
This work is licensed under a Creative Commons Attribution-NonCommertial

This document is published at:

Dugarte, G., Sánchez, M.I., Amescua, A. Medina, F.,
Armenia, S. (2021). Using system dynamics to teach
about dependencies, correlation and systemic thinking
on the software process workflows. IET Software,
15(6), pp. 351-364

DOI: 10.1049/sfw2.12031

© 2021, The Authors. IET Software published by John Wiley
& Sons Ltd on behalf of The Institution of Engineering and
Technology.

https://doi.org/10.1049/sfw2.12031
https://creativecommons.org/licenses/by-nc/4.0/

Received: 8 March 2021 - Revised: 30 April 2021 - Accepted: 9 May 2021 - IET Software
DOI: 10.1049/sfw2.12031

OR I G INAL RE SEARCH PA PER

Using system dynamics to teach about dependencies, correlation
and systemic thinking on the software process workflows

German‐Lenin Dugarte‐Peña1 | María‐Isabel Sánchez‐Segura1 |
Antonio de Amescua1 | Fuensanta Medina‐Domínguez1 | Stefano Armenia2

1Computer Science and Engineering Department,
Universidad Carlos III de Madrid, Madrid, Spain

2Link Campus University, Rome, Italy

Correspondence

German‐Lenin Dugarte‐Peña, Av. De la
Universidad, 30, 28913, Leganés, Madrid, Spain.
Email: gdugarte@inf.uc3m.es

Funding information

Comunidad de Madrid, Grant/Award Number:
EPUC3M17 ‐ V PRICIT

Abstract
It is important to count on tools to help software professionals to evaluate the software
process and how it may be affected by factors related to its deployment. Simulation
models are a valuable means to illustrate the behaviour of such a process since scenario
generation supports the prediction of potential outcomes and the prevention of unde-
sired scenarios which are harmful to the process and the company in charge of the
project to be developed. This work explores the effectiveness of introducing system
dynamics (SD) models in the software engineers’ process of understanding, from a
management perspective, the software process dynamics. The used SD simulation model
of the software process emphasises the representation of an iterative process. The
COCOMO II model drivers and their main attributes were used, providing a set of
reference factors that affect the software process, the estimation of project cost and the
effort required. A set of 59 junior software professionals with no previous knowledge
about SD participated in a validation study. For simple predictive scenarios, there was no
important improvement effect, while for more complex predictive scenarios SD helped
them to guess better and provide a rationale for the expected behaviour of the software
process performance.

1 | INTRODUCTION

The modelling and simulation paradigms have been oriented
towards industrial, chemical, tangible and measurable pro-
cesses, whose parameters are under the absolute control of
those involved in the process. However, in recent years there
has been some evolution in the spectrum of approaches,
motivated by the need for controlling aspects such as the
strategic management, the search for process improvements, or
training in terms of software project management.

A potential impact, which motivates the pursuit of ad-
vances in the modelling and simulation of software processes,
is the reduction of the understanding gap between the software
project team and the people interested or involved as benefi-
ciaries of the product to be developed. A software process
simulation tool can facilitate a common language that both
developers and stakeholders can understand, setting an

interesting dialog around the process. This is of interest to
project managers and others in software project roles, who
have strong technical language tools such as UML, used to
abstract and represent their system to be developed. Such
complex language can be confusing for stakeholders who tend
to master a much less technical language closer to the business
world and may lose interaction and sufficient understanding of
the domain of the problem, if it is addressed in conjunction
with and driven by the development team [1, 2].

To deepen the knowledge in this context, it is possible
to mention two concrete knowledge bases that already
have numerous research works and concrete projects and
developments related to this research approach. First, there
is a structured conceptual framework for modelling and
simulating systems in general, with multiple applications
and uses in areas and industries such as chemistry, elec-
tromechanics etc. Second, there is a conceptual basis

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. IET Software published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Soft. 2021;15:351–364. wileyonlinelibrary.com/journal/sfw2 - 351

https://doi.org/10.1049/sfw2.12031
https://orcid.org/0000-0001-9760-7084
mailto:gdugarte@inf.uc3m.es
https://orcid.org/0000-0001-9760-7084
http://wileyonlinelibrary.com/journal/sfw2

around the understanding of software development pro-
cesses; this allows us to explore different development
models from the most classic ones, such as the Waterfall‐
structured model, to more organic and less rigid models,
such as the Rational Unified Process (RUP), or other
iterative models like the Craig Larman model [3] that
will be taken as a reference in this work, which is
explained ahead and also represented in Figure A1 avail-
able in Annex A.

From the two knowledge bases mentioned above, a
research interest arises around the modelling and simulation
of software processes, a field that has been little explored
until now and in which the diversity and dynamism of the
intervening factors make it so complex that they notably
affect the behaviour of the development teams and there-
fore all the organisational behaviour. The growing boom in
software development, the increasingly complex demands on
the capabilities of software products, and the growing desire
on the part of the industry and the academia to understand
and bring software products closer to the reality they serve,
make it an important need to have tools that allow a better
understanding of these systems and their complexity with
the least possible consumption of resources. Software
development processes’ modelling and simulation represents
an important opportunity for both the industry and the
academia in the sense that, with a minimum consumption
of resources, it allows explorations to be made on the
emulated system as if it was the real system, supporting
decision‐making and projecting scenarios that in most cases
are unexplored or inaccessible due to the high costs
involved.

An agile iterative model, like the one proposed by Craig
Larman, represents a good starting point for a research
work around the modelling and simulation of software
processes, so it is chosen in this work as the "ideal refer-
ence" model of the process to be simulated. Concerning the
conceptual basis chosen for the modelling and simulation of
this "real" system, system dynamics will be used because of
the extensive available documentation on its use and
exploitation and because of the added value that as a sys-
tems thinking approach provides.

With this in mind, here we propose to use a simulation
model of an agile iterative software process as a tool to
support the teaching and understanding of the software
process dynamics, giving continuity to previous contributions
[4–6] but emphasising on the usefulness of this approach in
the process of predicting in advance the performance of a
software process in different scenarios. This is explained in
detail in the following sections.

2 | STATE OF THE ART

The work of García‐García et al. [7] suggests that addressing
problems from a process perspective has arisen in several fields
of business process management (BPM), but in software en-
gineering, the complexity is so high that it is necessary to go

beyond the automation of processes due to “highly‐complex
tasks which could not be effectively automated with reduced
costs” [7, 8]. In the last decade, simulation modelling applied to
the software process gained interest among software engi-
neering professionals, who have increasingly worked on
research using mainly agent‐based models, system dynamics
models, and less frequently discrete‐events simulation.

A recent work of García‐García et al. [7], presented a
literature review on this topic and found 8070 articles pub-
lished in this field by a systematic search in 4 digital libraries in
the period 2013–2019, suggesting the existence of an interest
that justifies research on this. Following, a brief mention of the
most relevant works addressing the software process from a
simulation perspective is given. Special attention has been paid
to those works using agent‐based modelling and system
dynamics.

2.1 | Advances using agent‐based simulation

In 2014, Nassal [9] presented a methodological approach for
developing “academical simulation games of software project
management”, aiming to optimise the assignment of tasks
among a determined set of developers “by giving the right task
to the right developer at the right time”. In this model, the
agents of the model constitute project members as self‐acting
agents, while the artefacts to be used are modelled as resources
available for the agents. The set of factors considered as
affecting the software process in this work is limited.

In 2014, Honsel et al. [10] presented a proposal based on
mining software repositories. The model focusses on system
growth, bugs’ lifetime and developer activity. It is aimed at
evaluating the interplay of different possible future scenarios to
improve the quality of software projects. In 2015, Honsel [11]
presented another work about an agent‐based simulation tool
to predict the behaviour of the software project (regarding the
temporal dimension). This simulation is based on the evalua-
tion of ongoing processes and possible development trends at
several points in time.

In 2016, Honsel et al. [12] developed another work on an
agent‐based simulation model that considered the commitment
of developers and the effect that it has on the process’
behaviour, defending the theory that the process’ behaviour is
mostly dependent on the developers’ commitment. It is
interesting that in this proposal they consider parameters like
the effort consumption or the size of the project to be
developed. Ahlbrecht et al. [13] presented a scalable agent‐
based simulation platform which allows the prediction of the
behaviour of a software development project in terms of costs,
resources and activities. Rubio et al. [14] presented a multi‐
agent system that implements an auction mechanism for
simulating task allocation in open‐source software (OSS)
projects. The authors aimed to optimis the task allocation and
reduce rework during the project execution.

In 2018, Mohammed Ali et al. [15] worked on the defini-
tion of an agent‐based simulation model which allows the
representation of real‐world aspects to measure how the

352 - DUGARTE‐PEÑA ET AL.

software evolves in maintenance phases. Hurtado et al. [16]
presented a work evaluating the application of modelling and
simulation techniques to improve the management of projects
which use the Extreme Programing (XP) methodology. They
consider the levels of expertise, the size of the team, the
expertise of each member, the salaries, the number of tasks, or
the estimated duration as factors of importance.

Wysocki and Orłowski [17] proposed in 2019 a scrum‐
based methodology using a multi‐agent simulation system to
meet the requirements of stakeholders. They have also imple-
mented multi‐agent modelling to extract meta‐data and eval-
uate the SCRUM and RUP software production processes and
the appropriate methods and tools for project planning.

2.2 | Advances using system dynamics

In 2013, De Sousa et al. [18] presented a system dynamics (SD)
model to analyse 5 techniques (ad hoc, checklist, perspective,
scenario, N‐fold) that can be applied to analyse the inspection
phase in software projects. The model allows the estimation of
the total number of defects from the early stages of software
development as well as the effectiveness and cost of inspection
activity. The parameters evaluated are related to the number of
pages, the average number of defects per page, the average
number of defects detected by inspectors, the number of pages
per inspection, the number of inspection, the process’ maturity
level, the number of parallel teams or the number of inspectors
per team.

In 2014, Matalonga et al. [19] presented an SD simulation
model of a software factory production line. They aimed to
analyse the changes in behaviour when selecting one among
several alternatives, that is, they focussed on how useful SD is
in helping to explore scenarios that are the result of changes in
factors affecting the process.

In 2015, Saremi and Yang [20] proposed a simulation
model to evaluate the performance of software developers in
crowdsourcing software projects. This simulation considers
more than 20 variables (registered worker, active worker,
winner worker, company's reputation, tasks, tasks taken, tasks
submitted, associated tasks, drop taken, task duration, etc.)
which are associated with a software worker's behaviour in a
crowdsourcing platform, the task uploading behaviour in the
platform and the influence among software workers and
uploaded tasks. Also in 2015, Hurtado et al. [21] presented an
SD simulation model to help in decision‐making in the scope
of usability evaluation and quality on software user interfaces.
This model improves the configuration of the software tester
who must execute software testing processes in terms of us-
ability evaluation.

In 2017, Alexandros et al. [22] presented a dynamic
simulation model to compare agile methodologies, sup-
porting the decision‐making problem of deciding which of
these approaches is more appropriate to be used in a
collaborative software project with specific resources, plan-
ning, and costs.

In 2018, Orta et al. [23] proposed a decision‐making
framework to build simulation models aimed at improving
decision‐making within the Information Technology Infra-
structure Library (ITIL) context. Their framework aims to
systematically build simulation models and solve real‐world
organisation problems applying ITIL recommendations.

From the perspective of information systems, a very
interesting contribution is given by Abdel‐Hamid and Madnick
[24] and Chin et al. [25]. [24] who in the late 80s and early 90s
introduced system dynamics as a tool to understand project
dynamics in information systems, considering many operative
factors such as the effect of overtime spent by developers and
also considering the importance of the intangibility of software,
such as its invisibility. A pioneer in its field, this research
evolved towards more formal contributions to software engi-
neering processes such as [25], where a specific simulation
model is presented, focussing on “various software life‐cycle
development activities and management decision‐making
processes” and keeping an operational view. This work is of
supreme value to this research since it introduces system dy-
namics to the software process; however, due to both the
evolution of the software field and the simulation approaches,
the use of system dynamics in software engineering needs to be
updated and considered from a high and strategic level for
which this research is an input.

Although it is very interesting, no recent and relevant
works were found to be focussing on using system dynamics to
represent a specific software development process and
considering as well an extended and consistent set of factors
explicitly affecting the process. This is why the following
proposal is relevant, since it will incorporate into the modelled
and simulated process a wide set of parameters (or attributes)
that in real life have an important effect on the process but
which are not usually analysed as affecting factors, mainly due
to the lack of a systemic view of the process or because they
are considered to be out of the scope of the software man-
agement field. However, we think these factors are important
and must be understood and considered.

3 | SIMULATION OF THE SOFTWARE
PROCESS DYNAMICS

The simulation model developed by the authors (correspond-
ing to the causal diagram of Figure A1, Figure A2 and the
model views of Figure A3, Figure A4, and Figure A5 in Annex
A) in order to perform the experiment that will be described in
this work, represents the dynamics of a software development
process and the factors that may affect such dynamics. For the
development process the Craig Larman model is used, while
for the representation of the factors affecting the process dy-
namics, the intermediate COCOMO II model's cost estimation
drivers are used. Details about the model structure and the
specific elements that it contains and how they can be used in
software estimation simulation models can be found in [6],
while the source [26] still remains useful for all purposes of

DUGARTE‐PEÑA ET AL. - 353

teaching and estimation, as may be seen even in recent years,
such as in works related to the estimation of the effects of an
audit review effort on project outcomes and project perfor-
mance given by [27] as an example.

System dynamics (SD) was selected as the simulation
paradigm for building the model. SD provides the whole
conceptual framework for the construction of the model;
thus, it invites the building of the simulation model from
levels (or accumulations), flows and feedback cycles, which
may be present and identified in the real system and is crucial
to the proper functioning of the simulation model. The
simulation model presented here is an evolution of the
original partial model presented in a previous work [6], and
the whole system dynamics model for simulating the software
development process as well as its validation can be found at
https://promise.sel.inf.uc3m.es/images/files/SWProcessModel/
SWProcessSDModel.zip.

4 | DESIGN OF THE EXPERIMENT

In order to explore the effect of introducing system dynamics
as a new paradigm for software engineers to learn and un-
derstand the dynamic behaviour of a software development
process, an experiment was carried out. This experiment
consisted of a 90 min study in which the 59 participants, junior
software engineers (in the last course of their studies of

computer science), followed the steps given in Figure 1. The
detailed description of the information that the participants in
the experiment received can be found at https://promise.sel.
inf.uc3m.es/index.php/resources?view=article&id=37:system‐
dynamics‐and‐the‐software‐process&catid=13.

The first step of the study consisted of a reading to
understand the main features of the Craig Larman software
development process, its phases, sub‐phases, and the natural
behaviour of the process execution in terms of time,
workloads and the factors that may affect such behaviour.
All participants already knew the Craig Larman process. A
list of the COCOMO II model drivers (software, hardware,
personnel and project) and their attributes was provided as
well as a brief explanation of their effect on the software
process.

The second step consisted of a form‐filling task. This
form contained four questions, each of them expressing the
modification of two attributes that affect the software process
and asking the respondent to select one among four possible
affirmations about the effect that these modifications may have
on a specific aspect of interest. Table 1 presents a classification
of the levels of complexity that the questions may have had
according to several factors: the number of attributes of the
COCOMO II model that may be modified, the number of
drivers (hardware, software, personnel or project) related to
such attributes, and the effects observed through these ques-
tions. This classification will be useful for the discussion

F I GURE 1 Design of the experiment

TABLE 1 Factors affecting the
complexity of the assessment questions

Level of
complexity

Nº of attributes
modified

Nº of
drivers Effect observed

L1 2 2 Total project execution time

L2 2 2 Displacement of graphs of specific phase workload

L3 2 2 Displacement of graphs of specific phase workload and
workload width (duration of phase)

L4 2 2 Project cost estimation

L5 2 1 Effort consumption on a specific phase

354 - DUGARTE‐PEÑA ET AL.

https://promise.sel.inf.uc3m.es/images/files/SWProcessModel/SWProcessSDModel.zip
https://promise.sel.inf.uc3m.es/images/files/SWProcessModel/SWProcessSDModel.zip
https://promise.sel.inf.uc3m.es/index.php/resources?view=article%26id=37:system-dynamics-and-the-software-process%26catid=13
https://promise.sel.inf.uc3m.es/index.php/resources?view=article%26id=37:system-dynamics-and-the-software-process%26catid=13
https://promise.sel.inf.uc3m.es/index.php/resources?view=article%26id=37:system-dynamics-and-the-software-process%26catid=13

presented ahead in section 5. All participants were familiar with
the estimation methods’ drivers. For reasons of space limita-
tion, the full form with the questions can be found in the first
part of the form available at https://forms.gle/
6V2qx4EWswHtu1G67; however, this first set of questions is
given in Annex B.

The third step consisted of an intervention through
the observation of a video. This 20‐min video introduced
system dynamics’ basic concepts, structures and terminol-
ogy. It was aimed at providing software engineers, who
have never worked with system dynamics, with the wide
strategic perspective that it involves for analysing situations
and for problem‐solving. For doing so, the video illustrated
the use of system dynamics for understanding a system
that was familiar to everybody; the dynamics of a popu-
lation, with its related births and deaths flows. It also
illustrated how environmental factors may be added to
increase the real representation of the system. Finally, the
video introduced a system dynamics simulation model
representing the Craig Larman Software development pro-
cess, emphasising on what the relevant stocks are (effort,
analysis, design, implementation, and testing accomplish-
ment) and how these may have inflows or outflows that
contribute positively or negatively to such stocks’ accumu-
lations. The video also highlighted the power of simulating
and using the graphs generated on the stocks and flow to
analyse and understand the behaviour of the system in time
and the prediction of the effect of the factors on such
behaviours. This video is available at https://youtu.be/
jHmc16jX7ok.

The fourth step consisted of a second form‐filling task.
This form contained eight questions—the same four ques-
tions that were given in step 2 and four additional questions
asking for similar aspects, involving similar modifications to
the factors of the software process that was explained;
however, they were a bit more complex. The idea is to have
enough information to discover whether the video obser-
vation has a positive effect on the participants’ ability to
guess the behaviour of the software process. For reasons of
space limitation, the full form with the questions can be
found within the second set of questions available through

the form at https://forms.gle/6V2qx4EWswHtu1G67;
however, questions five to eight are given also in Annex C.

The previously explained experiment will allow us to
explore the validity of the following hypothesis:

“By introducing System Dynamics as a means for un‐
derstanding the software development process, software
engineers can better foresee the effect of variations on the
drivers on the process dynamics”.

5 | DISCUSSION ABOUT THE RESULTS
OF THE EXPERIMENT

Following the experiment, first, a quantitative analysis of the
results of the surveys that were carried out through the
experiment previously described is presented and second, a
qualitative analysis of the rationale the participants used to
justify the estimations of system behaviour is presented.

5.1 | Quantitative analysis

The accuracy analysis of the respondents before and after the
introduction of the system dynamics simulation model of the
software process is presented next.

5.1.1 | Accuracy before vs. Accuracy after (video
observation)

Table 2 presents the accuracy values for the answers obtained
both before and after the video intervention.

As it may be observed, the respondents hardly ever
changed their minds regarding the first four questions in the
second assessment after the first one.

(a) Question 1
In the case of Q1, the participants provided the correct an-
swers in 100% of the cases both before and after the inter-
vention video.

TABLE 2 Accuracy before and after the
video intervention

Question Complexity Before intervention After intervention
Coincidence
before‐after

Q1 L1 100.% 100.% 100.%

Q2 L1 96.61% 96.61% 96.61%

Q3 L2 96.61% 96.61% 100.%

Q4 L1 11.86% 6.77% 89.83%

Q5 L3 ‐‐ 79.66%

Q6 L3 ‐‐ 100.%

Q7 L4 ‐‐ 15.25%

Q8 L5 ‐‐ 81.36%

DUGARTE‐PEÑA ET AL. - 355

https://forms.gle/6V2qx4EWswHtu1G67
https://forms.gle/6V2qx4EWswHtu1G67
https://youtu.be/jHmc16jX7ok
https://youtu.be/jHmc16jX7ok
https://forms.gle/6V2qx4EWswHtu1G67

(b) Question 2
Regarding question 2, the absolute accuracy is the same before
and after the video intervention; however, 2/59 of the re-
spondents (3.39%) changed their minds from the first to the
second survey, letting the researchers know that they were not
totally sure of the appropriate answer. One of them was right
and went wrong, while the other was wrong and went right.

(c) Question 3
In the case of question 3, the accuracy is the same (96.61%)
before and after the video intervention, with no one changing
his/her mind from one survey to the other, suggesting that it
was a very simple question with no doubts emerging.

(d) Question 4
Regarding question 4, the results are very intriguing. The ac-
curacy is very low both before (11.86%) and after (6.77%) the
video intervention. Nonetheless, the most interesting effect is
that around 11% (6/59) of the respondents changed their
minds after the video intervention but not necessarily to switch
from a wrong answer to a correct answer. So far, out of 6
respondents, three of them were correct before but were
wrong in the second chance. However, as it will be explained
later, the qualitative analysis revealed that this lack of accuracy
may be related to the misunderstanding of one of the variables
that are manipulated in this question (the PVOL).

5.1.2 | Effects observed on additional questions
after the video intervention

The second survey carried out was aimed at collecting infor-
mation regarding how increasing the complexity of the ques-
tions may affect the judgement of the respondents. The results
are very interesting since they drive to a critical discussion on
the use of system dynamics in this field, which is the main goal
of the experiment.

(a) Question 5
Regarding question 5 (part of the post‐video‐observation
assessment), 47/59 of the respondents (79.66%) were able to
provide the correct answer. In this question, there were two
affecting factors: the required software reliability extent
(RELY) being improved and the required development
schedule (SCED), remaining nominal.

Since the respondents were asked the same question about
the execution of the test and its starting point and extension in
time, the main effect would be given by the RELY attribute.
The correct answer was, “Testing starts occurring earlier
(provided that the coding is faster) and takes shorter time”.
However, 12/49 respondents were still not able to guess it
correctly, with equally distributed wrong answers among two
alternatives: “Testing starts occurring earlier (provided that the
coding is faster) but takes longer time” with 6/59 respondents,
and “Testing starts occurring later (provided that the coding is
slower) but takes shorter time” with 6/59 respondents, which

does not make much sense as the high reliability of the soft-
ware facilitates the coding phase and decreases the probability
of errors in the testing phase.

(b) Question 6
Concerning question 6, while having the same level of
complexity as question 5, it showed much better performance
on the estimation done by the respondents, since 100% of the
participants were able to provide correct answers. The partic-
ipants were asked to think about the effect of improving
MODP (application of software engineering methods) and
LEXP (programing language experience) in the implementa-
tion phase. All of the respondents could guess correctly that
such a phase, under these conditions, is expected to start
occurring as expected and takes a shorter time. In this case, the
respondents were asked to think about how two positive
changes, that is changes that are supposed to help the process
execution, may be affecting a specific phase: the implementa-
tion. All of the respondents were able to estimate that by
improving the “application of software engineering methods”
(MODP), and the “programing language experience” (LEXP),
the implementation phase is expected to start occurring as
expected (not earlier or later) and take a shorter time.

(c) Question 7
There is an interesting result in the responses to question 7.
Only 9 respondents out of 59 were able to provide the
appropriate answer (15.25%). This is interesting since the only
different aspect if compared to the previous questions, was
that instead of asking people to predict the effect of changes in
the attributes on the project execution, the question was about
the effect on project cost estimation. It seems that for the
respondents it was difficult to clearly identify the relationship
that may exist between a project schedule compression and the
costs that such compression involves, that is, for being able to
compress the project execution time, there must be a monetary
investment that directly increases the project costs. This indi-
rect and not‐so‐obvious relationship between project
compression and the costs that such compression may imply is
hard to guess for junior professionals, while for senior pro-
fessionals it is a matter of daily work and so it becomes clearly
evident. Most of the participants focussed on the formal
definition of the variables, which may have biased the sense‐
making work while deciding the appropriate answer.

(d) Question 8
For question 8, despite the complexity of the question, the
accuracy of the responses is quite better. 81.6% of the re-
spondents (48 out of 59) were able to estimate the effect on
“effort consumption” that the modifications in two attributes
had, which were quite familiar to them since these are directly
observed in their daily activity: the capability of the analysts
involved in the project (ACAP) and the capability of the
software engineers (PCAP).

This question implied the task of identifying in which
phase of the process both the work of the analyst (i.e. on the

356 - DUGARTE‐PEÑA ET AL.

analysis and design, mainly) and the software engineers are
reflected (on the implementation and testing).

Although it looks very easy, the main difference in this
question, if compared to the previous simpler questions, is that
one of the attributes was changed to help the process improve
(ACAP increases) while the other was changed to worsen the
process (PCAP decreases), which may be the reason why 11
out of 59 respondents were still on able to guess the appro-
priate answer.

From a quantitative perspective, and considering only
the accuracy of the responses, the results are not conclusive
to strongly affirm that the system dynamics intervention
video significantly helped the software engineers to better
guess the effects of changes in the attributes of the software
on the strategic aspects of importance: time execution, effort
consumed and phases accomplishment. However, it is still a
good possibility, and it is important to mention that in the
second assessment the complexity of the questions was
higher, and the accuracy of the respondents was higher than

expected. Actually, as said before, the only question of the
second assessment in which the majority of the participants
failed (Question 7) is justified by the fact that the partici-
pants did not have enough experience to see the relationship
between project compression and the costs that it may
imply.

5.2 | Qualitative analysis

The main difference between the first and the second assess-
ment lies in the fact that the software engineers were able to
provide a better justification for their responses in the second
assessment's additional questions. Although the responses to
these questions, in general, had a slightly lower accuracy, for
those that provided a correct answer, they were in general
more capable of explaining the dynamics of the process,
making explicit reference to terms related to the software
process dynamics. Table 3 and Table 4 show the percentages of

TABLE 3 Statistics about the quality of
the justifications given to the responses–Part 1

Question

Accuracy
before
intervention

Nº of
justified
rationales

Quality of the rational
P = Poor
A = Average
G = Good

P A G

Q1 100.% 30/59 0/30 27/30 3/30

0% 90% 10%

Q2 96.61% 30/59 1/30 1/30 28/30

3.33% 3.33% 93.33%

Q3 96.61% 24/59 2/24 0/24 22/24

8.33% 0% 91.66%

Q4 11.86% 46/59 24/46 16/46 6/46

52.17% 34.78% 13.04%

TABLE 4 Statistics about the quality of
the justifications given to the responses–Part 2

Question

Accuracy
after
intervention

Nº of
justified
rationales

Quality of the rational
P = Poor
A = Average
G = Good

P A G

Q5 79.66% 34/59 2/34 4/34 28/34

5.88% 11.76% 82.35%

Q6 100.% 24/59 0/34 0/34 24/24

0% 0% 100%

Q7 15.25% 43/59 16/43 23/43 4/43

53.48% 37.20% 9.30%

Q8 81.36% 33/59 5/33 5/33 23/33

15.15% 15.15% 69.69%

DUGARTE‐PEÑA ET AL. - 357

the respondents that were able to provide a rationale to their
decisions and the grading that such responses had using the
poor‐irrelevant‐good (P‐I‐G) scale.

The participants of the study were capable of providing a
rationale justifying their selection in many cases; however, the
rationale was not always good. There are several interesting and
counterintuitive results.

The analysis of questions 1–4 has been omitted in the
second assessment due to the valence effect resulting from the
fact that they already knew these questions from assessment 1.

5.2.1 | First assessment

In the first assessment, although for questions 1, 2 and 3 the
responses were correct in most cases (100%, 96% and 96%,
respectively), only a portion of these provided a rationale for
their responses (30/59 for Q1, 30/59 for Q2, 24/59 for Q3
and 46/59 for Q4). What follows is a brief analysis of these
responses.

� For the first question, most of the justifications provided
(90%) were “average” and only 10% were “good”. This
allows the authors to think that there is an effect of the
order of this question on the respondents, since they were
not accurate enough even though the question was very
simple (L1 level of complexity). But exploring this effect was
not the goal of this study.

� For questions 3 and 4, the accuracy was high (96.61% in
both cases). However, only a portion of the participants
(30/59 for Q2 and 24/59 for Q3) provided a justification.
The quality of the justifications is high for these questions,
showing a good quality for the biggest portions (93.33% and
91.66%, respectively).

� It is interesting that there is high participation in providing a
rationale for question 4. However, only 11.86% of the total
participants were accurate in this question. So, why is there a
high participation in this? The response is that most of the
participants made an effort to justify their response by
providing extra information, driving the authors to realise that
theywere confused about themeaning and sense of one of the
COCOMO drivers that was being modified: the PVOL. The
text of the justifications shows that many people confused the
semantic meaning of volatility in the development platform.
While the PVOL represents the probability of causing a sys-
tem failure, many respondents interpreted the opposite and
thought that it was the probability of not failing.

5.2.2 | Second assessment

In the second assessment, the general accuracy is lower than
in the first assessment. This is something that the authors
were expecting, since the complexity of the questions is
higher as well. The first four questions of this assessment
were the same as in the first assessment, so they will not be
analysed next.

� For question 5, the accuracy of the respondents was not bad
(79.66%); however, it could have been better. Out of the 59
respondents, 34 provided a justification. An important high
number (82.35%) of respondents out of these 34 were able
to provide a good quality, correct justification, while 11.76%
of the responses were of average quality and 5.88% of poor
quality.

� Regarding question 6, although 100% of participants
responded accurately, only 24 out of 59 participants pro-
vided a justification. But for sure, all of them (100%) were of
high quality. In this case, the level of complexity in terms of
the COCOMO drivers modified was not the simplest, and
the asked effect was double (starting point and duration of
the project execution). The accuracy of the responses may
be attributed to the fact that the parameters that were
modified are familiar to any software professional with
minimum experience: application of software engineering
methods (MODP) and programing language experience
(LEXP); so, it did not require additional effort to compre-
hend the semantics of these attributes.

� The responses to Question 7 were not accurate at all. In this
question, the respondents were asked to think about the
effect of decreasing the “Volatility of the virtual machine
environment (PVOL)” and consider a “Required develop-
ment schedule (SCED)” on the estimation of costs. Only
15.25% of respondents selected the correct option—hat the
costs increase. Most of the respondents (53.48%) mentioned
in their justification that the costs would be lower than in
the nominal case. This result may be explained by
mentioning that, as in the first assessment, the semantic of
the attribute PVOL is not clear for the software engineers,
since they understand that a lower PVOL involves a high
probability of system failure (an inexpensive option). So the
cost would be lower. A decrease in the PVOL combined
with a schedule constraint is related to a higher cost.

� Concerning question 8, 33 out of 59 respondents justified
their response. Out of these 33 participants, 23 (69.69%)
were able to provide a good rationale using system behav-
iour terminology.

From a qualitative perspective, considering that the
complexity of the questions in the second assessment was
higher than the complexity of the questions in the first
assessment, the results suggest that there is a positive effect of
the system dynamics intervention video on the respondents’
responses. In general, the quality of justifications (rationale) for
more complex questions was nurtured with quality and ter-
minology related to strategic analysis of the software processes,
making the participants create connections of causalities
among the phases of the software process.

6 | CONCLUSIONS

In this work, system dynamics was used as an approach for the
construction of the software process model, based on the fact
that the software process, far from being methodical and

358 - DUGARTE‐PEÑA ET AL.

procedural turns out to be complex, variant, and in many oc-
casions counterintuitive, with many emerging and unpredict-
able phenomena.

For the construction of the model that was illustrated
during the experiment, and according to the methodology
taken as reference [28], first, a deep immersion in the system to
be modelled was made, which translated into a deep and sys-
temic understanding of the software engineering process of the
Larman method, its operation, phases, characteristics, and
properties, constituting a first level of abstraction of the pro‐
cess. Part of this immersion was the exploration of approaches
to describe the parameters that affect the process, for which it
was very useful to make use of the COCOMO cost model
which has defined a series of parameters common to the
processes that have an impact on development and related
resource consumption.

In the experiment and the related model presented here,
these parameters were used as a way to increase the repre-
sentativeness of the model, which allowed the incorporation of
the effects of the process parameters on the operation of the
process as a whole, and thus the estimation of possible effects
and expected behaviour from certain parameter configurations.
This property represents a significant contribution for those
who want to study the software process with minimal costs and
in a practical, manageable manner that is usable by multiple
users and has significant potential to support decision‐making
in software process management teams.

The good immersion in the operation of the software
process and the well‐founded identification of the parameters
that affect the process served as the basis for the construction
of the representative causal diagrams about the software pro-
cess, initially of the whole process and later, as a sort of zoom
within the general system of the construction phase of the
software engineering process. The main contribution in this
aspect came at the time of modelling this system (the con-
struction sub‐process) using the system dynamics approach. In
this modelling, the identification of variables, levels, and flows
that interact in the system represented a second level of
abstraction of the system of great importance and utility, since
the relationships between the elements of the system that are
not always evident at first sight or with superficial exploration
are identified. Subsequently, all the relationships, causalities,
and feedback loops identified were implemented in the design,
configuration, validation and manipulation of the model itself,
achieving a fairly broad level of system representativeness and
forming one of the main strengths of this work, being a
representative model of the software process which considers a
large number of elements and parameters of different types
that inevitably influence the system and should not be ignored.

The experiment carried out using the model to illustrate
the software process and the dynamics related to such a pro-
cess to junior software engineers was very interesting. While
trying to discover how useful the software process system
dynamics model may be to help these professionals to better
understand the process from a strategic view, the experiment
allowed the authors to clarify the usefulness of system dy-
namics models in this field.

The results suggest that there are slightly, but not signifi-
cantly better, quantitative results of their task of predicting the
performance of the system when factors affecting the system
(the software process) are manipulated.

However, regarding the qualitative analysis of these pro-
fessionals’ predictions, it seems that they gained vocabulary and
quality of analysis at the moment of explaining their compre-
hension of the system's (the software process) behaviour.

In summary, from a quantitative perspective, the partici-
pants were not significantly better than before knowing system
dynamics’ basic concepts, but from a qualitative perspective
the study suggests that the participants improved their ability
to provide arguments about their guessing tasks and the
choices made, even using terminology that may be used at a
strategic level at the moment of discussing the behaviour of the
software process and the attributes that more critically affect
the whole process.

This experience caused arguments that emerged to support
the claim that there is a need for a structured methodological
approach to provide a context for studying problems similar to
the one faced here: simulating software engineering processes
and exploring the effect of such simulations on professional
and academic environments. Facing these challenges would
propitiate multiple benefits both for the sciences in general and
for the fields of science involved in understanding organisa-
tional phenomena, including those of the software process.
That is why it is proposed to give continuity to the present
work in four ways:

� First, evolving the model developed here by experimenting
with equations and function tables that may better represent
the expected behaviours of the software process and its
related sub‐processes.

� Second, complementing the model presented here with
models developed following other simulation approaches.
This would allow contrasting approaches and defining dif-
ferentiation criteria according to interests and use cases.

� Third, simulating software processes which are different
from Larman's model, both more methodical (and therefore
sub‐representative of the process) and more organic and
agile (therefore more adjusted) models, so that they are able
to contrast and make significant contributions to the body
of knowledge on software process modelling and
simulation.

� Fourth, designing an experiment with more controlled var-
iables, with a control group, and guaranteeing the absence of
a valence effect among the different phases of the
experiment.

Finally, it should be mentioned that this research con-
tributes to the field of software engineering, through the
provision of a tool and the simulation model developed, to
predict and envision the behaviour of a software process
without spending costly consulting tasks or testing on the
road while the software is developed. The costs of a project
are critical, and being able to simulate and know the effect of
cost drivers can support early decision‐making and enhance

DUGARTE‐PEÑA ET AL. - 359

the strategic discussion on a software process, which may also
be useful in academic and educational contexts.

ACKNOWLEDGEMENT
This work has been supported by the Madrid Government
(Comunidad de Madrid‐Spain) under the Multiannual Agree-
ment with UC3M in the line of Excellence of University
Professors (EPUC3M17) and in the context of the V PRICIT
(Regional Programme of Research and Technological
Innovation).

ORCID
German‐Lenin Dugarte‐Peña https://orcid.org/0000-
0001-9760-7084

REFERENCES
1. Vicente, R.: Modelamiento semántico con Dinámica de Sistemas en el

proceso de desarrollo de software. Iber. J. Inf. Syst. Technol. 10, 19–33
(2012). https://doi.org/10.4304/risti.10.19‐34

2. Robertson, S.: Learning from other disciplines [requirements engineer-
ing]. IEEE Software. 22(3) (2005). https://doi.org/10.1109/MS.2005.68

3. Larman, C.: Applying UML and Patterns: An Introduction to Object‐
Oriented Analysis and Design and Iterative Development, 3rd edn.
Prentice Hall, New Jersey (2005). https://www.oreilly.com/library/view/
applying‐uml‐and/0131489062/?ar

4. Dugarte‐Peña, G.‐L.: Software engineering under the prism of System
Dynamics. XXIII Jornadas Internacionales de Ingeniería de Sistemas.
Universidad Católica de Santa María, Perú (2016)

5. Dugarte‐Peña, G.L.: Modelado y Simulación de un Proceso de Desar-
rollo de Software dirigido por el Método de Craig Larman: Una aplica-
ción de la dinámica de sistemas. (Modelling and Simulation of a Craig
Larman Methods’ Software Development Process: a System Dynamics
Approach). Universidad Carlos III de Madrid, Madrid (2015)

6. Dugarte‐Peña, G.‐L., et al.: Simulation of the software development
process: an approximation using System Dynamics and the Larman
Method/Simulación del proceso de desarrollo de software: una aprox-
imación con Dinámica de Sistemas y el Método de Larman. Rev. Inno-
vación y Softw. 1(1), 39–57 (2020). https://revistas.ulasalle.edu.pe/
innosoft/article/view/11

7. García‐García, J.A., et al.: Software process simulation modelling: sys-
tematic literature review. Comput. Stand. Interfaces. 70, 103425 (2020)

8. Papazoglou, M., Ribbers, P.: E‐business: Organization and Technical
Foundations. Wiley (2006). https://www.wiley.com/en‐gb/export
Product/pdf/9780470064467

9. Nassal, A.: A general framework for software project management
simulation games. In: Iberian Conference on Information Systems
Technologies (CIST), pp. 1–5. IEEE, Barcelona (2014). https://doi.org/
10.1109/CISTI.2014.6877074

10. Honsel, V., Honsel, D., Grabowski, J.: Software process simulation based
on mining software repositories. In: IEEE International Conference
Data Mining Workshop (ICDMW), pp. 828–831. IEEE, Shenzhen
(2015). https://doi.org/10.1109/ICDMW.2014.35

11. Honsel, V.: Statistical learning and software mining for agent based
simulation of software evolution. In: 2015 IEEE/ACM 37th IEEE In-
ternational Conference on Software Engineering, vol 2, pp. 863–866.
IEEE, Florence (2015). https://doi.org/10.1109/ICSE.2015.279

12. Honsel, D., et al.: Monitoring software quality by means of simulation
methods. In: International Symposium on Empirical Software Engi-
neering and Measurement. ACM, Ciudad Real (2016). https://doi.org/
10.1145/2961111.2962617

13. Ahlbrecht, T., et al.: Agent‐based simulation for software development
processes. In: Criado Pacheco N., et al. (eds.), Agent‐based simulation for

software development processes. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 9571, pp. 332–340. Springer, Cham (2016).
https://doi.org/10.1007/978‐3‐319‐59294‐7_28

14. Rúbio, T.R.P.M., Lopes Cardoso, H., da Costa Oliveira, E.: MAESTROS:
multi‐agent simulation of rework in open source software. In: Novais, P.,
et al. (eds.) Intelligent Distributed Computing: Proceedings of the 9th
International Symposium on Intelligent distributed Computing –
IDC’2015, October 2015, vol. 616, pp. 403–413. Springer, Guimarães
(2016)

15. Mohammed Ali, S., et al.: Developing an agent‐based simulation model
of software evolution. Inf. Softw. Technol. 96, 126–140 (2018) https://
doi.org/10.1016/j.infsof.2017.11.013

16. Hurtado, N., et al.: Applying agent‐based simulation to the
improvement of agile software management. In: Mas, A., et al. (eds.)
Software Process Improvement and Capability Determination, pp.
173–186. Springer, Cham (2017). https://doi.org/10.1007/978‐3‐319‐
67383‐7_13

17. Wysocki, W., Orłowski, C.: A multi‐agent model for planning hybrid
software processes. Procedia Comput. Sci. 159, 688–1697 (2019).
https://doi.org/10.1016/j.procs.2019.09.339

18. De SousaCoelho, J.J., Braga, J.L., Ambrósio, B.G.: System dynamics
model for simulation of the software inspection process. ACM
SIGSOFT Softw. Eng. Notes. 38(5), pp. 1. (2013). https://doi.org/10.
1145/2507288.2507306

19. Matalonga, S., Solari, M., San Feliu, T.: An empirically validated simula-
tion for understanding the relationship between process conformance
and technology skills. Softw. Qual. J. 22(4), pp. 593–609. (2014). https://
doi.org/10.1007/s11219‐013‐9214‐2

20. Saremi, R.L., Yang, Y.: Dynamic simulation of software workers and task
completion. In: Proceedings of the 2nd International Workshop on
CrowdSourcing in Software Engineering, pp. 17–23. IEEE, Florence
(2015). https://doi.org/10.1109/CSI‐SE.2015.11

21. Hurtado, N., et al.: Using simulation to aid decision making in managing
the usability evaluation process. Inf. Softw. Technol. 57(1), 509–526
(2015). https://doi.org/10.1016/j.infsof.2014.06.001

22. Alexandros, N.K., et al.: Comparing scrum and XP agile methodologies
using dynamic simulation modelling. In Kavoura, A., Sakas, D.P.,
Tomaras, P. (eds.), Strategic Innovative Marketing, pp. 153–158. Springer,
Cham (2017). https://doi.org/10.1007/978‐3‐319‐56288‐9_52

23. Orta, E., et al.: Decision‐making in IT service management: a simulation
based approach. Decis Support Syst. 66, 36–51 (2014). https://doi.org/
10.1016/j.dss.2014.06.002

24. Abdel‐Hamid, T., Madnick, S.E.: Software Project Dynamics: An Inte-
grated Approach. Prentice‐Hall, Inc. New Jersey (1991)

25. Lin, C.Y., Abdel‐Hamid, T., Sherif, J.S.: Software‐engineering process
simulation model (SEPS). J. Syst. Softw. 38(3), 263–277 (1997). https://
doi.org/10.1016/S0164‐1212(96)00156‐2

26. Boehm, B.: COCOMO II Model Definition Manual, vol. 87(5 Suppl), p. i
(2012). https://doi.org/10.4269/ajtmh.2012.875suppack

27. Agrawal, M., Chari, K.: Impacts of process audit review and control
efforts on software project outcomes. IET Softw. 14(3), 293–299 (2020).
https://doi.org/10.1049/iet‐sen.2019.0185

28. Sterman, J.: Business Dynamics: Systems Thinking and Modelling for a
Complex World. McGraw‐Hill, USA (2000)

How to cite this article: Dugarte‐Peña, G.‐L., et al.:
Using system dynamics to teach about dependencies,
correlation and systemic thinking on the software process
workflows. IET Soft. 15(6), 351–364 (2021). https://doi.
org/10.1049/sfw2.12031

360 - DUGARTE‐PEÑA ET AL.

https://orcid.org/0000-0001-9760-7084
https://orcid.org/0000-0001-9760-7084
https://orcid.org/0000-0001-9760-7084
https://doi.org/10.4304/risti.10.19-34
https://doi.org/10.1109/MS.2005.68
https://www.oreilly.com/library/view/applying-uml-and/0131489062/?ar
https://www.oreilly.com/library/view/applying-uml-and/0131489062/?ar
https://revistas.ulasalle.edu.pe/innosoft/article/view/11
https://revistas.ulasalle.edu.pe/innosoft/article/view/11
https://www.wiley.com/en-gb/exportProduct/pdf/9780470064467
https://www.wiley.com/en-gb/exportProduct/pdf/9780470064467
https://doi.org/10.1109/CISTI.2014.6877074
https://doi.org/10.1109/CISTI.2014.6877074
https://doi.org/10.1109/ICDMW.2014.35
https://doi.org/10.1109/ICSE.2015.279
https://doi.org/10.1145/2961111.2962617
https://doi.org/10.1145/2961111.2962617
https://doi.org/10.1007/978-3-319-59294-7_28
https://doi.org/10.1016/j.infsof.2017.11.013
https://doi.org/10.1016/j.infsof.2017.11.013
https://doi.org/10.1007/978-3-319-67383-7_13
https://doi.org/10.1007/978-3-319-67383-7_13
https://doi.org/10.1016/j.procs.2019.09.339
https://doi.org/10.1145/2507288.2507306
https://doi.org/10.1145/2507288.2507306
https://doi.org/10.1007/s11219-013-9214-2
https://doi.org/10.1007/s11219-013-9214-2
https://doi.org/10.1109/CSI%2DSE.2015.11
https://doi.org/10.1016/j.infsof.2014.06.001
https://doi.org/10.1007/978-3-319-56288-9_52
https://doi.org/10.1016/j.dss.2014.06.002
https://doi.org/10.1016/j.dss.2014.06.002
https://doi.org/10.1016/S0164-1212%2896%2900156-2
https://doi.org/10.1016/S0164-1212%2896%2900156-2
https://doi.org/10.4269/ajtmh.2012.875suppack
https://doi.org/10.1049/iet%2Dsen.2019.0185
https://doi.org/10.1049/sfw2.12031
https://doi.org/10.1049/sfw2.12031
https://orcid.org/0000-0001-9760-7084

APPENDIX

Annex A

F I GURE A 1 Craig Larman's software development process [6]

F I GURE A 2 Causal Diagram ‐ The Larman's
Software Development Process [6]

DUGARTE‐PEÑA ET AL. - 361

F I GURE A 4 Model view 2: Accomplishment of phases [6]

F I GURE A 3 Model view 1: Software process attributes and cost drivers [6]

362 - DUGARTE‐PEÑA ET AL.

Annex B
This annex presents the questions Q1–Q4 of the first assess-
ment described in section 4.

After every question, there was an additional space for the
respondents to provide an explanation or justification for their
responses, with the specific text: “You can use this space just in
case you want to justify your reasoning around the answer you
have provided for the above question. Otherwise leave it
empty”.

1. If the “Capability of project analysts” (ACAP) worsens and
the “Complexity of system modules (CPLX)”, that is the
complexity of the software platform used in the process of
development (CPLX) increases, how do you think that a
cycle of the project completion will be affected?
• The project execution takes LESS time
• The project execution takes MORE time
• The project execution takes THE SAME time
• I do not know

2. If the "experience of the analyst in domain related to the
project", that is how familiar the domain is to them,
(AEXP) worsens, and the “Use of software tools”
(TOOLS) decreases, how do you think that the project
completion will be affected? *
• The project execution takes LESS time
• The project execution takes MORE time
• The project execution takes THE SAME time
• I do not know

3. If the capabilities of the programmers (PCAP) improves,
and the capacity of processing of the virtual machines used
during the programing, known as “Memory constraints”

(STOR) improves, how do you think that the effort con-
sumption will be affected? *
• The effort on “Implementation” is shorter than
expected.

• The effort on “Implementation” is as expected.
• The effort on “Implementation” is longer than expected.
• do not know

4. If there is a worsening in the “Volatility of development
platform” (PVOL), that is probability of causing a system
failure during the coding sub‐phase; and the project must
adjust to an imposed "Development schedule compression"
(SCED), that is there is pressure and the tasks to be
developed are forced to fit in a shorter time; then the
project execution is expected to: *
• Expand and thus take longer time
• Compress and be completed in shorter time
• Indifferent, the effect is not clear
• I do not know

Annex C
This annex presents the questions Q5–Q8 of the second
assessment described in section 4.

After every question, there was an additional space for the
respondents to provide an explanation or justification for their
responses, with the specific text: “You can use this space just in
case you want to justify your reasoning around the answer you
have provided for the above question. Otherwise leave it
empty”.

5. If there is an improvement on the “Reliability of the soft-
ware development platform” (RELY); and there is no

F I GURE A 5 Model view 3: Effort consumption during the software process [6]

DUGARTE‐PEÑA ET AL. - 363

special Development time constraints (SCED), how is the
accomplishment of the Testing expected to vary? *
• To start occurring earlier (provided that the coding is
faster) but taking longer time

• To start occurring earlier (provided that the coding is
faster) and taking shorter time

• To start occurring later (provided that the coding is
slower) but taking shorter time

• To start occurring later (provided that the coding is
slower) but taking longer time

6. If there is an improvement on the “Up‐to‐date programing
techniques” (MODP), that is the management team is up‐to‐
date and applies modern and agile techniques; and the
Experience in the language (LEXP) improves, the imple-
mentation phase is expected to: *
• Start occurring as expected but taking longer time
• Start occurring as expected and taking shorter time
• Start occurring later but taking shorter time

• Start occurring later but taking longer time
7. If there is a decrease in the “Volatility of development plat-

form” (PVOL), that is probability of causing a system failure
during the coding sub‐phase; and there is a "Development
schedule compression" (SCED) of tasks, that is there is
pressure and the tasks to be developed are forced to fit in a
shorter time; then the project cost estimation is expected to: *
• Be higher
• Be lower
• Be around the same
• I am not sure/No idea

8. If the “Quality of the programmers” (PCAP) worsens
considerably; and the Analysis capacity (ACAP) improves,
then the effort consumption is expected to: *
• Concentrate on Analysis
• Concentrate on Design
• Concentrate on Implementation
• Concentrate on Testing

364 - DUGARTE‐PEÑA ET AL.

	Using system dynamics to teach about dependencies, correlation and systemic thinking on the software process workflows
	1 | INTRODUCTION
	2 | STATE OF THE ART
	2.1 | Advances using agent‐based simulation
	2.2 | Advances using system dynamics

	3 | SIMULATION OF THE SOFTWARE PROCESS DYNAMICS
	4 | DESIGN OF THE EXPERIMENT
	5 | DISCUSSION ABOUT THE RESULTS OF THE EXPERIMENT
	5.1 | Quantitative analysis
	5.1.1 | Accuracy before vs. Accuracy after (video observation)

	(a) Question 1
	(b) Question 2
	(c) Question 3
	(d) Question 4
	Outline placeholder
	5.1.2 | Effects observed on additional questions after the video intervention

	(a) Question 5
	(b) Question 6
	(c) Question 7
	(d) Question 8
	5.2 | Qualitative analysis
	5.2.1 | First assessment
	5.2.2 | Second assessment

	6 | CONCLUSIONS
	ACKNOWLEDGEMENT
	Annex B
	Annex C

