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We consider extremal polynomials with respect to a Sobolev-type p-norm, with 1 <
p < co and measures supported on compact subsets of the real line. For a wide class of
such extremal polynomials with respect to mutually singular measures (i.e. supported
on disjoint subsets of the real line), it is proved that their critical points are simple
and contained in the interior of the convex hull of the support of the measures involved
and the asymptotic critical point distribution is studied. We also find the nth root
asymptotic behavior of the corresponding sequence of Sobolev extremal polynomials
and their derivatives.
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1. Introduction

Let pp be a positive Borel measure supported on an interval of the real line Ay
(which does not reduce to a point). For 1 < p < oo, we denote by L? (1) the
Banach space of all p-integrable functions on A with respect to the measure o,

endowed with the norm
1/p
o= ([ 1s7a00) 1)
Ao
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We denote by P, the space of polynomials (with complex coefficients) of degree
<n, and by P} C P, the subset of monic polynomials of exact degree n. It is well
known that || - ||o,p is a strictly convexr norm, i.e. the unit ball is a strictly convex
set. Then, there exists a unique monic polynomial P, € P} such that

1Pallop = min [[Qllo.p, (2)

(cf. [ Definition 7.5.1 and Theorem 7.5.3]). P, is called the nth monic extremal
polynomial relative to || - |o,p-

The study of zeros and critical points of extremal polynomials is of great inter-
est because they can be interpreted in various ways from the standpoint of physics,
function theory and numerical analysis. It is known that (I) defines a Fejér or mono-
tonic norm when is restricted to the space P of polynomials (i.e. for distinct f,g € P
the condition |f(z)| < |g(z)] for all z € Ay, with equality only if g(z) = 0, implies
I fllo.p < llgllo,p)- Hence, from Fejér’s convex hull theorem [4, Theorem 10.2.2] we
get that the zeros of P, are simple and lie in Ag.

Let us mention a characterization of the solution of the extremal problem (2])
(cf. [3} §2.2, Ex. 7-h]). A polynomial P,, € P} is the nth monic extremal polynomial
in L (1) if and only if for all @ € P,,_4

Qsgn (Po) [PafP~  dpto = 0, where sgn (y) =

—
w
~

y/lyl ify #0,
0 ify=0.

Hence, if P, has a zero of multiplicity at least two at z* then, (ff%))z is a

polynomial of degree (n — 2) and we have the contradiction

0< [ Tl = [ s (@) 1P du(a) o

Consequently, all the zeros of P, are simple.

Let pg, p1 be two positive Borel measures supported on the intervals Ag C R
and A; C R, respectively, where Aq is an nontrivial interval. For 1 < p < oo, we
consider on the space P of polynomials, the Sobolev norm

1£llsp = (LF15, + 112 )% = ( [ 1o+ /A | f”’dul.> R

Ao

It is not difficult to prove that (@) is a strictly convex norm and, therefore, for each
n € Zy there exists a unique monic polynomial L,, € P} such that

Qlls.p- (5)

I Lnllsp = goin
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The polynomial L, is called the nth monic extremal polynomial relative to

Il - ls,p- In Proposition [Il we give an alternative direct proof of the uniqueness
of L,. Obviously, | - ||s,» is not a Fejér norm because we can construct (piecewise
continuously differentiable) functions such that |f(2)| < |g(2)],x € Ag U Ay, with

|f/| much larger than |¢'|, u1 a.e. on Ay, so that || f||s, > ||g|ls,p- Specific examples
are easy to produce.

Example 1. Let g, 11 be probability measures supported on Ag and Ay, respec-
tively. Take 0 < a < ¢ < 1 and assume that Ag U Ay C [—a,a]. If f(z) = 2 and
g(x) = ¢, then |f(z)| < |g(x)|,z € Ay U Ay, whereas

lolls, =" <1< [ lalduata) + 1= 112,

Ag

It is well known that in the standard case of extremality with respect to the
norm () the zeros of the extremal polynomial are all in Ay and () is a Fejér norm,
but in the Sobolev case this is not true. Althammer shows in an early example (cf.
[1], where p = 2) that in the Sobolev case the zeros of the orthogonal polynomials
may lie outside of Ag U A;. Other examples of the previous fact can be seen in [6]
§2] (where p = 2).

However, in the numerical experiments carried out in [6, §2] (for p = 2), the
authors found that in all the cases considered, the critical points of L, were real
numbers. Their experiments conclude with two conjectures about the location of
zeros and critical points of the Sobolev-type orthogonal polynomials (see [6, Con-
jectures 1 and 2]). In the following theorem, we solve the problem derived from
these conjectures for extremal polynomials when po and pq in @) are supported on
mutually disjoint intervals.

Theorem 1. Let p € (1,00) and let ug, p1 be finite positive Borel measures sup-

ported on the real line such that Ag N A= () (;1 denotes the interior of a real set
A with the Euclidean topology of R). Then

(1.1) Forallm>1,n—1<Ny(Lp;Ag)+ No(L; A1) <n and the zeros of L, in
Ay are simple, where the symbol No(Q; I) denotes the number of zeros with
odd multiplicity of the polynomial Q € P on the interval I C R (i.e. points of
sign change).

(1.2) Form > 2, the critical points of the extremal polynomial L, are simple and
contained in Co(AgU Ay). (Co(A) denotes the convex hull of the set A).

(1.3) The number of zeros (or critical points) of the extremal polynomial L,, lying
in Co(AgUAL)\(AgUAL) is at most one.

(1.4) The zeros of L!, in Aq interlace the zeros of Ly, on that set.

The following example shows that, in general, the lower bound in inequality (1.1)
of Theorem [I] cannot be improved.
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Example 2. Set Ay = [—11. — 2], A; = [22.5,36] and

-2 36
191a= [ @)t [ (@),
—11 22.5
The extremal polynomial of degree n = 2 is La(2) = 22 — 49 with zeros z; = —7,

29 = 7 and critical point z3 = 0. Then n — 1 =1 = Ny(L2; Ag) + No(Lh; Ay) = 1.

The next result provides a natural and intrinsic characterization of the extremal
polynomials defined by (@), and an extension of (B]) for the Sobolev case.

Theorem 2. L, is the nth monic extremal polynomial with respect to || - ||s,p if
and only if

(Q;Ln)sp = R Q(z) sgn (Lu(x)) |Ln ()P~ duo ()

A Q' () sgn (L, (x)) |, (@)["~ dpa () = 0,

for every polynomial Q € P,,_1.

Note that unless p = 2, (-, -)s,, does not define an inner product.
Theorem P2lis a corollary of Theorem [l where (@) is replaced by a Sobolev norm
with derivatives of higher order. More precisely, for f € P, set

£ Wl 5,pm = (Z ||f<’“>||z7p> = (Z / f“f)pduk) : (6)
k=0 k=0

where m is a fixed non-negative integer, 1 < p < 0o, uy is a positive Borel measure
supported on R (k= 0,...,m), supp (o) is an infinite set and f(*) denotes the kth
derivative of f. When m = 1, (@), reduces to @) and || - [sp = || - |s,p,1-

According to (@), L,, € P} (the nth monic extremal polynomial with respect to
([6) is a monic polynomial that verifies

Qlls,p,m- (7)

Lnlls p.m = min

When p = 2, and the norm (@) is given by an inner product, the corresponding
Sobolev extremal polynomials (or orthogonal with respect to the associated inner
product) have been extensively studied. A survey on the subject is provided in [12].
However, for p # 2 (1 < p < 00) not much has been attained and the basic references
are [§] for the so-called “sequentially dominated norms” and [10] for measures with
unbounded support on the real line.

SectionPlis devoted to the study of the existence and uniqueness of the extremal
polynomial with respect to the norm (). Theorem [ which is of independent inter-
est, is the main tool for locating zeros and critical points. In Sec. Bl we prove
Theorem [1 and Corollary Bl on the location and algebraic properties of the zeros
and critical points of the extremal polynomials L,,. The rest of this paper is devoted
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to the study of the asymptotic distribution of the zeros and critical points of the
Sobolev extremal polynomials. Next, we state the main result in this direction after
introducing some needed terminology.

For any complex polynomial Q,(z) = ¢[[i_,(z — 2zx), with ¢, z1,...,2, € C,
we denote by o(Q,,) the so-called normalized zero counting measure associated with

Q’I’L7 as

1 n
o(Qn) = n Z(szw (8)

j=1
where d; is the Dirac measure with mass one at the point z;. Following the usual
terminology, if {u,} is a sequence of measures on a compact set K C C, we say

that a measure p is the limit of {u,} in the weak star topology of measures, if
i [ faun = [ s
n—oo

for every continuous function f on K. In this case we write w-lim,, .o ttn, = p.

Let u be a finite Borel measure whose compact support S(u) C C has positive
logarithmic capacity and let P, be the associated monic orthogonal polynomial
with respect to u of degree n. We say that p is regular and write u € Reg if

Jim 1P],/5 = cap (S()

where || P,||,,2 denotes the La(1) norm of P,. Theorem 3.1.1 in [I8] contains several
equivalent forms of defining regular measures (see also [I8, Theorems 3.2.1, 3.2.3]).
Recall that for any compact set K C C with cap (K) > 0 there exists a unique
probability measure ux, S(ur) C K, called the equilibrium measure of K, which is
characterized by

1 =v, z€K\A, cap(4)=0,

J—
|z — | <7, ze€C,

where A is a Borel set, and v is some uniquely determined constant (actually

e~ 7 = cap (K)).

Theorem 3. Let {L,} be the sequence of monic extremal polynomials relative
to @) with p € (1,00) and uo, p1 € Reg. Then, for each integer j > 0

lim || LY||Y" = cap (A), 9)
w-limo(LY)) = pa, (10)

where A = Ag U A1 and pa is the equilibrium measure on A.

Notice that (I0) holds for j > 0. For j = 0 the zeros of the polynomials L,, can
abandon A and their asymptotic zero distribution is governed by the balayage of
ia onto a certain region which we describe later (for details, see Theorem [G]).
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2. The Characterization Theorem

Throughout this section, we consider the more general Sobolev norm (@) and L,
verifies (). As P, is a finite-dimensional linear space, the existence of L,, € P
is obvious. In addition, L,, has real coefficients, for otherwise L,, could be rewritten
as L, = P +1iQ where @Q and P are polynomials with real coefficients, ) # 0 and
P is a monic polynomial of degree n satisfying

I LallG o = Z/\P(k +iQW P duy = Z/ (P52 + Q™)) 5 dpy,

= / POy, = |PI,
k=0

The next proposition contains a direct proof of the uniqueness of the Sobolev
extremal polynomial L,, and shows that (@) is a strictly convex norm.

Proposition 1 (Uniqueness). Let || - ||s,p,m be the Sobolev-type norm defined
by ([@). Then, there exists a unique monic polynomial L, (deg(L,) =n) such that

[ Lnllspm = infq, ey, [Qnlls.p.m

Proof. If L, and L, are two different monic extremal polynomials of degree n,
from the extremality and the triangular inequality it is obvious that %(Ln + L) is
also a monic extremal polynomials. Hence

1Zn + Lnlls,pm = I Zallspm + 1 Znll5,5,m- (11)
From the Minkowski inequality we obtain

m 1/p
1wt Tullspm = (z 12 quz,p)

k=0

IN

m 1/p
(Z (I |1 p + ||L£f>|k,p)”>

k=0

A

< N Lnlls.pm + [ Lnlls.p.m
Therefore, by ([, the first inequality just shown is in fact the equality

m

STILE + EWNE =S (LG ey + 129 1,)"-

k=0 k=0

However,
LS + LR < (L e + 1L [15p)"s k=0,1,..,m;
therefore,

1LY + L e = 120 Nkp + 1L s k=0,1,...,m

1950019-6
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In particular, from the Minkowski inequality for L” (1), we have that there exists
a constant a > 0 such that L, = «L, almost everywhere with respect to .
But, L, and L, are monic polynomials and supp (uo) is an infinite set, hence
L, =L,. |

Theorem 4 (Characterization). Let || - |[spm (1 < p < 00) be the Sobolev-type
norm defined in ([6l). Then, the monic polynomial L, is the nth monic extremal
polynomial relative to || - ||s,p,m if and only if

(@ Lu)spm = / QWsgn (L)) |LO P~ due = 0, (12)
for every polynomial Q € P,,_1.

Proof. Assume that L,, is the nth monic extremal polynomial relative to the norm
Il lls,p,m and let @ € P,,_1, then

| Lnllspm < || Ln+ aQ|spm foralack. (13)

Let F(«) be the auxiliary function defined for all « € R by the expression
F(@) = L+ 0@l = - [ 124+ 0Q
k=0
From Proposition [l and ([I3]), o = 0 is the unique minimum point of F', thus

0= pZ / QWsgn (LE) [LO " djuy, = p(Q, La)spom

and we get (IZ). Now, assume that (I:IZI) takes place for every polynomial @ € Pp,_;.
Obviously, each monic polynomial Q of degree n can be written as the sum Q =
L, + Q where Q € P,,_;.

Let g be the conjugate exponent of p, i.e. ¢ = .For k=0,1,...,m we have

Gr =sgn(LP) [LP P~ e L9 (), /IGk\qduk = 1P,

Thus

m

1Ll = IO, =3 [1Gudi = Yl (14)
k=0 k=0

k=0

Let ,3>0,p>1and g = %. It is well known that

w-msg+§, (15)
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with equality if and only if « = 8 (cf. [13] §2.1.1 and Theorem 2]). From (I2]),
Holder’s inequality, (I5) and (I4]), we get

”Lan,p,m - <Lna Ln>S,p,m = <Ln +Q, Ln>S,p,m - <Qa Ln>S,p,ma

Z/Qv(k)deum < Z Hé(k)Hk,p N Grllk,g,
k=0 k=0

= (1QWIR, N 1GkIE, ) _ IIQHZ,p,er LS p.m
p q p q

k=0

Thus || Ly s,p,m < ||@H57p7m, which completes the proof. m|

Corollary 1. Under the assumptions of Theorem [l if n > 1 then L, has at least
one zero of odd multiplicity xo € Co(supp (uo)).

Proof. This is an immediate consequence of

/Sgn (L’ﬂ) |Ln|p71d:uo = <17Ln>5’,p,m =0. O

Corollary 2. Under the assumptions of TheoremHl if n > 2 then L. has at least
one zero of odd multiplicity in Co(supp (po) Usupp (u1)).

Proof. If L, has no zeros of odd multiplicity on Co (supp (o) U supp (¢1)), then
L,, is monotone on Co (supp (o) U supp (¢1)). From Corollary [Il L,, has exactly

one zero xg of odd multiplicity on Co (supp (uo)), so
sgn (& — 20)Ln(x)) = sgn (L, () = ¢
is constant for all # € Co (supp (o)) with ¢ = £1. Hence, by Theorem Fl we have

0= (e(e — 20), Lu)s,pum

= / e(x — 20)sgn (L) |LulP~ dpo + / ¢-sgu (L) L, [P~ dpy > 0

which is a contradiction. O

3. Two Disjoint Intervals: Proof of Theorem [l

Here, we prove the results on the location of zeros and critical points announced
previously. The first lemma in this section is a consequence of Biernacki’s theorem
[14) Theorem 4.5.2], which in turn is a converse of the Gauss—Lucas theorem.

Lemma 1 (Biernacki [14, Theorem 4.5.2]). Let K be the convex hull of the
critical points of a polynomial f, and let f(z9) = 0. Then, the zeros of f lie in the

1950019-8
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union of all the closed disks centered at the vertices of K and radius equal to the
distance from the vertex to zq.

Let I C R be an interval and @ € P. As in Theorem [l N,(Q;I) denotes
the number of zeros of @ on I with odd multiplicity (i.e. points of sign change).
Additionally, N (Q; I) denotes the total number of zeros (countlng multiplicities)

of @ on I and for all n > 1 we write ¢, (Ln,Ao) + No(L; Al) The key to
the proof of Corollary [3is the following tr1v1al consequence of Rolle’s theorem.

Lemma 2 ([9, Lemma 2.1]). Let I be an interval of the real line and Q
a non-constant polynomial of degree n with real coefficients, then N.(Q;I) +

N.(Q";C\I) < n.

Proof of Theorem [l For n = 1,2 the statements of the lemma are immediate
consequences of Corollaries[Il and 2l So, in the sequel we assume that n > 3. From

Lemma ] we have £,, < n. The simplicity of the zeros of L,, in Aqg follows directly
from the inequality ¢, > n — 1 and Lemma 2l Therefore, to complete the proof of
the statement (1.1) it suffices to show that

by >n—1. (16)

Without loss of generality, we can assume that AOO: (a,b), Aolz (¢,d) and —c0 <
a<b<c<d<oo,the case d < a is solved similarly.

Fix n > 3 and let 2y be the point in (a,b) closest to [c, d] where L, changes
sign. This point exists due to Corollary[[l There are two possible cases, either

sgn (Ly,(zo +€) - Li(c+¢€)) =1 (D)
for all sufficiently small € > 0, or
sgn (Ly (zo +€) - Li(c+€)) = —1 (1)

for all sufficiently small € > 0. Let us consider each case separately.
In case [l we can prove more than ([[0); namely,

ly, =n. (17)

To the contrary, suppose that £, <n—1in casellor £, < n — 2 in case[[ll We shall
see that we can find a polynomial @ € P,,_; such that

Qu)Ln(x) >0, z€lab and Q@IL() >0, weled.  (18)
Suppose that (I8]) holds, using Theorem 2l we get
0= <Q7 Ln>S,p,1

/ Qsgn (Ln) [La|"~ 1duo+/ Q'sgn (L},) | Ly,[P~ dpr > 0,

which is a contradiction and the proof of (1.1) would be complete. Therefore, it is
sufficient to find such a polynomial Q.

1950019-9



A. Diaz Gonzdlez, G. Lépez Lagomasino € H. Pijeira Cabrera

Case I. Suppose that £, < n — 1 and take @ to be a polynomial of degree < ¢,
with real coefficients, not identically equal to zero, which has a zero at each point
of (a,b) where L, changes sign and whose derivative has a zero at each point of
(¢c,d) where L], changes sign. The existence of @) reduces to solving a homogeneous
linear system of ¢, equations on ¢, + 1 unknowns (the coefficients of Q); thus, a
nontrivial solution always exists. Notice that

Cn < N=(Q; (a,0)) + N=(Q's (¢, d))

with strict inequality if either @ (respectively, ) has on (a, b) (respectively, (¢, d))
zeros of multiplicity greater than one or distinct from those assigned by construc-
tion. On the other hand, because of Corollary [l the degree of @Q is at least 1;
therefore, using Lemma 2] we have that

ln < N(Q;(a,0)) + N=(Q's (¢, d)) < deg (Q) < £y

Thus

tn = N:(Q; (a,0)) + N=(Q'; (c,d)) = deg (Q). (19)

Hence @ (respectively, Q') has on (a,b) (respectively, (c,d)) simple zeros and has
no other zero different from those given by construction. So, QL, and Q'L!, have
constant sign on [a,b] and [e, d], respectively. We can choose @ in such a way that
QL, > 0 on [a,b] (if this was not so replace @ by —@Q). Then, to prove ([I8) it
remains to check that sgn (Q'(c+¢€)L] (zg+¢€)) = 1 for all e sufficiently small.
From Rolle’s Theorem and (I9) we have

gn —-1= NO(Q; (a,l‘o)) + NO(Q/; (C7 d))
< No(Q'; (a,w0)) + No(Q's (¢, d))
</, —1.

Hence N, (Q'; (a,20)) + No(Q'; (¢,d)) = deg (Q’) and all the zeros of Q) are con-
tained in (a, z¢) U (¢, d). So, for all e sufficiently small, we have

sgn (Q' (o +¢)-Q'(c+e)) =1.

Now, from this expression and (), we obtain

sgn (Q'(c+ )Ly, (c+€)) = sgn (Q'(c + €))sgn (L, (c + €))

sgn (Q' (o + €)) sgn (Ly, (zo + €))

sen (Q(ao + ¢)) sgn (Lo + €))
g0 (Q(ao + ) Lu(wo + ) = 1.

Therefore, we get (I8) and hence [IT) (¢, = n).

(@
(@
(
(
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In order to prove the remaining statements, notice that
n—1=4,—1=Ny(Ly;(a,z0)) + No(L,; (¢c,d))
< No(Ly; (a,70)) + No(Ly; (¢,d)) + No(Ly; (w0, ) <n — 1.
Therefore,
No(L!;(a,d)) =n—1, No(L);(zo,c]) =0 and
No(Ln; (@, 20)) = No(L,; (a, 7o)
which proves (1.2)—(1.4).

Case II. Suppose that £,, < n — 2. The difference consists in that to the right of
2o and ¢ the polynomial L/ has different signs. Here, we construct @ of degree
< /l,+1 < n—1 with real coeflicients, not identically equal to zero, with the
same interpolation conditions as above plus Q'(¢) = 0. Following the same line of
reasoning, we have

ln +1=N:(Q;(a,b)) + N=(Q; [¢,d)) = deg (Q).-

Hence @ (respectively, Q') has on (a,b) (respectively, [c,d)) simple zeros and no
other zero except those given by construction. So QL,, and 'L!, have constant sign
on [a,b] and [c,d], respectively. Analogous to the previous case, No(Q’; (a, zo)) +
No(Q';[c,d)) = deg(Q') and all the zeros of Q' are contained in (a,x¢) U [c,d).
Now, using that @ changes sign at ¢ and ([I) we obtain

sgn (Q'(c+ €) Ly, (c +€)) = sgn (Q'(c + €)) sgn (L, (c + €))
= —sgn (Q'(zo + €)) (—sgn(Ly, (zo + ¢€)))
= sgn (Q(zo + €)) sgn (Ln (2o + €))
= sgn (Q(zo + €)Ln(zo +¢)) =1

which proves that @ satisfies (I8) and hence (IG) is true.
Now, notice that ([ and the intermediate value theorem imply that L/ has at
least an odd zero on the interval (zg, ¢], thus

n—1<(,—1)+1=Ny(Ln;(a,z0)) + No(L.; (¢,d)) + 1
< No(Ly; (a,20)) + No(Ly; (¢, d) + No(Ly; (w0, ) <n — 1.

Therefore,
No(L!;(a,d)) =n—1, No(L);(zo,c])=1 and
No(Ln; (a,20)) = No(Ly; (a, x0))
from which (1.2)—(1.4) follow. m|
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Corollary 3. Letp € (1, oo) and let po, (1 be finite positive Borel measures defined

on the real line such that Ao N Al— (0. If we take [a,b] = Ag and [c,d] = A1, where
a, b, ¢, d€R, then the zeros of Ly, lie in

D(d,d—a)UD(a,b—a) ifb<ec,
D(c,b—c)UD(b,b—a) ifd<a,
where D(a,r) ={2 € C: |z —a| <r}.
Proof. For n = 1 the statement is certainly true because of Corollary [[l For
n > 2 the result follows directly from (1.2) in Theorem [0 and the Biernacki
Lemma [ |

4. Regular Asymptotic Distribution of Critical Points

A compact set K of the complex plane is said to be regular if the Green function
with singularity at oo relative to the unbounded connected component of C\ K can
be extended continuously to the boundary. We refer the reader to [7[I5] and for
short [I8, Appendix]| for this and other notions related with logarithmic potential
theory. For example, the union of a finite number of bounded intervals in the real
line form regular compact sets.

Suppose that u is a finite positive Borel measure such that S(u) is a regular
compact set and 1 < p < oo. It is well known (see [I8, Theorem 3.4.3]) that u € Reg

if and only if
1/n
lim <M> —1, (21)

oo \ [|@nllup

where {Q,},n € Z;, is any sequence of polynomials such that deg (Q,) = n and
| - ls(uy denotes the usual sup norm on S(u). Using Cauchy’s integral theorem for
the derivative of a holomorphic function, with the same hypothesis on S(u) it is
easy to show (see [II, Lemma 3]) that for all j € Z

) 1/n
lim sup 19 s )~ oy, (22)
n—oo \ Qnlls(w

One last result that we will used is contained in [2, Theorem 2.1, Corollary 2.1].
Let K be a compact subset of the real line with cap (K) > 0 and let {Q,} be a
sequence of monic polynomials, deg (Q,,) = n. Then

lim sup HQnH}(/n = cap (K) = w-limo(Q,) = uk. (23)

n— oo n—00

Proof of Theorem [Bl From @3)), [I0) follows from (@). Therefore, let us
prove ([@)).
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Let T, denote the nth monic Chebyshev polynomial with respect to A; that is,
ITn]a < ||Qn|la for any monic polynomial @, of degree n. In particular,

) | 1/n
it 215" > tmint (17,51 )

> liminf | T, ;|| X" = cap (A),
since it is well known that lim,, HTnHlA/n = cap (A) (see, for example [I5, Corol-
lary 5.5.5]). Hence, we only need to prove that
limsup || LY | {™ < cap (A). (24)
Since pg, 11 € Reg and Ag, Ap are regular compact sets, from (2II) and 22]) we
obtain

lim sup ||L£Lj) Hg/on < lim sup ||LnHZ/On < lim sup HLnH%f‘p
n—oo n—oo n—0oo
< lim sup ||Ln\|1§{;7 (25)
n—oo
and
limsup | |[%," < tmsup | L |[%," < limsup |21, [},
n— oo n— o0 n—oo ’
< limsup || Ly ||%)".
n—oo ’
The conjunction of these two relations imply that
limsup ||| X" < Timsup || Ln ]| ;- (26)

n—oo n—oo
Now, from the extremality of L,, in the Sobolev norm, we get
ILnll%, < N Talls, = 1Tl + 1 T0IE, 5
< po(Do) 1Tl + pa (A1) I TR,
< po(Do) 1 TnllA + pa (A1) [ ToI1A-

On the other hand, using again (21 and 22) it follows that

Ln 1/n T ||® 1/pn
lim sup (@) < lim sup <u0(A0) + p1(Aq) I "|A> <1,

n—oo \ [|Tnlla n—o0 1Tl A
whence
lim sup HLnIIfg/; < cap (A). (27)
Now, [26) and [21) give [24) and we are done. O

Remark 1. If Ag = [a,b] and A; = [¢, d] are bounded and nontrivial intervals of
R, for the equilibrium measure pa in Theorem Bl we have two possibilities:
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o If AgNA; #0, then A = [a, 5] (an interval) and ua is the arcsine measure

dx
d = 5 X a, .
e Iy @)

o If AgN Ay =0 then there exists z. € A, :C’OO(AO U A1)\ (Ap UAy) such that

(x — x) dx —0 99
/ V@ —a)(z —b)(x —c)(z — d)] ’ (29)

and (see [18, Lemma 4.4.1])

| — x| dx
/(@ —a)(@ = b)(z — )~ d)|

Combining Theorems [I] and Bl we obtain the following theorem.

dua = € (a,b) U (¢, d). (30)

Theorem 5. Let g, p11 € Reg be such that Ay and Ay are bounded and nontrivial

intervals of R satisfying Ao N Al— (. Denote by {L,} the sequence of monic
extremal polynomials relative to the corresponding Sobolev norm (@) withp € (1, 00).
Then, for all j >0

limsup | L) (2)|Y™ = cap (A) e92Z) | 2 e C (31)

n—0oo

except on a set of zero capacity, where go(z; 00) is the Green's function for = C\A
with singularity at infinity (cf. [I8, Appendix V).
Moreover, uniformly on compact subset of @ = C\ Co(AgU Ay)

lim |L(J (2)| yn cap (A) e92(7:%0) (32)

n—oo

and

(3+1)
lim Ly +1( ) :/duA(x)7 (33)

n—o00 nL(])( ) z—x
where dup is given by B0).

Remark 2. To give an explicit expressions for the function on the right side of (31)
and ([B2]), we assume without loss of generality that Ay = [a,b] and Ay = [¢, d] with
—0 <a<b<ce<d< oo. As we show below, there are closed formulas for Green’s
function gq(z;00) and the logarithmic capacity of A. When both segments are
symmetrical, go(z;00) and cap (A) are given by elementary formulas (see ([31)). In
general, (formulas (B5]) and [34])), they can be expressed in terms of theta-functions
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(see [I6L[I7]) defined by

0(U,T, r S) _ Ze27r72((k+7’)2%%»(chrr)(u%»s))7
kEZ

where u,7 € C, Im (7) > 0 and r, s € R. Here, we will be particularly interested in
the functions

19(”77—> =0 (’U,, T, %7 %) and 790(7—) =40 (0,7’,0, %) . (34)

Following the procedure for computing the logarithmic capacity of two segments
given in [5l §1.3.3; 16l Chap. 2], let ¥(2) be the function

where 1/z > 0 for z > 0, and Y(w) is the elliptic integral

N dx
T(z) = /o NErE ok where v = ¥(c)

Putting ®(z) = Y(¥(z)) and 7 = i’g;% we obtain

—1

)|, (35)

T
T

=
iy
=
T
=
~
+
A
<

and

Yo(r) ¥/(c—a)(c—b)(d—a)(d - b)
2 9(3 1 (d)Re (B(x0)) , 7)

cap (A) = . (36)

We recall that a < b < ¢ < d. Hence if —a = d and —b = ¢ for Green’s function and
the logarithmic capacity, we obtain

V22— b2+ /22— a2
V2202 — /22 — a2

:11 +

ga (% 00) = 5

1
and cap (A) = 5\/ a?—b%,  (37)

where

log |z| if |z| > 1,
W R
0 if [z] < 1.

Proof of Theorem [Bl From Theorem [I, we have that for all n > 2, the critical

points of the extremal polynomial L,, are simple and contained in Co (Ag U Ay).
Now, Rolle’s theorem implies that the zeros of all derivatives of higher order of L,,
lie in the convex hull of the set of its critical points. Therefore, for all n > 2 and

j > 1, the (n — j) zeros {x,(gj)} of LY lie on Co (Ap U Ay). Thus, for each fixed
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j > 1 the measure o(Lﬁf)) has its support contained in Co (Ag U Ay). From the
lower envelope theorem (cf. [I8, Appendix III]) and (), we get

liminf [ log

n—00 |z — x|

; 1
dolt)e) = [log = dua). (39)
for all z € C except on a set of zero capacity. But, from [I8, Chap. 1-(2.3)]

J1os = T dha (&) = log s — gz 0)

cap

hence (B8)) is equivalent to ().
In order to prove ([B2)), notice that for each fixed j > 1, the family of functions

{/log%da(Lg))(x)} n ey,

is harmonic and uniformly bounded on compact subsets of Q. From @1), any
subsequence which converges uniformly on compact subsets of Q must tend to
[log |z — 2|~ dpua(z) (independent of the convergent subsequence chosen). There-
fore, due to the uniform boundedness of the sequence of functions, the whole
sequence converges uniformly on compact subsets of Q to this function. This is
equivalent to (32)).

Finally, expanding the rational function in the right-hand side of (B3] in partial
fractions, we get

e 1 E 1 =g [ do(L)(@)

nL(z2) nife-af) n S

Hence, it is straightforward that for each fixed j > 1, the sequence of rational
functions {L(j 1) (z) / nLY )( )} is uniformly bounded on each compact subset of Q.

As, all the measures O‘(L(])), are supported in Co (Ag U Ay) then for a fixed

z € ), the function f.(z) = (z — 2)~! is continuous on Co (Ag U Ayp). Therefore,
from (I0), we find that any subsequence of {L ]H)( )/nLgf)(z)} which converges
uniformly on compact subsets of 0 converges pointwise to

/ dﬂA(x) ] (39)

zZ—X

Thus, the whole sequence converges uniformly on compact subsets of O to this
function as stated in ([B3]). The expression of ua is given in ([B0).

To discuss the zeros of Sobolev extremal polynomials L,,, we need to introduce
some notation. Recall that 2 = C\A and that in the case we are now considering
ga(z,00) is given by BH). For p > 0, consider the set {z € C : ga(z,00) < p}.
Depending on p this set has either one connected component (when p is large
enough or two connected components one of which contains Ay and the other Aj.
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Let G, be the connected components of {z € C : go(z,00) < p} which is disjoint

from Ag. Therefore, G, = 0 for all p > pg > 0. Set G = J -, G, and

I'=0G U Ay,

where OG is the boundary of G. In the sequel, [u|r denotes the balayage of a
measure p onto I'. See [I8, Appendix A:VII] for a brief introduction to the notion
of balayage of a measure and for more details we refer to [7, Chap. IV]. O

Theorem 6. Under the hypotheses of Theorem[Bl let o be a limit of a subsequence
of {o(L,)} in the sense of the weak star topology of measures. Then S(c) C AUG
and [o]p = [pa]r.

Proof. The proof of this result is similar to that of [6, Theorem 2] with p = 2. The
main tool in the proof of [0, Theorem 2] is [6 Theorem 5] on the distribution of zeros
of certain family of weighted polynomials. For the application of [6 Theorem 5] it
is necessary to proof that if z € C\G then

lim sup | L, (2)[*/™ < cap (A) e92(=:%), (40)
Replacing in the proof of [6, Lemma 8] the expressions [0, (4.1), (4.2)] by (@), (27
and (27)), it is straightforward to deduce (@0). O

It is to be expected (and numerical experiments seem to indicate) that the
accumulation points of the zeros of the polynomials L,, draw T,
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