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Abstract

Composite materials have been extensively used in engineering thanks to their
lightweight, superior mechanical performances and possibility to tailor the struc-
tural behavior, increasing the available design space. Variable Angle Tow (VAT)
structures exploits this advantage by adopting a curvilinear patterns for the fibers
constituting the lamina.

This work, for the first time, extends the Generalized Unified Formulation (GUF)
to the case of fourth-order triangular shell elements and VAT composites. Function-
ally graded material properties in both the thickness and in-plane directions are also
possible. The finite element has been formulated with layers of variable thickness
with respect to the in-plane coordinates.

GUF is a very versatile tool for the analysis of Variable Stiffness Composite
Laminates (VSCLs): it is possible to select generic element coordinate systems and
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define different types of axiomatic descriptions (Equivalent Single Layer, Layer Wise,
and Zig-Zag enhanced formulations) and orders of the thickness expansions. Each
displacement is independently treated from the others. All the infinite number of
theories that can be generated with GUF are obtained by expanding six theory-
invariant kernels (formally identical for all the elements), allowing a very general
implementation. Finally, the possibility of tailoring the theory/order to increase the
accuracy in desired directions makes the GUF VAT capability a very powerful tool
for the design of aerospace structures.

Key words: Generalized Unified Formulation, Variable Angle Tows, Tailorable
Directional Accuracy, Multi-Theory Framework.

1 Introduction

C
OMPOSITE structures have been used in several aerospace engineering
applications due to their lightweight and great strength. Moreover, compos-

ites offer the possibility of customizing the mechanical behavior with freedom
in the choice of materials for matrix and fibers, number of layers, and stack-
ing sequence. Application of such design freedom could be in the aeroelastic
tailoring (see ref. [67]) inducing for example a bending-torsion coupling that
could reduce the likelihood of having instabilities such as divergence.

Traditional straight fiber composites, Constant Stiffness Composite Laminates
(CSCLs), can be further enhanced by allowing the fiber orientation to change
in space. This increases the design space towards more efficient structures.
For example, aircraft fuselage presents some regions dominated by bending
adjacent to areas in which shear deformation mainly affects the response (see
[3]). In that case, the fibers would best be aligned to a certain direction to
optimize the bending response; however, the fibers should be placed at 45
degrees to have a more efficient design in respect to the shear. A method to
achieve this variability in stiffness properties and tailor the behavior of the
structure is to use Variable Stiffness Composite Laminates (VSCLs) obtained
with curvilinear fibers’ paths (another term used in this work is Variable Angle
Tow (VAT) composites).

VAT composites have been explored for the last few decades. Refs. [38] showed
that with curvilinear fibers it was possible to improve stress concentration
around holes. This was accomplished by arranging the fibers in the direction
of critical load paths.
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Ref. [43] analyzed the postbuckling progressive damage behavior of Variable
Stiffness Composite Laminates. The importance of taking into account the
residual thermal stress resulting from the curing process was emphasized. It
was also showed that VSCLs demonstrate capacity for load redistribution: the
curvilinear fiber panels can redirect load fluxes from the central regions to
their stiffer edges. The buckling load is then increased as a consequence.

Tow-steered laminate exhibiting bistability have been studied for a trailing
edge flap application or where it is necessary to sustain significant changes
in shape without the need for a continuous power supply. Ref. [53] discussed
how to accurately predict the cured shapes of tow-steered laminates that are
intended to be bistable.

Ref. [41] introduced a fiber placement technique (Continuous Tow Shearing)
for the manufacturing of VAT composites with tailored fiber paths.

Prebuckling analysis of anisotropic VAT plates using Airy’s stress function
was presented in ref. [56].

Ref. [23] addressed the problem of impact and compression after impact of
VSCLs with emphasis on the interaction between fiber orientations, matrix-
crack and delaminations. The simulations were carried out using an explicit
finite element analysis.

Aeroelastic behavior of a rectangular unswept composite wing combined with
modified strip theory aerodynamics was studied in ref. [64]. Flutter, diver-
gence, and gust loads were investigated, showning that the speed of instability
occurrence could be influenced, both positively and negatively, by changing
the fiber angle along the wingspan. It was also observed that VAT laminates al-
lowed improved design compared to traditional unidirectional composite lam-
inates.

Ref. [73] introduced a semi-analytical formulation based on a variational ap-
proach and Rayleigh-Ritz method to solve the postbuckling problem of VAT
plates. The advantage of using variable stiffness for enhanced postbuckling per-
formance of composite laminates was demonstrated.

Ref. [57] studied the problem of tailoring the in-plane tow path of VAT com-
posite plates for improved postbuckling resistance.

Ref. [72] investigated the structural performance of axially compressed tow-
steered shells. Both experimental and computational (finite element analysis)
approaches were adopted. Prebuckling stiffness and buckling loads were esti-
mated.

An optimization strategy (based on a genetic algorithm) for the design of
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postbuckling behavior of VAT composite laminates under axial compression
was shown in ref. [74].

Ref. [3] introduced a Third Order Shear Deformation Theory (p-version Finite
Element approach) with geometric nonlinear effects. Studies on the curvilinear
fibers showed the possibility of reducing deflections and stresses under some
static loadings. VSCLs led to changes in the stresses altering the position of
maximum stress at the plate. It was concluded that this modification could
be exploited to improve damage resistance in particular applications.

In Ref. [76] VSCLs were analyzed with a p-version Layer Wise finite ele-
ment approach. Unsymmetric laminates with curvilinear fibers were analyzed
with just one element. Moderately large deflection model (von Kármán strain-
displacement relationships) was assumed. The Layer Wise displacement field
assumed linear variation in the thickness for the in-plane displacements and
constant transverse displacement. Different behavior was found in several un-
symmetric laminates: a plate with relatively large displacement was actually
stiffer in the nonlinear regime, showing the importance of taking into account
geometric nonlinearities.

Ref. [2] presented a Third-Order Shear Deformation Theory for VSCL rect-
angular plates. Geometric nonlinearities and damage under various static and
dynamic loads (uniform, localized, sinusoidal, and impact) were analyzed.

Refs. [77] developed a Layer Wise model in which a First Order Shear De-
formation Theory was adopted for each layer. Plates with classical straight-
fiber and curvilinear layers were investigated. The curvilinear fibers were used
between plies with straight fibers. It was concluded that one can still take
advantage of the variable stiffness plates (e.g., redistribute the applied load in
the plane [43]) by mixing constant stiffness with variable stiffness plies along
the thickness.

Ref. [21] discussed manufacturing characteristics of Variable Angle Tow struc-
tures with particular attention on layup accuracy, and thickness variation. An
experimental approach (layup tests) was adopted.

Ref. [68] highlighted the advantages of having fiber-reinforcement following
curvilinear paths in space. The initial post-buckling response of variable-
stiffness cylindrical panels was presented. The model aimed to get an effi-
cient tool for optimization studies of variable-stiffness panels where stability
represents a constraint.

Ref. [22] introduced a First Order Shear Deformation Theory for buckling
analysis of thick stiffened Variable Angle Tow panels.

Ref. [37] investigated the stability of VAT panels. It was observed that the
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Variable Angle Tows laminates manufactured with the Continuous Tow Shear-
ing technique produce laminates with a flat profile on one side and a curved
profile on the other. Variable thickness was then modeled. An equivalent single
layer model, taking into account shear effects, was adopted. The 3D structure
was simulated either as a cylindrical shell or a flat plate. It was argued that
the buckling event of the variable angle tow with variable thickness was char-
acterized more by a “shell-like” behavior rather than a “plate-like” behavior.

From the above discussion of literature, there is a vast body of work on curvi-
linear fibers showing the design advantages that can be exploited in increase of
buckling load and reduction of stresses. Several models have been introduced
with aim to efficient optimization of VAT panels/structures.

With the present effort, the authors introduce the Generalized Unified Formu-
lation (GUF) [26, 32, 27, 28, 29, 30, 31, 33] for VAT structures for the first
time.

GUF allows one to define an independent local element coordinate system and
have different axiomatic models for the different displacement variables. This
allows the user to have the design freedom and computational efficiency where
actually required by the problem under investigation.

To provide a general background on the theoretical models developed for the
analysis of composites (and in some cases for VAT structures as previously
discussed), a brief overview on the various axiomatic formulations is provided
next.

2 Axiomatic Formulations for the Analysis of Composite Struc-
tures

2.1 Background and Literature Study

It is well know that composites do not have the same behavior in all the direc-
tions. This is actually exploited in the practice but also constitutes a difficulty
when a good model is sought. Classical Plate Theory (CPT) [42] is generally
sufficient for metallic thin panels. When some of the assumptions made in its
formulation are removed, the resulting theories can more efficiently capture
behaviors typical of composite laminates (for example the Zig-Zag form of
the displacements, see ref. [33]). Thus, people formulated First Order Shear
Deformation Theory (FSDT) [60, 46]. FSDT was improved even more with
the introduction of the so-called Higher Order Shear Deformation Theories
(HSDTs) [65, 6, 39, 75, 51, 44, 45]. Some researchers modified HSDTs by
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adding the transverse strain effects (more details can be found in ref. [33]).
This was achieved by adding additional terms in the thickness expansion of
the transverse displacement uz.

It is known that the interlaminar equilibrium of the transverse stresses and
anisotropy of the mechanical properties along the thickness determines a dis-
continuity of the first displacement derivatives with respect to the thickness
coordinate z (“Zig Zag form of the displacements”, see refs. [5, 1, 40]). Fol-
lowing the historical reconstruction provided in ref. [17] and the discussions
found in ref. [33], the Zig Zag theories can be subdivided into 3 major groups:

• Lekhnitskii Multilayered Theory (LMT)
• Ambartsumian Multilayered Theory (AMT)
• Reissner Multilayered Theory (RMT)

Particularly relevant is the contribution provided by Murakami who proposed
in ref. [48] to take into account the Zig Zag effects by enhancing the cor-
responding displacement variable with a Zig Zag function denoted here as
Murakami’s Zig Zag Function (MZZF). Numerous applications [19, 24, 25, 30,
13, 12, 11, 62] of the concept of enhancing the displacement field with MZZF
have been presented. This enhancement provides a significant improvement
of the accuracy with a marginal increment of the computational cost with
respect to the inexpensive (but less accurate) classical methods.

Recently researchers [63, 52, 4, 55, 66] adopted Zig Zag models to solve various
problems involving bending analysis of functionally graded sandwich struc-
tures, laminated beams, and buckling calculations. The effectiveness of taking
into account the displacements’ slope discontinuity at the interfaces with Zig
Zag models was proven.

For a detailed quasi-3D type of investigation a Layer Wise [20, 50, 58, 61, 59,
16, 15] description represents a valuable alternative to the computationally
demanding Finite Element approaches based on solid elements.

It is very valuable to the engineers to have the possibility of tailoring the ac-
curacy/computational cost to better simulate a new problem without imple-
menting new finite element solvers/capabilities every time a new need arises.
Several methods, able to provide a large number of theories with a unified
approach, have been proposed in the literature (see for example the works
of Batra and coauthors, refs. [6] and [54]). Particularly interesting is the for-
mulation proposed by Todd Williams (refs. [69, 70, 71]) in which Equivalent-
Single-Layer approaches and Layer-Wise ones coexist in the same theoretical
framework. Another option, on which the present effort is based upon, is rep-
resented by the so-called Compact Notations (CNs) (see ref. [26] for more
details). The idea behind CNs is to write the axiomatic expansions in indicial
form, so that all the possible theories can be generated from theory-invariant
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Fig. 1. Selection of the element reference plane.

kernels (also referred as nuclei). Carrera introduced this kind of representa-
tion for the modeling of structures. One of the earliest contributions is repre-
sented by ref. [14] (at that time the terminologies of Compact Notations and
Carrera’s Unified Formulation (CUF) were not adopted; only much later, in
ref. [26] they were explicitly introduced and used since then). The displace-
ment vectors were written using this formalism and the fundamental nuclei
were 3 × 3 matrices (see [18]). Later the work was generalized by adopting
the expansion at component level (Generalized Unified Formulation (GUF)
[26, 27, 28, 29, 30, 31, 32, 33]) and so obtaining 1× 1 kernels. In parallel, the
group led by Carrera made significant contributions in other areas (multifield
problems, functionally graded structures, advanced 1D-models with quasi-3D
accuracy etc.) not discussed here for brevity.

This research extends the Generalized Unified Formulation to the case of Vari-
able Angle Tow structures and fourth order triangular shell finite element.

The types of theories that can be generated with the GUF approach are
the Advanced Higher Order Shear Deformation Theories (AHOSDTs), Zig-
Zag Theories (ZZTs), Advanced Zig-Zag Theories (AZZTs), Layer Wise (LW)
Theories, Partially Zig Zag Higher Order Shear Deformation Theories (PZ-
ZHSDTs), Partially Zig Zag Advanced Higher Order Shear Deformation The-
ories (PZZAHSDTs), Partially Layer Wise Higher Order Shear Deformation
Theories (PLHSDTs), Partially Layer Wise Advanced Higher Order Shear De-
formation Theories (PLAHSDTs), Partially Layer Wise Zig Zag and Higher
Order Shear Deformation Theories (PLZZHSDTs) and are extensively dis-
cussed in refs. [33] and [34].

3 Notations, Coordinate Systems at Element Level, and Transfor-
mations

Consider a portion of the structure (triangular element). With reference to
Figure 1, all the edges in the undeformed continuum are assumed perpendic-
ular to the reference plane identified as shown in Figure 1. The corner nodes
1, 2, and 3 are identified by a local numbering freely selected by the user.
The notation and coordinate systems (see Figure 2) are now introduced. The
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global axes are X, Y, Z. The corresponding unit vectors are indicated with

˜
e1,

˜
e2, and

˜
e3. The auxiliary unit vectors

˜
e1,

˜
e2, and

˜
e3 are referred to an

intermediate local coordinate system xloc, yloc, and zloc (see Figure 2). This
intermediate coordinate system has the xloc connecting nodes 1 and 2 of the
element.

The final unit vectors of the local coordinate system at element level are
indicated with

˜
i1,

˜
i2, and

˜
i3 respectively. x, y, and z are the actual local

coordinates of the element under consideration. The local coordinate system is
selected by the user. Thus, the angle ψ (see Figure 2) is assigned and known.
Note that all the layers may have variables thicknesses. However, the plate
assumption will be considered. Thus, all the coordinate systems at layer levels
will be considered to be on parallel planes. That is, all the layers will have
parallel reference planes. This is consistent with the assumption of flat element
approximating a curved surface (see Figure 3). The angle ψ will then be the
same for all the layers. Notice that the origin of the element coordinate system
does not have to be necessarily on node 1. It can be anywhere even outside
the element. However, the node 1 is selected for simplicity. After some simple
algebra involving the rotation of coordinate systems, it is possible to relate the
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unit vectors of the local system with the ones of the global coordinate system:

˜
i1 = a11

˜
e1 + a12

˜
e2 + a13

˜
e3

˜
i2 = a21

˜
e1 + a22

˜
e2 + a23

˜
e3

˜
i3 = a31

˜
e1 + a32

˜
e2 + a33

˜
e3

(1)

where

a11 = cosψ A1 − sinψ B1 a21 = sinψ A1 + cosψ B1 a31 = C1

a12 = cosψ A2 − sinψ B2 a22 = sinψ A2 + cosψ B2 a32 = C2

a13 = cosψ A3 − sinψ B3 a23 = sinψ A3 + cosψ B3 a33 = C3

(2)

The explicit expressions of all the terms appearing in equation 2 are reported
in Ref. [34].

4 Definition of the Fibers’ Curvilinear Path at Layer and Element
Levels

The proposed finite element presents a generic definition of the pattern defin-
ing the curvilinear fiber. This is achieved as follows.

Consider a user-selected layer coordinate system x̂ k, ŷ k and ẑ k with origin on
a point on the layer reference plane (see Figure 3). This coordinate system is
adopted to identify the fibers’ paths. Note that each layer needs to have its
own coordinate system so that general Variable Angle Tow multi-layer struc-
tures can be easily modeled. Given a triangular finite element, the curvilinear
fibers’ paths need to be provided. The user can select some points and curve
fitting may be adopted to retrieve an analytical expression. From a practical
point of view, one needs to provide the “fundamental curve” which is then
replicated with translation in the element coordinate system (see Figure 4).
The fundamental curve is conveniently defined in a different coordinate system
ξk, ηk (see Figure 5) where Legendre polynomials can be defined. Let ŷ kmax be
the largest ŷ k coordinate (it can be negative). In the example of Figure 4 it
corresponds to point 1. Similarly, it is possible to define ŷ kmin (in the example
of Figure 4 it corresponds to point 2), x̂ kmax (in the example of Figure 4 it
corresponds to point 3), and x̂ kmin (in the example of Figure 4 it corresponds
to point 2). The new coordinate system is selected so that ŷ kmax corresponds
to η k = 1, ŷ kmin corresponds to η k = −1, x̂ kmax corresponds to ξ k = 1, and x̂ kmin

9

This is the accepted manuscript of the paper published on Composite Structures.  DOI:   https://doi.org/10.1016/j.compstruct.2015.05.022 9



1

2

3

line of maximum y  coordinate

line of minimum y  coordinate

1

2

3

known user-provided points which
identify the fundamental curve

1

2

3

fundamental curve

the paths are obtained with translation in 
the x  direction of the fundamental curve

x

x

y

x

y

y

i 2
k

i 1
k

i 1
k

i 1
k

i 2
k

i 2
k

k

k

k

k

k

k

k

k

k

Fig. 4. Finite element and curvilinear fibers.

1

2

3

fundamental curve

in this coordinates system the triangle
is included in a square (of dimension
equal to 2). The fundamental curve is
provided in that plane

Y

R

A

B

k

k
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corresponds to ξ k = −1. The linear transformation is the following:

ξ k = − x̂
k
max + x̂ kmin

x̂ kmax − x̂ kmin

+
2

x̂ kmax − x̂ kmin

x̂ k

η k = − ŷ
k
max + ŷ kmin

ŷ kmax − ŷ kmin

+
2

ŷ kmax − ŷ kmin

ŷ k
(3)

and the inverse transformation is

x̂ k =
x̂ kmax + x̂ kmin

2
+
x̂ kmax − x̂ kmin

2
ξ k

ŷ k =
ŷ kmax + ŷ kmin

2
+
ŷ kmax − ŷ kmin

2
η k

(4)

Let µ k be a parameter used to describe the fundamental curve in the ξ k, η k

plane. It is selected to have point A (see Figure 5) when µ k = −1 and point B
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when µ k = +1. Point A is always on the line of minimum ŷ k coordinate. The
fundamental curve is defined from the originally given points as a combination
of Legendre polynomials P k

g

(
µ k
)

and P k
h

(
µ k
)

as follows:

ξ k
(
µ k
)

= a k0 P
k

0

(
µ k
)

+ a k1 P
k

1

(
µ k
)

+ ... = a kq P
k
q

(
µ k
)

q = 0, 1, ..., Q

η k
(
µ k
)

= b k0 P
k

0

(
µ k
)

+ b k1 P
k

1

(
µ k
)

+ ... = b khP
k
h

(
µ k
)

h = 0, 1, ..., H

(5)
(The reader should note that h also indicates the thickness. However, in this
context h is used as an index) In the practice the coefficients of the Leg-
endre polynomials are calculated with the collocation method. This is now
briefly discussed for the variable ξk. Let’s assume that Q + 1 is the number
of coefficients that need to be determined (for example, if Q = 3 it means
that maximum polynomial included is the cubic one and so 4 coefficients need
to be determined). ξ k

(
µ k
)

is then calculated at the zeros of the Legendre
polynomial Q+ 1.

Each evaluation of ξ k
(
µ k
)

at the ith zero corresponds to an equation. Then

a system of equations is determined and the coefficients akq found.

After collocation, the coefficients akq and bkh are known. Using equations 4 and
5 the parametric representation of the fundamental curve becomes:

x̂ kf =
x̂ kmax + x kmin

2
+
x̂ kmax − x̂ kmin

2
a kq P

k
q

(
µ k
)

ŷ kf =
ŷ kmax + ŷ kmin

2
+
ŷ kmax − ŷ kmin

2
b khP

k
h

(
µ k
) (6)

The subscript f has been used to clearly indicate that the quantities are
referred to the fundamental one.

All the other curves describing the fibers patterns (see Figure 4) are obtained
from the fundamental curve by a rigid translation in the x̂ k direction. Let x̂ kc ,
ŷ kc be the coordinates of a point on one of these curves. From equation 6 it is
immediately deduced:

x̂ kc
(
µ k
)

= x̂ kf
(
µ k
)

+ d kc =
x̂ kmax + x̂ kmin

2
+
x̂ kmax − x̂ kmin

2
a kq P

k
q

(
µ k
)

+ d kc

ŷ kc
(
µ k
)

= ŷ kf
(
µ k
)

=
ŷ kmax + ŷ kmin

2
+
ŷ kmax − ŷ kmin

2
b khP

k
h

(
µ k
) (7)

where d kc is a constant and represents the “distance”, in the x̂ k direction, of
the curve from the fundamental one.

One important quantity that needs to be derived is the local angle 1 ϑ k (see

1 In the literature the angle is expressed as a value between −90 and +90 and this
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Fig. 6. Local fiber orientation angle.

Figures 6 and 7) at a given location identified by coordinates x̂ k, ŷ k. That
point is on a curve which has expression of the type shown in equation 7:

x̂ k
(
µ k
)

=
x̂ kmax + x̂ kmin

2
+
x̂ kmax − x̂ kmin

2
a kq P

k
q

(
µ k
)

+ d k

ŷ k
(
µ k
)

=
ŷ kmax + ŷ kmin

2
+
ŷ kmax − ŷ kmin

2
b khP

k
h

(
µ k
) (8)

where d k is a positive or negative constant which has similar meaning of d kc
earlier discussed. In the practical problem it is not actually relevant to know
the value of d k. The position vector r k

(
µ k
)

(see Figure 6) is:

˜
r k
(
µ k
)

= x̂ k
(
µ k
) ̂̃i k1 + ŷ k

(
µ k
) ̂̃i k2 (9)

The unit tangent vector
˜
v k (see Figure 7) is:

˜
v k
(
µ k
)

=

d
˜
r k
(
µ k
)

dµ k∣∣∣∣∣∣d˜
r k
(
µ k
)

dµ k

∣∣∣∣∣∣
=

dx̂ k (µ)
dµ k

̂̃i k1 +
dŷ k

(
µ k
)

dµ k
̂̃i k2√√√√√

dx̂ k
(
µ k
)

dµ k

2

+

dŷ k
(
µ k
)

dµ k

2
(10)

where the derivatives are calculated from equation 8:

dx̂ k
(
µ k
)

dµ k
=
x̂ kmax − x̂ kmin

2
a kq P

′ k
q

(
µ k
)

dŷ k
(
µ k
)

dµ k
=
ŷ kmax − ŷ kmin

2
b khP

′ k
h

(
µ k
) (11)

In reality, the layer coordinate system x̂ k and ŷ k is not used to define the
fibers’ angles. The element coordinate system x, y needs to be adopted (see

is the form that will be used to present the results. However, in this theoretical
formulation the angle is selected to vary from 0 to 360 for convenience.

12
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Fig. 7. Element coordinate system and element’s fiber coordinate system.

Figure 7). A transformation of coordinates is in place:

x̂ k = + (x− xo) cosϕ k + (y − yo) sinϕ k

ŷ k = − (x− xo) sinϕ k + (y − yo) cosϕ k

(12)

where xo and yo are the coordinates (x, y coordinate system) of the origin of
the cartesian frame x̂ k, ŷ k (in the case of Figure 7 xo is positive whereas yo is
negative).

The angle ϕ k indicates a counterclockwise (i.e., positive rotation if consistent
with the element thickness coordinate z according to the right hand rule)
rotation required to make the local coordinates x, y parallel to x̂ k, ŷ k. (ϕ k is
defined in Figure 7). ϕ k is an input provided for each element.

The inverse of equation 12 is the following:

x =
(
x̂ k − x̂ k1

)
cosϕ k −

(
ŷ k − ŷ k1

)
sinϕ k

y =
(
x̂ k − x̂ k1

)
sinϕ k +

(
ŷ k − ŷ k1

)
cosϕ k

(13)

Equation 12 can be used to obtain the transformation of basis (see Figure 7
for a representation of the unit vectors):

̂̃i k1 = + cosϕ k

˜
i1 + sinϕ k

˜
i2

̂̃i k2 = − sinϕ k

˜
i1 + cosϕ k

˜
i2

(14)

and so it is now possible to calculate the trigonometric functions necessary to

13
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rotate the stiffness tensor (see equation 10 and consider equation 14):

[
cosϑ k

] (
µ k
)

=
˜
v k
(
µ k
)
•

˜
i1 =

dx̂ k
(
µ k
)

dµ k
cosϕ k −

dŷ k
(
µ k
)

dµ k
sinϕ k

√√√√(dx̂ k (µ k)

dµ k

)2

+

(
dŷ k (µ k)

dµ k

)2

[
sinϑ k

] (
µ k
)

=
˜
v k
(
µ k
)
•

˜
i2 =

dx̂ k
(
µ k
)

dµ k
sinϕ k +

dŷ k
(
µ k
)

dµ k
cosϕ k

√√√√(dx̂ k (µ k)

dµ k

)2

+

(
dŷ k (µ k)

dµ k

)2

(15)

To calculate the stiffness matrix, it is necessary to evaluate the different quan-
tities at the Gauss points. Let xg and yg be the coordinates of one of the ele-
ments’s Gauss points (the element local coordinate system is considered). The

trigonometric functions
[
sinϑ k

] (
µ k
)

and
[
cosϑ k

] (
µ k
)
, expressed in equation

15, need to be found at each Gauss point. To achieve this, the corresponding
parameter µ k ≡ µ kg has to be identified so that equation 11 and then equation
15 can be used. This is accomplished as discussed in Ref. [34].

5 Formulation of In-plane and Out-of-plane Functionally Graded
Properties

The present shell formulation is made of several triangular plate elements. The
geometric interfaces between layers are assumed to be a function provided by
the user and can be non-planar surfaces. We know discuss the case of a generic
layer k.

It should be noted that the coordinate system x̂ k, ŷ k is not the local coordinate
system x, y used to define the finite element matrices. This is done to allow a
very general placement of the fiber patterns. The choice of the local coordinate
system x, y is related to the orders of expansion, type of theory etc. which
are used in the Generalized Unified Formulation framework. This approach
provides great versatility and generality of the finite element implementation
because the user can decide to increase the accuracy of the description in any
desired direction (for example the local y direction in one element and the
local x direction in another element).

14
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in this coordinates system the triangle
is included in a square (of dimension
equal to 2). 

Y
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x
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note that the axes are parallel

Fig. 8. Element coordinate system used to define the thickness variation along the
plate. Note that a single coordinate system is used for the entire plate.

5.1 Element’s Variable Thickness

Modeling the variability of thickness may be relevant in Variable Angle Tow
Composite Laminates (see Figs. 1 and 4 of ref. [37]). How this is accomplished
in the present computational architecture is discussed next.

The bottom surface of layer k is indicated as zbotk . The top surface is indicated
as ztopk

.These surfaces are both functions of x, y if the element thickness is not
constant. zbotk and ztopk

are measured from the reference coordinate system of
the entire plate (not the layer’s one: see Figure 3 for a pictorial representation
of the element reference plane). These functions are provided in the coordinate
system reported in Figure 8. The layer interfaces are expressed as a function
of products of Legendre polynomials of both coordinates ξ and η:

ztopk
(ξ, η) = aτztopk

Pτztopk
(ξ) · asztopkPsztopk (η)

zbotk (ξ, η) = aτzbotk
Pτzbotk

(ξ) · aszbotkPszbotk (η)
(16)

where

τztopk = 0, 1, ..., N
ztopk
ξ sztopk = 0, 1, ..., N

ztopk
η

τzbotk = 0, 1, ..., N
zbotk
ξ szbotk = 0, 1, ..., N

zbotk
η

(17)

N
ztopk
ξ is the degree of the Legendre polynomial used to express the functional

dependance of ztopk
with respect to ξ, N

ztopk
η is the degree of the Legendre

polynomial used to express the functional dependance of ztopk
with respect

to η; N
zbotk
ξ is the degree of the Legendre polynomial used to express the

functional dependance of zbotk with respect to ξ, N
zbotk
η is the degree of the

Legendre polynomial used to express the functional dependance of zbotk with
respect to η. Due to the mapping shown in Figure 8, equation 16 can be

15
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Fig. 9. Material coordinate system at a given location on a generic curvilinear fiber.

formally written in the physical coordinate system:

ztopk
(x, y) = aτztopk

Pτztopk
(x) · asztopkPsztopk (y)

zbotk (x, y) = aτzbotk
Pτzbotk

(x) · aszbotkPszbotk (y)
(18)

Since the geometry of the multilayer structure made of layers with variable
thickness is known, the coefficients of the expansion in equation 18 are pro-
vided by the user (preprocessing phase).

5.2 Element’s Variable Material Properties in both In-plane and Out-of-plane
Directions

The material is assumed orthotropic in its material coordinate system xkm, ykm,
and zkm which changes point by point according to Figure 9. At any point the
material coordinate system has one axis (xkm) tangent to the curve representing
the curvilinear path at that point, another axis (ykm) is perpendicular to the
first one and parallel to the reference plane. The third axis zm follows the right
hand rule and is directed along the z direction.

The quantities that need to be point-by-point defined are the Young moduli
Ek

11, Ek
22, and Ek

33, the shear moduli Gk
12, Gk

13, and Gk
23, and Poisson’s ratios υk12,

υk13, and υk23. For example, Ek
11 is the elastic modulus in the xkm direction. Using

the same logic that led to equation 18 and adopting Legendre polynomials in
the thickness direction it is possible to write the explicit form of Gk

12

(
x, y, zk

)
as follows (details for the other material properties are reported in Appendix
A of ref. [34]):

Gk
12

(
x, y, zk

)
= aτ

Gk
12

Pτ
Gk
12

(x) · as
Gk
12

Ps
Gk
12

(y) · ar
Gk
12

Pr
Gk
12

(
zk
)

(19)

where, for example, it is

τGk
12

= 0, 1, ..., N
Gk

12
ξ

16
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and N
Gk

12
ξ indicates the order of the Legendre polynomial. Note that the func-

tionally graded properties have to be provided layer by layer.

In the material coordinate system xkm, ykm, and zkm, Hooke’s coefficients are
calculated with the formulas reported in Ref. [34].

6 The Generalized Unified Formulation (GUF)

With GUF the variables are expanded in the thickness direction with an ax-
iomatic approach. The following features are typical of the Generalized Uni-
fied Formulation for a displacement-based computational framework (i.e., the
Principal of Virtual Displacements, PVD, is used to derive the governing equa-
tions):

• Given an element coordinate system x, y, z, a different type of representation
is possible for each displacement component. For example, the displacement
ux in the x direction may be described with an Equivalent Single Layer
formulation; the displacement uy in the y direction my be axiomatically
expanded with an Equivalent Single Layer approach but including Zig-Zag
effects via Murakami’s Zig-Zag Function (MZZF); the displacement uz may
be simulated with a Layer Wise (LW) theory.
• Different orders of expansions can be used for the different displacements.

For example ux may have a cubic expansion whereas uz could have a
parabolic dependence on the thickness coordinate.

The acronyms adopted to indicate the different theories are explained in refs.
[33] and [34] and will not be reported here for brevity. It can be shown that the
theory-invariant GUF writing of all the types of theories previously described
can be reduced to the following expression:

ukx = xFαux

xNi
xUk

αux i
αux = t, l, b; l = 2, ..., Nux ; i = 1, 2, ..., Nn

uky = yFαuy

yNi
yUk

αuy i
αuy = t,m, b; m = 2, ..., Nuy ; i = 1, 2, ..., Nn

ukz = zFαuz

zNi
zUk

αuz i
αuz = t, n, b; n = 2, ..., Nuz ; i = 1, 2, ..., Nn

(20)

6.1 Governing Equations within GUF Formalism

The governing equations are obtained by using the Principle of Virtual Dis-
placements (see ref. [34] for details). The governing equations at finite element

17
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level read as follows:

KUU ·U = P (21)

where U contains all the arrays of nodal displacements at element level and P
contains all the arrays of nodal forces at element level. The explicit expressions
for the arrays of unknown nodal displacements and known nodal loads (see
equation 21) are:

U =


xU

yU

zU

 P =


xP

yP

zP

 (22)

The finite element stiffness matrix KUU (see equation 21) is:

KUU =


Kux ux Kux uy Kux uz

KT
ux uy Kuy uy Kuy uz

KT
ux uz KT

uy uz Kuz uz

 (23)

Note that the stiffness matrix of equation 23 is symmetric. The sub-matrices
Kux ux , Kuy uy , and Kuz uz are square symmetric matrices (in general of differ-
ent sizes due to the fact that different representations and orders are possi-
ble for the displacements ux, uy, and uz respectively). The partitions Kux uy ,
Kux uz , and Kuy uz are in general rectangular matrices.

6.2 Theory-Invariant Arrays: Kernels of the Generalized Unified Formula-
tion

The governing equations (see equation 21) can be solved once KUU is deter-
mined. Looking at equation 23, it appears clear that KUU is built from the
knowledge of six finite element matrices Kux ux , Kux uy , Kux uz , Kuy uy , Kuy uz ,
and Kuz uz . This implies that the actual GUF’s kernels required to gener-

ate the stiffness matrix are the following: Kk αuxβux ij
ux ux , K

k αuyβuy ij
ux uy , Kk αuxβuz ij

ux uz ,

K
k αuyβuy ij
uy uy , K

k αuyβuz ij
uy uz , and Kk αuzβuz ij

uz uz . These matrices require evaluation of
integrals over the volume of the layer (at element level). From a practical point
of view the integral is split in an integral over the thickness and one over the
element plane (indicated with Ω). Some examples of thickness integrals within
GUF formalism are presented in Figure 10. ztopk

is the top layer z coordinate
of the upper layer surface at a given location in the plane of element. zbotk has
a similar meaning but is referred to the lower layer surface. After carrying out
all integrations, the expressions for the six kernels of the Generalized Unified
Formulation can be determined. Their formal writing is reported in Appendix

18

This is the accepted manuscript of the paper published on Composite Structures.  DOI:   https://doi.org/10.1016/j.compstruct.2015.05.022 18



Z 11 ux ux
= C11X x F2 F dzx

Example 1: definition of Z11 ux ux

zbotk
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k 2t

k
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k  2    t

Example 2: definition of Z11 ux ux

k b2

Jux = 2

Jux = b

Kux = t

Kux = 2

Ýx, yÞ

Ýx, yÞ

Ýx, yÞ

Z 11 ux ux
= C11X x Fb F dzx

zbotk

z topk

k
2

k  b    2
Ýx, yÞ

Ýx, yÞ

Ýx, yÞ

Fig. 10. Integrals along the thickness: definitions.

B of ref. [34]. For clarity, K
k αuxβuy ij
ux uy is reported below:

K
k αuxβuy ij
ux uy =

∫
Ω
Z
k αuxβuy
12 ux uy

xNi,x
yNj,ydxdy +

∫
Ω
Z
k αuxβuy
16 ux uy

xNi,x
yNj,xdxdy

+
∫

Ω
Z
k αuxβuy
26 ux uy

xNi,y
yNj,ydxdy +

∫
Ω
Z
k αuxβuy
66 ux uy

xNi,y
yNj,xdxdy

+
∫

Ω
Z
k αux,z βuy,z
45 ux uy

xNi
yNjdxdy

(24)

7 Interelement Boundary Conditions: the Penalty Method

Within this GUF extension to VAT structures, each element has different
kinematics and types of theories referred to different local coordinate systems.
Thus, the issue of combining (see refs. [8, 7, 9, 10]) different kinematic as-
sumptions arises when the interlement compatibility needs to be imposed. In
fact, due to the different discriminations among the adjacent elements, the
classic assembling technique, which automatically assures the equality of the
global displacements is not the optimal choice. This issue is overcome in this
work by adopting the penalty method [36].
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Fig. 11. The displacements of nodes j (element c) and l (element d) need to be
imposed to be the same.

7.1 Displacements of the Linked Nodes

Within GUF formalism, the displacement in the local xk direction 2 of a
generic layer k is written as

ukx
(
xk, yk, zk

)
= xF k

αux

(
zk
)
xNi

(
xk, yk

)
xUk

αux i
(25)

In this formulation it is assumed that two adjacent layers (parts of elements
denoted as element c and element d respectively) that have nodes j and l
on the “same location” (which will be linked with springs) have the same
thickness on that location. The thickness can be variable, but at the finite
element nodes is assumed to be the same if the two elements are physically
connected (see Figure 11). This is not really a limitation because the variability
of the thickness can still be considered at element level.

Consequence of this assumption is that a point on layer k of element c will be
linked to a point on layer k (note the same identity for the layer) of element
d.

The displacement is evaluated in correspondence of a finite element node j of
element c. All the element shape functions, except the one corresponding to
node j, will be zero and the non-zero shape function takes the unitary value.
Thus, it can be inferred (see equation 25) that:

cu
k
xj = x

cF
k
α cux

(
zkc
)

x
cU

k
α cuxj

(26)

where the subscript c has been added to emphasize that finite element c is
considered. No summation is implied when the index c is repeated.

2 Note that the in-plane coordinates x, y are the same for all the layers; thus, it is
x = xk and y = yk. For clarity of the presentation the superscript k is retained.
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For the displacements in the other two local directions similar formula is valid:

cu
k
yj = y

cF
k
α cuy

(
zkc
)

y
cU

k
α cuy j

(27)

cu
k
zj = z

cF
k
α cuz

(
zkc
)

z
cU

k
α cuz j

(28)

The displacements must be understood in local coordinate system relative to
element c (see Figure 11).

If ca
k
mn indicates the generic entry of the transformation matrix that trans-

forms the components of a vector from global to local coordinate system (at
layer level) of element c (similar logic can be used for element d), it is possible
to refer equations 26-28 to the global coordinate system by multiplying the
array representation of the displacement vector by the transpose of the trans-
formation matrix. This means that the global displacements (indicated with

cu
k
Xj, cu

k
Y j, cu

k
Zj, imagined function of the local coordinates xkc , y

k
c , z

k
c ) are the

following:

cu
k
Xj = ca

k
11 cu

k
xj + ca

k
21 cu

k
yj + ca

k
31 cu

k
zj

cu
k
Y j = ca

k
12 cu

k
xj + ca

k
22 cu

k
yj + ca

k
32 cu

k
zj

cu
k
Zj = ca

k
13 cu

k
xj + ca

k
23 cu

k
yj + ca

k
33 cu

k
zj

(29)

or

cu
k
Xj = ca

k
11

x
cF

k
α cux

x
cU

k
α cuxj

+ ca
k
21

y
cF

k
α cuy

y
cU

k
α cuy j

+ ca
k
31

z
cF

k
α cuz

z
cU

k
α cuz j

cu
k
Y j = ca

k
12

x
cF

k
α cux

x
cU

k
α cuxj

+ ca
k
22

y
cF

k
α cuy

y
cU

k
α cuy j

+ ca
k
32

z
cF

k
α cuz

z
cU

k
α cuz j

cu
k
Zj = ca

k
13

x
cF

k
α cux

x
cU

k
α cuxj

+ ca
k
23

y
cF

k
α cuy

y
cU

k
α cuy j

+ ca
k
33

z
cF

k
α cuz

z
cU

k
α cuz j

(30)

The superscript k is maintained even at global level to emphasize that layer
k is considered.

Similar method is followed when a point, in correspondence of node l and
element d is considered:

du
k
Xl = da

k
11

x
dF

k
α

dux

x
dU

k
α

dux
l + da

k
21

y
dF

k
α

duy

y
dU

k
α

duy
l + da

k
31

z
dF

k
α

duz

z
dU

k
α

duz
l

du
k
Y l = da

k
12

x
dF

k
α

dux

x
dU

k
α

dux
l + da

k
22

y
dF

k
α

duy

y
dU

k
α

duy
l + da

k
32

z
dF

k
α

duz

z
dU

k
α

duz
l

du
k
Zl = da

k
13

x
dF

k
α

dux

x
dU

k
α

dux
l + da

k
23

y
dF

k
α

duy

y
dU

k
α

duy
l + da

k
33

z
dF

k
α

duz

z
dU

k
α

duz
l

(31)
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7.2 Compatibility Enforced by Springs

The potential energy Uk of spring (of stiffness values KkX , KkY , and KkZ respec-
tively), written considering the displacements expressed in global coordinates
(see ref. [35]), is:

Uk =
1

2




cu
k
Xj

cu
k
Y j

cu
k
Zj

−

du

k
Xl

du
k
Y l

du
k
Zl





T 
KkX 0 0

0 KkY 0

0 0 KkZ






cu
k
Xj

cu
k
Y j

cu
k
Zj

−

du

k
Xl

du
k
Y l

du
k
Zl



 (32)

Note that in equation 32 the indices j and l are not understood as variables:
they indicate the nodes connected via springs as depicted in Figure 11.

Using equations 30 and 31 (which report the global displacements of the nodes
that need to have the same displacements imposed via penalty method), equa-
tion 32 is rewritten as (no summation on repeated indices ll and jj is implied)

2Uk =

x
cU

k
α cuxj

·Kk α cuxβ cuxjj
cux cux · xcUk

β cuxj
+xdU

k
α

dux
l ·K

k α
dux

β cux lj
dux cux · xdUk

β
dux

l +

x
cU

k
α cuxj

·Kk α cuxβ dux
jl

cux dux · xdUk
β

dux
l +xdU

k
α

dux
l ·K

k α
dux

β
dux

ll
dux dux · xdUk

β
dux

l + other terms

(33)
where

Kk α cuxβ cuxjj
cux cux =

(
ca
k
11 ca

k
11KkX + ca

k
12 ca

k
12KkY + ca

k
13 ca

k
13KkZ

)
x
cF

k
αux

x
cF

k
βux

K
k α

dux
β cux lj

dux cux =
(
− ca

k
11 da

k
11KkX − ca

k
12 da

k
12KkY − ca

k
13 da

k
13KkZ

)
x
dF

k
αux

x
cF

k
βux

K
k α cuxβ dux

jl
cux dux =

(
− ca

k
11 da

k
11KkX − ca

k
12 da

k
12KkY − ca

k
13 da

k
13KkZ

)
x
cF

k
αux

x
dF

k
βux

K
k α

dux
β

dux
ll

dux dux =
(
da
k
11 da

k
11KkX + da

k
12 da

k
12KkY + da

k
13 da

k
13KkZ

)
x
dF

k
αux

x
dF

k
βux

More details, omitted here for brevity, are reported in Appendix C of ref. [34].

This formulation has the drawback that the springs impose the compatibility
of the displacements only for a single point along the thickness of layer k. To
have the compatibility enforced in a weak form in the thickness direction, one
may use a distribution of springs. This is now discussed.

Let the stiffnesses per unit of length of thickness of element c (or d, being the
thickness of each layer the same according to the assumption earlier intro-
duced) of the springs be indicated with SkX , SkY , and SkZ (they are assumed
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constant and not a function of the layer’s thickness coordinate). Let hk be
the layer thickness (the same for both elements). The potential energy is the
following:

Uk = 1
2

∫
hk




cu
k
Xj

cu
k
Y j

cu
k
Zj

−

du

k
Xl

du
k
Y l

du
k
Zl





T 
SkX 0 0

0 SkY 0

0 0 SkZ






cu
k
Xj

cu
k
Y j

cu
k
Zj

−

du

k
Xl

du
k
Y l

du
k
Zl



 dz

(34)
(observe that it always is dz = dzk).

Equation 34 can be written in a very similar to equation 33 form. However,
the stiffness terms are now different. For example, it is

K
k α cuzβ duz

jl
cuz duz =

(
− ca

k
31 da

k
31SkX − ca

k
32 da

k
32SkY − ca

k
33 da

k
33SkZ

) ztopk∫
zbotk

z
cF

k
αuz

(
zk
)

z
dF

k
βuz

(
zk
)

dz

(35)
The formulation reported in equation 34 corresponds to the actual implemen-
tation of the present GUF-based capability. Note that the integral of equa-
tion 35 can be solved numerically. The theoretical derivations used to enforce
the interelement compatibility and the boundary condition (connection of the
structure to the ground) are explained next with particular focus on the thick-
ness assembling of the matrices.

7.3 Thickness Assembling of the Springs’ Contributions

First the assembling of the finite element stiffness matrices is discussed. Then
how the springs modify the resulting matrix is present.

7.3.1 Thickness Assembling of the Finite Element Stiffness Matrix

For simplicity of the discussion assume that both elements c and d have 3
nodes only and are made of two layers.

Suppose that for element c the adopted theory is EZLPV D211 (see ref. [34] for
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the more details on the acronym):



ux = ux0 + zφ1ux + z2φ2ux

uy = uy0 + zφ1uy + (−1)k ζkuyZ

ukz =
P k

0 + P k
1

2
ukzt +

P k
0 − P k

1

2
ukzb

(36)

Thus, it is clear that the number of terms (DOFs in the thickness direction) is
the following: cNux = 3, cNuy = 3, and cNuz = 2. P k

0 and P k
1 are the constant

and linear Legendre polynomials.

Suppose that for element d a different theory is adopted. For example assume
that LZLPV D111 (see ref. [34] for the more details on the acronym) is used:



ukx =
P k

0 + P k
1

2
ukxt +

P k
0 − P k

1

2
ukxb

uy = uy0 + zφ1uy + (−1)k ζkuyZ

ukz =
P k

0 + P k
1

2
ukzt +

P k
0 − P k

1

2
ukzb

(37)

Thus, it is clear that dNux = 2, dNuy = 3, and dNuz = 2.

It should be emphasized that within GUF formalism the ESL theories do not
have index k (except for the Zig-Zag term). However, when the matrix at
layer level is derived the index k is considered for consistency of the notation.
The assembling in the thickness direction will take care of the ESL or LW
description for the different quantities.

Focus is now on the assembling of matrix Kk
ux uy . Figure 12 shows one of

the terms of the matrix at layer and nodal levels. The subscript c is added
for clarity. Figure 13 shows the matrix at layer and element levels, whereas
Figure 14 presents the matrix after the assembling in the thickness direction is
completed. It should be observed that both displacements ux and uy of element
c have an ESL description. Thus, all the terms of the stiffness matrix need to
be added as shown in Figure 14. Things would be different if one variable (or
both) had a LW description. In that case only some elements would be added
in correspondence of the degrees of freedom at the interface between layers
and Figure 14 would be modified.

The other finite element matrices are built with similar logic (details are omit-
ted for brevity).
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Fig. 12. Finite element implementation of the Generalized Unified Formulation:
expansion of the thickness indices to obtain the stiffness matrix at layer, and nodal
levels. Example for matrix Kk 31

cux cuy .
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Fig. 13. Finite element implementation of the Generalized Unified Formulation:
expansion of the finite element indices i and j to obtain the matrix at layer and
element levels. Example for matrix Kk

cux cuy (see also Figure 12).

K
211

K
212

K
213

K
221

K
222

K
223

K
231

K
232

K
233

K
111

K
112

K
113

K
121

K
122

K
123

K
131

K
132

K
133

+

+

+

+

+

+

+

+

+

K =ux uyc c

ux uyc c ux uyc c ux uyc c ux uyc c ux uyc c ux uyc c

ux uyc c ux uyc c ux uyc c ux uyc c ux uyc c ux uyc c

ux uyc c ux uyc c ux uyc c ux uyc c ux uyc c ux uyc c

Fig. 14. Finite Element implementation of the Generalized Unified Formulation:
example of element matrix Kcux cuy .
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Fig. 16. Two triangles c and d. Final system of equations that needs to be solved

7.3.2 Spring Contributions

Assume that the two elements are located in space as in Figure 15. The goal
is to impose the compatibility between the displacements of node 3 and node
4 and between 2 and 6. Suppose for simplicity that the structure is made of
two layers, and that the values of SkX ,SkY ,SkZ are assigned and known (in this
implementation all the spring stiffness densities are taken to be 103 times the
highest entry of the stiffness matrix, numerically obtained). The final set of
equations that needs to be solved is depicted in Figure 16. This formulation
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Fig. 17. Imposition of the compatibility of displacements. Case of matrix K26
cux duz

.

has the following properties:

• All the different entries of the displacement vector have to be understood
in local coordinate systems of the respective finite elements and not in the
global coordinate system.
• The loads are also provided in local element coordinate systems.
• The conceptual structure made of two elements and shown in the example

of Figure 15, needs to be constrained to the ground. This will be discussed
later.

Figures 17 and 18 show how the boundary conditions via springs are imposed.
The reader should focus the attention on the thickness integrals.

The particular assembling in the thickness direction implies that at the nodes
where the springs are used there is the interlaminar compatibility of displace-
ments referred to different coordinate systems (in fact, the two elements have
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Fig. 18. Imposition of the compatibility of displacements. Case of matrix K26
cuz duy

.

different coordinate systems). This is the case, for example, when matrix
K26

cuz duy
is built.

The structure has to be restrained to the ground. How this is obtained in this
formulation is now discussed. Suppose that node 1 of element c is grounded
(i.e., the displacements of node 1 have to be imposed to be zero). This is
achieved as shown in Figure 19. As previously discussed, it is also possible to
ground only a specific point (or a finite number of points) in the thickness
direction (for a given finite element node). The procedure is identical to the
one described in Figure 19. However, there is no thickness integral (as in the
weak imposition of the compatibility condition) and only the contribution of
the layer specifically involved by the spring connection is a non-zero quantity.

Note that in the interpretation of Figures 18 and 19, the superscript “2”
indicating the identity of layer 2 should not be confused with the exponent 2.
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Fig. 19. Imposition of the ground conditions for node 1 of element c. Details relative
to matrix K11

cuz duy
.

8 Implemented Triangular Elements

GUF is a very general technique: it can be applied to different types of ax-
iomatic approaches such as the global-local model [70, 71] or different finite
element formulations (see refs. [49, 47]). In the present work GUF finite ele-
ment implementation includes linear, parabolic, cubic, and quartic triangular
elements (see Figure 20). The results of the present work have all been ob-
tained with quartic triangular element, which for the investigated cases showed
excellent numerical performances. All the details regarding the finite element
implementation are reported in the extended conference version of this work
(ref. [34]).
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9 Results

The global coordinate system X, Y, Z is located at the center of the plate
(see Figure 21). The edges have length a and b (in the X and Y directions
respectively). They are selected to be the same. In this work the loading con-
dition is represented by a transverse constant distributed load. Two-layer and
three-layer structures are examined. In the material coordinate system (which
is variable in the space being the fibers’ patterns curvilinear) the properties
are assumed orthotropic and reported in Figure 21.

Called T k0 and T k1 the angles the fibers form with respect to the X axis at
X = 0 (center) and X = a/2 (edge) respectively, the fibers’ angle is selected
to change with the in-plane coordinates as follows:

ϑk (X) =
2
(
T k1 − T k0

)
a

|X|+ T k0 (38)

Several cases are analyzed and combined in this work. They are described in
Figs. 22 and 23 where the fibers’ patterns are shown and the corresponding
values for the parameters T0 and T1 (see equation 38) provided. Note that in
Figs. 22 and 23 the superscript k, indicating the layer ID, is not used because
the cases presented can be adopted to any layer in the investigations carried
out in this work.

Table 1 presents the normalized central displacement for a two-layer structure
loaded with a constant distributed load equal to 10 kN/m2 (see ref. [76]). The
first layer has thickness h/2 and angles T 1

0 and T 1
1 corresponding to case 4

(see Figure 22). The second layer has variable parameters used to describe
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the curvilinear fibers (cases 1− 8 of Figure 22). In Table 2 the first layer has

Layer 1 Layer 2 uz/h

T 1
0 T 1

1 Case T 2
0 T 2

1 Case Present Ref [76]

10◦ 20◦ 4 10◦ −10◦ 1 1.409 (1.405)

10◦ 20◦ 4 10◦ 0◦ 2 1.210 (1.204)

10◦ 20◦ 4 10◦ 10◦ 3 1.032 (1.019)

10◦ 20◦ 4 10◦ 20◦ 4 0.993 (0.978)

10◦ 20◦ 4 10◦ 30◦ 5 1.131 (1.125)

10◦ 20◦ 4 10◦ 40◦ 6 1.353 (1.360)

10◦ 20◦ 4 10◦ 50◦ 7 1.577 (1.589)

10◦ 20◦ 4 10◦ 60◦ 8 1.766 (1.773)

Table 1
Normalized central deflection uz/h of a two-layer unsymmetric clamped Vari-
able Stiffness Composite Laminate under a transverse distributed load equal to
10 kN/m2. The present results have been obtained using the LLLPVD111 theory.

thickness h/2 and angles T 1
0 and T 1

1 corresponding to case 13 (see Figure 23).
The second layer has variable parameters used to describe the curvilinear
fibers (cases 9 div 16 of Figure 23). Table 3 presents the normalized central
displacement for a three-layer structure (see ref. [76]). All layers have thickness
equal to h/3. In the first layer the angles T 1

0 and T 1
1 correspond to case 4 (see

Figure 22). The second layer has angle parameters corresponding to case 5
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Layer 1 Layer 2 uz/h

T 1
0 T 1

1 Case T 2
0 T 2

1 Case Present Ref [76]

20◦ 10◦ 13 −10◦ 10◦ 16 1.234 (1.210)

20◦ 10◦ 13 0◦ 10◦ 15 1.106 (1.084)

20◦ 10◦ 13 10◦ 10◦ 14 0.992 (0.973)

20◦ 10◦ 13 20◦ 10◦ 13 0.972 (0.956)

20◦ 10◦ 13 30◦ 10◦ 12 1.065 (1.048)

20◦ 10◦ 13 40◦ 10◦ 11 1.207 (1.187)

20◦ 10◦ 13 50◦ 10◦ 10 1.340 (1.319)

20◦ 10◦ 13 60◦ 10◦ 9 1.445 (1.425)

Table 2
Normalized central deflection uz/h of a two-layer unsymmetric clamped Vari-
able Stiffness Composite Laminate under a transverse distributed load equal to
10 kN/m2. The present results have been obtained using the LLLPVD111 theory.

Layer 1 Layer 2 Layer 3 uz/h

T 1
0 T 1

1 Case T 2
0 T 2

1 Case T 3
0 T 3

1 Case Present Ref [76]

10◦ 20◦ 4 10◦ 30◦ 5 10◦ −10◦ 1 2.469 (2.425)

10◦ 20◦ 4 10◦ 30◦ 5 10◦ 0◦ 2 2.213 (2.177)

10◦ 20◦ 4 10◦ 30◦ 5 10◦ 10◦ 3 2.014 (1.983)

10◦ 20◦ 4 10◦ 30◦ 5 10◦ 20◦ 4 1.998 (1.971 )

10◦ 20◦ 4 10◦ 30◦ 5 10◦ 30◦ 5 2.257 (2.232)

10◦ 20◦ 4 10◦ 30◦ 5 10◦ 40◦ 6 2.694 (2.670)

10◦ 20◦ 4 10◦ 30◦ 5 10◦ 50◦ 7 3.105 (3.071)

10◦ 20◦ 4 10◦ 30◦ 5 10◦ 60◦ 8 3.386 (3.331)

Table 3
Normalized central deflection uz/h of a three-layer unsymmetric clamped Vari-
able Stiffness Composite Laminate under a transverse distributed load equal to
20 kN/m2. The present results have been obtained using the LLLPVD111 theory.
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Fig. 24. Main properties of the Generalized Unified Formulation for Variable Stiff-
ness Composite Laminates.

(see Figure 22). The third layer presents variable angle parameters used to
describe the curvilinear fibers (cases 1− 8 of Figure 22).

There is an excellent correlation with published data. With the generality
of the GUF-based approach several studies regarding the displacements and
stresses distributions will be analyzed by changing theories and orders of ex-
pansions in the different directions. Being the fibers curvilinear, it is antic-
ipated that for Variable Stiffness Composite Laminates GUF will provide a
useful investigation tool since each direction is independently handled and this
can be freely changed by the user.

Finally, the above discussed extension of the Generalize Unified Formulation
framework to analyze Variable Angle Tows (or Variable Stiffness Composite
Laminate) is summarized in Figure 24.

10 Conclusions

This work presented for the first time the Generalized Unified Formulation
extended to the case of Variable Angle Tow composite structures. Function-
ally graded properties in both the thickness and in-plane direction have also
been theoretically formulated. The numerical implementation was based on a
quartic triangular shell element with user-defined curvilinear fiber directions.
Main features of the proposed computational framework for Variable Stiffness
Composite Laminates are the following:
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• An Equivalent Single Layer or Layer Wise description for a displacement in
any element-wise direction can be selected. This feature allows the user to
concentrate the computational effort where it is necessary (case dependent
property). Optimization and reliability analysis are then natural applica-
tions.
• The thickness axiomatic expansion of a displacement along a generic di-

rection is completely independent of the choice made for another direction.
For example, a cubic Higher Order Theory can be used for a local in-plane
displacement and a linear Layer Wise approach can be adopted for a local
transverse displacement variable.
• Equivalent Single Layer expansions can be enhanced with Murakami’s Zig

Zag functions.
• Spatially variable thickness and material properties are included in the for-

mulation.
• Several different finite elements can be adopted with no additional program-

ming effort thanks to the theory-invariant kernels of the Generalized Unified
Formulation from which an infinite number of theories can be generated.
• The interelement displacement compatibility is imposed with the penalty

method (weak form). This has proven to be efficient and provides to the
user great versatility since the finite elements are independently modeled
(different theories for user-selected directions).
• The interlaminar displacement compatibility is automatically enforced via

thickness assembling of the finite element matrices.
• No shear correction factors are required and the transverse strain effects can

be retained.

The results showed excellent correlation with available data on Variable Stiff-
ness Composite Laminates regarding two- and three-layer unsymmetric mul-
tilayer structures.

Future works will assess the performance of a large number of theories which
will exploit the generality of the Generalized Unified Formulation. Moreover,
mixed variational approaches will also be investigated for an a-priori interlam-
inar transverse stress equilibrium enforcement.

11 Acknowledgment

This paper is dedicated to the memory of Todd O. Williams (Los Alamos
National Lab, Theoretical Division) for his contributions to the theoretical
modeling of structures.

35

This is the accepted manuscript of the paper published on Composite Structures.  DOI:   https://doi.org/10.1016/j.compstruct.2015.05.022 35



References

[1] V. Aitharaju and R. Averill. C0 Zig-Zag Finite Element for Analysis of
Laminated Composite Beams. J Eng Mech ASCE, 125:323–330, 1999.

[2] Hamed Akhavan, Pedro Ribeiro, and Marcelo F. S. F. de Moura. Damage
onset on tow-placed variable stiffness composite laminates. Composite
Structures, 113:419–428, 2014.

[3] Hamed Akhavan, Pedro Ribeiro, and M.F.S.F de Moura. Large deflection
and stresses in variable stiffness composite laminates with curvilinear
fibres. Composite Structures, 73:14–26, 2013.

[4] M. M. Alipour and M. Shariyat. An Elasticity-Equilibrium-Based Zig-Zag
Theory for Axisymmetric Bending and Stress Analysis of the Function-
ally Graded Circular Sandwich Plates, Using a Maclaurin-Type Series
Solution. European Journal of Mechanics A/Solids, 34:78–101, 2012.

[5] R. Averill and Y. Yip. Thick Beam Theory and Finite Element Model
with Zig-Zag Sublaminate Approximations. AIAA Journal, 34:1627–
1632, 1996.

[6] R. C. Batra and S. Vidoli. Higher order piezoelectric plate theory derived
from a three-dimensional variational principle. AIAA Journal, 40:91–104,
2002.

[7] H. Ben Dhia. Numerical modelling of multiscale problems: the arlequin
method. 1995. In: CD Proceedings ECCM’99, Munchen; 1999.

[8] H. Ben Dhia. Multiscale mechanical problems: the arlequin method.
Comptes Rendus de l’academie des Sciences Series IIB Mechanics Physics
Astronomy, 326:899–904, 1998.

[9] H. Ben Dhia and G. Rateau. The arlequin method as a flexible engineer-
ing tool. International Jounral for Numerical Methods in Engineering,
62:1442–1462, 2005.

[10] F. Biscani, G. Giunta, S. Belouettar, E. Carrera, and H. Hu. Variable
kinematic beam elements coupled via arlequin method. Composite Struc-
tures, 93:697–708, 2011.

[11] S. Brischetto, E. Carrera, and L. Demasi. Free vibration of sandwich
plates and shells by using Zig-Zag function. Shock and Vibration, 2010.
in press.

[12] S. Brischetto, E. Carrera, and L. Demasi. Improved bending analysis of
sandwich plates using Zig-Zag functions. Composite Structures, 2010. in
press.

[13] S. Brischetto, E. Carrera, and L. Demasi. Improved response of unsym-
metrically laminated sandwich plates by using Zig-Zag functions. Journal
of Sandwich Structures & Materials, 2010. in press.

[14] E. Carrera. A class of two-dimensional theories for anisotropic multilay-
ered plates analysis. Accademia delle Scienze Torino, pages 19–20,1–39,
1995-1996.

[15] E. Carrera. Evaluation of Layer-Wise Mixed Theories for Laminated
Plates Analysis. American Institute of Aeronautics and Astronautics

36

This is the accepted manuscript of the paper published on Composite Structures.  DOI:   https://doi.org/10.1016/j.compstruct.2015.05.022 36



Journal, 26:830–839, 1998.
[16] E. Carrera. Mixed Layer-Wise Models for Multilayered Plates Analysis.

Composite Structures, 43:57–70, 1998.
[17] E. Carrera. Historical review of Zig-Zag theories for multilayered plates

and shells. App Mech Rev, 56, 2003.
[18] E. Carrera. Theories and Finite Elements for Multilayered Plates and

Shells: A Unified Compact Formulation with Numerical Assessment and
Benchmarking. Archives of Computational Methods in Engineering,
10:215–296, 2003.

[19] E. Carrera. On the Use of Murakami’s Zig-Zag Function in the Modeling
of Layered Plates and Shells. Composite Structures, 82:541–554, 2004.

[20] K. N. Cho, C. W. Bert, and A. G. Striz. Free Vibrations of Laminated
Rectangular Plates Analyzed by Higher Order Individual-Layer Theory.
Journal of Sound and Vibration, 145:429–442, 1991.

[21] Byung Chul Kim, Paul M. Weaver, and Kevin Potter. Manufacturing
characteristics of the continuous tow shearing method for manufacturing
of variable angle tow composites. Composite: Part A, 61:141–151, 2014.

[22] B.H. Coburn, Z. Wu, and P.M. Weaver. Buckling analysis of stiffened
variable angle tow panels. Composite Structures, 111:259–270, 2014.

[23] T.D. Dang and S.R. Hallett. A numerical study on impact and compres-
sion after impact behavior of variable angle tow laminates. Composite
Structures, 96:194–206, 2013.

[24] L. Demasi. Refined multilayered plate elements based on Murakami Zig-
Zag functions. Composite Structures, 70:308–16, 2005.

[25] L. Demasi. 2D, quasi 3D and 3D Exact Solutions for Bending of Thick
and Thin Sandwich Plates. Journal of Sandwich Structures & Materials,
10:271–310, 2008.

[26] L. Demasi. ∞3 hierarchy plate theories for thick and thin composite
plates. Composite Structures, 84:256–270, 2008.

[27] L. Demasi. ∞6 mixed plate theories based on the generalized unified
formulation. Part I: Governing Equations. Composite Structures, 87:1–
11, 2009.

[28] L. Demasi. ∞6 mixed plate theories based on the Generalized Unified
Formulation. Part II: Layerwise Theories. Composite Structures, 87:12–
22, 2009.

[29] L. Demasi. ∞6 mixed plate theories based on the Generalized Unified
formulation. Part III: Advanced Mixed High Order Shear Deformation
Theories. Composite Structures, 87:183–194, 2009.

[30] L. Demasi. ∞6 mixed plate theories based on the Generalized Unified
Formulation. Part IV: Zig-Zag Theories. Composite Structures, 87:195–
205, 2009.

[31] L. Demasi. ∞6 mixed plate theories based on the Generalized Unified
Formulation. Part V: Results. Composite Structures, 88:1–16, 2009.

[32] L. Demasi. Invariant Finite Element Model for Composite Structures: the
Generalized Unified Formulation. AIAA Journal, 48:1602–1619, 2010.

37

This is the accepted manuscript of the paper published on Composite Structures.  DOI:   https://doi.org/10.1016/j.compstruct.2015.05.022 37



[33] L. Demasi. Partially layer wise advanced zig-zag and hsdt models based
on the generalized unified formulation. Engineering Structures, 53:63–91,
2013.

[34] L. Demasi, Y. Ashenafi, R. Cavallaro, and E. Santarpia. Generalized uni-
fied formulation shell element for functionally graded variable-stiffness
composite laminates and aeroelastic applications. Number AIAA 2015-
0195. 56th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, Missimmee, Florida, American Insti-
tute of Aeronautics and Astronautics, 5-9 January 2015.

[35] L. Demasi and E. Livne. Structural ritz-based simple-polynomial non-
linear equivalent plate approach: An assessment. Journal of Aircraft,
43:1685–1697, 2006.

[36] C.A. Felippa. Error analysis of penalty function techniques for constraint
definition in linear algebraic system. International Journal for Numerical
Methods in Engineering, 11:709–728, 1977.

[37] R.M.J. Groh and P.M. Weaver. Buckling analysis of variable angle tow,
variable thickness panels with transverse shear effects. Composite Struc-
tures, 107:482–493, 2014.

[38] M.W. Hyer and H.H. Lee. The use of curvilinear fiber format to im-
prove buckling resistance of composite plates with central circular holes.
Composite Structures, 18:239–261, 1991.

[39] T. Kant and K. Swaminathan. Free vibration of isotropic, orthotropic,
and multilayer plates based on higher order refined theories. Journal of
Sound and Vibration, 241:319–327, 2001.

[40] S. Kapuria, P. Dumir, and A. Ahmed. An Efficient Higher Order Zig-
Zag Theory for Composite and Sandwich Beams Subjected to Thermal
Loading. Int J Solids Struct, 40:6613–6631, 2003.

[41] B. C. Kim, K. Potter, and P.M. Weaver. Continuous tow shearing for
manufacturing variable angle tow composites. Composite Structures,
43:1347–1356, 2012.
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