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Abstract—The 5th generation (5G) of mobile communications
introduces improvements on many fronts when compared to
its previous generations. Besides the performance enhancements
and new advances in radio technologies, it also integrates other
technological domains, such as cloud-to-things continuum and
artificial intelligence. In this work, the 5G-DIVE Elastic Edge
Platform (DEEP) is proposed as the linking piece for the
integration of these technological domains, making available an
Intelligent Edge and Fog 5G End-to-End (E2E) solution. Such
solution brings numerous benefits to the vertical industries by
enabling a streamlined, abstracted, and automated management
of their vertical services, thus contributing to the introduction
of novel services, cost savings, and improved time-to-market.
Preliminary validation of the proposed platform is performed
through a proof-of-concept, along with a qualitative analysis of its
benefits to Industry 4.0 and Autonomous Drone Scouting vertical
industries.

I. INTRODUCTION

The previous generations of mobile communications firstly
aimed at supporting data services, along with traditional
voice services, and later at improving spectral efficiency and
enhanced services at lower costs. However, the network in-
frastructure followed an one-size-fits-all paradigm. Prospecting
significant changes on its vertical and horizontal structure,
the 5th generation (5G) of mobile communications arises as
a more disruptive evolution [1] to shift towards a custom-fit
paradigm. Novel advances in radio technologies are achieved
as well as improvements in the infrastructure by incorporating
multiple technology domains that include physical and virtual
computational, storage and networking resources spanning
across several administrative domains. Moreover, network
softwarization, network function virtualization, and network
slicing are embraced to enable virtual and logically isolated
networks (i.e., network slices) [2], tailored to the requirements
of different vertical services, over the same and shared network
infrastructure.

This new paradigm is arousing the interest of vertical indus-
tries (e.g., manufacturing, public safety, public infrastructures,
transportation, and energy sectors) as the opportunity to truly
implement a digital transformation in their industries, thus
contributing to the introduction of novel services, cost savings,
and improved time-to-market. However, it comes with the
cost of extremely heterogeneous infrastructures belonging to
several stakeholders, and vertical industries still lack overall

knowledge about Information and Communications Technolo-
gies (ICTs) to manage them on their own. As such, to ease
the adoption of 5G technologies by vertical industries, this
complexity must be hidden. On one hand, abstracted and
simplified interfaces that conceal unnecessary details and com-
plexity are required, so that vertical industries mostly focus on
their business domain. On the other hand, supporting tools that
ease and automate the management of vertical services must
be devised, as an alternative to the complex and very lengthy
manual configuration and validation of traditional management
tools.

This work addresses the aforementioned challenges by
proposing a supporting platform, named 5G-DIVE Elastic
Edge Platform (DEEP), as an add-on on top of distributed 5G-
powered Edge and Fog infrastructures. It arises as the missing
piece to bridge different technology domains in a unified
Intelligent Edge and Fog 5G End-to-End (E2E) solution that
offers abstracted services to the vertical industries. First,
it hides the underlying complexity through vertical-oriented
interfaces tailored to the needs of vertical industries. Second, it
takes over of the lifecycle management of vertical services on
behalf of the vertical industries, enforcing automation of their
business processes. Ultimately, the proposed DEEP platform
contributes to a faster adoption of 5G technologies by different
stakeholders [3], noticeably the vertical industries.

The remainder of this paper is structured as follows. Sec-
tion II analyzes the main challenges for the adoption of 5G
technologies by the vertical industries. The DEEP platform
and its innovations are proposed in Section III, of which an
experimental validation is presented in Section IV. Its benefits
to selected Industry 4.0 and Autonomous Drone Scouting use
cases are identified in Section V. Finally, Section VI highlights
the main conclusions, pointing out to future work.

II. CHALLENGES FOR THE VERTICAL INDUSTRIES

5G networks, Edge and Fog computing, and Artificial
Intelligence (AI) are key enablers to support the digital trans-
formation of vertical industries. This section presents their
main shortcomings from the vertical industries perspective.

A. Private 5G Networks
The concept of private 5G network, referred as Non-Public

Network (NPN), is introduced to accelerate the digital transfor-
mation of vertical industries. Several deployment options for
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NPNs are envisioned [4]: (i) standalone NPNs, implementing
fully private networks with dedicated and secure capabilities;
and (ii) Public Network Integrated-NPNs (PNI-NPNs), lever-
aging on capabilities available at the Public Network (PN)
to complement the NPN. Different degrees of integration are
foreseen, which might depend completely or partially on the
infrastructure and the functions of the PN. The implementation
of PNI-NPN has been achieved by: (i) setting up dedicated
network slices; (ii) integrating NPN as a non-3GPP access
network; and (iii) setting up dedicated Access Point Names or
Packet Data Network.

Challenge #1: How to ease the vertical industries to dynam-
ically set up the desired PNI-NPN, especially when different
functions and resources are controlled by a single domain or
shared among them, and when different trust and business
agreements are in place?

B. Edge and Fog Computing

ETSI Multi-Access Edge Computing (MEC) [5], Industrial
Internet Consortium (IIC) (now incorporating OpenFog) and
5G-CORAL [6] are three reference architectural frameworks
targeting Edge and Fog computing environments. Although
each opted for different architectural approaches, they share
a common characteristic: they all aim to provide a cohesive
infrastructure-level abstraction in a distributed environment.
While this is undoubtedly a cornerstone for building the Edge
and Fog, this approach alone prevents the effective support
to the vertical industries: (i) the low-level abstraction exposed
by these systems; (ii) the static definition of application and
service requirements; (iii) the black-box approach adopted
in which the infrastructure is agnostic to the application
logic; and (iv) the lack of integration with the underlying
communication network.

Challenge #2: How to abstract the vertical industries from
the complexity of a highly distributed infrastructure to ease
their adoption in the vertical industries’ business process?

C. Towards Intelligent and Automation

Artificial Intelligence (AI) and Machine Learning (ML) are
promising alternatives to transit towards an intelligent and
automated operation [7][8].

The ITU-T Focus Group on Machine Learning for Fu-
ture Networks including 5G (FG ML5G) [9] and the ETSI
Experiential Networked Intelligence (ENI) group [10] are
both proposing alternative architectures for the integration of
AI/ML techniques in the network management task with an
emphasis on 5G and vertical services. Both proposals follow
a service-oriented approach to enable network automaticity.
Similarly, ETSI Zero-touch network and Service Manage-
ment (ZSM) [11] explores different approaches to achieve
automation. Another initiative is being developed by the O-
RAN alliance [12] for the applicability of AI/ML techniques
in the control of the Radio Access Network (RAN) radio
functional split components, for real-time and non-real-time
processing control of the radio components hosted at the O-
RAN Distributed and Centralized Units. O-RAN promotes a
key industrial trend towards a larger disaggregation of RAN

system components, especially for lowering costs and covering
the specific needs and demands of vertical industries for their
deployments.

Challenge #3: How to conjugate the variety of data span-
ning across multiple technologies domains, algorithms and
components into a single, operational platform permitting an
automated network and service management on behalf of the
vertical industries?

III. 5G-DIVE ELASTIC EDGE PLATFORM (DEEP):
CONCEPT OVERVIEW

The previous challenges are perceived as a barrier to the
adoption of 5G technologies by the vertical industries. As
such, the 5G-DIVE Elastic Edge Platform (DEEP) platform (as
presented in Figure 1) aims at supporting the vertical indus-
tries in day-by-day operations, management, and automation
of business processes. In other words, it contributes to the
development, execution, and management of vertical services,
including the incorporation of intelligence capabilities, ab-
stracted from the complexity of building, and maintaining the
infrastructure associated with the delivery of the application.

When integrated into an E2E solution comprising different
technology and administrative domains, the DEEP platform
facilitates the exploitation of an Intelligent Edge and Fog 5G
E2E solution by the vertical industries.

A. Supporting Strata

To accomplish its vision, the DEEP platform defines three
supporting strata, which are detailed as follows.

1) Business Automation Support Stratum (BASS): simpli-
fies and automates the creation and management of vertical
services, being the logical entry point for the vertical industries
and their OSS/BSS systems. The vertical industry delegates
(part of) its business automation to this stratum, which takes
over the deployment of E2E vertical services across multiple
technologies and administrative domains, and ensures that
SLAs and policies are met at each moment. The BASS
comprises the following elements:

• Vertical Service Coordinator: handles vertical-oriented
requests, translates them into network services, and co-
ordinates their E2E deployment.

• Vertical Service Blueprint Catalogue: consists of a
repository containing vertical services blueprints, pro-
viding a vertical service template with service-specific
parameters.

• SLA & Policy Management: monitors the SLAs and
policies for different vertical services and, in case of a
violation, triggers corrective actions. It can be enhanced
with intelligence and forecasting capabilities, so that
violations are predicted and dealt preemptively.

• Active Monitoring: manages the deployment of moni-
toring probes required for performance monitoring.

• External Federation: handles the deployment of E2E
vertical services across different administrative domains.
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Fig. 1. DEEP Platform Overview in an E2E Solution

2) Data Analytics Support Stratum (DASS): eases gath-
ering, pre-processing, storage, and sharing of data. Data is
gathered from the vertical services operation and potentially
enriched with a variety of context information, from both the
virtualization infrastructure and the surrounding environment.
The DASS comprises three main elements:

• Data Dispatcher: gathers data from the different sources
and delivers it to all the subscribed entities, enforcing
authorization mechanisms if required.

• Data Pre-processing: transforms raw data into an under-
standable and common format (e.g., cleaning, filtering,
grouping, normalization, anonymization, and compres-
sion).

• Data Storage: stores gathered data. The decision whether
to store the data is up to its source which, optionally, also
provides its lifespan.

3) Intelligence Engine Support Stratum (IESS): facilitates
the training and provisioning of intelligent models following
an intent-driven approach and AutoAI solutions. Envisioned
as an AI/ML engine, it leverages on data-driven AI/ML
models to support complex decision-making systems, predict
events, forecast demands, find patterns and anomalies, perform
classification, among others. The IESS comprises three main
elements:

• AI/ML Model Catalogue: consists of a repository of
(un)trained AI/ML models made available by the DEEP
platform. These are annotated with metadata describing
their features, requirements, and suitable applications.

• AI/ML Model Training: handles the procedures for
training an AI/ML model, from the selection of one

or more AI/ML algorithms, their hyperparameters and
training dataset, up to the cross-validation their accuracy.

• AI/ML Execution Environment: comprises the runtime
environment to train the selected AI/ML model(s).

B. DEEP Innovations

The DEEP platform implements a set of innovations de-
signed to abstract complexity from the vertical industries and
to ease automation tasks.

1) Vertical Service Abstraction: The DEEP platform pro-
vides an abstraction layer, together with vertical-oriented in-
terfaces, that enables the vertical industries to define their
services solely based on their knowledge domain. Departing
from available blueprints, they fill service-specific parameters
related to their domain expertise, including SLAs, and privacy,
computing, intelligence, and automation requirements, follow-
ing an intent-driven approach.

2) AI/ML-based Intelligence Support: The DEEP platform
comprises tools that facilitate the definition, online/offline
training, and cross-validation of AI/ML models. Trained
AI/ML models are then used for: (i) automated vertical service
management (e.g., auto-scaling, self-healing and preemptive
migration); and (ii) intelligent vertical applications (e.g., object
recognition or movement prediction). Departing from the
available catalog, the selection of suitable AI/ML models for a
given intent is also automated using AutoAI-driven solutions.

3) Data Distribution and Unification: The DEEP platform
defines a data distribution service to handle the scale at
which data is produced and consumed, especially when an
increasing number and heterogeneity of devices compose the
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computing, storage, and networking infrastructure. It unifies
data in motion, data in-use, data at rest and computations
through traditional publish/subscribe primitives and geographi-
cally distributed storage, queries, and computations. Other than
benefits in terms of performance and efficiency, the vertical
industries retain control over the privacy of their data by
storing it closest to its source and making it accessible by
any authorized entity.

4) Enhanced Monitoring: The DEEP platform extends
the physical and virtual resource monitoring by integrating
vertical-application level monitoring, provided directly by
the applications themselves or collected through monitoring
probes, to accurately assess the performance of the vertical
services. The purpose of such monitoring data is three-fold:
(i) train AI/ML models in the IESS; (ii) use as input for the
automation tasks in the BASS; and (iii) provide additional
insights to the vertical industries.

5) External Federation: The DEEP platform facilitates the
integration of federated services and resources as part of
the vertical industry domain. Additionally, secure, auditable,
and on-demand federation mechanisms are defined using dis-
tributed ledger technologies (DLT). This has an increasing
importance to enable the creation and management of E2E
vertical services, which may involve multiple administrative
domains (e.g., implementation of the selected PNI-NPN op-
tion, or the usage of third-party Cloud and Edge facilities to
reduce costs).

6) Locality and Privacy: The DEEP platform exploits the
locality offered by an Edge and Fog infrastructure to process
and analyze sensitive data where it is generated, thus enabling
strict privacy and low latency response. The DASS implements
a low overhead and high throughput data distribution service
designed to support low power networks and constrained
devices, like those expected in the vertical premises. The
IESS explores solutions such as federated learning and transfer
learning that boost collaborative AI/ML without centralized
training data, thus retaining privacy and locality of the pri-
vate data. Moreover, local services such as those offered by
ETSI MEC enhance contextual awareness via radio network,
location, or any other information relevant to the changing
environment.

IV. AUTOMATED VERTICAL SERVICE MANAGEMENT:
PRELIMINARY VALIDATION

Leveraging on the initial code release of the DEEP platform,
a proof-of-concept (Figure 2) centered on the SLA & Policy
Management element of the BASS is developed, hereinafter
referred to as SLA Enforcer. This component is an integral
part of implementation of the DEEP platform to automate the
lifecycle management of vertical services.

A. Proof-of-Concept Design

The SLA Enforcer implements the SLA & Policy Manage-
ment capabilities as its core, integrating interfaces towards
the Vertical Service Coordinator and Active Monitoring for,
respectively, SLAs management and monitoring capabilities as
well as interfaces towards the DASS, IESS and orchestrator.

Digital Twin Service

SLA Enforcer

Orchestrator
(Docker Actuator)

Monitoring
Probe

Vertical
Service

Coordinator

Robotic
Stack

Robotic
Arm

(1) Distribute Data to Subscribers
(push_e2e_application_latency)

DRL Agent
(Trained Model)

(3) Request Scale
Resources Action

(set_cpu, set_mem, none)

Digital
Twin

(4) Implement Action
(docker_resource_allocation)

(6) Push Monitoring Data
(pub_e2e_application_latency)

(5) Measure E2E
application latency

(get_e2e_application_latency)
IESS

DASS
(Zenoh router)

(2) Compute decision

Fig. 2. SLA Enforcer Closed-Loop Workflow

A Digital Twin service (as defined in [13]) is the target of
this proof-of-concept, to which the SLA Enforcer minimizes
the resource allocation without incurring on the violation of
its SLAs.

1) Integration with DEEP Platform: The SLA Enforcer is
agnostic to the vertical service, thus possible to be applied
to use cases in distinct vertical industries, including those
described in Section V. However, their specificity impacts (i)
SLAs definition; (ii) data to monitor; (iii) actions to take; and
(iv) AI/ML model. During service creation, the DEEP platform
configures the SLA Enforcer based on the vertical intent:

1) The Vertical Service Coordinator extracts any intent-
based SLAs from the vertical-oriented descriptor, for-
warding them to the SLA & Policy Management.

2) The SLA & Policy Management validates the intents,
translating them into a set of policies that identify
their scope, thresholds and validation data. If the intent
validation fails, manual input from the administrator is
required.

3) Based on the extracted policies, the SLA & Policy
Management requests (i) an AI/ML model towards the
IESS; and (ii) the deployment of monitoring probes
towards the Active Monitoring.

4) Using AutoAI, the IESS selects the AI/ML model from
its catalogue, performs its training and cross-validation,
delivering the trained model to the SLA & Policy Man-
agement.

5) The SLA & Policy Management triggers a new instance
of SLA Enforcer tied to the vertical service’s SLAs.

Note that, the SLA Enforcer is not restricted to the set of
actions described in this proof-of-concept. It not only supports
vertical and horizontal scaling strategies for computing, stor-
age, and network resources, but also other lifecycle manage-
ment actions such as (sub-)service migration and hibernation,
or even trigger Radio Access Technologies (RATs) handover.

2) Scenario and Testbed Setup: The SLA Enforcer imple-
ments a Deep Reinforcement Learning (DRL) agent based on
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the Deep Q-Network (DQN) algorithm. The reward function is
computed based on the: (i) CPU and MEM consumption; (ii)
CPU and MEM limits; (iii) E2E application latency; and (iv)
SLA-inferred latency thresholds. Docker is used to orchestrate
and manage the Digital Twin service (i.e., Digital Twin and
Robotic Stack) through Docker containers. The Robotic Stack
container is deployed in a Banana Pi Single Board Computer,
which represents a constrained device available in the Fog,
while the Digital Twin is deployed in a laptop representing the
user equipment used by the worker. The Robotic Arm emulates
the Niryo One Robot Manipulator, deployed through a virtual
machine with 1 vCPUs and 2 GB of RAM in an Edge Server
(Dell PowerEdge R430). The Monitoring Probe is deployed
in a man-in-the-middle fashion between the Robotic Stack and
the Robotic Arm. The DASS implements Zenoh1 as its core.
Finally, all nodes are connected via Gigabit Ethernet.

3) Workflow: The SLA Enforcer follows a closed-loop
workflow to continuously minimize the resource allocation
(as shown in Figure 2). For every decision, the SLA Enforcer
fetches the E2E application latency computed by the Monitor-
ing Probe (step 1). Hence, it verifies if (i) SLAs are fulfilled;
and (ii) resources need to be scaled (step 2). Scaling decisions
are forwarded to the Orchestrator (step 3), which enforces their
implementation in the virtualization infrastructure (step 4). In
this proof-of-concept, it configures the CPU and MEM limits
that a given container can use. The workflow closes with the
Monitoring Probe computing and publishing via DASS the
E2E application latency (steps 5 and 6).

4) Experiment: The validation experiment is composed of
a Digital Twin service, where the Digital Twin continuously
sends commands to the Robotic Arm and the Robotic Arm
sends its current pose to the Digital Twin. The Robotic Stack
acts as the middleware bridging both the virtual and the
physical instances, performing e.g. command validation and
path computation. As such, the resources allocated to the
Robotic Stack impacts the E2E application latency, which
consists of the time between a command is issued by the
Digital Twin and it is fully executed by the Robotic Arm.
The Monitoring Probe inspects both flows to compute the
E2E application latency. Data is published via the DASS and,
sequentially, fed into the SLA Enforcer. The SLA Enforcer
minimizes resource allocation by executing the necessary scal-
ing actions. These actions include increasing or decreasing the
CPU and MEM limits of the Robotic Stack container, carried
out by using the Docker API. Two different tasks, performed
through the Digital Twin, are considered: (i) precision tasks,
with a strict E2E application latency requirement of 500ms;
and (ii) screening tasks, where the E2E application latency
can be relaxed up to 1000ms. In this proof-of-concept, the
SLA defines the maximum latency that the E2E service must
guarantee 95% of the time.

B. Dynamic Resource Allocation

Results of the learning process (Figure 3) show that, for dif-
ferent E2E application latency requirements, the SLA Enforcer

1http://zenoh.io/

 0

 20

 40

 60

 80

 100

 0

 500

 1000

 1500

 2000

 2500

 3000

C
P

U
 a

n
d

 M
E

M
 (

%
)

E
2E

 A
p

p
li

ca
ti

on
 L

at
en

cy
 (

m
s)

Response Time
CPU Limit

MEM Limit

-30

-20

-10

 0

 10

0 5000 10000 15000 20000

x 103

R
ew

ar
d

Training Timestep

Reward

(a) Strict latency requirement (500ms)

 0

 20

 40

 60

 80

 100

 0

 500

 1000

 1500

 2000

 2500

 3000

C
P

U
 a

n
d

 M
E

M
 (

%
)

E
2E

 A
p

p
li

ca
ti

o
n

 L
at

en
cy

 (
m

s)

Response Time
CPU Limit

MEM Limit

-30

-20

-10

 0

 10

0 5000 10000 15000 20000

x 103

R
ew

a
rd

Training Timestep

Reward

(b) Relaxed latency requirement (1000ms)

Fig. 3. Learning Process of the SLA Enforcer

learns the best values for the CPU and MEM that satisfy the
vertical service’s SLA.

The SLA Enforcer learns how to stabilize the E2E ap-
plication latency below the specified requirement after the
first 14500 training timesteps. Upon the learning process, the
SLA Enforcer exploits the optimal CPU and MEM configu-
rations since the overall reward is maximized. Nevertheless,
the SLA Enforcer still explores other configurations aiming to
increase its overall reward (e.g., timestep 17000 in Figure 3a),
but such cases becomes more sporadic as the agent converges.

The optimal CPU and MEM limits are around 55% and 25%
for Figure 3a, and 40% and 25% for Figure 3b. By defining
a continuous action space, instead the current discrete action
space with intervals of 5%, SLA Enforcer can adjust the limits
closer to the real CPU and MEM usage.

C. Monitoring Data Distribution

Figure 4 shows a benchmark of the DASS in a peer-to-peer
configuration deployed over a 10 GbE scenario, namely its
performance in terms of messages per second and goodput for
different payload sizes. Each data point represents the median
of 10 runs.

The DASS can route around 1.1M messages per second
for payload sizes lower than 512 bytes. For higher payload
sizes, the bottleneck is mainly due to the link capacity which
is achieved around 2048 bytes, as reflected in the goodput
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results. Finally, hardware accelerators or network offloading
mechanisms can potentially increase the performance of the
DASS.

V. BENEFITS OF AN INTELLIGENT EDGE AND FOG 5G E2E
SOLUTION

In 5G-DIVE project2, vertical pilots on manufacturing (i.e.,
Industry 4.0) and public safety sectors (i.e., Autonomous
Drone Scouting) will be used to assess the technical merits
and business value proposition of the Intelligent Edge and
Fog 5G E2E solution enabled by the DEEP platform (which
are presented in Table I). They comprise a wide range of
requirements, including different types of 5G service profiles,
indoor and outdoor scenarios, computing requirements and AI
capabilities.

Industry 4.0 is shifting the business processes towards
an increasingly connected infrastructure and smart manu-
facturing. 5G connectivity, cloud-to-things continuum, data
analytics and automation are some of the key enablers of
this transformation [14]. It includes the following use cases:
(i) Digital Twin enables a virtual representation to act as
a mirror of its real-world counterpart; (ii) Augmented Zero
Defect Manufacturing improves the quality control processes
and increases the flexibility to cope with mass customization;
and (iii) massive Machine-Type Communications provides
intelligent and scalable connectivity for dense heterogeneous
with multiple RATs deployments.

Autonomous Drone Scouting focuses on the needs of the
public safety sector to deploy emergency solutions in the
aftermath of disaster situations [15]. Drones scout a disaster
area to rapidly assess the real situations. It includes the
following use cases: (i) Drones Fleet Navigation improves the
success rate of rescue missions, where fleets perform horizon-
tal flight while avoiding obstacles; and (ii) Intelligent Image
Processing for Drones automates the detection of critical areas
or emergencies.

VI. CONCLUSIONS AND SUMMARY

The environment providing 5G services for vertical indus-
tries is composed of a multitude of technology domains under

25G-DIVE Project - https://5g-dive.eu/

different administrative domains, creating a unified system
extremely complex to handle. In this work, the DEEP platform
is proposed as the bridge to link several of these technology
domains together, in the pursue of an Intelligent Edge and
Fog 5G E2E solution. Leveraging on network and computing
abstractions, AI/ML-based automation, and scalable and low
overhead distribution data services, the DEEP platform aims at
finding sustainable ways to abstract and handle the complexity
related to the E2E deployment by the vertical industries,
becoming an important piece in an increased number of
scenarios to be targeted by 5G.

Within the 5G-DIVE project, the DEEP platform will set
out as the common platform to address TRL 5/6 pilots on
Industry 4.0 and Autonomous Drone Scouting. The outcome
of these pilots might raise the need for other AI/ML usages
within the DEEP platform, such as the generation of novel
insights about the operation of vertical services, forecasting
(e.g., traffic demands and mobility of resources), or prediction
of anomalies.
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TABLE I
BENEFITS OF THE Intelligent Edge and Fog 5G E2E SOLUTION ENABLED BY THE DEEP PLATFORM

Use Cases DEEP Platform Edge and Fog Computing 5G Connectivity Automation and Intelligence
Digital
Twin

Makes available an
Intelligent Edge and Fog
5G E2E solution, bridging
virtual and physical
network functions, RAN
and mobile core elements,
on-premise, edge, and
cloud computing, and
off-premise, metro and
core transport resources.
Enables a dynamic and
on-demand lifecycle
management of vertical
services, according to
their business needs,
through automation and
intelligence. Empowers
monitoring capabilities to
the vertical industries.
Eases the creation and
configuration of AI-based
applications as part of
vertical services.
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AI-based operation of the physi-
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Defect
Manufac-
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ity and privacy.

Fulfills the strict connectivity re-
quirements in terms of latency,
reliability, availability and guar-
anteed throughput required for a
extremely fast identification of
defective pieces.

Detects defective pieces indepen-
dently of their position. Learns
and adapts to changes in the ob-
jects. Detects anomalies in the
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Type
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nications
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cation layer end-to-end latency,
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detection with a guaranteed real-
time response.
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