Universidad

ucdm | CarloslIl -Archivo
de Madrid

This is a postprint version of the following published document:

Martin, C., Quintana, D., Isasi, P. (2019). Evolution of
trading strategies with flexible structures: A

configuration comparison. Neurocomputing, 331, pp.
242-262.

DOI: 10.1016/j.neucom.2018.11.062

© 2018 Elsevier B.V.

©l0ClO

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

https://doi.org/10.1016/j.neucom.2018.11.062
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Evolution of trading strategies with flexible structures: a
configuration comparison

Carlos Martin?, David Quintana®*, Pedro Isasi®

“Dpto. de Informdtica, Universidad Carlos Il de Madrid, Avda. Universidad 30, 28911 Leganes, Spain.

Abstract

Evolutionary Computation is often used in the domain of automated discovery of trading rules.
Within this area, both Genetic Programming and Grammatical Evolution offer solutions with
similar structures that have two key advantages in common: they are both interpretable and flex-
ible in terms of their structure. The core algorithms can be extended to use automatically defined
functions or mechanisms aimed to promote parsimony. The number of references on this topic is
ample, but most of the studies focus on a specific setup. This means that it is not clear which is
the best alternative. This work intends to fill that gap in the literature presenting a comprehensive
set of experiments using both techniques with similar variations, and measuring their sensitivity
to an increase in population size and composition of the terminal set. The experimental work,
based on three S&P 500 data sets, suggest that Grammatical Evolution generates strategies that
are more profitable, more robust and simpler, especially when a parsimony control technique was
applied. As for the use of automatically defined function, it improved the performance in some
experiments, but the results were inconclusive.

Keywords: evolutionary computation, genetic programming, grammatical evolution, trading

1. Introduction

Recent advances in Information Technology and Communications have favored the progressive
automation of trading. The ability of algorithmic trading systems to process data at high speed
and to identify regularities within or across markets, has led to their popularization since the
1990s [1]. While they offer advantages in terms of speed; accuracy; reduced costs or lack of
human emotions, to mention a few, their impact on the financial markets as a whole is still
controversial. Researchers have identified both positive elements, like higher efficiency in the
price discovery process, and negative ones like excess volatility and higher adverse selection
costs [2, 3].

According to Nuti et al. [4], these systems can cover either specific stages of the process, in-
cluding pre-trade analysis; trading signal generation; trade execution or post-trade analysis, or

*Corresponding author
Email addresses: carlos.m.fernandez@alumnos.uc3m.es (Carlos Martin), dquintan@inf .uc3m.es (David
Quintana), isasi@ia.uc3m.es (Pedro Isasi)

December 20, 2021

the whole cycle. In this work will be focused on trading signal generation, more specifically on
market timing strategy generation.

The range of alternatives that can be used in this context is very wide, but most of them fall
under one of two categories, fundamental analysis or technical analysis. The former is focused
on fair value and uses financial statements as the main source of information, while the latter
relies mostly on features of the price and volume data of securities called technical indicators.
Among them, the most well known are moving averages and support lines. Besides these, other
classic indicators are the opening, closing, maximum and minimum prices, volume and volatil-
ity [5]. These, together with a number of operators and thresholds, are used to define technical
investment rules. Once these rules are specified, investors can use them to make decisions on the
purchase and sale of securities in financial markets.

The matter of whether it is possible at all to find profitable trading strategies for publicly traded
assets is still under debate. According to Fama [6] and his followers, stocks trade at fair value.
This would make beating the overall market through traded asset selection or market timing on
a risk-adjusted basis impossible. This, so called, Efficient Market Hypothesis (EMH) has three
variants “weak”, “semi-strong”, and “strong” that differ on the strength of the claim. However,
other authors disagree [7] and there is a whole industry based on the argument that active invest-
ing is profitable.

The search for profitable trading strategies has been driving research efforts for decades. Among
the many different approaches that can be used to design trading rules (such as Particle Swarm
Optimization, Genetic Algorithms, Artificial Neural Networks and Fuzzy Methods), there are
some based on evolutionary computation that are especially interesting due to three key features:
the process of rule generation is automatic, the resulting rules are interpretable, and their structure
is flexible.

Evolutionary Computation (EC) belongs to a family of problem solvers, based on trial and error
strategies, that is widely used in finance [8]. This framework includes a number of optimization
algorithms inspired by the principles of natural selection. These are based on populations of
candidate solutions that are improved over a number of iterations. These include, among others,
Genetic Algorithms (GA), Evolution Strategies (ES); Genetic Programming (GP) and Grammat-
ical Evolution (GE). This work will we based on the last two.

GP is a type of Evolutionary Algorithm (EA) that uses a guided random search technique (GRST)
for search optimization. GP is a refinement of GAs popularized by Koza [9], who considers that
the problem solving process is equivalent to the search (within the space of possible computer
programs) of a particular computer program, or highly adapted individual, that solves it.

Over time, researchers have developed a number of variations on the canonical algorithm. Among
them, we could mention:

o Tree-based Genetic Programming (TGP)
o Stack-based Genetic Programming (SGP)

e Linear Genetic Programming (LGP)

Extended Compact Genetic Programming (ECGP)

Multi-Tree based Genetic Programming (MTGP)
2

Multiobjective Genetic Programming (MOGP)

Cartesian Genetic Programming (CGP)

Probabilistic Incremental Program Evolution (PIPE)

Strongly Typed Genetic Programming (STGP)

Grammatical Evolution is an evolutionary computation technique that is closely related to GP.
They share the common objective of finding an executable program or a program fragment that
will achieve a good fitness value for the given objective function. In GE, Ryan et al. [10] make use
of variable length genomes, represented as integer vectors, to elaborate definitions of grammars
to generate a large range of programs, of arbitrary complexity, by applying genetic operators.

The body of literature on trading rule generation using either GP or GE is large. However, it is
also very heterogeneous. Most of the papers differ in the choice of core algorithms, technical
indicators or data samples. The latter is specially relevant as GP/GE-based strategies tend to per-
form better in some settings (bear markets/sideways trends) and worse in others (upper trends),
making performance comparisons over different samples rather problematic. That means that
the evidence supporting the superiority of any of these two competing approaches over the other
in this domain is very limited. In addition to this, even basic discussion on whether using basic
extension like ADFs or mechanisms aimed to promote parsimony makes sense, are still pending.
This work intends to fill that gap in the literature presenting a comprehensive set of experiments
using STGP and GE with similar variations.

The goal of this work is to compare the two most popular approaches used to generate trading
rules from tree-based flexible structures based on evolutionary computation. In addition to that,
the study will analyze the importance of ADFs and the impact of the addition of a complexity
control mechanism to both GP and GE. The analysis of the results will be based on financial
returns and the complexity of the investment rules generated under different configurations.

In order to make the results comparable, both algorithms will use the same set of functions and
indicators. In a first approximation, we will consider the set defined by Lohpetch and Corne [11]
and a standard population size. This initial work will be subsequently expanded to assess the
sensitivity of both algorithms, together with their variations, when we increase the population
size and the number of technical indicators used.

The work is organized as follows: section 2 presents a short overview of the relevant literature.
Then, section 3 will provide a description of the aspects of GP and GE evaluated and used in
this work. That will be followed by a description of the experimental setup in section 4, and the
presentation of the main results in section 5. Finally, section 6 will be devoted to summary and
conclusions.

2. State of the Art

Academic research on automatic trading rule generation using GP, GE and their variations has
a two-decade tradition that started with a seminal paper by Allen and Karjalainen [12]. This
section will be devoted to present a number of key papers that will be classified according to the
core underlying algorithm.

2.1. Contributions based on Genetic Programming

Most of the literature is based on the canonical version of GP. The starting point would be the
contribution of Allen and Karjalainen [12]. These authors sought to generate, through GP, tech-
nical trading rules for the S&P 500 index, using daily prices from 1928 to 1995. Their study
concluded that the rules generated could not obtain, in the periods of test, consistent excess re-
turns on investment over the naive strategy of buying at the beginning of the period and selling
at the end, known as Buy and Hold (B&H), specially after considering transaction costs.

In their paper, Setzkorn et al. [13] created a set of market investment rules that optimized through
the use of GP. The set of rules consisted of simple relationships between technical indicators,
based on moving averages of different time lengths, from which they generated three types of
signals: buy, sell or remain inactive. The data used came from the composite index of S&P 500
(02/01/90 to 18/10/01) that was divided into a training period of 3 years, a validation one of
4 years and a test sample of 4. The results showed that the complex rules behaved very well in
training but poorly in the test period, whereas the simple ones did worse during training, but better
in the test phase. The authors considered that the most likely reason for the poor performance
of the algorithm was the exclusive use of moving averages as indicators, and they thought that
increasing the range of alternatives would probably improve the results.

The same year, Thomasy and Sycara [14] published a paper where they evaluated whether finan-
cial information from internet news portals (Yahoo and Lycos Finance) had a predictive power
that, used as an input to GP, could provide investment returns superior to B&H. In their experi-
ments, the B&H strategy obtained a 126.21% yield throughout the trial period, while the return
of the GP alternative was 164.36%.

Becker and Seshadri [15] performed a series of experiments using GP to beat the B&H strategy in
the S&P 500 index, taking into account transaction costs and without counting dividends. Their
approach differed that of Allen and Karjalainen in that they used monthly data instead of daily
returns, increased the number of derived technical indicators, and used a complexity penalty
factor in calculating individuals fitness in order to promote parsimony. In their conclusions, they
affirm that they beat B&H at the same time that the complexity of the found rules was reduced
drastically.

In another study, Neely [16] used GP, following Allen and Karjalainen [12], to construct optimum
investment rules bearing in mind the ex-ante risk predicted for the S&P 500 index. The period
that they considered ran from 1929 to 1995, with training periods of 5 years followed by selection
periods of 2. The best rules obtained in the previous two phases were tested on the remaining
data, taking into account transaction costs of 25 basis points. In their conclusions, they found no
evidence that the rules obtained significantly exceeded the performance of the B&H strategy on
an risk-adjusted basis.

Fyfe et al. [17] used GP to generate investment rules trained from long time series belonging to
the S&P 500, S&P Automobile and S&P Bank indexes for the period that goes from 01/01/90 to
07/30/99. The rules were evaluated in terms of their basic yields and adjusted by including risk
and operating costs. In the results, they observed that although the basic yields performed very
well, in comparison with the B&H strategy, they did not surpass this once the risk adjustment
and associated operating costs were considered.

Potvin et al. [18] proposed the use of GP to automatically generate short-term investment rules
4

in securities markets. Instead of using a compound index, their investment rules were adjusted
using individual index values. In their study, they used stock price data and transaction volumes
of 14 Canadian companies included in the TSE 300 index. The study period ranged from June 30,
1992 to June 30, 2000, for a total of 2003 days. In their conclusions, they showed that GP failed
to beat B&H. However in a detailed analysis of the results, they found that GP outperformed it
in 9 out of the 14 indexes.

Navet and Chen [19] investigated GP use on the New York Stock Exchange Market (NYSE).
Based on the time series data of 100 index values during the period from 2000 to 2006, and
dividing them into three sets of data: training (2000-2002), validation (2003-2004) and test
(2005-2006), the authors explored performance of the investment rules obtained by GP, from
a classification scheme that distinguished between values with high and low entropy. Results
showed that GP only exceeded the random investment strategy in 2 out of 5 simulations. In their
conclusions, the authors pointed out that the empirical evidence obtained suggested that pre-
dictability is neither a necessary condition nor sufficient to obtain profitability. The predictability
test only identifies the existence of time patterns, but gives no further information on the ease, or
difficulty, of discovering the patterns.

Lohpetch and Corne [20, 11] sought to identify a training strategy that would allow the generation
of investment rules that outperform the B&H strategy robustly. They used a 31 year period of
S&P 500 data from 1960 to 1991 (in line with [12, 15, 21]), in which they explored two different
regimes for choosing and evaluating a rule after training. In the first strategy, after the training
phase, the best rules were tested against the validation set, in the second strategy, the obtained
rules were validated, first against a second set of data and then the rules acquired in this second
phase were tested against the test set. The authors concluded that the GP was sensitive to the
periods of data involved, and it was clearly better to use a validation set following the training
one to choose the rule to evaluate. As for the length of the training period, they found that in the
shorter periods B&H was dominant, whereas in the long periods the performance was lower (24
months and 18 months).

In the same vein as Potvin et al. [18], Esfahanipour et al. [22] extended the GP model, in two
ways: first adjusting the risk and second without considering it. In their study, they implemented
their solution taking into account the individual stock indexes of ten Iranian companies on the
Tehran Stock Exchange market (TSE). In the GP model, in which the unadjusted risk was ap-
plied, the results obtained were similar to those of Potvin et al. In their results, they affirm that in
the risk-adjusted GP model the investment rules generated surpassed B&H strategy in all market
conditions, whether in the bull market or in the bear market. They concluded that their GP model
managed to generate profitable investment rules for all investors, either for those who accept the
risk or those who try to avoid it.

In his thesis, Jensen [23] chose a fairly recent sample (1997-2007) of the stock indexes DAX and
Hang Seng, which he used to identify investment strategies using GPs in training periods of 3
and 5 years and of test of 1 and 3 years respectively. The author performed some experiments
with 10-year training periods that he tested in a one year test. Unfortunately, the results were
poor despite the fact that the GP algorithm was trained with a data set that included a complete
economic cycle. In his conclusions, he affirmed that the rules of investment generated by the
GP generally produce negative results in terms of yield and, more important, Sortino ratio. The
author understands that these key figures may imply that GP fails in its attempt to beat B&H
strategy. This was specially the case once he used a realistic transaction cost of 0.25%, instead
5

of the 0.10% that he used as a starting point.

Janice How et al. [24] used the GP algorithm procedure of Allen and Karjalainen to find technical
trading rules. They chose four 7-year overlapping (in-sample) estimation periods (1979—1985,
1984—-1990, 1989—-1995 and 1994-2000) of daily data used as input to the algorithm. To avoid
data overfitting, each in-sample period was broken down into a 5-year training period and a
2-year selection one. The rules generated were then tested out-of-sample over the remainder
testing period, which always ended up on 31 December 2005. Like in Brock [25], Allen and
Karjalainenl [12], Potvin et al. [18], they found that the rules obtained tended to signal the trader
to stay in the market during periods of low volatility and positive returns, and stay out of the
market during periods of high volatility and negative returns.

Gabrielsson et al. [26] explored the feasibility of evolving transparent entry and exit trading
strategies, for the E-mini S&P 500 index futures market, in a high-frequency trading environment
using GE. They compared the performance of models incorporating risk into their calculations
with models that did not. In their conclusions, they affirm that the empirical results obtained
suggest that profitable, risk-averse, transparent trading strategies for the E-mini S&P 500 can be
obtained using GE together with technical indicators.

Luengo et al. [27], based on the application of a set of simple trading rules optimized by GP,
looked for a method for generating input and output signals in the Spanish stock market under
three different market scenarios: bull market, bear market and sideways market. In their results,
they found that market global behavior had a great influence on the results of each method.
Strategies based on GP performed best in sideways markets.

In their paper, Gypteau et al. [28] used an intrinsic time scale based on directional changes,
which they combined with GP, to find an optimal trading strategy to forecast the future price
moves of financial markets. They evaluated its efficiency and robustness as forecasting tool
through a series of experiments and concluded that, with their approach, they we were able to
obtain valuable information about forecasting performance.

Hongguang et al. [29] used an intraday time series with GP to fully exploit the short term fore-
casting advantage of technical analysis. They thought that the utilization of intraday data to train
the trading rules could avoid jumping points in daily or monthly data, as relevant information
is assumed to be fully digested during the market close periods. Although, their results showed
that the trading rules generated by GP were able to accumulate trading profits within a certain
period (morning session data are most likely to be exploited profitably in the afternoon session
of the same trading day), the trading strategies trained with multi-day data could lead to severe
losses in several of the following trading days. In their opinion, this indicates that trading trend
tended to vary in different trading days and stayed the same in a single trading day. As input
data, they used 21 days of Hushen 300 index future data, covering the time period from 29/09/14
to 03/11/14.

Pimienta et al. [30] proposed a computational system that combined a conventional market
method (technical analysis), GP and multiobjective optimization to generate an automated in-
vestment system. It is interesting to note, that they put forward a mechanism for automatic
detection and removal of outliers, in order to minimize distortions in the evaluation of candidate
buying and selling rules. The proposed automated investment system was applied to six stocks
(BBAS3, BOVAL11, CMIG4, EMBR3, GGBR4, and VALES) from BOVESPA, in a test window
of 514 working days, between 02/05/13 and 02/02/15. In the results, they show that their system
6

was able to obtain financial returns considerably above the stock variation price on the same pe-
riod, and it outperformed other two automated investment strategies. In addition, it was able to
obtain significant profit even in situations of strong depreciation of the asset.

Yang et al. [31] presented a framework for developing a sentiment feedback strength based trad-
ing strategy using GP. In their study, they chose the S&P 500 ETF as a representation of the
U.S. broad market performance, collecting daily historical return of these indexes through a
Bloomberg terminal from July 31, 2012 to January 30, 2015. They found, that the sentiment
indicator based on a GP approach yielded superior market returns, with low average monthly
maximum drawdown, over the period analyzed. When they compared Sterling ratio, and other
risk measures, the proposed sentiment indicator based strategies was superior to the technical
indicators and the traditional B&H strategy.

2.2. Contributions based on variations of Genetic Programming

Even though the bulk of the literature is based on the standard version of GP, several authors
relied on variations that extend its capabilities or mitigate some of its limitations.

Mousavi et al. [32], for instance, used GP to develop a dynamic portfolio trading system to cap-
ture dynamics of stock market prices through time. The proposed approach takes an integrated
view on multiple stocks and generates a rule base for dynamic portfolio trading, based on the
technical indicators. In their research, they developed a multitree GP forest in order to extend the
GP structure for extracting multiple trading rules from historical data. Based on the Iranian and
Canadian stock exchange markets, their results showed that the proposed model significantly out-
performed other traditional models of dynamic and static portfolio selection, in terms of portfolio
return and risk adjusted return.

More recently, two papers presented solutions based on STGP. This approach imposes data type
constraints and uses generic functions and data types, which overcomes some issues related to
the closure requirements of the canonical version of GP.

Manahov et al. [33] developed profitable stock market forecasts for a number of financial instru-
ments and portfolios using a special adaptive form of STGP. The STGP-based trading algorithm
produced one-day-ahead return forecasts for groups of artificial traders. The in-sample period
in the experiment consisted of 11,405 daily observations (24 May 1962—14 September 2007) for
the S&P 500 index and IBM and General Electric stocks. The out-of-sample period included
1515 daily observations (17/09/07 to 17/09/13). In their conclusions, they pointed out that they
found little support for the Marginal Trader Hypothesis but some evidence in favor of the Hayek
Hypothesis.

Agapitos et al. [34] used a memory-enabled program representation in STGP and compared it
against the standard representation of a GP in a number of financial time-series modelling tasks.
They based their experiments in data from S&P 500 EUR/USD and Nikkei and used a com-
plex function set that included mathematical functions, boolean logic, memory access, relational
operators and conditional sentences, terminal sets with technical indicators and ERCs. They con-
cluded that memory-enabled programs generalize better than their standard GP counterparts in
most data sets of the problem domain.

Finally, it is worth mentioning the contribution of Berutich et al. [35], which presented a ro-
bust PG approach to discover profitable investment rules that were used to manage a portfolio

7

of Spanish securities. The authors explored a Random Sampled Fitness GP method (RSFGP).
The core algorithm is basically like the standard GP but instead of calculating fitness over the
complete data set, relies on randomly selected segments with the aim of increasing robustness.
In their conclusions, they explained that the RSFGP system was capable of dealing with differ-
ent types of markets, achieving a return on the Spanish investment portfolio of 31.81% for the
2009-2013 test period, compared to 2.67% of yield obtained by the IBEX35 index.

2.3. Contributions based on Grammatical Evolution

The number of papers published applying GE in this domain is more limited. This not surprising,
as the body of literature on GP in general is also significantly larger.

Brabazon and O’Neill [36] explored the possibility of using this instrument to generate invest-
ment rules aimed at beating a B&H reference strategy on the money market. Their results out-
perform the benchmark on five out of the six test sets using a small set of technical indicators, a
metric to penalize commercial risk, and a relatively low amount of foreign exchange data from
the London market from 10/23/92 to 13/10/97.

Dempsey et al. [37] used a GE-based evolutionary automatic programming methodology, to
discover technical investment rules targeting the S&P 500 and Nikkei 225 indexes. The authors
explored two approaches, one with a single population of rules that adapts throughout the data
time series, and another by which a new population is created for each generation step. In their
study they obtained positive returns, with clear advantages in the case of the adaptive population
of rules. However, in the S&P 500 index, they found that there were very few opportunities to
beat the reference index. On the other hand, in the Nikkei 225 index, GE generated investment
returns with an average improvement of 74% over the index.

In their paper, Contreras et al. [38] presented a GE-based trading system. They tested its per-
formance on historic returns for a set of companies of the Spanish market using 2012 data. In
addition to that, they compared the GE system with a previous work [39] where the authors ap-
plied a GA-based approach. In their results, the trading system implemented with GE obtained a
14% return, while the GA-based alternative obtained a loss of approximately 20%. The analysis,
with an extended set of nine selected companies from Spain, showed that the general profitability
was greater than the B&H strategy.

Schmidbauer et al. [40] constructed and tested a framework for trading rule selection that curbs
the data-snooping bias of performance evaluation. At the core of their approach was the con-
cept of a-priori robustness, in which a trading rule performing well on the original time series
of prices should also perform well when exposed to an alternative scenario, exhibiting similar
features but without being identical to the original time series. They deployed an evolutionary
computation tool based on a grammar guided GP for the selection process and a multi-objective
fitness criterion which involved the original as well as modified time series. The method was
tested for FOREX trading of Euro/USD exchange with intra-day data from February to June
2011. Their findings suggested that a-priori robustness criterion gives less spurious results, and
that prevents in-sample overfitting. Although, they found evidence that out-of-sample profit
could be increased, they could not yet achieve profitability.

Table 1, summarizes the most important information, as it classifies the mentioned pieces of
research according to the core algorithm, GP or GE. It also shows whether the authors used a

8

complexity control mechanism other that a mere constraint on the size of the individual trees, be
it in terms of complexity or depth. As it as mentioned before is apparent that the most popular
core algorithm is GP, which is used in 20 out of the 24 considered works. The use of parsimony
promotion strategies is only reported in two papers of the sample, and it is remarkable that no
one explored the convenience of adding ADFs. All these possibilities will be benchmarked in
this paper.

Table 1: Related works. EC strategies and techniques used

Related Work GE GP Parsimony Related Work GE GP Parsimony
Allen and Karjalainen(1999) X Esfahanipour et al. (2011) X
Setzkorn et al. (2002) X Contreras et al. (2013) X
Thomasy and Sycara (2002) X Schmidbauer (2014) X
Becker and Seshadri (2003) X X Gabrielsson et al. (2014) X
Neely (2003) X Mousavi et al. (2014) X
Brabazon et al. (2004) X Gypteau et al. (2015) X
Fyfe et al. (2005) X Luengo et al. (2015) X
Potvin et al. (2006) X Manahov (2015) X
Dempsey et al. (2006) X Hongguang et al. (2015) X
Navet and Chen (2008) X Agapitos et al. (2016) X
Lohpetch et al.(2009) X X Berutich et al. (2016) X
Jensen (2010) X Pimienta et al. (2017) X
How (2010) X Yang et al. (2017) X

3. Genetic Programming and Grammatical Evolution
3.1. Genetic Programming

GP is an stochastic optimization metaheuristic where a population of programs (individuals) is
iteratively improved according to an objective function also known as fitness function.

Even though the algorithm has a number of limitations, like its computational cost, or the fact
that it cannot guarantee global optima, it has very important advantages. Among these, we
could mention the fact that it is easily paralleled; works with large solution spaces and complex
fitness landscapes; it is easy to adapt it to different problems and, above all, it offers interpretable
solutions.

Most of these traits are shared with other evolutionary computation alternatives like genetic al-
gorithms, evolution strategies or differential evolution, to name a few. However, it offers a key
advantage vs. the others when it comes to trading strategies: the structure of the rules doesn’t
have to be set in advance. Instead optimizing parameters of predefined rules, GP evolves the
whole rule.

The representation of an individual, in this case an investment rule, is the approximation followed
to construct it.

GP traditionally represents individuals as syntactic tree structures. Trees have the advantage that
they can be easily evaluated recursively and have a direct correspondence with the s-expressions
of Lisp. Each non-terminal node of the tree has an operator function and each terminal node
contains an operand. The mathematical expressions contained in the tree are simple, it is easy to
evaluate and it is easy to apply different genetic operators to the tree itself.

9

Figure 1 shows an example of an investment rule tree representation whose expression-s is:

(Or (>Mx2 M2) (Or (>Minimum UR) (<M 10 LR)))

Or

s
Mx2 / M2 \
. AN

Min UR MI10 LR

Figure 1: Trading Rule with its Tree Representation

That can be easily interpreted as: whenever the two months average (M2) is below the second
resistance indicator of the maximum moving average of the last 3 months (Mx2), or when the
minimum of the session is greater than the upper trend line (UR), or the 10 months average
(M10) is lower than the lower trend line (LR), then the best strategy is to enter the market and
otherwise to leave it.

Figure 2, illustrates the behaviour of the rule during 2007. There, we see the evolution of the S&P
500 index. The lighter line represents whether the rule suggests being in the market or in cash.
As we can see, the rule recommends staying out of the market for about the first month, and then
the indication varies over time. According to the strategy defined by the rule, the investor should
invest during the last month. The fact that the rule suggests a limited number of transactions
contains the costs, hence increasing the chances of beating the index.

The basic process behind GP is initializing a population of individuals from a set of available
primitives, then evolving it for a number of iterations until a stopping criterion is met and, fi-
nally, return the best individuals. The internal steps of the algorithm consist of: a) evaluation of
candidate solution in terms of a fitness function, b) selection of a set of individuals of the popu-
lation following some criterion based on the fitness function and c) creation of new individuals
through the application of certain operators (crossover, mutation, reproduction) to the previously
selected individuals.

As for initialization in GP, like in other evolutionary algorithms, the individuals that make up the
initial population are generated randomly'.

Initialization does not have to be always random, a GP tree can be initialized from a non-randomized point filling

10

1542 6

1521 6

1500 0

v { |
147908 [| 1 2 . 4
st | L[\ \ 4 ¢

1437 08

"
a0\
139 G

1374

] » 5 @ 1 139 % 194 N =0

Figure 2: Behaviour of Trading rule (Or (>Mx2 M2) (Or (>Minimum UR) (<M 10 LR))) during 2007

The choice of the algorithm and initialization mode is important since, for GP to function effec-
tively, it is required that most of the function sets meet an important property known as a closure,
which in turn can be broken down into the consistency property of types and evaluation safety.
The consistency of types is necessary because the subtree-type crossover can mix and bind nodes
arbitrarily during the evolutionary process. As a result, it is necessary that any subtree could be
used in any of the argument positions of each function in the function set, since it is always
possible that a subtree crossover generates that combination [42].

In this work, we will use the uniform initialization algorithm. This approach, introduced by
Bohm and Geyer-Schulz [43], gets its name from the fact that the tree generated is uniformly
exact. The algorithm requests the size of the tree to be generated, and guarantees that it will
create a uniformly chosen tree from the complete set of all possible trees of that size, given a
specific set of functions.

The process of generating candidate solutions for new populations is driven by the application of
mutation and crossover operators. These are complemented with the reproduction operator, that
selects an element from the existing population and copies it into a new one.

In the implementation that we use for the experiments, the application of genetic operators is
managed in a breeding pipeline. This pipeline is a chain of selection and breeding operators
whose function is to draw individuals from an existing population to generate individuals for a
new one. Given a split of probabilities for crossover, mutation and reproduction, the process
picks randomly an operator and supplies candidate solutions for the next generation.

In each generation, the final population has the same size as the starting population. Replacement
follows a (u, 1) strategy [44]. We begin with a population A, assess the fitness of individuals and
replace all individuals of the population except the most fit u. To complete the number A, each
of the u individuals has to produce p/A new individuals by mutation. y represents the surviving
parents and A the children they produce. The substitution operation ends with the replacement

the initial population with an individual who, though not a solution, is believed to be a good starting point. Such seed
may have been produced by a previous GP or user-built. Aler, Borrajo, Isasi [41]

11

of the discarded individuals with the newly created children. In (u, A) the number of offspring
created is far greater than the number of parents.

We use a an enhanced version of genetic programming (STGP) [45], which enforces data type
constraints. STGP permits crossover and mutation of trees only with the constraint that each
node’s return type “fits” with the corresponding argument type in the node’s parent; further, the
root node’s return type must fit” with the tree type.

However, most node-building algorithms require that for each accessible type used by the func-
tion established on the node, there must be at least one terminal (ideally, a non-terminal one) in
the set of functions that returns that type. This is due to the fact that many algorithms have the
requirement of being able to generate any terminal, regardless of the current situation of the type
where the terminal has to be hung, to generate nodes.

3.2. Grammatical Evolution

This EC technique introduced by Ryan et al. [46] is closely related to GP. The aim and the main
loop are basically the same, but there are differences in representation and the way solutions are
generated and updated.

In GP, the genotype of an individual is represented by an s-expression in a tree structure, and it
is directly manipulated by genetic operators. This same tree is subject to the evaluation function
and, therefore, phenotype and genotype are basically the same thing. In GE, on the other hand,
there is a clear difference between these two. GE genotypes are vectors of integers (codons) that
encode the selection of rules from a predefined context free grammar, and to which traditional
genetic operators, such as mutation and crossover, are applied. The phenotype, however, is
usually represented by a tree structure that is evaluated recursively. In order to assess fitness, a
genotype-phenotype mapping relationship is established. Here, the trees are not intended for the
individual’s genotypic representation. They operate as temporal structures used in the course of
mapping and subsequent evaluation of individuals.

As already mentioned, in Koza’s conventional GP style, the set of functions must meet the closure
requirement: all functions must be able to accept as arguments the output of all other functions,
both terminal and non-terminal. In GP this is achieved using a single data type, such as the use
of double precision floating point type. This limitation is not suffered by GE, as the problem
is managed by grammars usually defined through formalisms expressed in Backus-Naur form
(BNF). This strategy allows the search space to be restricted by incorporating domain knowledge
of the problem and facilitating an efficient type control.

GE representation affects the type of problems that can be optimally solved. According to
Thorhauer and Rothlauf [47], the representation introduced significant biases. In their study, GE
shows a bias towards narrow and deep-type tree structures that outperform standard GP when
optimal solution conform to them. Conversely, solutions that require denser trees are easier to
solve through GP.

Regarding the initialization of the population, in GE it is based on a grammar definition in BNF
format that describes the syntax of the type of program used to solve the problem together with
the set of terminals and non-terminals to be used for this purpose.

From there, the construction algorithm generates random vectors of integers, each one in the

12

range from O to a maximum value defined by the number of productions of the grammar rule
with the largest number of them minus one. Each position of the vector indicates the rule of the
grammar to be selected after applying to its value the modulus (remainder operation) defined by
the number of possible values of the rule considered.

Every grammar rule R; represents its individuals as an element belonging to a finite group in Z,;,
where n; is the number of possible productions of the rule i. One aspect to be taken into account
is that the generated vector of integers will contain values that exceed the module and, therefore,
are part of the equivalence class of one of the elements of the finite group. For example:

117 =5 (mod 7) belongs to the equivalence class |3|

Due to this characteristic, different integer vectors can correspond to exactly the same individual
with the same mapped corresponding representation tree.

Therefore, all these individuals form part of an equivalence class of an individual |s|, which is
represented by the equivalence classes of the modules of the grammar rules production associated
with each position of a vector.

Let’s take as an example of a GE vector that represents the trading rule depicted in Fig. 1 and the
corresponding grammar in BNF form of table 2.

Table 2: Grammar used in Fig. 1

N° Modulus Grammar Rule

1 1 <Rule> ::= <bool>

2 5 <Bool> ::= (And <bool> <bool>)| (Or <bool> <bool>)
<Bool> ::= (Not <bool>)
<Bool> ::= (> <exp> <exp>) | (< <exp><exp>)

3 16 <Exp> ::= (Opening)|(Closing) | (Max) | (Minimum)
<Exp> = (M2) | (M3) | MS5) | M10)
<Exp> ::= (Roc3)| (Roc12)
<Exp> = (Mx1) | (Mx2) | (Minl) | (Min2)
<Exp> ::= (UR) | (LR)

Suppose we got the following pseudorandom sequence of integers ranging from 0 to 255:
064 176 183 171 196 211 073 067 222 129 007 031

To build the tree representation, we take the first number of the integer vector; 064, and we
calculate its (mod 1) associated with the root grammar rule, so the rule <bool>is taken. This is a
non terminal rule so we take the next integer, 176, whichin (mod 5) is 1 and therefore the second
production of bool is chosen (Or <bool><bool>). Or is already a non terminal function and is
placed in the root of the individual tree. The children of the “Or” node have to be built as well, so
we take the next integer 183 which in (mod 5) corresponds to 3, and the rule (><exp><exp>is
taken. With the next integer, 171, we select the expression (Mx2) a terminal element appended
to the tree. The process continues building the tree in preorder, until all the rules are expanded
or the integer vector is exhausted.

13

The latest integer vector is an isomorphic equivalent to the canonical individual formed by the
numbers:

000 001 002 011 004 001 002 003 014 003 003 015

Outside of the fitness assessment context, in which individuals are represented as trees, individ-
uals are simple binary strings to which the standard operators of an AG [48] are applied, like
crossing and mutation by a single or multiples points, with the difference that these individuals
are composed of chromosomes that are vectors of integers of variable length. Therefore, the
operators in GE can be implemented very efficiently, and the performance penalty when making
the assignment is also low. However, the syntactic and type constraints imposed by evolutionary
grammars achieve this efficiency at the expense of a high proportion of invalid individuals. This
problem is addressed in mutation by wrapping the chromosome and interpreting it in a circu-
lar fashion and, in the case of crossing, applying it on the codon limit, instead of an arbitrary
position. Both mechanisms can greatly reduce the number of invalid individuals [10, 49].

Operators in GE have a different effect from traditional GP, which tend to preserve most of the
individuals structure, and are designed to have a predictable effect. In GE, on the one hand,
minor changes in the genotype can lead to massive changes in the phenotype. On the other hand,
changes in some parts of the genotype may have no effect on the phenotype.

To compensate for the problems introduced in crossing and vector mutations, GE introduces two
repair strategies within the genotype itself.

The first strategy, called duplication, is based on selecting a sequence of integers from the vector
itself, from two calculated random indexes, and adding it to the end of the vector. The second,
truncation, is used to determine how many integers of the chromosome vector are consumed in
the creation of the tree, and truncate the rest of integers of it that have not been used. We use
both mechanisms.

In terms of applicability to automatic trading rule generation, GE and GP would be equivalent, as
they have the potential to provide the same solutions. They both can generate tree-like functional
structures based on combinations of predefined building blocks.

3.3. Extensions

The two core algorithms discussed above have extensions in common designed to improve their
performance. We will consider two aimed at promoting simplicity and modularization among
solutions.

One of the characteristics of GP, derived from the variable size representation nature of indi-
vidual’s trees, is that individuals tend to grow rapidly with generations in a process known as
bloating. This feature has several undesirable effects: the first one is that individuals are slower
to evaluate, the second one is that it makes individuals more difficult to interpret. In addition to
that, it provides poor generalization and in some cases the solutions tend to be very far from the
optimum.

A second major problem of complex solutions is overfitting. In the context of trading strategy
generation, larger solutions offer a higher potential to model more complex relationships. This
often results in rules that offer very high performance on training samples that, unfortunately,

14

do not generalize well. There are many scenarios where simpler structures provide much better
results on new data.

GP traditionally limited individuals setting an upper bound on the maximum depth. This ap-
proach is too restrictive and the tendency today is punishing the most complex individuals to
reduce the likelihood of selection by introducing a penalty on their fitness value. This is called
parsimony pressure and can be established in two main ways:

e Linear Parsimony Pressure. It takes into account the aptitude value and complexity of in-
dividuals. Complexity is introduced in the calculation of individual aptitude with a penalty
effect. The problem with this approach is that the correct balance of aptitude and complex-
ity must be known in advance.

e Non-parametric Parsimony Pressure. It does not consider the aptitude value and complex-
ity of individuals, but it chooses one according to who is more apt and less complex. An
example is the Lexical Parsimony Pressure. It is introduced in the selection operator so
that, in case of a tie in the fitness value, the least complex individual wins the tournament.

In our work we will use the latter mechanism of complexity control.

Finally, automatically defined functions (ADFs) are a standard way of creating reusable program-
ming modules both in GP [50] and GE [51]. According to Ferreira [52], the motivation behind the
implementation of ADFs in GP, is the belief that ADFs allow the evolution of modular solutions
and, consequently, improve performance [53].

ADFs are usually implemented as additional trees associated with the individual main one. This
means, that individuals consist of several trees that define a structure of functions in which certain
trees call other trees that act like subfunctions. ADFs evolve in parallel to main trees and may or
may not be called. When an ADF function is called, firstly its children are evaluated, then their
return values are saved and, finally, the corresponding ADF tree itself is evaluated. ADFs are
constrained by the number of arguments that they take. This parameter is defined a priori, and
cannot be changed during evolution.

4. Experimental Design

As we mentioned in the introduction, the aim of this work is doing a comprehensive benchmark-
ing exercise of the two most popular algorithms for trading rule generation based on evolutionary
computation. This exercise will cover, not only the core algorithms, GE and GP, but also the im-
pact of adding ADFs and complexity control mechanisms. Finally, we will study the sensitivity
of the different configurations to population size and the function set.

In this section we describe the experimental setup, including all the aspects related to parametriza-
tion of algorithms, data used, and the statistical significance evaluation protocol.

4.1. Trading rule representation

The trading rules generated by the algorithms will provide binary recommendations. As it will
be discussed later, they will suggest either being in the market, earning market return, or out of
the market, earning the risk-free return. Therefore, only long positions will be allowed.

15

Generating the structures at the core of the specific encoding used by GP and GE requires detailed
discussion of two components: the basic building blocks, and the combination rules. The former
requires describing the function sets and the terminal sets, while the latter entails introducing the
grammar to be used.

At a later stage the individuals will be encoded as parse-trees in GP or as strings of integers in
GE, but both share the traits discussed below.

4.1.1. Function and terminal sets

Trading rules will be encoded as trees in GP and as vectors of integers in GE. In our work,
both the terminal elements and the non-terminal functions mirror the ones used by Lohpetch and
Corne [20]. One difference, however, is that we work with daily returns rather than monthly ones.
Terminal elements include technical indicators and past sessions prices, while non-terminal ones
consist of logical and relational operators (and, or, not, > and <).

The technical indicators are:

e Opening, closing, high and low daily prices for the index (Opening, Closing, Max and
Minimum).

e 2, 3,5 and 10-month moving averages: moving averages are the simple averages of clos-
ing prices over a predefined number of time periods. They are widely used indicators in
technical analysis to detect trends and smooth the price series (M2, M3, M5 and M10).

e Rate of Change Indicator (ROC) (3-month and 12-month): the price rate of change is a
technical indicator of momentum that measures the percentage change in price between
the current price and the price n periods in the past (Roc3 and Rocl12).

e Price Resistance Indicators: price points in the market which are expected to be difficult
to break. We consider the two previous 3-Month moving average minima, lower resis-
tance indicators, and the two previous 3-month moving average maxima, upper resistance
indicators (Mx1, Mx2, Minl and Min2).

e Trend Line Indicators: a lower resistance line based on the slope of the two previous
minima plus an upper resistance line based on the slope of the two previous maxima.
Trendlines are used to show direction and speed of price changes (UR and LR).

4.1.2. Grammar

As we intend to use strongly-typed GP, the rules designed to combine the elements of the function
sets both among them and with the terminal sets will be applicable to GP and GE alike.

The grammar built to describe the investment rules is based on a single IF-THEN-ELSE expres-
sion of traditional languages. If the expression is evaluated as true, it will be interpreted as a
signal to buy, otherwise it returns false which represents an instructions to sell. The grammar
thus generated follows the very simple approximation of Lohpetch [20] which can be expressed

16

in the BNF form as:

< Rule >::=< bool >

< Bool >::= (And < bool >< bool >)|(0Or < bool >< bool >)
< Bool >::= (>< exp >< exp >)|(<< exp >< exp >)

< Exp >::= (Opening)|(Closing)|(Max)|(Minimum)

< Exp >::= (M2)|(M3)|(M5)|(M10)

< Exp >::= (Roc3)|(Roc12)

< Exp >::= (Mx1)|(Mx2)|(Minl)|(Min2)

< Exp >::= (UR)|(LR)

(O]

Some configurations require using automatically defined functions (ADFs). In those circum-
stances we extend the previous grammar (1) with the definition:

< bool > ::= (ADF1 < bool >< bool >)
and we add the component required to express the ADF itself.

< Rule >::=< bool >

< Bool >::= (And < bool >< bool >)|(Or < bool >< bool >)
< Bool >::= (>< exp >< exp >)|(<< exp >< exp >)

< Exp >::= (ARGO)|(ARG1)

4.2. Fitness function

We define the fitness of strategies simply as the sum of all adjusted transaction benefits Ar = r as
itis done in [13]. Following authors like [15], we will rely on a continuous compound yield. The
main advantage of using this approach in this context vs. an alternative based on raw returns is
the fact that it is easy to scale forward. This simplification reduces the complexity of computing
market returns over n periods from O(n) multiplication operations to O(1) additions. This lowers
the computational cost very significantly, while the approximation is still very good.

The continuous compound yield of an investment rule is given by the expression:

1-¢
1+c)

T T
r= Z‘ re - I(0) + Zl re(t) - 1) + n - In)

where:

e r, = In(P;) — In(P,—1) is the continuous composite yield. P; is the price at time ¢. r;
calculates the return on investment over time when, according to the rule obtained, the
investor should be in the market.

o [,(¢) indicates a buy signal. It adopts the value “1” if the rule suggests buying at time ¢ and
“0” otherwise.

e 1y calculates risk-free return on investment when, following the rule obtained, the investor
is out of the market.
17

o [(7) is the sell signal. It is the opposite value of I,(¢). It adopts the value “1” if the rule
recommends selling at time ¢ and “0” otherwise. It is the opposite of I,(f).

e The third component in the equation models transaction costs (assumed to be 0.25%).
There, n denotes the number of transactions expressed as a purchase signal followed by a
sales signal (any open position is closed on the last day), and c is the cost of a transaction
expressed as a fraction of the price.

7y can be calculated in different ways. Jansen[23] computes it as:

(1 + r¢, monthly)

5 3)

Tfy = In
Where (1 + r¢, monthly) refers to the monthly interest in the money market and ¢ to the number
of days in which the market is open. In this work we follow the same approach but we consider,
for simplicity, calendar days instead. It is unlikely to have any relevant impact, specially in a low
interest rate environment. As Jansen [23] mentions “the calculation of performance is not very
precise and in any case the yields obtained by the GP in this concept are marginal. Even some
authors discard them”.

Other authors like Allen and Karjalainen [12] or Lohpetch and Corne [20], evaluate solutions in
terms of excess investment return over B&H strategy Ar = r—RBH. Here, RBH is the investment
return obtained buying at the beginning of the period and selling at the end, which is formally
defined as:

RBH:Z”””G;E) (4)

where, as it was discussed in regards to Equation (2), r; is the market return during period #, and
c represents the one-way transaction cost.

Our approach is almost the same, as the only difference is the subtraction of a constant, but the
suggested representation has practical advantages as it has a slightly lower computational cost,
and lower probability of dealing with negative fitnesses.

4.3. Parametrization

There are many parametrization possibilities for GP and GE algorithms. In our study, we have
adopted, in general, common values found in the literature, and in other cases the choice was
made based on exploratory tests.

The baseline experiments for both GP and GE-based configurations use populations of 500 in-
dividuals that are evolved over 50 generations. We implement elitism, carrying over the best
strategy from every generation to the next.

Another element in common, that should be taken into account, is a mechanism designed to
enhance variability. The initialization of the population or its mutation might lead to the same
individual appearing more than once. In order to keep the population as rich as possible, should

18

this happen, we replace the repeated individual with a new one. The number of attempts to
generate a replacement trading rule is limited to 100.

4.3.1. GP parametrization

The initialization of the population in GP is performed using the uniform algorithm. We define
an initial target value of complexity of a minimum of 5 nodes and maximum of 25.

The method of selection chosen is the simple tournament with two candidates. The selection
probability of terminal nodes is 20% and that of non-terminals 80%.

We used a multi-breeding pipeline with the following 3 sources and probabilities:

e Crossover. With a 0.8 probability, two individuals are selected by tournament and are
crossed generating two other individuals that are introduced into the new population. In
the crossing operator, a desired tree complexity limit of 50 nodes and a maximum depth of
7 levels is established. The crossover performs a standard subtree crossover: from each of
the selected individuals a node is selected from their trees and the two subtrees rooted by
those nodes are swapped.

e Reproduction. With a 0.1 probability, a single individual selected by tournament is copied
directly into the new population.

e Mutation. With a 0.1 probability, a single individual obtained by tournament is mutated
and introduced into the population. Mutation performs a standard subtree mutation: a node
of the selected individual tree is selected and the subtree rooted by that node is replaced in
its entirety by a randomly-generated tree. The minimum number of desired nodes, in the
resulting individual, is set to 10 and the maximum to 50.

The new individuals are added to the population using a (u, 1) replacement strategy [44], keeping
population size constant across generations.

4.3.2. GE parametrization

GE basically relies on the same parametrization discussed for GP. The differences are the follow-
ing:

o The initialization of individuals is defined by geometric series with a minimum initial
complexity value of 5 and a growth probability of 0.85.

In GE the multi-breeding pipeline has also 3 sources with the following probabilities associated
to them:

o Crossover. With a probability of 0.85, two individuals are selected by tournament and are
crossed by a one-point crossover, generating two other individuals that are introduced into
the population. The vector crossover procedure picks two random indexes i and j in each
of two individuals A and B and then swaps the string of genes from the index start point
to the end of the vector, A;, ..., A¢uq and By, ..., B,q. Finally, to the obtained individuals a
truncation mechanism is applied to determine how many integers of their vector genotype
are consumed, from the grammatical definition, in the generation of the tree, eliminating
the rest of integers that have not been used.

19

e Duplication. With a probability of 0.05, a duplication mechanism is applied to a single
individual selected by tournament. In the duplication, a sequence of integers of the indi-
vidual’s own vector, defined by two random indexes, is selected and appended to the end
of the list. The truncation technique is then applied.

e Mutation. With a probability of 0.1, an individual selected by tournament is mutated with a
probability of 0.05 by randomly modifying one of its genes between the defined maximum
and minimum values (-128, 127). We used uniform mutation, allowing a circular doubling
(wrapping) of genes vector, up to 16 times, in the grammar translation process of the
mutated individual. The 0.95 rest of the time, individuals are copied without modification.
Finally, the mutated individuals, previously truncated, are introduced into the population.

4.4. Data sets and experimental protocol

In this subsection we introduce the sample to be used together with the experimental design, and
the statistical significance testing protocol.

4.4.1. Sample

The experimental study relies on the combination of two datasets covering 12-year worth of data,
from 2004 to 2015: one corresponds to Standard & Poor’s 500 index and the second to the data
necessary to calculate the daily risk-free return. The former was obtained from the commercial
provider Datastream, and the latter from the Federal Reserve Bank of Atlanta, available at URL
https://fred.stlouisfed.org/series/TB3MS.

4.4.2. Experimental design

Financial series often show structural changes that affect their predictability. In order to make
the benchmarking exercise more generic, we test the configurations based on GP and GE under
three different scenarios. To this end, the mentioned 12-year datasets have been split into three
consecutive 4-year ones. For each of them, we created two samples: a training set, that covers
the first three years, and a test sample with the fourth one. This results in the following subsets:

e 2004-2006 training 2007 test.
e 2008-2010 training 2011 test.
e 2012-2014 training 2015 test.

For each of them, we will test the strategies resulting from the combination of GP and GE with
the potential use of ADFs and Lexicographic Parametric Parsimony growth control. That is, for
each sample, we will benchmark:

¢ (Gp). Basic Genetic Programming.

o (GpPa). Genetic Programming with Lexicographic Parametric Parsimony.

o (GpAdf). Genetic Programming using ADFs.

o (GpAdfPA).Genetic Programming using ADFs and Lexicographic Parametric Parsimony.

e (Ge). Basic Grammatical Evolution.

20

o (GePa). Grammatical Evolution with Lexicographic Parametric Parsimony.
o (GeAdf). Grammatical Evolution using ADFs.
o (GeAdfPa). Grammatical Evolution with ADFs and Lexicographic Parametric Parsimony.

The basic experimental study is supplemented with a sensitivity analysis, to consider the im-
pact of larger populations and additional technical indicators. In this regard, we have tested the
following combinations:

e 500 individuals.

e 3000 individuals.

¢ 500 individuals plus extended technical indicators.
e 3000 individuals plus extended technical indicators.

As a result of applying the Cartesian product to the mentioned possibilities, we obtain a total of
96 different configurations to be tested. Given the stochastic nature of the algorithms, in an effort
to reach a high level of significance, all the experiments are repeated 2,000 times. This adds up
to a total of 192,000 experiments carried out.

4.4.3. Statistical significance evaluation protocol

The results obtained have been evaluated following the protocol used by Garcia et al. [54] which
is set out below:

The contrast of the normality of the population investment returns (continuous random variables)
is performed using the Kolmogorov-Smirnov test, applying the Lilliefors correction. If the nor-
mality of the observations is rejected, then the non-parametric test of Wilcoxon’s sign ranges is
applied. Otherwise, the homoscedasticity of the variances is checked by the Levene test. If there
is homoskedasticity, the t-test is applied, and if there is heteroskedasticity, the Welch test is used.

Algorithm 1: Statical significance testing protocol

if returns follow Normal distribution (Kolmogorov-Smirnov test with the Lilliefors correction) then
if variances are homogeneous (Levene test) then
A t-test is performed.
else
A Welch test is executed.
end if
else
A Wilcoxon test is applied to compare medians
end if

In order to do this experimental work, we have used the Java-based Evolutionary Computation
(ECJ) framework, together with control and visualization tools developed ad-hoc and R scripts
for the statistical analysis. The hardware used in the simulations was composed of two four-core
17 computers with 16 gigabytes of memory that have produced about 200,000 output log files.

21

5. Experimental Results
5.1. Baseline

The first set of experiments of this benchmarking exercise will set the baseline for the two core
algorithms and their variations. We will compare the performance of both GP and EG vs. B&H
strategy using populations of 500 individuals and the function set introduced in the previous
section. The reported compounded returns have been computed according to Equations 2 and
4 discussed in 4.2. In addition to returns, we will consider other aspects such as complexity or
reliability.

Table 3: Results Summary. Return on test samples over 2000 runs.

2007 (Train 2004-06) 2011 (Train 2008-10) 2015 (Train 2012-14)

Mean Variance Mean Variance Mean Variance
Ge 0.0424 0.00057 0.0079 0.0018 -0.0155 0.00047
GePa 0.0432 0.00049 0.0124 0.0014 -0.0160 0.00055
GeAdf 0.0419 0.00039 -0.0081 0.0035 -0.0153 0.00041
GeAdfPa 0.0413 0.00028 -0.0040 0.0032 -0.0168 0.00058
Gp 0.0359 0.00077 -0.0633 0.0054 -0.0149 0.00028
GpPa 0.0366 0.00065 -0.0485 0.0051 -0.0148 0.00035
GpAdf 0.0367 0.00082 -0.0481 0.0051 -0.0154 0.00034
GpAdfPa 0.0363 0.00072 -0.0470 0.0048 -0.0153 0.00038
B&H 0.0310 -0.0171 -0.0101

Table 3 summarizes the main experimental results regarding financial performance on the test
sample. For each configuration, we report the mean return and variance over 2000 runs. As we
can see, GE beats GP in the first two time periods. This comes together with more consistent
results, as evidenced by variances. However, this dominance is reversed in both fronts in the final
period. The addition of the parsimony control mechanism generally results in higher returns, but
the advantages of adding ADFs are less consistent.

Table 4: Statistical significance of differences on test samples.

Significance 2007 / 2011 / 2015

Ge GePa GeAdf GeAdfPa Gp GpPa GpAdf GpAdfPa
GePa -/--/=
GeAdf =/=/- =/=/=
GeAdfPa ++/=/= ++/=/= =/--/=
Gp +H/++/= A= A= =/++/=
GpPa /4= A= A= =/++/= -~/
GpAdf +4/++/= /= HH/+4/= =/++/= =/--/ =/=/
GpAdfPa ++/++/= ++/++/= ++/++/= =/++/= =/--/ =/=/ =/=/
B&H +H/++/-- A - +/++/-- +4/-[-- [/ =/--/-- =/--/--

Related to the above, Table 4 shows the statistical significance of the differences reported in Table
3 for the three consecutive periods. When the algorithm in the column offers a mean/median
return that is higher than the one in the row at a significance level of 1%, we use the symbol

22

++. A similar difference in the opposite direction is represented with --. In case the difference is
significant at the 5% conventional level, we use - or +, as appropriate. Finally, if we can not rule
out the possibility of equality, we show =.

The best strategies by setup and period for the baseline configuration are reported in Appendix
A. For those configurations that use ADFs, both the main rule, Tree 0, and the ADF, ADF1, are
provided. In some instances, even though ADFs were evolved, the rule did not make use of them,
hence the lack of reference to ADF1. The behavior of these rules is illustrated in Appendix B.
The lighter line in the figures represent the recommendation. It either tracks the market, in case
the recommendation is staying in the market, or remains at the bottom in case the investor should
be out of it.

Data Set 2004-2006 Test 2007 Data Set 2008-2010 Test 2011 Data Set 2012-2014 Test 2015

§
g ;

015 -

[J ooz =
w

T ———
svow we|

010 o

005 o

m....__‘mn
o coum ane]

Proft Return

-0.10

o © 00 00 cosmmmtoomOo o

© 0 o CoomTEWE KT ©

000 o

Proft Return
0 00w cuoomee) -
Profit Return

s
i
00 0 coooo ® -mm-quﬂmwm

I o @
wl B [g ° =1 : § . :
(a) 2007 (Train 2004-06) (b) 2011 (Train 2008-10) (c) 2015 (Train 2012-14)

Figure 3: Return distribution by configuration. Test samples over 2000 runs.

The distribution of returns by technique and period is reported in Figure 3. There, we can see
three panels showing box-plots for the different configurations. Each panel illustrates the dis-
tribution of returns on test samples (years 2007, 2011 and 2015) over 2000 experiments. As a
reference point, we have added horizontal lines that indicate the return that would have been ob-
tained following a B&H strategy. It is worth noting that the distributions are rarely symmetrical.
They tend to be skewed, showing longer left tails that represent poor strategies that are very un-
profitable. This is specially apparent in the last period which, as we see in Table 3, is particularly
challenging.

Table 5: Results vs. Buy-and-Hold on test samples with 500 individuals and core terminal set over 2000 runs.

2007 (Train 2004-06) 2011 (Train 2008-10) 2015 (Train 2012-14)
Prediction Complexity Prediction Complexity Prediction Complexity
Better Equal Depth Nodes Better Equal Depth Nodes Better Equal Depth Nodes
Ge 63.70% 10.95% 3.24 756 84.80% 2.20% 2.89 581 7.95% 70.45% 3.66 8.68
GePa 65.45% 14.10% 2.97 6.38 88.85% 1.65% 2.79 531 455% 79.45% 3.19 6.88

GeAdf 55.05% 31.25% 2.96 6.09 74.70% 0.85% 2.74 511 0.50% 87.65% 2.89 5.48
GeAdfPa 49.75% 40.35% 2.73 506 77.50% 1.05% 2.67 486 030% 87.30% 2.87 5.33
Gp 53.60% 0.35% 6.68 32.02 2890% 3.45% 6.85 3629 1245% 50.25% 6.17 2429
GpPa 52.80% 1.00% 6.02 2430 3745% 7.35% 6.20 22.08 6.95% 71.30% 571 16.87
GpAdf 50.15% 2.45% 8.38 3480 3720% 6.20% 8.63 3933 10.00% 59.50% 7.77 28.18
GpAdfPa 50.05% 2.55% 6.80 2514 3620% 8.50% 8.14 3516 6.65% 70.55% 713 21.73

Table 5 provides detailed information regarding the performance of the various configurations
23

vs. B&H. For each of them, we report the percentage of trading strategies that beat B&H on
test, together with the percentage of experiments that result in strategies that provide the same
return. The latter figure, reported in column “Equal”, is usually the result of strategies that end
up mirroring the naive strategy on the test sample. This information is often overlooked in the
literature, but it is very relevant because it provides insights on the reliability of the different
approaches as trading strategy generators.

The results reported in table 5 show that in 2007 GE obtains rules that either match of beat B&H
between 74.65% and 90.10% of cases, while GP does it slightly below 54% of times. GE obtains
better results in the period 2008-2011, where it beats or improves B&H between 78.55% and
90.50% of cases, while GP makes it significantly below 50%, between 32.35% and 44.70%. It
should be noted that in both the 2004-2007 and the 2008-2011 periods, the standard version of
GE and the version with parsimony control show a specially good relative performance.

In 2012-2015, the situation is significantly different. In that period, the strategies produced by the
two core algorithms generate very few purchase or sale signals, and end up effectively following
a B&H strategy. When that is not the case, both GE and GP are outperformed by B&H far more
often than the other way around. This means that, even though the average results seem very
poor, this is mostly caused by the long left tail of the distribution of returns already mentioned
when we described Figure 3. In practice, for all the configurations but two, the probability of
matching B&H was between 71% and 88%.

The second set of columns reports the average complexity of the solutions obtained by the dif-
ferent approaches. The first column indicates the average depth of the trees generated, and the
second one the total number of terminal and non-terminal nodes. It is clear that the complexity of
the rules is significantly higher when we use GP versus GE as the core algorithm. For example,
in the period 2008-2011 the average number of nodes for GP is 33.22 compared to 5.27 of GE.
The average depth of solutions shows a similar pattern as it reaches 7.46 for GP vs 2.77 for GE.
As for the use of the parsimony operator, it reduces the complexity of the GP-based solutions
by 9.19 nodes and their depth by 0.57. If we consider GE, the effects of the operator have the
same direction, but they tend to be more limited because it is already far less complex than GP.
It reduced the average number of nodes by 0.38, and the mean depth by 0.09.

Regarding the computational cost of this experimental work, the computational complexity of
GE and GP depends on several factors:

e The genetic operators applied (crossover, selection and mutation), which in turn depend
on their implementation.

e The representation of the individuals and the population (size).
e Number of generations.

o Number of experiments performed.

o Fitness function.

In our experiments, the fitness function overwhelms the computational cost of genetic operators
and representation. As a result, they may be ignored and we can characterize the complexity as

24

of linear order:

O(jgn) ®)

Where g represents the number of generations, n the population size and j the number of experi-
ments carried out.

Figure 4 summarizes the total accumulated cost (in seconds) over the three samples, by config-
uration. It is apparent that the standard version of GP required more computation time than GE
(29% more). Lexicographic Parametric Parsimony reduced the computational cost of both tech-
niques, but GP profited the most (24% vs 8%). The difference between the two core algorithms
increases very substantially once ADFs are considered. The versions based on GP that included
this feature turned out to be significantly more expensive than the ones based on GE.

x10°

1.8 —

1.6~ —

08 —

Time (seconds)

0.6 —

04 —

0.2 —

Ge GePa GeAdf GeAdfPa Gp GpPa GpAdf GpAdfPa
Configuration

Figure 4: Computational cost. Total accumulated cost (seconds) over the three samples by configuration. Experiments
ran on an Intel 17-6500U 2.5 Ghz with 16 Gbytes of DDR3 RAM.

As a summary of this part of the study, we can conclude that, according to our experiments,
GE, particularly both in the standard version and using parsimony control, is more robust and
generates simpler solutions than GP. At the same time, it beats the B&H strategy significantly
more often than GP.

5.2. Sensitivity analysis

In order to enrich the analysis, we test the sensitivity of results to two extensions, population size
and terminal set, both separately and combined. This defines three additional sets of experiments
whose main results are summarized in Table 6.

5.2.1. Extended set of technical indicators

In this section we test the sensitivity of results to the number of technical indicators. The aim
is exploring whether the algorithms can exploit this new information to find better trading rules.
In addition to this, we intend to see whether there are patterns regarding the capabilities of the
different configurations to extract additional profitability. To this end, we extend the richness of

25

Table 6: Sensitivity analysis. Average returns on test samples over 2000 runs.

Extended Function Set Extended Population Extended Pop. & Func. Set
2007 2011 2015 2007 2011 2015 2007 2011 2015
Ge 0.04720™ -0.05556 -0.02056 0.03757 -0.00790™ -0.01490 0.05495™ -0.01171"" -0.01605
GePa 0.04596™ -0.05745 -0.01986 0.03706 0.00419™ -0.01567 0.05375™ -0.00344™ -0.01700
GeAdf 0.04651™" -0.07846 -0.02040 0.04131" 0.00409"" -0.01650 0.04967"" -0.00611"" -0.01927
GeAdfPa 0.04613" -0.08342 -0.01917 0.04288™ 0.01231" -0.01667 0.04879™ -0.00293"" -0.01935
Gp 0.05671" -0.06797 -0.01503 0.03779" -0.07297 -0.01906 0.05992°" -0.06867 -0.01799
GpPa 0.05391" -0.06631 -0.01501 0.03428" -0.04932 -0.01654 0.05704™ -0.05537 -0.01812
GpAdf 0.05576™ -0.06192 -0.01559 0.04242"° -0.05781 -0.01754 0.06024™ -0.05685 -0.01490
GpAdfPa 0.05535™ -0.05679 -0.01500 0.04100"" -0.05727 -0.01659 0.06019™ -0.05784 -0.01438

** Significant vs. B&H at 1% *Significant vs. B&H at 5%

the function set suggested by Lohpetch and Corne, keeping the population size at 500 and the

rest of execution parameters at the same values that we used in the baseline.

The extended set will include, in addition to the indicators already used in the baseline, new
moving averages and pivot points. Pivot points [55, 56, 57] are used to determine the supports,
resistances and directional changes in stock prices and represent the market position in relation
to previous sessions. In addition to the standard pivot points that will be used in the analysis,
there are other types like Fibonacci pivot points, Demark pivot points, Woodie pivot points or
Camarilla points. Specifically, the new indicators were:

e Resistance indicators R1, R2, R3 and support S1, S2, S3 calculated as follows:

The pivot value is calculated as P = (O + H + L + C) / 4. Where P is the pivot, O is the
opening price, H is the maximum value, L is the minimum value and C is the closing value,
all of them referred to the previous session. The first support value (S1) and resistance
(R1) are obtained from the observation of the price range above the pivot point (H - P),
and below it.

~Rl=P+(P-L)=2xP-L
- S1=P-(H-P)=2xP-H

The second resistance values (R2) and support (S2) are above and below the previous
support and resistance values (R1 and S1).

-R2=P+(H-L)
-S2=P-(H-1L)

And likewise with the third resistance and support values that are expressed as a function
of R1 and S1.

- R3=H+2x(P-L)=Rl+(H-L)
—S3=L-2x(H-P)=S1—-(H-L)

M4, M6, M7, M8, M9, M11, M12. Moving averages of closing prices over a period of four,
six, seven, eight, nine, eleven and twelve months prior to the current month, corresponding
to those of 100, 150, 175, 200, 225, 275 and 300 sessions respectively.

26

If we compare the figures reported in Tables 3 and 6, we observe a high dispersion of direction
changes in results depending on the period and basic algorithm considered. For the 2004-2007
dataset (train 2004-2006, test 2007), adding the new terminals results in a widespread improve-
ment in returns. The scale of the change is specially remarkable for the configurations based
on GP, which outperform the GE alternatives in every case. We observed that the proportion of
strategies that beat B&H in 2007 grows across all configurations. That is also the case for GE
configurations when we consider the number of strategies that match B&H. In the case of GP
with parsimony control and ADFs, the proportion of strategies that beat B&H reaches 73.95%,
up from the 50.05% baseline result.

For the rest of the periods the results of the terminal set extension are not as good. In 2011
neither GP-based nor GE-based configurations are longer able to beat B&H in terms of average
return. There seems to be a general decrease in performance that affects GE to a greater extent.
The same applies to 2015. Interestingly, for this years we observe a sharp decrease in the number
of strategies that beat B&H that is specially acute in 2011 for GE (in the order of 30% to 40%,
depending on the configuration), while the proportion of strategies that follow the benchmark
goes up. A potential explanation for this behavior would be the fact that increasing the number
of indicators expands the solution space. Given that we kept constant the population size and the
number of generations, the algorithms might not have been able to converge to the best solutions.
That might explain why they were not able to exploit conveniently the new information.

As in the previous test, the complexity and depth of the individuals obtained by GP is signifi-
cantly greater than that reached by the solutions of GE. The average complexity of the solutions
generated by GP and GE is similar to that calculated for the baseline configurations, in both
number of nodes and depth.

5.2.2. Extended population

In this test, the modification introduced was increasing the number of individuals from 500 to
3000. The results, as expected, show clear signs of over-fitting. All of the GP and GE-based
configurations obtain higher returns in training. However, once we consider the test sample, the
performance is not as good.

The prediction of the algorithms in the test phase undergo variations: for example, in the 2007
test sample has worsened for the GE and slightly improved for the GP configurations that make
use of ADFs (GpAdf and GpAdfPa). In 2011 most of the configurations got worse results, only
the approaches based on GE with ADFs, GeAdf and GeAdfPa, improved. Having said that, the
variations in absolute terms are very small. Finally in 2015, GE remains almost the same, but
GP is affected negatively. As for the performance vs. B&H, the evidences is, once again, mixed
in the sense that GE and GP also beat it in the period 2004-2007; only the variations related to
GE do it in the period 2008-2011, and both GP and GE fail to do it in the period 2012-2015.

The complexity and depth of the individuals obtained by GP are significantly larger than that
reached by the GE: 7.63 versus 3.61 in depth and 34.94 versus 8.55 in complexity. Comparing
the results with the Baseline, complexity of the solution achieved in both GP and GE increases
with the number of individuals, and we obtain the following results: in GP the number of nodes
increases between 6.05 and 6.20, and from 1.89 to 3.11 in GE. If we consider depth, the average
value for GP grows between 0.56 for the versions without parsimony control vs. 0.61 for those
that implement it. The impact in GE is similar, as these increases are 0.79 and 0.49 respectively.

27

In summary, GE still provides the highest reliability in terms of probability of beating B&H, as
it does it on 2 out of the 3 samples, and it also generates simpler solutions. The use of ADFs and
the parsimony control mechanism improves the results, and the mere increase of population size
does not generally results in better performance.

5.2.3. Extended population and technical indicator set

In this case, we increase both the population and the number of technical indicators. Other than
that, we maintain the rest of the execution parameters.

The combination of these changes does not have a major impact in relative terms. In general,
the average return of the trading strategies suffers a slight degradation for most configurations.
Having said that, it is worth noting that GP based strategies profited specially from this changes
in the 2007 test sample.

When we consider the proportion of rules found that either beat B&H or replicate it vs. the
benchmark configurations, once again show the importance of the distribution results. The pro-
portion of strategies that replicate or beat B&H goes up from 67.94% to 83.09% in 2007; down
from 62.11% to 57.53% 2011 and up again 78.23% to 85.98% in 2015. The robustness of the
strategies improves in 2 out of 3 samples, but mean results are dragged by a few weak strategies
that offered very poor performance.

As in the previous three experimental setups, the average depth and the number of nodes of the
individuals obtained by GP-based configurations is clearly higher than that obtained by the set of
solutions that use GE as the core algorithm: 7.74, compared to 3.69 in depth and 8.88 compared
to 35.66 in complexity. Finally, the complexity of the solutions achieved by both GP and GE are
very similar to the one observed in the test with 3000 individuals.

Table 7: Sensitivity analysis summary. Proportion of trading rules that provide returns that are equal or better than Buy
& Hold together with their complexity. Averages over 2000 runs and the three test samples.

Baseline Extended Function Set Extended Population Extended Pop. & Func. Set
Ret. >= Complexity Ret >= Complexity Ret. >= Complexity Ret. >= Complexity
B&H Depth Nodes B&H Depth Nodes B&H Depth Nodes B&H Depth Nodes
Ge 80.02% 3.26 735 7532% 3.25 719 66.18% 4.14 1091 83.42% 4.01 10.37
GePa 84.68% 2.98 6.19 76.17% 3.03 6.27 71.25% 3.59 855 85.70% 3.65 8.74

GeAdf 83.33% 2.86 556 71.53% 3.03 6.18 76.18% 3.57 822 8447% 3.88 8.77
GeAdfPa 8542% 2.76 508 71.18% 2.82 533 81.15% 3.12 6.50 86.57% 3.22 7.64
Gp 49.66% 6.57 30.87 57.13% 658 3142 39.62% 684 36.77 64.05% 7.40 37.74
GpPa 5895% 598 21.08 6292% 633 2692 48.18% 629 2631 6287% 6.50 30.06
GpAdf 55.17% 826 3410 67.15% 8.08 3397 47.63% 9.10 4218 68.77% 8.71 39.11
GpAdfPa 58.17% 739 2734 66.55% 7.43 28.08 5080% 828 3450 6843% 8.34 35.71

Table 7 summarizes the main results of the benchmarking exercise. There, we report, for all
configurations and experimental setups, a summary of the metrics considered over 2000 runs and
the three test samples. Specifically, we report the proportion of trading rules that provide returns
that are equal or better than B&H together with their complexity in terms of depth and number
of nodes.

If we consider all experiments and configurations, the two core algorithms offered very similar
average return. Having said that, GE with 0.34% beats GP by 0.9% in absolute terms. Grammat-
28

ical evolution also turned out to be more reliable. Configurations based on GE obtained equal
or better results than B&H in 78.91% of the experiments. Genetic programming, on the other
hand, matched or improved the performance of B&H in 57.88% of the times. The structure of
the trading rules also differed among techniques. GE provided simpler individuals both when we
consider average depth, 3.32 vs 7.38 and number of nodes, 7.43 vs 32.26.

Regarding the benefits of implementing Lexicographic Parametric Parsimony or using ADFs,
the evidence is mixed in terms of returns and clear if we consider robustness. The configurations
that use the complexity control mechanism offer better average returns than those that do not.
Even though that applies to both GE and GP, the latter profited more from it. The impact of
ADFs was limited in absolute terms. However, even though added value to GP, it turned out to
have a negative impact on GE, reducing average return from 0.48% to 0.20%. If we consider the
probability of obtaining results that are at least as good as B&H, both mechanisms add value.
Interestingly, the average contribution that was obtained in our experiments is similar, 3.08% and
3.52%. However, even though the distribution of the gains associated to mentioned parsimony
control is similar for the two core evolutionary algorithms, ADFs contribute much more to PG
(robustness goes up from 55.42% for configurations without ADFs to 60.33% with them).

The analysis of the experimental results, in relation to the differential impact that the increase in
population size or the terminal set might have depending on the core algorithms, leads us to the
following considerations. If we focus on robustness, the extension of population was positive for
GE and negative for GP. The proportion of GP-based rules that offered returns equal or higher
than B&H suffered and absolute drop of 3.17% vs an improvement of 0.91% for GE. This effect
differs from the observed one when we consider average returns. While this indicator remains
stable for GP, GE is affected more negatively, raising the importance of distributions and the
probability of obtaining specially bad strategies.

The extension of the terminal set makes apparent the same phenomenon that we found for the
population size. In one instance, there is a divergence between the sign of the change in average
return and robustness, and the impact of the change on the two techniques is very different. If
we compare the results of the base case together with extended population one vs the one with
the extended function set and the one with both extensions, we see that the addition of pivot
points and new moving averages helped both GE and GP to improve the average robustness of
the trading strategies. The influence on GE is limited, but it was very positive for GP, as it went
up from 51.02% to 64.7%. Regarding average returns, the improvement of 0.48% in absolute
terms that we see in GP comes together with a 1.16% drop for GE.

6. Summary and Conclusions

The use of evolutionary computation in the domain of trading strategy generation and optimiza-
tion has a long history. One of the most popular lines of research is the use of GP and GE to
evolve investment rules based on technical indicators. Among the main advantages of this ap-
proach, we can highlight the possibility of obtaining rules that are flexible, as the structure is not
completely predefined in advance, and interpretable.

The literature on this topic is based on studies with very different setups. Some authors rely on GP
and others on GE; some consider extensions like the addition of parsimony control mechanisms
or ADFs, and others do not. Since most of the studies are also based on different samples, the
combination of all of these elements makes comparison efforts very challenging. It is hard to tell

29

which core algorithm offers better performance, whether adding extensions makes sense, or even
if their impact is similar or asymmetric depending on the choice of GP vs GE. We intend to fill
this gap in the literature presenting a comprehensive benchmarking exercise.

Our experimental work compares the profitability and the complexity of the trading rules for the
S&P 500 generated using GP, more specifically STGP, and GE on three consecutive four-year
periods. These samples differed in the degree of difficulty to find rules with the potential to beat
a naive B&H strategy. For each of the algorithms, we tested four configurations: core algorithm;
core extended with lexicographic parametric parsimony control; core extended with ADFs and,
finally, core with both extensions. In addition to that, we tested the sensitivity of results to larger
populations and a larger number of technical indicators. For the latter, we added pivot points and
moving averages to the initial function and terminal set suggested by Lohpetch and Corne [11].

The performance of the algorithms depended on the time period, but they were consistent in the
sense that the difficulties to find profitable trading rules affected both core algorithms the same
way. If we consider the output of the 192,000 experiments, both algorithms offered very similar
average returns. Having said that, GE performed better and also turned out to be more reliable
in the sense that the proportion of strategies that obtained equal or larger returns than B&H
was much higher. The structure of the trading rules also was different. GE generated simpler
individuals both in terms of average depth and number of nodes.

Regarding the benefits of extending the core algorithms with lexicographic parametric parsimony
control, the configurations that use this complexity control mechanism offered better average
returns than those that do not use it. Despite of the fact that the assertion applies to both GE
and GP, the latter profited more from it. The impact of ADFs was limited in absolute terms
and, even though it improved the average return of the strategies based on GP, it turned out to
have a negative impact on GE. If we focus the attention on reliability, both mechanisms add
value, as they increase the probability of obtaining results that are at least as good as B&H. The
average contribution of the extensions that we obtained in the experiments was the same, but the
distribution differed. Parsimony control provides the same benefits to GP and GE, but the former
absorbed most of the positive contribution of ADFs.

The experimental results of the sensitivity tests show that the extension of population increased
slightly the robustness of GE-based rules, while it resulted in a mean drop in the the proportion
of GP-based rules that offered a return equal or higher than B&H. Despite of this, average return
remained stable for GP, while GE was affected slightly negatively. This raises the importance
of distributions and the probability of obtaining specially bad strategies. Regarding the changes
in the terminal set, the addition of pivot points and new moving averages improved the average
return of GP at the cost of a decline in GE. However, this change helped both core algorithms
in terms robustness of the trading strategies, though not in the same amount. GP showed much
better capabilities to exploit the new information.

We feel that these results will help future researchers and practitioners to make a more informed
decision regarding some of the key components to be used in the development of their trading
systems based on GP and GE. We also hope that other authors will follow suit and replicate the
study for other assets and periods to accumulate more valuable evidence under different market
conditions. That, together with new analysis on the sensitivity to other aspects like specific
operators, bounds on complexity or parameterization would result in significant progress towards
the completion of this complex picture.

30

7. Acknowledgements

The authors acknowledge financial support granted by the Spanish Ministry of Science and Tech-
nology under grant ENE2014-56126-C2-2-R.

Appendix A. Best Strategies by Setup. Baseline Configuration

Train 2004-2006. Test 2007.

Ge
Fitness: 0.12847
Tree 0: (Or (>Mx2 M2) (Or (>Minimum UR) (<M10 LR)))

GePa
Fitness: 0.12776
Tree 0: (Or (>Mx2 M2) (<M10 LR))

GeAdf

Fitness: 0.12847

Tree 0: (Not (ADF1 (>M2 Mx2) (Or (>Minimum UR) (>LR M10))))
ADF1: (<ARG1 ARGO)

GeAdfPa

Fitness: 0.11167

Tree 0: (ADF1 (>M2 Mx2)(Or (>Opening LR) (And (>M5 M2) (>M3 M2))))
Tree 1: (<ARG1 ARGO)

Gp
Fitness: 0.14930
Tree 0: (Or (<Max M10) (Or (>M10 M5) (<M2 M5)))

GpPa
Fitness: 0.14930
Tree 0: (Or (Or (<M3 M10) (<Max M10)) (Not (>M2 M5)))

GpAdf

Fitness: 0.13329

Tree 0: (ADF1 (ADFI1 (And (<Opening Closing) (<LR LR)) (<Minimum Minimum))
(And (Or («<M3 Minimum) (<UR Closing))(>Closing M3)))

ADF1: (And (Or (Not (<M5 M3)) (<M2 M5)) (<M2 Mx2))

GpAdfPa

Fitness: 0.12776

TreeO: (ADF1 (<M2 Mx2) (>M10 M3))
ADF1: (Or ARGO (<M10 LR))

Train 2008-2010. Test 2011.

Ge
Fitness: 0.04410
Tree 0: (And (<Min2 LR) (Not (And (>M10 LR) (Not (>Mx1 M3)))))

31

GePa
Fitness: 0.07888
Tree 0: (And (Or (And (<M3 Minimum) (>MS5 Closing)) (>LR Min2)) (>M2 Roc3))

GeAdf

Fitness: 0.04410

Tree 0: (Or (<Mx1 M10) (Or (ADF1 (<M3 Mx1) (ADF1 (<LR Minl) (>Roc12 Minl)))
(<M10 LR)))

Tree 1: (<ARGI1 ARGO)

GeAdfPa

Fitness: 0.10941

Tree 0: (Or (Not (<LR Min2)) (And (<M2 M3) (ADF1 (>M5 UR) (<LR Minimum))))
ADF1: (<ARGO ARGI1)

Gp

Fitness: 0.13300514044991257

Tree 0: (Or (And (>LR Min2) (Or (>LR Min2) (And (<UR M10) (Or (>Max Min2)
(>M5 UR)))))(Or (Or (And (<UR M10) (Not (>M5 UR)))(>LR Min2)) (Or (And (Not
(>M5 UR)) (>Roc12 Roc3))(And (>LR Min2)(>M5 UR)))))

GpPa

Fitness: 0.13300

Tree 0: (Or (<Minl LR) (And (Not (<UR M5))(Or (Or (<M3 Closing) (>Min2 M5)) (Or
(<Roc3 Roc12) (>M10 UR)))))

GpAdf

Fitness: 0.13300

Tree 0: (ADF1 (And (Or (<UR M10) (<Roc3 Roc12)) (<M5 UR)) (ADF1 (<Roc3 Roc12)
(ADF1 (ADF1 (<UR M10)(ADF1 (<UR M10) (>Minimum Mx1))) (>Minimum Open-
ing))))

ADF1: (Or (Not (<LR Minl)) (Or (<ARG0O ARGO0) ARGO0))

GpAdfPa

Fitness: 0.17065

Tree 0: (Or (Or (ADF1 (<Max Minl) (<M10 Opening)) (<Min2 LR)) (Or (Not (<Min2
MS5)) (<Minl LR)))

ADF1: (And (And (<LR Minimum) (>Mx1 UR)) (And (Or (<Closing M5) (And (>ARG1
M10) (And ARGO ARG0))) (Or (<M5 UR) ARGO0)))

Train 2012-2014. Test 2015.

Ge

Fitness: 0.02253

Tree 0: (And (Or (>Max M3) (And (Or (>Mx1 Roc3) (<M5 Min2)) (<Minimum Clos-
ing))) (Or (>Max M3) (>Roc12 Roc3)))

GePa
Fitness: 0.01009
Tree 0: (Or (>M5 Minimum) (<M5 M2))

32

o GeAdf
Fitness: 0.01009
Tree 0: (Or (<M5 M2) (>M5 Minimum))
ADF1: (>ARG1 ARGO0)

o GeAdfPa
Fitness: 0.01009
Tree 0: (Or (<Minimum M5) (<M5 M2))
ADF1: (Or (<ARG1 ARG1) (<ARG1 ARG0))

e Gp
Fitness: 0.03046
Tree 0: (Or (And (<Minimum M5) (>M5 M3)) (Or (Or (And (<Minimum Mx2) (Or (<UR
M5) (>Min2 UR))) (Or (Not (>M5 M2)) (Or (<UR M5) (>Min2 UR)))) (<Max M5)))

e GpPa
Fitness: 0.02252868979240462
Tree 0: (Or (Not (>M3 Opening)) (And (<Minimum Closing) (Not (>Roc3 Roc12))))

o GpAdf
Fitness: 0.026907
Tree 0: (Or (And (>MS5 Opening) (Not (<M5 M3))) (Or (And (>M2 Opening) (Or (And
(>M5 Opening) (>Mx2 Roc12)) (<M5 M2))) (<M5 M2)))
ADFI1: (Or (>ARG1 Minimum) (<ARG0 Max))

o GpAdfPa
Fitness: 0.02108
Tree 0: (Not (And (Not (Or (>M5 UR) (Not (>Max M5)))) (<M2 M5)))
ADF1: (And ARG1 (Or (<ARGO Roc3) (And ARG1 ARGO0)))

Appendix B. Best Strategy Behaviour by Setup. Baseline Configuration

33

W |
r 1
o .] I
i A
. YA o
LY
P i \
; bt ’
s A
yor
| |

s il T p
N A
- Ry Al s
- NSOGB R I R N 4 r
J | I | [R |
- A Wl 1 v‘"‘r” ‘-“‘1 Al | [Y “"'r”
WL A WiV - il
a . v
| H‘\ i . |
I {
(e) Gp
o il ﬁ(“g
'\‘f ‘.“(y\ N“! wrl I {
o Lo |
Ion
il A
“"\“ LY
[
bl
|
b
|

(2) GpAdf (h) GpAdfPa

Figure B.5: Behaviour of best strategies by setup of baseline configuration on test sample. Train: 2004-2006, Test: 2007.
Lighter color indicates rule recommendation.

34

(8) GpAdf (h) GpAdfPa

Figure B.6: Behaviour of best strategies by setup of baseline configuration on test sample. Train: 2008-2010, Test: 2011.
Lighter color indicates rule recommendation.

35

T
A '
| {

I |
-
Al
It
A1
/R
W
M .
- W - /
P -
Ay
i

)

A N

(g) GpAdf (h) GpAdfPa

Figure B.7: Behaviour of best strategies by setup of baseline configuration on test sample. Train: 2012-2014, Test: 2015.
Lighter color indicates rule recommendation.

36

References

(1]
(2]
(3]
[4]
(5]
(6]
(71

(8]
(91

[10]

(1]

[12]

[13]
[14]

[15]

[16]
(17]
[18]
[19]

[20]

[21]
[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

A. P. Chaboud, B. Chiquoine, E. Hjalmarsson, C. Vega, Rise of the machines: algorithmic rrading in the foreign
exchange market, The Journal of Finance 69 (5) (2014) 2045-2084.

B. Biais, P. Woolley, High frequency trading, Manuscript, Toulouse University, IDEIL

T. Foucault, J. Hombert, I. Rosu, News trading and speed, The Journal of Finance 71 (1) (2015) 335-382.

G. Nuti, M. Mirghaemi, P. Treleaven, C. Yingsaeree, Algorithmic trading, Computer 44 (11) (2011) 61-69.

B. Babcock, The Dow Jones-Irwin guide to trading systems, Dow Jones-Irwin, 1989.

E. Fama, Efficient capital markets: A review of theory and empirical work, Journal of Finance 25 (1970) 383—417.
A. W. Lo, H. Mamaysky, J. Wang, Foundations of technical analysis: computational algorithms, statistical infer-
ence, and empirical implementation, The Journal of Finance 55 (4) (2002) 1705-1765.

A. Brabazon, M. O’Neill, Biologically inspired algorithms for financial modelling, Springer, 2006.

J. R. Koza, P. J. Angeline, Genetic programming: On the programming of computers by means of natural selection,
Vol. 33, MIT press, 1992.

C. Ryan, J. Collins, M. O’Neil, Grammatical Evolution: Evolving Programs for an Arbitrary Language, Springer
Berlin Heidelberg (1998) 83-96.

D. Lohpetch, D. Corne, Outperforming buy-and-hold with evolved technical trading rules: Daily, weekly and
monthly trading, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), Vol. 6025 LNCS, 2010, pp. 171-181.

F. Allen, R. Karjalainen, Using genetic algorithms to find technical trading rules, Journal of Financial Economics
51 (2) (1999) 245-271.

C. Setzkorn, L. Dipietro, R. Purshouse, Evolving Rule-Based Trading Systems, 36th Annual Meeting of the CEA.
J. D. Thomas, K. Sycara, Gp and the predictive power of internet message fraffic, in: Genetic Algorithms and
Genetic Programming in Computational Finance, Springer US, Boston, MA, 2002, pp. 81-102.

L. A. Becker, M. Seshadri, GP-evolved technical trading rules can outperform buy and hold, Proceedings of the
Sixth International Conference on Computational Intelligence and Natural Computing, Embassy Suites Hotel and
Conference Center, Cary, North Carolina USA, September 26-30.

C. J. Neely, Risk-adjusted, ex ante, optimal technical trading rules in equity markets, International Review of
Economics & Finance 12 (2003) 69-87.

C. Fyfe, J. P. Marney, H. Tarbert, Risk adjusted returns from technical trading: a genetic programming approach,
Applied Financial Economics 15 (15) (2005) 1073-1077.

J. Y. Potvin, P. Soriano, V. Maxime, Generating trading rules on the stock markets with genetic programming,
Computers and Operations Research 31 (7) (2004) 1033-1047.

N. Navet, S. H. Chen, On predictability and profitability: Would GP induced trading rules be sensitive to the
observed entropy of time series?, Studies in Computational Intelligence 100 (2008) 197-210.

D. Lohpetch, D. Corne, Discovering effective technical trading rules with genetic programming: Towards robustly
outperforming buy-and-hold, in: 2009 World Congress on Nature and Biologically Inspired Computing, NABIC
2009 - Proceedings, 2009, pp. 439-444.

L. A. Becker, M. Seshadri, Comprehensibility and overfitting avoidance in genetic programming for technical
trading rules, Tech. rep., Worcester Polytechnic Institute (2003).

A. Esfahanipour, S. Mousavi, A genetic programming model to generate risk-adjusted technical trading rules in
stock markets, Expert Systems with Applications 38 (7) (2011) 8438-8445.

S. Jansen, Testing market imperfections via genetic programming, Ph.D. thesis, Univertitat Hohenheim (2011).

J. How, M. Ling, P. Verhoeven, Does size matter? A genetic programming approach to technical trading, Quantita-
tive Finance 10 (2) (2010) 131-140.

W. Brock, J. Lakonishok, B. LeBaron, Simple technical trading rules and the stochastic properties of stock returns,
The Journal of Finance 47 (5) (1992) 1731-1764.

P. Gabrielsson, U. Johansson, R. Konig, Co-evolving online high-frequency trading strategies using grammati-
cal evolution, in: IEEE/IAFE Conference on Computational Intelligence for Financial Engineering, Proceedings
(CIFEr), 2014, pp. 473-480.

S. Luengo, S. Winkler, D. F. Barrero, B. Castaflo, Optimization of trading rules for the spanish stock market by
genetic programming, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Vol. 9101, Springer, Cham, 2015, pp. 623-634.

J. Gypteau, F. E. B. Otero, M. Kampouridis, Generating directional change based trading strategies with genetic
programming, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), Vol. 9028, 2015, pp. 267-278.

L. Hongguang, J. Ping, Generating Intraday Trading Rules on Index Future Markets Using Genetic Programming,
International Journal of Trade, Economics and Finance 6 (2) (2015) 112-116.

A. Pimenta, C. A. L. Nametala, F. G. Guimaraes, E. G. Carrano, An automated investing method for stock market

37

[31]
(32]

[33]

[34]

[35]
[36]
(371

(38]

[39]

[40]
[41]
[42]
[43]
[44]

[45]
[46]

[47]
[48]

[49]

[50]

(511
[52]
[53]
[54]
[55]

[56]

based on multiobjective genetic grogramming, Computational Economics (2017) 1-20.

S. Y. Yang, S. Y. K. Mo, A. Liu, A. A. Kirilenko, Genetic programming optimization for a sentiment feedback
strength based trading strategy, Neurocomputing 264 (2017) 29-41.

S. Mousavi, A. Esfahanipour, M. H. F. Zarandi, A novel approach to dynamic portfolio trading system using
multitree genetic programming, Knowledge-Based Systems 66 (2014) 68—81.

V. Manahov, R. Hudson, H. Hoque, Return predictability and the wisdom of crowds’: Genetic Programming
trading algorithms, the Marginal Trader Hypothesis and the Hayek Hypothesis, Journal of International Financial
Markets, Institutions and Money 37 (2015) 85-98.

A. Agapitos, A. Brabazon, M. O’Neill, Genetic programming with memory for financial trading, in: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 9597, Springer, Cham, 2016, pp. 19-34.

J. M. Berutich, F. Lopez, F. Luna, D. Quintana, Robust technical trading strategies using GP for algorithmic port-
folio selection, Expert Systems with Applications 46 (2016) 307-315.

A. Brabazon, M. O’Neill, Evolving technical trading rules for spot foreign-exchange markets using grammatical
evolution, CMS 1 (2004) 311-327.

I. Dempsey, M. O’Neill, A. Brabazon, Live trading with Grammatical Evolution, GECCO 2004 Workshop Pro-
ceedings (2004) 9137-9142.

I. Contreras, J. I. Hidalgo, L. Nufiez-Letamendia, Combining technical analysis and Grammatical Evolution in
a trading system, in: Applications of Evolutionary Computing, EvoApplications 2013: EvoCOMNET, Evo-
COMPLEX, EvoENERGY, EvoFIN, EvoGAMES, EvolASP, EvoINDUSTRY, EvoNUM, EvoPAR, EvoRISK,
EvoROBOT, EvoSTOC, Vol. 7835, Springer, Berlin, Heidelberg, 2013, pp. 244-253.

I. Contreras, J. I. Hidalgo, L. Nufiez-Letamendia, A GA Combining Technical and Fundamental Analysis for
Trading the Stock Market, in: A GA combining technical and fundamental analysis for trading the stock market,
Springer, Berlin, Heidelberg, 2012, pp. 174-183.

H. Schmidbauer, A. Rosch, T. Sezer, V. S. Tunalioglu, Robust trading rule selection and forecasting accuracy,
Journal of Systems Science and Complexity 27 (1) (2014) 169-180.

R. Aler, D. Borrajo, P. Isasi, Using genetic programming to learn and improve control knowledge, Artificial Intel-
ligence 141 (1-2) (2002) 29-56.

W. B. Langdon, R. Poli, N. F. McPhee, J. R. Koza, Genetic programming: An introduction and tutorial, with a
survey of techniques and applications, Studies in Computational Intelligence 115 (2008) 927-1028.

W. Bohm, A. Geyer-Schulz, Exact uniform initialization for genetic programming, in: R. K. Belew, M. Vose (Eds.),
Foundations of Genetic Algorithms IV, Morgan Kaufmann, University of San Diego, CA, USA, 1996, pp. 379-407.
1. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution,
Fromman-Holzbook, Stuttgart, Germany, 1973.

D. J. Montana, Strongly Typed Genetic Programming, Evolutionary Computation 3 (2) (1995) 199-230.

M. O’Neill, C. Ryan, Grammatical evolution, IEEE Transactions on Evolutionary Computation 5 (4) (2001) 349—
358.

A. Thorhauer, F. Rothlauf, Structural difficulty in grammatical evolution versus genetic programming, in: Proceed-
ings of the 15th annual conference on Genetic and evolutionary computation - GECCO ’13, 2013, p. 997.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Vol. Addison-We, Addison
Wesley, 1989.

M. O’Neill, C. Ryan, M. Keijzer, M. Cattolico, Crossover in Grammatical Evolution: The Search Continues, in:
Genetic Programming: 4th European Conference, EuroGP 2001 Lake Como, Italy, April 18-20, 2001 Proceedings,
Vol. 2038, Springer Berlin Heidelberg, 2001, pp. 337-347.

J. R. Koza, Discovery of a main program and reusable subroutines using genetic programming, in: Proceedings
of the Fifth Workshop on Neural Networks: An International Conference on Computational Intelligence: Neural
Networks, Fuzzy Systems, Evolutionary Programming, and Virtual Reality, 1993, pp. 109-118.

E. Hemberg, M. O’Neill, A. Brabazon, An investigation into automatically defined function representations in
grammatical evolution, in: 15th International Conference on Soft Computing, Mendel, Vol. 9, 2009, pp. 1-6.

C. Ferreira, Automatically defined functions in gene expression programming, Studies in Computational Intelli-
gence 13 (2006) 21-56.

J. R. Koza, Genetic Programming 2: automatic discovery of reusable programs, Artificial Life 1 (4) (1994) 267-
292.

S. Garcia, D. Quintana, I. M. Galvan, P. Isasi, Multiobjective algorithms with resampling for portfolio optimization,
Computing and Informatics 32 (4) (2013) 777-796.

J. L. Person, A complete guide to technical trading tactics : how to profit using pivot points, candlesticks & other
indicators, John Wiley & Sons, 2004.

X. Tian, Optimization of intraday trading strategy based on ACD rules and pivot point system in Chinese market,
Journal of Intelligent Learning Systems and Applications 04 (04) (2012) 279-284.

38

[57] A. Wilifiski, T. Nyczaj, A. Bera, P. Blaszynski, A study on the effectiveness of investment strategy based on the
concept of pivot points levels using matthews criterion, Journal of Theoretical and Applied Computer Science 7
(2013) 42-55.

Carlos Martin is a Graduate in Computer Science from UNED and M.S. in
Computer Science and Technology from Universidad Carlos III de Madrid,
where he is currently a Ph.D. student. His main interests in the field of Ar-
tificial Intelligence are focused on optimization techniques based on Evolu-
tionary Computation. He is an engineer at the Security Operations Center
of the Air Force JSTCIS Ciberdefense Directorate in The Spanish Ministry
of Defense, Officer in charge of the Forensics, Intrusion Detection, Malware
Analysis and Mitigation and Recovery sections.

David Quintana is an Interim Associate Professor with the Department of
Computer Science at Universidad Carlos III de Madrid, Spain. There, he is
part the bio-inspired algorithms group EVANNALI He holds a Bachelor in
Business Administration and a Ph.D. in Finance from Universidad Pontificia
Comillas (ICADE), a Bachelor in Computer Science from UNED and an
M.S. in Intelligent Systems from Universidad Carlos III de Madrid. His
current research interests are mainly focused on applications of evolutionary
computation and artificial neural networks in finance and economics. David

is the current Chair of the Computational Finance and Economics Technical Committee of the
IEEE Computational Intelligence Society.

ral Networks.

Pedro Isasi Graduate and Doctor in Computer Science by the Polytechnic
University of Madrid since 1994. Currently he is University professor and
head of the Evolutionary Computation and Neural Networks Laboratory in
the Carlos III of Madrid University. Dr. Isasi has been Chair of the Com-
putational Finance and Economics Technical Committee (CFETC) of the
IEEE Computational Intelligence Society (CIS), Head of the Computer Sci-
ence Department and Vice-chancellor in the Carlos III University among
others. His research is centered in the field of the artificial intelligence, fo-
cusing on problems of Classification, Optimization and Machine Learning,
fundamentally in Evolutionary Systems, Metaheuristics and Artificial Neu-

39

	Introduction
	State of the Art
	Contributions based on Genetic Programming
	Contributions based on variations of Genetic Programming
	Contributions based on Grammatical Evolution

	Genetic Programming and Grammatical Evolution
	Genetic Programming
	Grammatical Evolution
	Extensions

	Experimental Design
	Trading rule representation
	Function and terminal sets
	Grammar

	Fitness function
	Parametrization
	GP parametrization
	GE parametrization

	Data sets and experimental protocol
	Sample
	Experimental design
	Statistical significance evaluation protocol

	Experimental Results
	Baseline
	Sensitivity analysis
	Extended set of technical indicators
	Extended population
	Extended population and technical indicator set

	Summary and Conclusions
	Acknowledgements
	Best Strategies by Setup. Baseline Configuration
	Best Strategy Behaviour by Setup. Baseline Configuration

