groups all the vibration data recorded after the state A. The 

average power of this state is illustrated by the most right point in the graphs 

of Figure 12. 

 

  

a) b) 

Figure 11. Time signal and spectrum of the HST vibration signals before (a) and after (b) the wheel 

intervention. 

 

3.2.2. Results and discussions 
In this experiment, 1234 signals are processed following the proposed methods. First, 

the PSD of each recorded signal is computed and averaged. Then the average spectra of 

the three operating states are split in power packets from decomposition level k=0, 

namely the whole spectrum, up to decomposition level k=9. 

The Figure 12 shows the GRSC of the decomposition levels k=0-3. In the GRSC of 

level k=0 –that is, the whole spectrum– it is clearly visible a spectral power reduction 

between the states B and A. This means that the maintenance operation has reduced the 

vibration level of the system. If we focus on the evolution between states A and L, we 

observe an increase of the spectral power, which is consistent with a gradual deterioration 

of the system after the overhaul. The negative slope between states B and L means the 

spectral power has not reached the level previous to maintenance yet. 
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The two power packets of the decomposition level k=1 (see Figure 12 b) present 

different configurations. The low frequency packet shows a bAL, which means an 

increase of the vibration level at the end of the studied process. On the other hand, the bal 

configuration of the high frequency packet means a continuous descent of the vibration 

level.  

The decomposition level k=2 gives four state configurations (Figure 12 c). The power 

packets 1 (0-640 Hz) and 3 (1280-1920 Hz) present the bAl configuration; while the 

fourth power packet (1920-2560 Hz) shows a bal configuration. The second power packet 

(640-1280 Hz) presents a BAL configuration, which –in this case– is the worst possible 

configuration, as the vibration level always raises. 

The eight configurations of the decomposition level k=3 are plotted in Figure 12 d. 

In this case, there is a great diversity of configurations. The first (0-320 Hz) and seventh 

(1920-2240 Hz) power packets present bal configurations. The power packets 5, 6 and 8 

display a bAl configuration, while the second power packet exhibits a bAL configuration. 

The two remaining power packets (640-960 Hz and 960-1280 Hz) reveal a BAL 

configuration. 

The Figure 13 shows the CBF of the PSD of the vertical vibrations, compiling the 

information of the 1023 configurations obtained from the decomposition process up to 

level k=9. The analysis of the CBF shows a predominance of blue colours over red 

colours, which means the vibration level is reduced after the maintenance action. The red 

zone is visible from decomposition level k=2 and is mainly located in a frequency band 

between 800 and 1500 Hz. 

There are also several zones where the power level is reduced after the wheels 

reprofiling operation in all the decomposition levels. That is, blue colours from the top to 

the down of the CBF. These frequency bands are located, approximately, at 400-750 Hz, 

1500-1675 Hz and above 2000 Hz. However, they exist some zones within these bands 

that increase the power after the maintenance in the highest decomposition levels. 

In short, the frequency bands of 400-750 Hz, 1500-1675 Hz and 2000-2500 Hz are 

affected positively by the maintenance action, while the frequency band between 800 and 

1500 Hz suffers the opposite effect. 

These results agree with the results presented in [12] using the EMD technique. 

However, the methods presented in this paper allow a faster and more visual identification 

of the critical zones of the frequency spectrum. In addition, these new techniques compile 

a lot of information in few images that would need lots of figures by using the methods 

applied in reference [12]. 
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a) 

  

b) c) 

  

d) 

Figure 12. GRSC of the HST vibration signals for decomposition levels k=0 (a), k=1 (b), k=2 (c) and k=3 

(d). 
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Figure 13. CBF of the vertical vibrations 

 

4. Conclusions 
 

In this paper, a new methodology for the analysis of vibratory mechanical systems is 

proposed. The methodology uses two different novel techniques to represent, in a simple 

way, the large amount of vibration measurements that can be acquired when monitoring 

a complex mechanical system in order to evaluate its condition. The methodology is 

tested on a simple mechanical system such as a bearing test bench (evaluation of a single 

mechanical element through vibration measurements) and on a complex mechanical 

system such as the wheelset of a HST in operation. 

The GRSC technique let classify the evolution of the power packets (from a PSD 

signal) in one of six possible configurations and synthetize the information in graphs. 

The CBF technique let assign a unique colour to the possible GRSC configurations 

and compiles all the configurations obtained from the GRSC. Then these configurations 

are shown in the form of a colourmap with decomposition level-frequency axes. 

The experimental validation has demonstrated the utility of the proposed techniques 

for the monitoring of simple and complex mechanical systems. The tests carried out have 

highlighted the advantages of the new methods over other classical techniques: the GRSC 

and the CBF can handle large amounts of data (without using artificial intelligence) and 

show the evolution of the machine condition in a simple way using graphs and colours. 

Basically, upward lines and red colours means the machine is working in worse 

conditions (greater vibration level), and downward lines and blue colours indicate the 

machine is running in better conditions (less vibration level). In addition, the GRSC and 

the CBF have been able to detect the presence of a defect that could not be identified in 

other works using classical methods. Lastly, the number coding of the CBF can be used 

as the input data of an intelligent system for continuous monitoring or further analysis. 

The methodology is based on the existence of a milestone; however, this 

methodology can also be used on a daily monitoring by grouping the data recorded today 

in the L state, collecting the data recorded yesterday in the A state, and arranging all the 

data recorded before yesterday in the B state. Then, the user of the methodology must 
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only see the trend of the GRSC or the colours of the CBF to identify the condition of the 

monitored mechanical system. 
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