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Abstract

In this paper we obtain new inequalities involving the harmonic index and the
(general) sum-connectivity index, and characterize graphs extremal with respect to
them. In particular, we improve and generalize some known inequalities and we
relate this indices to other well-known topological indices.

1 Introduction

A single number, representing a chemical structure in graph-theoretical terms via the

molecular graph, is called a topological descriptor and if it in addition correlates with a

molecular property it is called topological index, which is used to understand physico-

chemical properties of chemical compounds. Topological indices are interesting since they

capture some of the properties of a molecule in a single number. Hundreds of topological

indices have been introduced and studied, starting with the seminal work by Wiener in

which he used the sum of all shortest-path distances of a (molecular) graph for modeling

physical properties of alkanes (see [35]).

Topological indices based on end-vertex degrees of edges have been used over 40 years.

Among them, several indices are recognized to be useful tools in chemical researches.

Probably, the best know such descriptor is the Randić connectivity index (R) [25]. There
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are more than thousand papers and a couple of books dealing with this molecular descrip-

tor (see, e.g., [16], [19], [20], [29], [30] and the references therein). During many years,

scientists were trying to improve the predictive power of the Randić index. This led to

the introduction of a large number of new topological descriptors resembling the original

Randić index. Two of the main successors of the Randić index are the first and second

Zagreb indices, denoted by M1 and M2, respectively, defined as

M1(G) =
∑

uv∈E(G)

(du + dv) =
∑

u∈V (G)

d2u, M2(G) =
∑

uv∈E(G)

dudv,

where uv denotes the edge of the graph G connecting the vertices u and v, and du is the

degree of the vertex u. These indices have attracted growing interest, see e.g., [2], [3],

[13], [21] (in particular, they are included in a number of programs used for the routine

computation of topological indices). Another remarkable topological descriptor is the

harmonic index, defined in [11] as

H(G) =
∑

uv∈E(G)

2

du + dv
,

This index has attracted a great interest in the lasts years (see, e.g., [7], [12], [36], [38], [39]

and [40]).

With motivation from the Randić, Zagreb and harmonic indices, the sum-connectivity

index X and the general sum-connectivity index Hα were defined by Zhou and Trinajstić

in [41] and [42], respectively, as

X(G) =
∑

uv∈E(G)

1√
du + dv

, Hα(G) =
∑

uv∈E(G)

(du + dv)
α,

with α ∈ R. Note that H1 is the first Zagreb index M1, 2H−1 is the harmonic index

H, H−1/2 is the sum-connectivity index X, etc. Some mathematical properties of the

sum-connectivity index and the general sum-connectivity index were given in [8], [9], [34],

[37], [40], [43] and [44].

Throughout this paper, G = (V,E) = (V (G), E(G)) denotes a nontrivial (E 6= ∅)

nonoriented finite simple (without multiple edges and loops) connected graph. Note that

the connectivity of G is not an important restriction, since if G has connected components

G1, . . . , Gr, then Hα(G) = Hα(G1) + · · · + Hα(Gr); furthermore, every molecular graph

is connected. The aim of this paper is to obtain new inequalities involving the harmonic

index H and its generalizations Hα, and characterize graphs extremal with respect to
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them. In particular, we improve and generalize some known inequalities and we relate H

and Hα to other well-known topological indices.

2 Inequalities

In order to obtain bounds for H and Hα we need the following classical result, known as

Polya-Szegö inequality (see [17, p.62]).

Lemma 2.1. If 0 < n1 ≤ aj ≤ N1 and 0 < n2 ≤ bj ≤ N2 for 1 ≤ j ≤ k, then

( k∑
j=1

a2j

)1/2( k∑
j=1

b2j

)1/2
≤ 1

2

(√
N1N2

n1n2

+

√
n1n2

N1N2

)( k∑
j=1

ajbj

)
.

The following result is elementary.

Lemma 2.2. Let g be the function g(x, y) =
2
√
xy

x+y
with 0 < a ≤ x, y ≤ b. Then 2

√
ab

a+b
≤

g(x, y) ≤ 1. The equality in the lower bound is attained if and only if either x = a and

y = b, or x = b and y = a, and the equality in the upper bound is attained if and only if

x = y.

The inequality for the harmonic index H(G) ≤ n/2 is well-known. In [39, Theorem 3]

appears the following lower bound for n ≥ 3

2(n− 1)

n
≤ H(G). (2.1)

The corollary of the next result generalizes these inequalities for Hα(G).

Theorem 2.3. Let G be a nontrivial connected graph with maximum degree ∆ and min-

imum degree δ, and α ∈ R. Then

2α−1∆α−1M1(G) ≤ Hα(G) ≤ 2α−1δα−1M1(G), if α < 1,

2α−1δα−1M1(G) ≤ Hα(G) ≤ 2α−1∆α−1M1(G), if α ≥ 1,

and the equality holds in each inequality for some α 6= 1 if and only if G is regular.

Proof. If α ≥ 1, then

Hα(G) =
∑

uv∈E(G)

(du + dv)
α−1(du + dv) ≤ (2∆)α−1M1(G),

Hα(G) =
∑

uv∈E(G)

(du + dv)
α−1(du + dv) ≥ (2δ)α−1M1(G).
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If α < 1, then the same argument gives

(2∆)α−1M1(G) ≤
∑

uv∈E(G)

(du + dv)
α−1(du + dv) ≤ (2δ)α−1M1(G).

If the graph is regular, then the lower and upper bounds are the same, and they are

equal to Hα(G). If some equality holds for some α 6= 1, then du + dv has the same value

(2δ or 2∆) for every uv ∈ E(G); hence, du = δ (or du = ∆) for every u ∈ V (G) and G is

regular. (If α = 1, then each inequality is a equality for every G.)

Corollary 2.4. Let G be a nontrivial connected graph with n vertices, m edges, maximum

degree ∆ and minimum degree δ, and α ∈ R. Then

2α+1∆α−1m
2

n
≤ Hα(G) ≤ 2αδα−1∆m, if α < 1,

2α+1δα−1m
2

n
≤ Hα(G) ≤ 2α∆αm, if α ≥ 1,

and the equality holds in each inequality for some α 6= 1 if and only if G is regular.

Proof. Since 4m2/n ≤ M1(G) (see [10]) and M1(G) ≤ 2m∆, Theorem 2.3 gives the

inequalities.

If the graph is regular, then the lower and upper bounds are the same, and they are

equal to Hα(G). If some equality holds for some α 6= 1, then some equality holds in

Theorem 2.3 and G is regular.

We have the consequence for the harmonic index H(G) ≥ 2m2/(∆2n), that improves

(2.1) when m > ∆
√
n− 1 . However, our result is improved by H(G) ≥ 2m2/M1(G) ≥

m/∆ in [38, Theorem 2.5].

If we use the inequality M1(G) ≤ 2m∆ − δ(∆n − 2m) (see [18, Theorem 3.2]; the

equality holds for regular graphs) instead of M1(G) ≤ 2m∆, we obtain the following

improved upper bounds.

Corollary 2.5. Let G be a nontrivial connected graph with n vertices, m edges, maximum

degree ∆ and minimum degree δ, and α ∈ R. Then

2α+1∆α−1m
2

n
≤ Hα(G) ≤ 2α−1δα−1

(
2m∆− δ(∆n− 2m)

)
, if α < 1,

2α+1δα−1m
2

n
≤ Hα(G) ≤ 2α−1∆α−1

(
2m∆− δ(∆n− 2m)

)
, if α ≥ 1,

and the equality holds in each inequality for some α 6= 1 if and only if G is regular. In

particular, the harmonic index has the upper bound

H(G) ≤ 2m(∆ + δ)−∆δn

2δ2
.
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We will use the following particular case of Jensen’s inequality.

Lemma 2.6. If f is a convex function in an interval I and x1, . . . , xm ∈ I, then

f
(x1 + · · ·+ xm

m

)
≤ 1

m

(
f(x1) + · · ·+ f(xm)

)
.

Recall that a biregular graph is a bipartite graph for which any vertex in one side of

the given bipartition has degree ∆ and any vertex in the other side of the bipartition

has degree δ. If there are n1 vertices with degree δ and n2 vertices with degree ∆, then

m = δn1 = ∆n2 and we deduce ∆δn =
(
∆+ δ

)
m. Note that a regular graph is biregular

if and only if it is bipartite.

Next, we present several inequalities relating general harmonic indices with different

parameters.

Theorem 2.7. Let G be a nontrivial connected graph with m edges, α ∈ R and β > 0.

Then

Hα(G) ≥ m1+1/βH−αβ(G)−1/β,

and the equality is attained for some values α 6= 0 and β if and only if G is regular or

biregular.

Proof. Since f(x) = x−β is a convex function in R+ for each β > 0, Lemma 2.6 gives(
m∑

uv∈E(G)(du + dv)α

)β

≤ 1

m

∑
uv∈E(G)

(du + dv)
−αβ,

m

Hα(G)
≤ 1

m1/β
H−αβ(G)1/β.

Assume that α 6= 0. Since f(x) = x−β is a strictly convex function, the equality is

attained if and only if du + dv is constant for every uv ∈ E(G), and this is equivalent to

the following: for each vertex u ∈ V (G), every neighbor of u has the same degree. Since

G is connected, this holds if and only if G is regular or biregular.

Next, we prove nonlinear relations betweenHα(G), Hα+β(G) andHα−β(G) which allow

to obtain a family of linear inequalities (see Corollary 2.10).

Theorem 2.8. Let G be a nontrivial connected graph with maximum degree ∆ and min-

imum degree δ, and α, β ∈ R. Then

cα,β

√
Hα+β(G)Hα−β(G) ≤ Hα(G) ≤

√
Hα+β(G)Hα−β(G) ,
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with

cα,β := min
{ 2(∆δ)β/2

∆β + δβ
,
2(∆δ)α/2

∆α + δα

}
=

{
2(∆δ)β/2

∆β+δβ
, if |α| < |β|,

2(∆δ)α/2

∆α+δα
, if |α| ≥ |β|.

The lower bound is attained for every values of α, β if G is regular. The upper bound is

attained for some values of α, β with β 6= 0 if and only if G is regular or biregular.

Proof. Cauchy-Schwarz inequality gives∑
uv∈E(G)

(
du + dv

)α
=

∑
uv∈E(G)

(
du + dv

)(α+β)/2+(α−β)/2

≤
( ∑

uv∈E(G)

(
du + dv

)α+β
)1/2( ∑

uv∈E(G)

(
du + dv

)α−β
)1/2

=
√

Hα+β(G)Hα−β(G) .

Since (
2δ
)(α+β)/2 ≤

(
du + dv

)(α+β)/2 ≤
(
2∆
)(α+β)/2

if α + β ≥ 0,(
2∆
)(α+β)/2 ≤

(
du + dv

)(α+β)/2 ≤
(
2δ
)(α+β)/2

if α + β ≤ 0,(
2δ
)(α−β)/2 ≤

(
du + dv

)(α−β)/2 ≤
(
2∆
)(α−β)/2

if α− β ≥ 0,(
2∆
)(α−β)/2 ≤

(
du + dv

)(α−β)/2 ≤
(
2δ
)(α−β)/2

if α− β ≤ 0,

Lemma 2.1 gives, if (α + β)(α− β) ≥ 0 (i.e., |α| ≥ |β|),

Hα(G) =
∑

uv∈E(G)

(
du + dv

)α ≥

(∑
uv∈E(G)

(
du + dv

)α+β
)1/2(∑

uv∈E(G)

(
du + dv

)α−β
)1/2

1
2

((
∆
δ

)α/2
+
(

δ
∆

)α/2)
=

2(∆δ)α/2

∆α + δα

√
Hα+β(G)Hα−β(G) = cα,β

√
Hα+β(G)Hα−β(G) ,

and, if (α + β)(α− β) < 0 (i.e., |α| < |β|), then

Hα(G) =
∑

uv∈E(G)

(
du + dv

)α ≥

(∑
uv∈E(G)

(
du + dv

)α+β
)1/2(∑

uv∈E(G)

(
du + dv

)α−β
)1/2

1
2

((
∆
δ

)β/2
+
(

δ
∆

)β/2)
=

2(∆δ)β/2

∆β + δβ

√
Hα+β(G)Hα−β(G) = cα,β

√
Hα+β(G)Hα−β(G) .

If the graph is regular, then the lower and upper bounds are the same, and they

are equal to Hα(G). If G is biregular, then Ht(G) = (∆ + δ)tm and the upper bound is

attained. If the upper bound is attained for some values of α, β, then
(
du+dv

)(α+β)/2
/
(
du+

dv
)(α−β)/2

=
(
du+dv

)β
is constant for every uv ∈ E(G). If β 6= 0, then du+dv is constant

for every uv ∈ E(G); hence, for each vertex u ∈ V (G), every neighbor of u has the same

degree, and thus G is regular or biregular. (Note that the upper bound is Hα(G) ≤ Hα(G)

if β = 0.)
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Theorem 2.8 with β = α has the following consequence.

Corollary 2.9. Let G be a nontrivial connected graph with m edges, maximum degree ∆

and minimum degree δ, and α ∈ R. Then

2(∆δ)α/2

∆α + δα

√
mH2α(G) ≤ Hα(G) ≤

√
mH2α(G) .

The lower bound is attained for every value of α if G is regular. The upper bound is

attained for some α 6= 0 if and only if G is regular or biregular.

Theorem 2.8 and the inequality
√
ab ≤ s

2
a + 1

2s
b (for a, b ≥ 0 and s > 0) give the

following family of linear inequalities.

Corollary 2.10. Let G be a nontrivial connected graph with maximum degree ∆ and

minimum degree δ, s > 0 and α, β ∈ R. Then

Hα(G) ≤ s

2
Hα+β(G) +

1

2s
Hα−β(G),

The following result appears in [32, Theorem 2].

Theorem 2.11. If α ≥ 1 is an integer and 0 ≤ x1, . . . , xk ≤ k − 1, then

(k − 1)1−α

k∑
j=1

xα
j ≤

( k∑
j=1

x
1/α
j

)α
.

Theorem 2.12. Let G be a nontrivial connected graph with m edges, maximum degree ∆

and 2∆ ≤ m− 1. We have for any integer α ≥ 1

Hα(G) ≤ (m− 1)α−1H 1
α
(G)α.

Proof. We have du + dv ≤ 2∆ ≤ m− 1. Hence, Theorem 2.11 gives for any uv ∈ E(G)

(m− 1)1−α
∑

uv∈E(G)

(du + dv)
α ≤

( ∑
uv∈E(G)

(du + dv)
1/α
)α

.

The following results relate Hα(G) with M1(G) and M2(G).

Theorem 2.13. Let G be a nontrivial connected graph with m edges and minimum degree

δ, and 0 < α ≤ 1. Then

Hα(G) ≤ δαm+ αδα−2M2(G).
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Proof. We have
(du − δ)(dv − δ) ≥ 0,

dudv + δ2 ≥ δ(du + dv),

(δ−2dudv + 1)α ≥ δ−α(du + dv)
α.

Bernoulli inequality (1 + x)α ≤ 1 + αx for x ≥ −1 gives

δ−α(du + dv)
α ≤ (δ−2dudv + 1)α ≤ 1 + αδ−2dudv,

δ−αHα(G) ≤ m+ αδ−2M2(G).

Theorem 2.14. Let G be a nontrivial connected graph with m edges, and α ≥ 1. Then

m+ αM1(G) ≤
(
Hα(G)1/α +m1/α

)α
.

Proof. Minkowski inequality gives( ∑
uv∈E(G)

(
du + dv + 1

)α)1/α ≤
( ∑

uv∈E(G)

(
du + dv

)α)1/α
+
( ∑

uv∈E(G)

1
)1/α

.

Bernoulli inequality (1 + x)α ≥ 1 + αx for x ≥ −1 gives∑
uv∈E(G)

1 + α
∑

uv∈E(G)

(
du + dv

)
≤
(
Hα(G)1/α +m1/α

)α
.

The forgotten topological index is defined as F (G) =
∑

u∈V (G) d
3
u (see [14]).

Theorem 2.15. Let G be a nontrivial connected graph with n vertices, m edges, maximum

degree ∆ and minimum degree δ. Then

H2(G) = F (G) + 2M2(G),

H2(G) ≥ max
{
4M2(G),

M1(G)2

2m
+ 2M2(G),

M1(G)2

m

}
≥ δM1(G) + 2M2(G),

H2(G) ≤ min
{
4M2(G) +m(n− 2), ∆M1(G) + 2M2(G)

}
.

Proof. Since
∑

uv∈E(G)

(
f(du)+f(dv)

)
=
∑

u∈V (G) duf(du), we have
∑

uv∈E(G)

(
d2u+d2v

)
=∑

u∈V (G) d
3
u = F (G). Hence,

H2(G) =
∑

uv∈E(G)

(
du + dv

)2
=

∑
uv∈E(G)

(
d2u + d2v

)
+

∑
uv∈E(G)

2dudv = F (G) + 2M2(G).
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Since d2u + d2v ≥ 2dudv, we obtain F (G) ≥ 2M2(G). This inequality, F (G) ≥

M1(G)2/(2m) and F (G) + 2M2(G) ≥ M1(G)2/m (see [14]) give the first lower bound.

The second one follows from M1(G)2/(2m) ≥ 2mM1(G)/n ≥ δM1(G).

The inequality F (G) ≤ 2M2(G)+m(n− 2) (see [14]) and
∑

u∈V (G) d
3
u ≤ ∆M1(G) give

the upper bound.

Recall that the variable Zagreb index (also called general Randić index ) is defined

in [22] as

Zα(G) =
∑

uv∈E(G)

(dudv)
α,

with α ∈ R \ {0}. The variable Zagreb index was used in the structure-boiling point

modeling of benzenoid hydrocarbons. Note that Z−1/2 is the usual Randić index, Z1 is

the second Zagreb index M2, Z−1 is the modified Zagreb index [24], etc.

We have several inequalities relating Hα with the variable Zagreb index.

Theorem 2.16. Let G be a nontrivial connected graph with maximum degree ∆ and

minimum degree δ, and α, β ∈ R. Then

kα,β

(∆+ δ√
∆δ

)α√
Zβ(G)Zα−β(G) ≤ Hα(G) ≤ 2α

√
Zβ(G)Zα−β(G) , if α < 0,

kα,β 2
α
√

Zβ(G)Zα−β(G) ≤ Hα(G) ≤
(∆+ δ√

∆δ

)α√
Zβ(G)Zα−β(G) , if α ≥ 0,

with

kα,β :=

{
2(∆δ)(2β−α)/2

∆2β−α+δ2β−α , if β(α− β) < 0,
2(∆δ)α/2

∆α+δα
, if β(α− β) ≥ 0.

Each one of the three first inequalities is attained for some values of α, β with α 6= 0 if

and only if G is regular. The last inequality is attained for some values of α, β with α 6= 0

if and only if G is regular or biregular.

Proof. By Lemma 2.2, we have

2
√

dudv ≤ du + dv ≤
∆+ δ√

∆δ

√
dudv .

If α ≥ 0, then

2α
(
dudv

)α/2 ≤ (du + dv
)α ≤

(∆+ δ√
∆δ

)α(
dudv

)α/2
.

If α < 0, then (∆+ δ√
∆δ

)α(
dudv

)α/2 ≤ (du + dv
)α ≤ 2α

(
dudv

)α/2
.
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Cauchy-Schwarz inequality gives∑
uv∈E(G)

(
dudv

)α/2
=

∑
uv∈E(G)

(
dudv

)β/2+(α−β)/2

≤
( ∑

uv∈E(G)

(
dudv

)β)1/2( ∑
uv∈E(G)

(
dudv

)α−β
)1/2

=
√

Zβ(G)Zα−β(G) .

Since
δβ ≤

(
dudv

)β/2 ≤ ∆β if β > 0,

∆β ≤
(
dudv

)β/2 ≤ δβ if β < 0,

δα−β ≤
(
dudv

)(α−β)/2 ≤ ∆α−β if α− β ≥ 0,

∆α−β ≤
(
dudv

)(α−β)/2 ≤ δα−β if α− β < 0,

Lemma 2.1 gives, if β(α− β) ≥ 0,

∑
uv∈E(G)

(
dudv

)α/2 ≥
(∑

uv∈E(G)

(
dudv

)β)1/2(∑
uv∈E(G)

(
dudv

)α−β
)1/2

1
2

((
∆
δ

)α/2
+
(

δ
∆

)α/2)
=

2(∆δ)α/2

∆α + δα

√
Zβ(G)Zα−β(G) = kα,β

√
Zβ(G)Zα−β(G) ,

and, if β(α− β) < 0, then

∑
uv∈E(G)

(
dudv

)α/2 ≥
(∑

uv∈E(G)

(
dudv

)β)1/2(∑
uv∈E(G)

(
dudv

)α−β
)1/2

1
2

((
∆
δ

)(2β−α)/2
+
(

δ
∆

)(2β−α)/2
)

=
2(∆δ)(2β−α)/2

∆2β−α + δ2β−α

√
Zβ(G)Zα−β(G) = kα,β

√
Zβ(G)Zα−β(G) .

If the graph is regular, then the lower and upper bounds are the same, and they are

equal to Hα(G).

If the second or the third inequality is attained for some values of α, β with α 6= 0,

then 2
√
dudv = du + dv for every uv ∈ E(G), and Lemma 2.2 gives du = dv for every

uv ∈ E(G); since G is connected, G is regular.

Assume now that the first or the last inequality is attained for some values of α, β

with α 6= 0. Thus, du + dv =
∆+δ√
∆δ

√
dudv for every uv ∈ E(G). By Lemma 2.2, this holds

if and only if every edge joins a vertex of degree δ with a vertex of degree ∆, and this

is equivalent to the following: for each vertex u ∈ V (G), we have deg(u) ∈ {δ,∆}, if

deg(u) = δ then every neighbor of u has degree ∆, and if deg(u) = ∆ then every neighbor

of u has degree δ. Since G is connected, this holds if and only if G is regular or biregular.
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If G is regular or biregular, then
√

Zβ(G)Zα−β(G) =
√

(∆δ)βm(∆δ)α−βm = (∆δ)α/2m

and Hα(G) = (∆ + δ)αm. Hence, the last inequality is attained. If α 6= 0, then the first

inequality is attained if and only if kα,β = 1, and this holds if and only ∆ = δ by Lemma

2.2, i.e., G is regular.

We have the following consequence.

Corollary 2.17. Let G be a nontrivial connected graph with maximum degree ∆ and

minimum degree δ, and α ∈ R. Then

2(∆ + δ)α

∆α + δα
Zα/2(G) ≤ Hα(G) ≤ 2αZα/2(G), if α < 0,

2α+1(∆δ)α/2

∆α + δα
Zα/2(G) ≤ Hα(G) ≤

(∆+ δ√
∆δ

)α
Zα/2(G), if α ≥ 0.

Each one of the three first inequalities is attained for some value of α 6= 0 if and only if

G is regular. The last inequality is attained for some value of α 6= 0 if and only if G is

regular or biregular.

In [31, Lemma 3] appears the following result.

Lemma 2.18. Let h be the function h(x, y) = 2xy
x+y

with δ ≤ x, y ≤ ∆. Then δ ≤ h(x, y) ≤

∆. Furthermore, the lower (respectively, upper) bound is attained if and only if x = y = δ

(respectively, x = y = ∆).

Theorem 2.19. Let G be a nontrivial connected graph with m edges, maximum degree ∆

and minimum degree δ, and α ∈ R. Then

2αm2

δαZ−α(G)
≤ Hα(G) ≤ ∆3α/2 + δ3α/2

∆7α/4δ3α/4
2α−1m2

Z−α(G)
, if α < 0,

2αm2

∆αZ−α(G)
≤ Hα(G) ≤ ∆3α/2 + δ3α/2

∆3α/4δ7α/4
2α−1m2

Z−α(G)
, if α ≥ 0,

and each inequality is attained for some value of α 6= 0 if and only if G is regular.

Proof. By Lemma 2.18, we have

( 2

∆

)α/2
≤
(
du + dv

)α/2(
dudv

)α/2 ≤
(2
δ

)α/2
, if α ≥ 0,

(2
δ

)α/2
≤
(
du + dv

)α/2(
dudv

)α/2 ≤
( 2

∆

)α/2
, if α < 0.
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Cauchy-Schwarz inequality gives ∑
uv∈E(G)

(
du + dv

)α/2(
dudv

)α/2
2

≤
( ∑

uv∈E(G)

(
du + dv

)α)( ∑
uv∈E(G)

(
dudv

)−α
)
= Hα(G)Z−α(G).

These inequalities provide the lower bounds.

Since

(2δ)α/2 ≤
(
du + dv

)α/2 ≤ (2∆)α/2, ∆−α ≤
(
dudv

)−α/2 ≤ δ−α, if α ≥ 0,

(2∆)α/2 ≤
(
du + dv

)α/2 ≤ (2δ)α/2, δ−α ≤
(
dudv

)−α/2 ≤ ∆−α, if α < 0,

Lemma 2.1 gives in both cases ∑
uv∈E(G)

(
du + dv

)α/2(
dudv

)α/2
2

≥

(∑
uv∈E(G)

(
du + dv

)α)(∑
uv∈E(G)

(
dudv

)−α
)

1
2

((
∆
δ

)3α/4
+
(

δ
∆

)3α/4)
=

2(∆δ)3α/4

∆3α/2 + δ3α/2
Hα(G)Z−α(G),

and this gives the upper bounds.

If the graph is regular, then the lower and upper bounds are the same, and they are

equal to Hα(G). If some bound is attained for some value of α 6= 0, then Lemma 2.18

gives du = dv = δ for every uv ∈ E(G) or du = dv = ∆ for every uv ∈ E(G); hence, G is

regular.

Theorem 2.20. Let G be a nontrivial connected graph with n vertices, and α > 1. Then

nα ≤ Hα(G)Z −α
α−1

(G)α−1 ,

and the equality is attained for some value of α > 1 if and only if G is regular or biregular.

Proof. Recall that
∑

uv∈E(G)

(
f(du) + f(dv)

)
=
∑

u∈V (G) duf(du). Hence,

n =
∑

u∈V (G)

du
du

=
∑

uv∈E(G)

( 1

du
+

1

dv

)
=

∑
uv∈E(G)

du + dv
dudv

.

Since α > 1, Hölder inequality gives

n ≤
( ∑

uv∈E(G)

(
du + dv

)α) 1
α
( ∑

uv∈E(G)

(
dudv

) −α
α−1
)α−1

α
= Hα(G)

1
αZ −α

α−1
(G)

α−1
α .

If G is regular or biregular, then ∆δn =
(
∆+ δ

)
m, Hα(G) = (∆ + δ)αm, Z −α

α−1
(G) =

(∆δ)
−α
α−1m, and the equality is attained.
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If the equality is attained for some value of α > 1, then
(
dudv

) −α
α−1

/
(
du + dv

)α
is

constant for every uv ∈ E(G), i.e., dudv
(
du + dv

)α−1
is constant for every uv ∈ E(G).

Since the function F (t) = dut
(
du + t

)α−1
is increasing when t ∈ [1,∞), we have the

following: for each vertex u ∈ V (G), every neighbor v of u has the same degree, and the

degree of every neighbor of v is du. Since G is connected, G is regular or biregular.

We have the following consequence, that improves the lower bound in Theorem 2.19

when α = 2, since 2m ≤ ∆n.

Corollary 2.21. Let G be a nontrivial connected graph with n vertices. Then

n2 ≤ H2(G)Z−2(G),

and the equality is attained if and only if G is regular or biregular.

The modified Narumi-Katayama index

NK∗(G) =
∏

u∈V (G)

dduu =
∏

uv∈E(G)

dudv

is introduced in [15], inspired in the Narumi-Katayama index defined in [23]. Next, we

prove several inequalities relating the modified Narumi-Katayama index with Hα.

Theorem 2.22. Let G be a nontrivial connected graph with m edges, maximum degree ∆

and minimum degree δ, and α ∈ R. Then

Hα(G) ≥
(∆+ δ√

∆δ

)α
mNK∗(G)α/(2m), if α < 0,

Hα(G) ≥ 2αmNK∗(G)α/(2m), if α ≥ 0.

The equality holds for some α < 0 if and only if G is regular or biregular. The equality

holds for some α > 0 if and only if G is regular.

Proof. Using the fact that the geometric mean is at most the arithmetic mean, Lemma

2.2 gives for α ≥ 0

1

m
Hα(G) =

1

m

∑
uv∈E(G)

(du + dv)
α ≥ 1

m

∑
uv∈E(G)

(
2
√

dudv
)α

≥ 2α
( ∏

uv∈E(G)

(dudv)
α/2
)1/m

= 2αNK∗(G)α/(2m).
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Lemma 2.2 gives for α < 0
1

m
Hα(G) =

1

m

∑
uv∈E(G)

(du + dv)
α ≥ 1

m

∑
uv∈E(G)

(∆+ δ√
∆δ

√
dudv

)α
≥
(∆+ δ√

∆δ

)α( ∏
uv∈E(G)

(dudv)
α/2
)1/m

=
(∆+ δ√

∆δ

)α
NK∗(G)α/(2m).

If the graph is regular, thenHα(G) = 2αδαm, NK∗(G) = δ2m and we have the equality.

If the graph is biregular and α < 0, then Hα(G) = (∆+ δ)αm, NK∗(G) = (∆δ)m and we

have the equality. If the equality holds for some α > 0, then Lemma 2.2 gives du = dv

for every uv ∈ E(G); since G is a connected graph, G is regular. If the equality holds for

some α < 0, then Lemma 2.2 gives du = δ and dv = ∆ or vice versa for every uv ∈ E(G);

hence, G is regular or biregular.

The first geometric-arithmetic index GA1 was introduced in [33] as

GA1(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

.

Although GA1 was introduced in 2009, there are many papers dealing with this index

(see, e.g., [4], [5], [6], [26], [27], [28], [33] and the references therein).

Theorem 2.23. Let G be a nontrivial connected graph with m edges, maximum degree ∆

and minimum degree δ. Then

H(G) +
1√
∆δ

GA1(G) ≤ 2m

δ
,

and the equality holds if and only if G is regular.

Proof. Note that
(√

du −
√
δ
)(√

∆−
√
dv
)
≥ 0. Therefore,

√
∆
(√

du +
√

dv
)
≥

√
∆
√

du +
√
δ
√

dv ≥
√

dudv +
√
∆δ .

Since
√
dw ≤ dw/

√
δ for every vertex w ∈ V (G), we obtain

√
dudv +

√
∆δ ≤

√
∆

δ
(du + dv),

1√
∆δ

2
√
dudv

du + dv
+

2

du + dv
≤ 2

δ
,

1√
∆δ

∑
uv∈E(G)

2
√
dudv

du + dv
+

∑
uv∈E(G)

2

du + dv
≤ 2m

δ
, H(G) +

1√
∆δ

GA1(G) ≤ 2m

δ
.

If the graph is regular, then GA1(G) = m and H(G) = m/δ, and the equality holds.

If the equality is attained, then
√
∆ =

√
δ and G is regular.
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[42] B. Zhou, N. Trinajstić, On general sum–connectivity index, J. Math. Chem. 47 (2010)

210–218.

-403-
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