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Abstract

Let P(α,β )
n be the n-th monic Jacobi polynomial with α,β > −1. Given m numbers

ω1, . . . ,ωm ∈ C \ [−1,1], let Ωm = (ω1, . . . ,ωm) and P
(α,β )
n,m,Ωm

be the m-th iterated integral

of (n+m)!
n! P(α,β )

n normalized by the conditions

dk P
(α,β )
n,m,Ωm

dzk (ωm−k) = 0, for k = 0,1, . . . ,m−1.

The main purpose of the paper is to study the algebraic and asymptotic properties of the se-
quence of monic polynomials {P(α,β )

n,m,Ωm
}n. In particular, we obtain the relative asymptotic

for the ratio of the sequences {P(α,β )
n,m,Ωm

}n and {P(α,β )
n }n. We prove that the zeros of these

polynomials accumulate on a suitable ellipse.

1 Introduction
There is an extensive literature on the location of critical points of polynomials in terms of their
zeros ([19, Part I] and [21]), whose main pillars are Rolle’s Theorem, Gauss-Lucas Theorem,
and their refinements. However, actual converses of these theorems have not been found yet. It
is obvious that given one of the zeros of a polynomial and its critical points, the remaining zeros
are uniquely determined. Nonetheless, there are few results about zero location of polynomials
in terms of their critical points and a given zero, most of them contained in [19, §4.5]. In
general, these follow from the Schur-Szegő composition theorem [19, Th. 3.4.1d]. Perhaps, the
most relevant results in this sense are the theorems of Walsh [19, Th. 4.5.1] and Biernacki [19,
Th. 4.5.2].

*Research partially supported by Ministry of Economy and Competitiveness of Spain, under grant MTM2015-
65888-C4-2-P
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Let P(α,β )
n be the n-th monic Jacobi polynomial with parameters α,β ∈ R

P(α,β )
n (z) =

n

∑
k=0

(
n+α

n− k

)(
n+β

k

)(
2n+α +β

n

)−1

(z−1)k(z+1)n−k, (1)

where 2n+α +β 6= 0,1, . . . ,n−1,
(a

b

)
= Γ(a+1)/(Γ(a−b+1)Γ(b+1)) and Γ(·) is the usual

Gamma function (see [22, (4.21.6) and (4.3.2)] for more details). These classical polynomials
have been extensively used in mathematical analysis and practical applications (cf. [22, 20, 23]).
Nowadays, there has been renewed interest in using the Jacobi polynomials in the numerical
solution of differential equations. Some of these methods require explicit expressions of the in-
tegral of such polynomials and the localization of their zeros (e.g. see [4, 5]). Another area that
demands this knowledge is the study of families of polynomials orthogonal in a non-standard
sense, particularly the Sobolev-type orthogonality and the orthogonality with respect to a dif-
ferential operator (e.g. [3, 6, 17] ).

It is well known that P(α,β )
n satisfies the following differentiation relation

dk P(α,β )
n

dzk (z) =
n!

(n− k)!
P(α+k,β+k)

n−k (z), 0≤ k ≤ n, (2)

(see [22, (4.21.6)-(4.21.7)] for details). Additionally, if α, β > −1, the family of polynomials
{P(α,β )

n } is orthogonal in [−1,1] with respect to the weight w(x) = (1− x)α(1+ x)β .
For a fixed m ∈ Z+, let P

(α,β )
n,m be the monic polynomial of degree n+m given by

P
(α,β )
n,m = P(α−m,β−m)

n+m .

Then,
dm P

(α,β )
n,m

dzm (z) =
(n+m)!

n!
P(α,β )

n (z),

and thus P
(α,β )
n,m is the m-th iterated integral (or a primitive of order m) of (n+m)!P(α,β )

n
n! . In what

follows, we shall refer to P
(α,β )
n,m as the m-th fundamental iterated integral of (n+m)!

n! P(α,β )
n .

Given m complex numbers ω1, . . . ,ωm, let Ωk = (ω1, . . . ,ωk) for 1 ≤ k ≤ m, and P
(α,β )
n,m,Ωm

be the m-th iterated integral of (n+m)!
n! P(α,β )

n normalized by the conditions

dk P
(α,β )
n,m,Ωm

dzk (ωm−k) = 0, k = 0,1, . . . ,m−1. (3)

It is well known that there exists a unique polynomial of degree at most m− 1, An,m(z) =
An,m(z;ω1, . . . ,ωm), satisfying the conditions

dk An,m

dzk (ωm−k) =
dk P

(α,β )
n,m

dzk (ωm−k), k = 0,1, . . . ,m−1. (4)
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The polynomial An,m is named the Abel-Goncharov interpolation polynomial, associated to the
conditions (4). The existence and uniqueness of An,m is obvious if we observe that (4) is a
triangular system of m equations and m unknowns (the coefficients of An,m) whose determinant
is equal to ∏

m−1
k=0 k!. The Abel-Goncharov interpolation polynomials are a generalization of

Taylor’s polynomials, which correspond to the case ωm = ωm−1 = · · · = ω1. In section 3, you
can see explicit expressions of Abel-Goncharov polynomials and some of their properties, for
more details see [23, 1, 10].

Therefore, the polynomial P
(α,β )
n,m,Ωm

can be written as

P
(α,β )
n,m,Ωm

(z) = P
(α,β )
n,m (z)−An,m(z), (5)

and we can interpret the polynomial P
(α,β )
n,m,Ωm

as the polynomial solution of the Abel-Goncharov
boundary value problem (see [1, §3.5])

dmY
dzm (z) = (n+m)!

n! P(α,β )
n (z), n > m,

dkY
dzk (ωm−k) = 0, k = 0,1, . . . ,m−1.

Moreover, if α,β > −1 then P
(α,β )
n,m,Ωm

is the (n + m)-th monic orthogonal polynomial with
respect to the discrete-continuous Sobolev bilinear form (see [3, 2]) given by

〈 f ,g〉S =
m−1

∑
k=0

dk f
dzk (ωm−k)

dkg
dzk (ωm−k)+

∫ 1

−1

dm f
dzm (x)

dmg
dzm (x)(1− x)α(1+ x)β dx.

The main goal of this paper is to study the algebraic and asymptotic properties of the family
of monic polynomials {P(α,β )

n,m,Ωm
}n, for m ∈ Z+, {ω1, · · · ,ωm} ⊂ C \ [−1,1] and α,β > −1.

The case α = β = ω1 = · · · = ωm = 0 was early studied in [7], where the authors wrote “It
would be interesting to obtain results, analogous to Theorem [7, Th. 2], for these polynomials”
referring to the Gegenbauer (or ultraspherical) polynomials (α = β > −1). Our Theorem 4 is
an extension of [7, Th. 2] for Jacobi polynomials when all the constants of integration ωi are
out of the interval [−1,1].

In the next section we review some of the standard facts on Jacobi polynomials and we give
the proof of some auxiliary results. The third section is devoted to study the Abel-Goncharov
interpolation polynomial An,m(z) of the m-th fundamental iterated integral of Jacobi polynomi-
als. In the last section, our main results on asymptotic behavior of the sequence of polynomials{
P

(α,β )
n,m,Ωm

}
n

and its zeros, are stated and proved.

2 Fundamental iterated integrals of Jacobi polynomials

Recall that, for a fixed m,n ∈ Z+, we denote by P
(α,β )
n,m the Jacobi monic polynomial of degree

n+m given by P(α−m,β−m)
n+m . From [20, §135 (12) and §138 (14)-(15)] we have the next lemma.
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Lemma 2.1. For a fixed m ∈ Z+, let P
(α,β )
n,m be the (n+m)-th fundamental primitive of n-th

monic Jacobi polynomial with parameters α,β ∈ R. Then

P
(α,β )
n,m (z) = P

(α,β )
n+1,m−1(z)+a(α,β )

n,m P
(α,β )
n,m−1(z)+b(α,β )

n,m P
(α,β )
n−1,m−1(z); (6)

where a(α,β )
n,m =

2(n+m)(α−β )

(2n+α +β +2)(2n+α +β )
,

b(α,β )
n,m =

−4(n+m)(n+m−1)(n+α)(n+β )

(2n+α +β )2((2n+α +β )2−1)
and

P
(α,β )
n,0 (z) = P(α,β )

n (z).

The asymptotic behavior of the sequence of polynomials {P(α,β )
n,m }n, stated in the following

lemma is a direct consequence of [22, Th. 8.21.7 & Eqn. (4.21.6)].

Lemma 2.2. If α,β ∈ R and m ∈ Z+, then

1) (Outer strong asymptotic). Uniformly on compact subsets of C\ [−1,1]

lim
n→∞

P
(α,β )
n,m (z)
ϕn(z)

= ψα,β ,m(z)
√

ϕ(z), where (7)

ϕ(z) =
1
2

(
z+
√

z2−1
)

with
√

z2−1 > 0 when z > 1 (8)

andψα,β ,m(z) =
22m−α−β

(√
z−1+

√
z+1

)α+β−2m

4
√
(z−1)2(α−m)+1 4

√
(z+1)2(β−m)+1

.

2) (n-th root asymptotic behavior). Uniformly on compact subsets of C\ [−1,1]

lim
n→∞

∣∣∣P(α,β )
n,m (z)

∣∣∣ 1
n
= |ϕ(z)| . (9)

3) (Comparative asymptotic behavior). Uniformly on compact subsets of C\ [−1,1]

lim
n→∞

P
(α,β )
n,m (z)

P(α,β )
n (z)

=

(
1

ϕ ′(z)

)m

. (10)

Note that 2ϕ(z) = z+
√

z2−1 is the conformal mapping of C\ [−1,1] onto the exterior of
the unit circle, where the ellipses |z+

√
z2−1|= ρ, ρ > 0 are its level curves.

Furthermore, the formula (9) of n-th root asymptotic behavior of the fundamental iterated
integral P

(α,β )
n,m (z) is the same for classical Jacobi Polynomials since m is fixed.

The two lemmas listed below are deduced from the well-known Rouché’s Theorem (cf. [18,
Th. 1.1.1]) and the Biernacki’s Theorem (cf. [19, Th. 4.5.2]), respectively.

Lemma 2.3. Let f and g be polynomials, and γ a closed curve in the complex plane without
self-intersections. If | f (z)|< |g(z)| for all z∈ γ , then f +g and g have the same number of zeros
in the interior of γ .
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Lemma 2.4. Let f be a polynomial whose critical points lie in a compact subset K ⊂ C. If
there exists ζ ∈ C such that f (ζ ) = 0, then the zeros of f lie in the compact set [K]ζ = {z ∈
C : infw∈K |z−w| ≤ dKζ

}, where dKζ
is the diameter of the compact set Kζ = K ∪ {ζ} (i.e.

dKζ
= supu,v∈Kζ

|u− v|).

Of course, for all ζ ∈ C we get K ⊂ Kζ ⊂ [K]ζ .

We denote by Z(α,β )
n,m (A) the set of zeros of P

(α,β )
n,m on the set A ⊂ C. In the next theorem,

we state some aspect of interest about the asymptotic behavior of the zeros of the fundamental
iterated integrals of Jacobi polynomials.

Theorem 1. Let α,β >−1, m ∈ N fixed and I = (−1,1) , then

1) For each n > 2m, at least (n−2m) distinct zeros of P
(α,β )
n,m lie in I.

2) There exists a compact set K ⊂ C, such that (−1,1)⊂ K and
⋃
n≥1

Z(α,β )
k,m (C)⊂ K.

3) All the roots of P
(α,β )
n,m accumulate at [−1,1].

Proof.
1) From (6), for consecutive values of m, there exist (2m+1) constants a0, a1, . . . , a2m such

that P
(α,β )
n,m (z) = ∑

2m
k=0 ak P(α,β )

n−m+k(z). Hence, P
(α,β )
n,m is a quasi-orthogonal polynomial of order

2m with respect to the measure (1− x)α(1+ x)β dx on I. Hence, from [9, Th. 2] we have the
first assertion of the theorem.

2) If m = 1, all the critical points of P
(α,β )
n,1 lie in (−1,1) and by the first sentence of the

theorem at least n−2 of its zeros are on I = [−1,1]. Let x0 ∈ I such that P
(α,β )
n,1 (x0) = 0. Then,

according to the notations in Lemma 2.4, we get that Ix0 = I and dIx0
= 2. Hence, from Lemma

2.4 we get
(⋃

n≥1 Z(α,β )
k,1 (C)

)
⊂ [I]x0 .

Suppose that for a fixed m ∈ N, there exists a compact set K(α,β )
m such that(⋃

n≥1

Z(α,β )
k,m (C)

)
⊂ K(α,β )

m .

As the zeros of P
(α,β )
n,m are the critical points of P

(α,β )
n,m+1, from Theorem 1-1) and Lemma 2.4

we get the desired statement.

3) For a fixed m ∈ N, from the Theorem 1-2) we know that the set of all zeros of {P(α,β )
n,m }

are uniformly bounded.

Note that for all n ∈ Z+ the functions P
(α,β )
n,m (z)

P(α,β )
n (z)

and
(

1
ϕ ′(z)

)m
=
(√

z2−1
ϕ(z)

)m
are analytic on

C \ [−1,1], where ϕ is given by (8). Furthermore,
(√

z2−1
ϕ(z)

)m
6= 0 if z ∈ C \ [−1,1], hence the

sentence 3.- is a consequence of (10).
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In the classical Szegő’s book [22, §6.72], the reader can find a full description of the dis-
tribution of the zeros of P(α−m,β−m)

n+m , i.e. P
(α,β )
n,m , when α,β ∈ R and n,m ∈ Z+ are fixed.

In this sense, it is convenient to cite [12], where this analysis is embedded in a more general
framework, using non-standard versions of orthogonality like the so-called quasi–orthogonality.

Additionally, there is a broad literature about zero location and asymptotic behavior of clas-
sical orthogonal polynomials with varying parameters. In particular, in the case of Jacobi poly-
nomials (α = αn and β = βn), the reader can see [8, 11, 14, 15, 16] and references therein.
The case considered in the current paper is different, because the parameters in the fundamental
iterated integrals of Jacobi polynomials are constant.

3 Abel-Goncharov interpolation polynomials
Given m complex numbers ω1, . . . ,ωm, and Ωk for 1≤ k ≤ m, as in (3). As we show in the first
section, there exists a unique polynomial An,m of degree at most m−1, such that the equations
(4) are satisfied. This polynomial is given by

An,m(z) = P
(α,β )
n,m (ωm)+

m−1

∑
k=1

1
k!

dkP
(α,β )
n,m

dzk (ωm−k) Gk,m(z) (11)

where Gk,m(z) = Gk,m(z;ωm,ωm−1, . . . ,ωm−k) is the monic polynomial of degree k , generate by
the k-th iterated integral

Gk,m(z) = k!
∫ z

ωm

∫ sm−1

ωm−1

· · ·
∫ sm−(k−1)

ωm−(k−1)

dsm−1 dsm−2 · · ·dsm−k, (12)

see [23, §4.1.4 (15)-(16)] for more details. The polynomial Gk,m is called the k-th Goncharov’s
polynomial associated with {ω1, . . . ,ωm}.

Examples (Abel’s polynomials ). If ω1, . . . ,ωm form an arithmetic progression, i.e. ωm−k =
ω + kϑ , where ω,ϑ ∈ C are fixed and k = 0,1, . . . ,m−1, it is well known that in this case the
k-th Goncharov polynomials

Gk,m(z) = (z−ω)(z−ω− (m− k)ϑ)k−1, (13)

is the so called k-th Abel’s polynomial.
If ϑ = 0, we have the special case Gk,m(z) = (z−ω)k (Taylor’s case) and then the m-th

Abel-Goncharov interpolation polynomial (11) becomes the Taylor’s expansion of P
(α,β )
n,m in ω

, as we mentioned in the introduction.

According to (2), it follows that 1
k!

dkP
(α,β )
n,m

dzk (ωm−k)=
(n+m

k

)
P

(α,β )
n,m−k(ωm−k) and replacing this

formula in (11) we get

An,m(z) = P
(α,β )
n,m (ωm)+

m−1

∑
k=1

(
n+m

k

)
P

(α,β )
n,m−k(ωm−k) Gk,m(z). (14)
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Theorem 2. Given m > 0 and ω1, . . . ,ωm ∈C\ [−1,1] fixed, let An,m(z) be the Abel-Goncharov
polynomial of interpolation associated to the conditions (4),

σm = max
0≤k≤m−1

|ϕ(ωm−k)|, U = {k : |ϕ(ωm−k)|= σm} and k̂ = max
k∈U
|k|. (15)

Then, uniformly on compact subsets of C

lim
n→∞

An,m(z)

nk̂ P
(α,β )

n,m−k̂
(ωm−k̂)

=
Gk̂,m(z)

k̂!
, (16)

lim
n→∞
|An,m(z)|

1
n = σm. (17)

The branch of the square root in (8) is chosen so that |ϕ(ωm−k)|> 1, for each 0≤ k ≤ m−1.

Proof.
Let V = {k : |ϕ(ωm−k)|< σm}. Obviously U ∩V = /0 and U ∪V = {1,2, · · · ,m}. From (14),

we get (
(n+m− k̂)!
(n+m)!

)
An,m(z)

P
(α,β )

n,m−k̂
(ωm−k̂)

=
Gk̂,m(z)

k̂!
+ ∑

k∈U\{k̂}
An,m,k

Gk,m(z)
k!

+ ∑
k∈V

An,m,k
Gk,m(z)

k!
, (18)

where An,m,k =
(n+m− k̂)!
(n+m− k)!

P
(α,β )
n,m−k(ωm−k)

P
(α,β )

n,m−k̂
(ωm−k̂)

.

Firstly, we will prove that for all k ∈ (U ∪V )\{k̂}

lim
n→∞

An,m,k = 0. (19)

If k ∈V , then |ϕ(ωm−k)|< |ϕ(ωm−k̂)|,

An,m,k =
(n+m− k̂)!
(n+m− k)!

(
ϕ(ωm−k)

ϕ(ωm−k̂)

)n
P

(α,β )
n,m−k(ωm−k)

ϕn(ωm−k)

ϕn(ωm−k̂)

P
(α,β )

n,m−k̂
(ωm−k̂)

and from (7), we can assert that for k ∈V we get (19).
If k ∈U \ {k̂}, then k < k̂ and |ϕ(ωm−k)| = |ϕ(ωm−k̂)|. Writing ϕ(ωm−k) = |ϕ(ωm−k̂)|e

iθ

and ϕ(ωm−k̂) = |ϕ(ωm−k̂)|e
iθ̂ , with θ , θ̂ ∈ [0.2π), we get

An,m,k =

(
(n+m− k̂)!
(n+m− k)!

)
en(θ−θ̂) i

P
(α,β )
n,m−k(ωm−k)

ϕn(ωm−k)

 ϕn(ωm−k̂)

P
(α,β )

n,m−k̂
(ωm−k̂)


and as in the previous reasoning, from (7), we can assert that if k ∈U \{k̂} we have (19).

Now, according to (18)-(19), we get (16). Finally, (17) is a consequence of (16) and (9).
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4 General primitive of Jacobi polynomials and its zeros
For ρ ∈R+, let Eρ be the ellipse |z−1|+ |z+1|= ρ +ρ−1. Obviously, Eρ divides the complex
plane into the following two disjoint regions

Eρ =
{

z ∈ C : |z−1|+ |z+1|> ρ +ρ
−1} ,

Eρ =
{

z ∈ C : |z−1|+ |z+1| ≤ ρ +ρ
−1} .

Analogously to the notations introduced in Theorem 1, we denote

Z(α,β )
n,m,Ωm

=
{

z ∈ C : P
(α,β )
n,m,Ωm

(z) = 0
}

( i.e. the set of (n+m) zeros of P
(α,β )
n,m,Ωm

) and by Z(α,β )
m,Ωm

the set of accumulation points of zeros

of {P(α,β )
n,m,Ω}.

Lemma 4.1. Let α,β > −1, m ∈ N and Ωm = (ω1, . . . ,ωm) ∈ Cm fixed. Then, there exists a
compact subset K ⊂ C, such that (−1,1)⊂ K and Z(α,β )

n,m,Ωm
⊂ K for all n.

Proof.
We proceed analogously to the proof of Theorem 1. If m = 1, for all n≥ 1 the critical points

of P
(α,β )
n,1,ω1

are on I = [−1,1]. Then, from Lemma 2.4, we get Z(α,β )
n,1,Ω1

is a subset of the compact
set [I]ω1 , which was defined in Lemma 2.4.

Suppose that for a fixed m ∈ N there exists a compact subset Km−1 such that Z(α,β )
n,m−1,Ωm−1

⊂
Km−1. As the zeros of P

(α,β )
n,m−1,Ωm−1

are the critical points of P
(α,β )
n,m,Ωm

, from Lemma 2.4 we get

Z(α,β )
n,m,Ωm

⊂ [Km−1]ωm .

Theorem 3. Given m > 0 and ω1, . . . ,ωm ∈ C\ [−1,1] fixed, let ρm = 2σm, where σm is given
by (15). Then, uniformly on compact subsets of Eρm

lim
n→∞

P
(α,β )
n,m,Ωm

(z)

P(α,β )
n (z)

=

(
1

ϕ ′(z)

)m

. (20)

Furthermore, Z(α,β )
m,Ωm

⊂ Eρm
.

Proof. From (5) we know that

P
(α,β )
n,m,Ωm

(z)

P(α,β )
n (z)

=
P

(α,β )
n,m (z)

P(α,β )
n (z)

−
An,m(z)

P(α,β )
n (z)

.

The uniform limit of the first quotient in the right side is given by (10). Hence, to proof (20) it
is sufficient to proof that

lim
n→∞

An,m(z)

P(α,β )
n (z)

= 0, uniformly on compact subsets of Eρm . (21)
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From (14), we have

An,m(z)

P(α,β )
n (z)

=
m−1

∑
k=0

P
(α,β )
n,m−k(ωm−k)

P(α,β )
n (ωm−k)

(
(n+m)!

(n+m− k)!
P(α,β )

n (ωm−k)

P(α,β )
n (z)

)
Gk,m(z)

k!
,

where Gm(z)≡ 1. For k = 0,1, . . . ,m−1 we get

(n+m)!
(n+m− k)!

P(α,β )
n (ωm−k)

P(α,β )
n (z)

=
(n+m)!

(n+m− k)!

(
ϕ(ωm−k)

ϕ(z)

)n P(α,β )
n (ωm−k)

ϕn(ωm−k)

· ϕn(z)

P(α,β )
n (z)

.

As |ϕ(ωm−k)|< |ϕ(z)| for all z ∈ Eρ∗ , from (10) it follows (21).
Finally, the assertion Z(α,β )

m,Ωm
⊂Eρm

is a consequence of (20) and Lemma 4.1, using analogous
argument as in the proof of 3) in Theorem 1.

Theorem 4. Assume that m> 0, ω1, . . . ,ωm ∈C\ [−1,1] and k̂ =m−1 . Then the accumulation
points of zeros of {P(α,β )

n,m,Ωm
} are located on the union of the interval [−1,1] and the ellipse

Eρm =
{

z ∈ C : |z−1|+ |z+1|= ρm +ρ
−1
m
}
, (22)

where k̂ is defined in (15), ρm is as in Theorem 3, and the branch of the square root in (8) is
chosen so that |ϕ(ωk)|> 1, for each 1≤ k ≤ m.

Proof. From (5), the zeros of the polynomial P
(α,β )
n,m,Ωm

satisfy the equation

∣∣∣P(α,β )
n,m (z)

∣∣∣ 1
n
= |An,m(z)|

1
n . (23)

Taking the limit as n→∞ on both sides of (23), from (17) and (9), we have that Z(α,β )
m,Ωm

⊂Eρm

where
Eρm =

{
z ∈ C : |z+

√
z2−1|= ρm

}
.

Let k̃ be an index, 1 ≤ k̃ ≤ m, such that ϕ(ωk̃) = ρmeiθ̃ , 0 ≤ θ̃ < 2π . Hence, we have that
z+
√

z2−1 = ρm eiθ̃ , z−
√

z2−1 = ρ−1
m e−iθ̃ and taking the difference between both we get√

z2−1 = (ρmeiθ̃ +ρ−1
m e−iθ̃ )/2. Thus,

|z−1|+ |z+1|= |ρmeiθ̃ −1|2 + |ρmeiθ̃ +1|2

2ρm
,

which is equivalent to the equation of the ellipse in (22). As the limit that we have taken is
uniform on compact subsets of C\ [−1,1], the theorem is proved.
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Figure 1: Zeros of P
(−1/2,1/2)
60,2,Ω2

and P
(0,0)
60,3,Ω3

, where Ω2 = (4+ i,−2) and Ω3 = (4i,−i,2). In
each case the ellipse is given by (22)

.

In example 3, if for each 0≤ k≤m−1 it holds that (ω +kϑ) 6∈ [−1,1], then all the zeros of
the Abel’s polynomials (13) are out to the interval [−1,1]. What is interesting for the following
corollary.

Corollary 4.1. Under the assumptions of theorems 2 and 4, if the zeros of the Goncharov
polynomial Gk̂,m are outside to the interval [−1,1] then the accumulation points of zeros of

{P(α,β )
n,m,Ωm

} are located on the ellipse Eρm .

Proof. Obviously, from Theorem 4 it is sufficient to prove that there does not exist an accumu-
lation point of zeros of {P(α,β )

n,m,Ωm
} located on the interval [−1,1].

Let ε ∈ R such that ω1, . . . ,ωm and the zeros of Gk̂,m are on the exterior of the ellipse E1+ε .
Thus, if w ∈ E1+ε , from (7) and (16) we get, for sufficiently large values of n,

An,m(w) ≈
(

n+m
k̂

)
ψ

α,β ,m−k̂(ωm−k̂) ϕ
n+ 1

2 (ωm−k̂) Gk̂,m(w), (24)

P
(α,β )
n,m (w) ≈ ψα,β ,m(w) ϕ

n+ 1
2 (w). (25)

As the zeros of the Goncharov polynomial Gk̂,m are on the exterior of the ellipse E1+ε , then
from (24), there exists N1 ∈ Z+ such that for n > N1 the zeros of the polynomial An,m are on

10



the exterior of the ellipse E1+ε too. From (24)-(25)

|An,m(w)| ≈
(

n+m
k̂

) ∣∣∣∣∣Gk̂,m(w) ψ
α,β ,m−k̂(ωm−k̂)

ψα,β ,m(w)

∣∣∣∣∣
∣∣∣∣ϕ(ωm−k̂)

ϕ(w)

∣∣∣∣n+
1
2

·
∣∣∣ψα,β ,m(w) ϕ

n+ 1
2 (w)

∣∣∣
≥

∣∣∣∣∣Gk̂,m(w) ψα,β ,m(ωm−k̂)

ψα,β ,m(w)

∣∣∣∣∣
∣∣∣∣ϕ(ωm−k̂)

ϕ(w)

∣∣∣∣n+
1
2 ∣∣∣P(α,β )

n,m (w)
∣∣∣ (26)

As it is well know from classical complex analysis (cf. [13, §51]), ϕ(z) maps the ellipse
|z−1|+ |z+1|= r+ 1

r , with r > 0, onto the circumference |z|= r. Hence, as each ωk is on the
exterior of the ellipse E1+ε and w ∈ E1+ε , we get that |ϕ(ωm−k̂)| > |ϕ(w)|. Thus, from (26)

there exists N2 ∈ Z+ such that if n > N2, then |An,m(w)|>
∣∣∣P(α,β )

n,m (w)
∣∣∣.

Finally, from Lemma 2.3 and Theorem 4, the corollary is proven.
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with varying non-classical parameters. in: Special functions (Hong Kong, 1999), World
Sci. Publ., River Edge, NJ, 98–113, (2000).

[15] A. Martı́nez Finkelshtein, R. Orive. Riemann-Hilbert analysis of Jacobi polynomials or-
thogonal on a simple contour, J. Approx. Theory. 134, 137–170, (2005).

[16] D.S. Moak, E.B. Saff, R.S. Varga. On the zeros of Jacobi polynomials P(αn,βn)
n (x), Trans.

Amer. Math. Soc. 249, 159–162 (1979).

[17] H. Pijeira, J. Bello, W. Urbina. On polar Legendre polynomials. Rocky Mountain J. Math.,
40, 2025–2036, (2010).

[18] V.V. Prasolov. Polynomials, Springer, Berlin, (2004).

[19] Q.I. Rahman, G. Schmeisser. Analytic theory of polynomials, Oxford Univ. Press, NY,
(2002).

[20] E.D. Rainville. Special Functions, Chelsea Pub. Co., NY, (1960).

[21] T. Sheil–Small. Complex Polynomials, Cambridge Univ. Press, Cambridge, (2002).
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