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Abstract
The fourth industrial revolution is changing the way industries face their problems, including maintenance. The railway
industry is moving to adopt this new industry model. The new trains are designed, manufactured, and maintained
following an Industry 4.0 methodology, but most of the current trains in operation were not designed with this
technological philosophy, so they must be adapted to it. In this paper, a new methodology for adapting a high-speed train to
Industry 4.0 is proposed. That way, a train manufactured before this new paradigm can seize the advantages of
Maintenance 4.0. This methodology is based on four stages (physical system, digital twin, information and communication
technology infrastructure, and diagnosis) that comprise the required processes to digitalize a railway vehicle and that share
information between them. The characteristics that the data acquisition and communication systems must fulfil are
described, as well as the original signal processing techniques developed for analysing vibration signals. These techniques
allow processing experimental data both in real time and deferred, according to actual maintenance requirements. The
methodology is applied to determine the operating condition of a high-speed bogie by combining the signal processing of
actual vibration measurements taken during the normal train operation and the data obtained from simulations of the
digital twin. The combination of both (experimental data and simulations) allows establishing characteristic indicators that
correspond to the normal running of the train and indicators that would correspond to anomalies in the behaviour of the
train.
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1. Introduction

Traditionally, railway maintenance has been based on the per-
formance of corrective and preventive tasks (Cheng & Tsao,
2010); therefore, the maintenance plans approved by the rolling
stock manufacturers were fulfilled. This approach is a conserva-
tive strategy that can lead to unnecessary costs when replacing
parts or items in good condition. In addition, complying with
scheduled maintenance tasks does not eliminate the possibility
of failures, as items in poor condition may not be checked.

One way to mitigate these problems is to move towards pre-
dictive or condition-based maintenance (CBM). In the scientific
literature, many examples can be found focused on these types
of maintenance applied to railways (Chong et al., 2010; Ngigi et
al., 2012; Shin & Jun, 2015; Li et al., 2017a; Bernal et al., 2019).
The researchers propose several methods for detecting failures
in the railway vehicles’ suspension (Li et al., 2018; Lebel et al.,
2019; Su et al., 2019), in the axle boxes (Amini et al., 2016; Pa-
paelias et al., 2016; Bustos et al., 2018, 2019), in the axles (Hassan
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& Bruni, 2018; Gómez et al., 2020), in the wheels (Li et al., 2012;
Alemi et al., 2017; Li et al., 2017b), in the braking systems (Thomp-
son et al., 2016), etc., for which vibration measurements are nor-
mally used, but also measurements from optical methods (Hyde
et al., 2016), ultrasounds (Dwyer-Joyce et al., 2013), FBG (Lai et al.,
2012), etc. All kinds of signal processing techniques are applied
for studying these measurements.

Despite all the scientific contributions, it was only recently
that the rail industry has slowly started to adopt new mainte-
nance methods (Alstom, 2014; Fortea, 2018; Zasiadko, 2019) and
move towards Industry 4.0.

Industry 4.0 constitutes the fourth industrial revolution and
is characterized by the introduction of internet-based solutions
throughout the industry. It affects not only the way of design-
ing and manufacturing but also the organization of companies
and their relationship with society (Lasi et al., 2014). It involves
technologies such as additive manufacturing, augmented real-
ity, digital twin, big data, artificial intelligence, data fusion, etc.

Maintenance 4.0 is also within Industry 4.0 and it takes ad-
vantage of themodern Industry 4.0 technologies to perform pre-
dictive analysis (Kans et al., 2016). It is a new concept that, like
everything related to Industry 4.0, is attracting the attention of
researchers from all fields.

The best strategy to implement Maintenance 4.0 to predict
the deterioration of systems is discussed in van Staden and
Boute (2021). The paper focuses on the use of external or internal
sensors and analyses different parameters (cost, reliability, etc.)
to determine the advantages and disadvantages of each system.
Navas et al. (2020) pose (from a business and theoretical point of
view) all the aspects that Maintenance 4.0 should cover and how
the different departments of the company involved in mainte-
nance should be related in this newparadigm. The strengths and
weaknesses of data storage systems are reviewed in Sahal et al.
(2020) from an Industry 4.0 point of view.

Examples of the practical application of the concepts of In-
dustry 4.0 (and Maintenance 4.0) to several sectors can also be
found in the scientific literature. Saidy et al. (2020) implement
predictive maintenance 4.0 in a complex system (desalination
plant) and use the data obtained to improve the design of the
system. Additive manufacturing and augmented reality are ap-
plied to aircraft maintenance (Ceruti et al., 2019) to design and
build optimized parts for critical systems of airliners and to help
maintenance tasks in general aviation. Augmented reality is also
used for supporting operation and maintenance and piping in-
spection in shipbuilding and offshore plants (Lee et al., 2020).

Another approach is the use of reverse engineering formeth-
ods and processing techniques applied to maintenance. Two
general approaches can be used for the inspection process: con-
tact and non-contact measurements techniques. The first ap-
proach employs coordinate measuring machines (CMMs); the
second approach uses a laser/optical scanner. The main ap-
proaches for reverse modelling are scattered and regular point-
based methods. They differ in applicability with the varying ge-
ometric characteristics (Ke et al., 2006; Xie, 2008; Urbanic & El-
Maraghy, 2009; Zhao et al., 2009; Urbanic, 2015; Zhang et al., 2016).
Reverse engineering-based methodologies have been developed
and used to improve existing prototypes (Geren et al., 2007). It
also has been applied to develop novel machining strategies in
the field of aeronautical components (Yun et al., 2015). Deutsche
Bahn (German national railways company) started to reverse en-
gineer and print in 3D heavy spare parts in recent years (Zasi-
adko, 2019).

Focusing on railways, Kans et al. (2016) discuss the current
situation of the Swedish railway system and how Maintenance

4.0 could help to improve it. Their work focuses mainly on traf-
fic management and organizational effects. A new approach for
track monitoring based on data fusion of signals collected in
multiple trains is proposed by Lederman et al. (2017). A com-
plex fuzzy system for the predictive maintenance of rails and
the catenary and pantograph is proposed by Karakose and Ya-
man (2020). Medeiros et al. (2018) develop a low-cost electronic
prototype to monitor the dynamics of a railway vehicle using in-
ertial measurements. Measured data are sent to a smartphone.

The East Japan Railway Company implementedMaintenance
4.0 in recent years (Takikawa, 2016). The company followed a
strategy based on four challenges or pillars: CBM, asset man-
agement, work supported by artificial intelligence, and database
integration. The work exposes the case of the series E235 com-
muter rolling stock, which can monitor its own onboard devices
and wayside equipment (track and catenary).

The railway industry is starting to apply the Digital Twin, but
it is mainly oriented towards infrastructure (track, signalling,
catenary, etc.) and traffic management (‘In-Depth Focus: Digital
Twins’, 2021).

After reviewing the scientific literature, a gap between the
theoretical concepts exposed and the practical implementation
of Industry 4.0 in a rail vehicle is identified. To close this gap,
this paper develops a new methodology for the implementa-
tion of a monitoring system based on Industry 4.0 in a high-
speed trainmanufactured before Industry 4.0, in such away that
the new Maintenance 4.0 techniques can be used. This origi-
nal methodology is conceived from a general point of view that
takes into account the required aspects for implementing Main-
tenance 4.0: physical system, virtual system, communications,
and data analysis. In addition, the data analysis is designed in
such away that it can be performed both in real time (directly on
the physical system) and deferred (at the maintenance centre).

The structure of the paper is as follows: The second section
presents the methodology to implement the Maintenance 4.0
system. Section 3 poses the signal processing techniques used.
The fourth section discusses the results and the fifth section
presents the conclusions.

2. Methodology

This section presents the proposed methodology for the inte-
gration of a high-speed train in Maintenance 4.0. The steps that
make up the methodology are explained through application to
a real case.

2.1. Information flow

The monitoring system is based on four main blocks and two
subblocks that share information between them. These four
blocks are the Physical system, the Digital Twin, the Informa-
tion and Communication Technology (ICT) Infrastructure, and
the Diagnosis, which can be split into short-term diagnosis and
long-term diagnosis.

The relationship between the blocks is shown in Fig. 1. Solid
lines represent the direct flow of information, and dashed lines
represent the feedback of information.

The physical system block comprises the actual system to
monitor and all the necessary equipment to carry out the mea-
surement tasks. The digital twin is a set of virtual information
that describes the actual physical systemand that should be able
to represent its real-time status, working condition or position
(Grieves & Vickers, 2017). The ICT infrastructure block comprises
the hardware and software infrastructure for transmitting,
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Figure 1: The flow of information in the monitoring system.

receiving, and storing the measured data. The last main block
is the diagnosis block, which applies several signal processing
methods to themeasured data so that the condition of the physi-
cal system could be determined. According to themethods used,
the diagnosis block is split into short-term diagnosis and long-
term diagnosis. Short-term diagnosis involves low-computing-
time techniques that can be applied in near-real time, while
long-term diagnosis is oriented to study trends.

These blocks share information in the following way: The
mechanical features (dimensions, weights,materials, etc.) of the
physical system are used to generate the virtual model, whereas
the measured data are sent to the ICT infrastructure. Measured
data are also employed for updating the status of the virtual
model in real time and creating the digital twin. Data stored in
the ICT infrastructure are combined with information from the
digital twin [e.g. finite element method (FEM) analysis]. Then,
signal processing techniques are applied to the data and the di-
agnosis is carried out. Here, the following two options are possi-
ble:

1. On one hand, the short-term diagnosis allows detecting im-
minent faults in real time and, if needed, sends an alarm to
the physical system so that it can be stopped before the fault
takes place.

2. On the other hand, the long-term diagnosis allows studying
the evolution of the physical system and to make decisions
about engineering aspects of the physical system: schedul-
ing of the maintenance plan, redesigning key parts, software
upgrades, etc.

2.2. Detailed algorithm

The main blocks of the monitoring system can be split into sev-
eral detail blocks, obtaining a larger and exhaustive flowchart
that is shown in Fig. 2. The same colour scheme is used in both
flowcharts of Figs 1 and 2: green for the physical system; purple

for the digital twin and blue for the ICT infrastructure; orange for
the short-term diagnosis; and red for the long-term diagnosis.

This flow chart has two starting blocks that belong to the
physical system: train definition and path conditions. Then, the
required measurement system is set and vibration data are ac-
quired. These data are stored in a remote database in real time.
For analysis, the datamust be extracted and consolidated. These
tasks are made with the help of technical documents. All these
operations belong to the ICT infrastructure.

Next, in the diagnosis phase, the vibration signals are pro-
cessed in the time, frequency, and time–frequency domains by
using both well-known methods and new techniques. In paral-
lel, the characterization study of the mechanical system is car-
ried out thanks to the digital twin.

By combining the signal processing and characterization
studies, a set of indicators of the train’s condition will be cho-
sen. These indicators will be the input of an intelligent system
that should be able to identify the condition of the train’s me-
chanical system automatically.

The following subsections detail the blocks of the flowchart.

2.2.1. Physical system
The goal of the methodology developed in this paper is to define
a set of indicators that allow identifying the operating condition
of a mechanical system. So it could be established if the me-
chanical system is working as it should be, or if a malfunction
would exist, to take the respective maintenance actions. How-
ever, the first step to achieve that objective is to know the me-
chanical system under study (in this case, a high-speed train)
and its relationship with the environment (the track).

Train definition. The first point to establish is the type of train.
Different types of trains (high-speed train, intercity, commuter,
freight, etc.) have diverse features and operating conditions.
Hence, their performance is different.
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Figure 2: Algorithm flowchart.

Within the train, the mechanical system or systems to study
must be defined too. A train has a lot of systems (car body, bogie,
axle, gearbox, pantograph, engine and/or electric motor, air con-
ditioning, doors, etc.) and each system has its particular charac-
teristics. The motion and forces that act over an axle or a pan-

tograph are completely different, and these features will deter-
mine the measurement equipment to install.

In this paper, the type of train chosen is a high-speed train
(Renfe class 100). These trains started their commercial life
in 1992, can reach 300 km/h, and have served on almost all
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Figure 3: 3D model of the Y237B bogie.

Figure 4: Detail of the axle box (left) and the wheelset (right) assemblies.

Spanish high-speed lines (HSLs). A train set is composed of two
power cars at both ends and eight articulated passenger cars
with Jacobs bogies. The mechanical system to study is the near-
est trailer bogie to the second power car.

Track and path conditions. The track has a great influence on the
performance of rail vehicles, so its main characteristics should
be known. A ballast bed supports concrete sleepers that are
placed every 60 cm. A rail pad is placed between the rail and
the sleeper to absorb impacts and protect the sleeper. The rails
are fixed to the sleepers through rail clips.

In order to take vibrationmeasures in similar conditions, the
train must run at a consistent speed. Usually, this condition is
achieved on top speed sections. Besides, the section must be
long enough to get an adequate number of vibration measures,
and it must be easily identifiable from the available data. By tak-
ing into account these requirements, two study sections are pro-
posed: one on the Madrid–Seville HSL and one on the Madrid–
Alicante HSL.

The selected sections for recording vibration data are be-
tween 100 and 150 km long and correspond to the maximum

track speeds: 270 km/h in the Madrid–Seville HSL and 300 km/h
in the Madrid–Alicante HSL.

2.2.2. Digital twin
The digital twin is generated to perform the characterization
of the mechanical system and to develop upgrades if needed.
As explained earlier, the digital twin is a virtual representation
of a physical system that can reproduce the behaviour of the
actual system. To achieve this purpose, the digital twin may
be composed of several models. The digital twin used in this
work consists of a 3Dmodel, analytical expressions for comput-
ing interesting frequencies of some subsystems, and numerical
models.

Mechanical system characterization. A detailed 3D model of the
bogie is designed in CREO Parametric (see Fig. 3) according to
technical information provided by the manufacturer. The bogie
frame, wheelsets, axle boxes, primary and secondary suspen-
sions, bogie–car joints, and brake system are modelled in an
extremely detailed way (see Fig. 4). Hence, the interaction be-
tween the more than 780 parts that made up the bogie can be
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Figure 5: FEM model of the axle box (left) and the wheelset (right).

Figure 6: The multibody digital twin of the Y237B bogie in Universal Mechanism.

studied. Besides, this model can be the start point for imple-
menting augmented reality in maintenance tasks.

Key parts of the bogie are imported in FEM software so that
modal analyses can be carried out (see Fig. 5). Thanks to these
modal analyses, the natural frequencies of the mechanical ele-
ments (alone or in combination with others) are obtained.

Multibody software UniversalMechanism is used for creating
a multibody model of the bogie (see Fig. 6), which consists only
of rigid bodies. This software is specially designed for simulating
rail vehicles and allows achieving a better understanding of the
train’s performance under different conditions.

The other pillar of the digital twin is the computation of the
characteristic frequencies of the system that cannot be obtained
directly from the virtual models but depend on the speed of
the train, i.e. axle rotating frequency, bearing fault frequencies,
sleeper pass frequencies, etc.

Roller bearing fault frequencies (Palmgren & Ruley, 1959) are
computed in equations (1)–(4), where BPFI, BPFO, BSF, and FTF

are the Ball Pass Frequency Inner race, Ball Pass Frequency Outer
race, Ball Spin Frequency, and Fundamental Train Frequency, re-
spectively.

BPFI = Nb

2
Fs

(
1 + d

D
cosβ

)
(1)

BPFO = Nb

2
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(
1 − d
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)
(2)
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Nb is the number of rolling elements, Fs is the axle rotating
frequency, D is the average diameter of the bearing, d is the di-
ameter of the rolling element, and β is the contact angle.

The sleeper pass frequency (SPF) is computed using equation
(5), where v is the speed of the train in m/s and λ is the distance
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Figure 7: Scheme of the ICT infrastructure.

Figure 8: Location of the accelerometers. Left: real vehicle. Right: digital twin.

between sleepers.

SPF = v

λ
(5)

2.2.3. ICT infrastructure
The ICT infrastructure is composed of the onboard measure-
ment system, the storage system, and all the required tasks for
the management of the data.

Onboard measurement system. The measurement equipment
should be chosen according to the characteristics of the me-
chanical system and the track or path conditions. This equip-
ment consists of several sensors, the signal acquisition sys-
tem, and the transmission system. Vibrationmeasures are taken
from the nearest trailer axle to the second power car, as it is
shown in Fig. 7.

Six uniaxial accelerometers and a speed sensor are installed
on the axle, specifically, in both axle box covers. The location
of the sensors is shown in Fig. 8. ICP industrial use accelerom-
eters and speed sensors are provided by SKF R©. Accelerometers
are model CMSS-RAIL-9100, whose performance characteristics
are shown in Table 1. The speed sensor is an Axletronic R© em-
bedded in the left axle box.

In addition to the sensors, the following technical equipment
is located inside the car: a power supply, a UMTS (3G) router,
and two IMx-R units. IMx-R units are provided by SKF R© for data
acquisition and pre-processing. Each IMx-R is equipped with 20
analogical and 4 digital input channels and can adjust the gain
automatically. The system is capable of measuring and sending
the speed signal one time per second and up to four vibration
signals per accelerometer and minute.
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Table 1: Accelerometer characteristics.

Parameter Value

Sensitivity (±20%) 10.2 mV/(m/s2)
Acceleration range ±490 m/s2

Frequency range (±3dB) 0.52 Hz to 8 kHz
Resonance frequency 25 kHz
Amplitude linearity ±1%
Transverse sensitivity ≤7%

Table 2: Signal acquisition parameters.

Parameter Value

Sampling frequency (Fs) 5120 Hz
Acquisition time (per signal) 3.2 s
Number of points N (per signal) 16 384 (214)
Angular speed range for acquisition 75–2000 rpm
Linear speed range for acquisition 13–347 km/h

The 3G router is in charge of the communication between
the onboardmeasurement system and the storage system.Mea-
sured data are sent to the remote database by using cell phone
networks.

The system is configured to acquire datawith the parameters
shown in Table 2.

Storage system. Thousands of data can be recorded in one single
journey, so a storage system able to manage big data is manda-
tory. The key part of the storage system is a computer connected
to the internet that has installed the @ptitude Observer suite.
This software suite is responsible for the communication server
and data storage. The server software manages the incoming
connections (from the 3G router aboard the train) and the data
transfer. Then, these data are stored in a database. Specifically,
the database saves the speed and vibration signals and, also, in-
formation about themeasure as the date and the accelerometer.

Data management. Data stored in the database must be con-
verted to MATLAB before analysing them. This task is carried
out by executing a MATLAB routine that selects and extracts the
data from the database and generates a MATLAB file that con-
tains the vibration signal, the rotating speed of the wheel, and
other useful information for each database record.

If the intended diagnosis is short term, the datamanagement
process ends here. However, if the intended diagnosis is long
term or focused on specific dates or events, data management
requires a more careful process.

In this case, themanagement process requires the use of sev-
eral public and private documents that help to trace the train
in the HSL and that contain information about the daily occur-
rences. By combining these documents, it is possible to select
specific days, HSL sectors, and known conditions of the train to
perform the long-term diagnosis. Once the data to analyse are
chosen, the next step is to execute the MATLAB routine to con-
vert data and dismiss faulty signals (if they exist) before pro-
ceeding to the analysis.

2.2.4. Diagnosis
In this last step, the signal analysis is performed. Several signal
processing techniques in time, frequency, and time–frequency

domains are used for this task. All these techniques are ex-
plained in detail in the next section.

The analysis of the vibration data allows selecting a group
of parameters or indicators that represent the condition of the
studied mechanical system.

Although all the signal processing techniques can offer valu-
able information about the status of the mechanical system,
their computation time makes them more suitable for short-
term diagnosis or long-term diagnosis. Methods like RMS (root
mean square), variance, kurtosis, PSD (power spectral density),
HT (Hilbert Transform), or SMSFC (Selection of the Most Signif-
icant Frequency Components) require short computation time
and can be applied almost in real time. The other techniques
take longer computation times, so they are suitable for long-
term diagnosis.

3. Signal Processing Techniques

As exposed earlier, the vibration signals are processed by using
techniques in time, frequency, and time-domain analyses that
can be classified into short-term diagnosis or long-term diagno-
sis.

This section depicts the techniques mentioned in the algo-
rithm flowchart briefly.

3.1. Short term

3.1.1. Time-domain analysis
Four statistical parameters are selected for the time-domain
analysis: average, RMS, variance, and kurtosis. Although these
parameters donot offer a detailed analysis of the signal, they can
give an overview of the system’s status. These parameters are
basic concepts of statistics and are well described in any statis-
tics book, so we will not describe them here.

3.1.2. Frequency-domain analysis
A combination of both classical and novel techniques is selected
for the frequency-domain analysis. Taking the PSD and the en-
velope spectrum as a foundation, a set of new techniques is de-
veloped.

The PSD can be computed from the Fourier transform by us-
ing equation (6), where �t is the sample time, N is the number
of data points in the signal, and X(f) is the Fourier transform of
the signal.

PSD = S( f ) = �t
N

∣∣X( f )∣∣2 (6)

The envelope spectrum is another well-known technique
that computes the PSD from the HT of the signal. The HT is a
useful mathematical tool for describing the complex envelope
of a signal modulated by an actual carrier signal. The HT of a
signal is another (time) signal defined by equation (7).

H [x(t)] = x̂(t) = 1
π

∫ ∞

−∞

x(τ )
t − τ

dτ = x(t) ⊗ (1/πt) (7)

The envelope spectrum is useful to amplify low-frequency
modulations and is also a powerful tool for detecting faults in
roller bearings.

The SMSFC is an own-developed method for detecting and
counting the number of highest peaks of the spectra. The devel-
oped algorithm locates the most significant frequency compo-
nents (highest peaks) of each analysed signal and orders them
from highest to lowest. Then, the algorithm rounds the fre-
quency of each peak to the nearest integer. Next, it counts the ‘n’
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Figure 9: Scheme of the decomposition process of MLA.

peaks in all the signals of the section to be analysed. The value
‘n’ is arbitrary and can be established according to the study ob-
jectives.

In addition to SMSFC, an algorithm for automatic detection
of non-harmonics is developed. This algorithm identifies the fre-
quency components that do not match amultiplier or harmonic
of the axle rotating frequency and highlights them with a red
circle. The precision of the multipliers and the minimum rel-
ative energy of the frequency components can be adjusted as
required.

3.2. Long term

3.2.1. Frequency-domain analysis
The spectra (from the PSD or PSD of the HT) can be decomposed
into frequency bands or packets. This process is known asMulti-
Level Analysis (MLA). MLA splits the spectrum into two halves,
each of which can be split again into two halves, and so on. At
each level, 2k packets are obtained, k being the decomposition
level. Figure 9 shows the decomposition process of any signal
spectrum.

Every frequency band or packet will have a different power.
The power of a packet (k, j) is given by equation (8), where i is the
index of the signal array, j is the packet number for a decompo-
sition level k (1–2k), k is the decomposition level,N is the number
of points of the signal, Sx(i) is the value of the PSD at index i, and
P(k, j) is the power of the packet j for the decomposition level k.

P (k, j) =
j=2k∑
j=1

i= N
2k

j∑
i= N

2k
( j−1)+1

Sx(i ) (8)

The Graphical Representation of State Configurations (GRSC)
technique is based on the MLA. Vibration signals are recorded
before and after a significant event (for example, a maintenance
action or a failure) and grouped into three operating states. PSD
and MLA are applied to every signal. Then, the average spec-
tral power for each group (state) and each frequency band is
computed. These spectral powers are plotted in a time–power
graph and linked with lines, so a triangle is obtained. This trian-
gle represents the state of the mechanical system. According to
the configuration of the states (the triangle’s shapes), it can be
established the power evolution of a certain frequency band. A
detailed explanation of this method can be found in Bustos et al.
(2019, 2021).

The Chromogram of Bands of Frequency (CBF) method is
based on the GRSC. This technique assigns a colour code to the
configuration states of the GRSC. Then, a colour map is built in a
frequency-decomposition level axis. Therefore, the evolution of
the spectral power of a given frequency band is easily recogniz-
able and information about the state of the mechanical system
can be retrieved with just a glance on the CBF. This technique is
described in detail in Bustos et al. (2019, 2021).

3.2.2. Time–frequency-domain analysis
The Empirical Mode Decomposition (EMD) and the Hilbert–
Huang Transform (HHT) were first proposed by Huang et al.
(1998). The EMD can decompose a signal into a set of subsignals
called Intrinsic Mode Functions (IMFs). The decomposition algo-
rithm is well documented in the literature (Huang et al., 1998;
Rilling et al., 2007).

The HHT applies the HT to obtained IMF and computes the
instant frequencies too. That way, the relationship between the
time, the frequency, and the amplitude can be plotted in a graph.

4. Results

The methodology explained in Sections 2 and 3 is tested using
actual vibration signals recorded from a Renfe class 100 high-
speed train in normal operating conditions. That is, the train is
running at speeds between 270 and 300 km/h. The vibration sig-
nals are recorded in the three spatial directions and processed
using the techniques mentioned earlier.

4.1. Digital twin

The numerical models of the digital twin allow computing the
characteristics frequencies shown in Table 3. As the wheel ra-
dius varies due to the wheel wear, these values are calculated
for the new wheel and wear limit radius at the speeds of 270
and 300 km/h. Therefore, a value range is given in all frequencies
that depend on the wheel radius or the axle rotating frequency.

The characteristic frequencies of the track are obtained from
the literature (Thompson, 2009; Connolly et al., 2015; Zougari et
al., 2016) and summarized in Table 4, as the wheel corrugation
frequency or the track resonance frequencies.

The numerical (FEM)model of the digital twin is used to com-
pute the free natural frequencies of key parts of the bogie. The
parts are meshed using solid elements with 10 nodes. The size
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Table 3: Train characteristic frequencies at 270 and 300 km/h for new and worn wheels.

Phenomenon Frequency (Hz) at 270 km/h Frequency (Hz) at 300 km/h

Axle rotating frequency (Fr) 25.95–28.09 28.83–31.21
Ball Pass Frequency Inner Race (BPFI) 329.14–356.24 365.71–395.83
Ball Pass Frequency Outer Race (BPFO) 267.69–289.74 297.44–321.93
Ball Spin Frequency (BSF) 122.84–132.96 136.49–147.73
Fundamental Train Frequency (FTF) 11.65–12.61 12.95–14.01
Wheel corrugation frequency 1500–3500
Primary suspension – wheelset frequency/wheelset bounce ∼2.5–3

Table 4: Track characteristic frequencies at 270 and 300 km/h.

Phenomenon Frequency (Hz) at 270 km/h Frequency (Hz) at 300 km/h

SPF 125 138.89
Rail/sleeper–ballast resonance 40–300
Rail–rail pad resonance 200–600
Rail pinned–pinned resonance ∼1000

Figure 10: Natural modes of the wheelset.

of the elements is chosen according to the geometry of the part,
so it is defined properly without excessive computation require-
ments.

The FEM modelled parts are the bogie frame, the wheelset,
the two-piece axle box, the upper and lower pieces of the axle
box, the bearing housing, the axle box covers, and the rings of
the roller bearing.

The natural modes of the wheelset are obtained by consider-
ing it as one component and considering its parts (axle, wheel,
and brake discs) separately. Representative natural modes of the
wheelset and the axle box are chosen to illustrate the results of
the numerical modal analysis. Figure 10 shows the first bending
mode of the wheelset, which occurs in the vertical and horizon-
tal planes at a frequency of 76.7 Hz. The first two natural vibra-
tion modes of the axle box occur at 410 and 480 Hz. The first is
a bending mode, whereas the latter is a torsion mode, as can be
seen in Fig. 11.

4.2. Diagnosis

This subsection displays the typical graphical results that can
be obtained from the application of the SMSFC, GRSC, CBF, and

EMD techniques. The results shown in the following pages are
the product of applying these signal processing techniques to
actual vibration measurements recorded during the train oper-
ation. Vibration signals were recorded at an average speed of
270 km/h in the Madrid–Seville HSL in three different operating
conditions: before a maintenance action, just after this mainte-
nance operation, and some weeks later.

Figure 12 shows the typical image that can be obtained from
the application of the SMSFC method. This image is composed
of three plots that represent the signal waveform, the PSD of the
signal, and the normalized PSD of the signal highlighting the
non-harmonic components with a red circle. The minimum rel-
ative energy of 5% highest peak is set to generate Fig. 12.

As it can be observed, there are three main active areas on
the spectrum: between 0 and 350 Hz, between 500 and 1000 Hz,
and between 1500 and 2560 Hz.

To get a clearer view of the frequency components high-
lighted by the SMSFC algorithm, the frequency region between
0 and 800 Hz is presented in Fig. 13. The highest amplitude fre-
quency components are located at 124.1 and 270 Hz, which cor-
respond to 4.73 and 10.3 times the axle rotating frequency, re-
spectively. Consequently, they are highlighted in the last plot of
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Figure 11: Natural modes of the axle box assembly.

Figure 12: Signal waveform, PSD, and non-harmonic components of an actual vertical vibration signal that was recorded at 270 km/h.

the figure. These frequencies match the SPF (speed is slightly
below 270 km/h) and the BPFO of the rolling bearing. The signif-
icant frequency component located between the previous two
corresponds to the seventh harmonic of the axle rotating fre-
quency.

Between 500 and 1000 Hz, there are lots of components that
are multipliers of the axle rotating frequency mainly. However,
the SMSFC detects frequency components at 23.4 and 24.4 times
the rotating frequency of the axle. The high-frequency region is
mainly related to the wheel corrugation phenomenon (Connolly
et al., 2015) and only a small non-harmonic component is de-
tected by the SMSFC.

An example of the GRSC is shown in Fig. 14. Results are pre-
sented up to decomposition level 2, but the decomposition level
can be increased up to 9, which would produce 1023 different
configurations (triangles).

The results showed here correspond to vibration measure-
ments taken before (operating state B), just after (operating state
A), and some weeks after (operating state L) wheel reprofiling.
The spectral power of the signals recorded in each operating
state is averaged and displayed as points in the image. The name
of the configuration is created by looking at the straights that
join the points of the operating states. It is a three-letter struc-
ture (‘xxx’) in which the first letter corresponds to the red line
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Figure 13: Details of the PSD and non-harmonic components of Fig. 12 in the region 0–800 Hz.

(B→A), the second letter corresponds to the green line (A→L),
and the third letter corresponds to the blue line (B→L). The value
of each position can be ‘d’ (down, for negative slopes) or ‘u’ (up,
for positive slopes).

The upper plot of Fig. 14 belongs to decomposition level k = 0
and shows the time evolution of the spectral power of the vibra-
tion signals. This power is reduced just after the maintenance
action, as it should be expected. Besides, the power is also re-
duced in the following weeks after the wheel reprofiling. There-
fore, the configuration is ‘ddd’ as the spectral power is reduced
between two states always.

Decomposition level k = 1 divides the spectrum into two. In
the low-frequency region, the power rises just after thewheel re-
profiling, but it is lower at the end of the analysed period. As the
power rises between operating states B and A, and falls between
A and L, and between B and L, the configuration is ‘udd’. Re-
garding the high-frequency region, the spectral power decreases
always after the wheel reprofiling. Hence, the configuration is
‘ddd’.

Decomposition level k = 2 splits the spectrum into four parts
or power packets. The first, third, and fourth packets have the
same behaviour of k = 0 and the spectral power is always re-
duced. However, the spectral power of the second packet rises
just after the wheel reprofiling and then decreases, although the
spectral power at the end of the studied period is greater than
the power before the wheel reprofiling.

The CBF compiles the information of decomposition levels
from k = 0 to 9 in one image and is shown in Fig. 15. The first
row of the CBF corresponds to decomposition level k = 0 and
matches the ‘ddd’ configuration of GRSC, so it is coloured in dark
blue according to the colour palette of Bustos et al. (2019). The
second row relates to decomposition level k = 1, and we find

two colours that correspond to the twoGRSC configurations. The
same procedure is applied for the rest of the rows.

The CBF can be divided into two halves. The right half (be-
tween 1280 and 2560 Hz) is mainly coloured in blue, which is the
expected performance of the system after a maintenance work
(spectral power or vibration is reduced after maintenance). Just
small red and orange stripes appear at high decomposition lev-
els around 1750 Hz.

The left half (0–1280 Hz) shows a different image: A large
bandwidth that spreads from 600 to 1300 Hz is coloured in warm
colours. This indicates that the spectral power is increased just
after themaintenance operation. Cold colours are the prevailing
colours between 0 and 600 Hz, although some orange stripes are
also visible.

The application of the EMD technique to the signal of Fig. 12
results in the graph of Fig. 16. The first six IMFs are extracted
and, then, the PSD of each IMF is computed and plotted in the
same figure. By comparing the frequency regions mentioned
earlier and the results of the EMD, it can be observed that
IMF (1) matches the high-frequency region (1500–2560 Hz), the
second and third IMFs correspond to the 500–1000 Hz region,
and that the low-frequency region is composed of IMFs (4), (5),
and (6).

It should also be noted that the SPF and BPFO components
are assigned to different IMFs, which is consistent with different
physical origins (Bustos et al., 2018).

4.3. Intelligent system

The operating condition of themechanical system (a high-speed
train in this example) can be identified based on the previous
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Figure 14: GRSC of actual vertical vibration signals recorded at 270 km/h.

Figure 15: CBF of actual vertical vibration signals recorded at 270 km/h.

results. However, this task requires the correct interpretation of
the data by expert personnel.

However, within the Industry 4.0 paradigm is more suitable
to use an intelligent system to do this task. Once trained, this
intelligent system will be able to identify the operational con-
dition of the system from the results of the signal processing

techniques explained in Section 2 without any kind of human
intervention.

The inputs of this intelligent systemwill be a set of indicators
obtained from the quantification of the results shown in the pre-
vious subsection (for example, the power of the packets, spec-
tral power of the IMFs, etc.). Besides, the system characteristics
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Figure 16: Power spectra of the first six IMFs of an actual vertical vibration signal recorded at 270 km/h. Values of the vertical axis are expressed in (m2/s4)/Hz.

obtained through the digital twin would be used to label the
identifiers and thus train the intelligent system.

5. Conclusions

This paper presents a methodology for retrofitting and updating
to Industry 4.0 a high-speed train designed and manufactured
before the development of Industry 4.0. The proposed method-
ology is mainly focused on Maintenance 4.0, but it also makes
use of other modern concepts such as digital twin, big data, or
artificial intelligence, and it is ready to use augmented reality.

In this manuscript, all aspects of the proposed methodol-
ogy are explained in detail, as well as the characteristics that
data acquisition (including sensors) and communication infras-
tructure must satisfy. Also, the signal processing techniques
for analysing vibration data are described, including new own
methods (SMSFC, GRSC, and CBF) that are developed within this
methodology. The selected signal processing techniques allow
analysing experimental data both in real time and deferred, ac-
cording to the maintenance or user requirements.

The proposed methodology is applied to a Spanish high-
speed train during its normal operation, recording vibration data
from the axle boxes of a trailer bogie for several years. Vibra-
tion data are collected and processed in designated sections of
the track where the train reaches its maximum speed, as this is

the most critical condition. The digital twin of the bogie is built
based on four pillars: a detailed 3D model, FEM models of key
parts, a multibody model, and the computation of theoretical
characteristic frequencies

The digital twin allows obtaining the natural and character-
istic frequencies of the system in different conditions. On the
other hand, from the vibration measurement processing, sev-
eral graphs are obtained, which allows analysing the operating
state of the train. By combining both results, it is possible to es-
tablish what frequencies correspond to the normal running of
the train and what frequencies could correspond to anomalies
in the train performance. These frequencies will be the input
indicators for the intelligence system, which should be able to
identify the train condition on its own.

Specifically, SMSFC allows focusing on high-amplitude fre-
quency components that are not multipliers of the axle rotat-
ing frequency, like those located at 124.1 and 270 Hz, which cor-
respond to 4.73 and 10.3 times the axle rotating frequency, re-
spectively. The first one corresponds to the SPF, while the latter
matches the BPFO of the rolling bearing.

The use of long-term signal processing techniques GRSC and
CBF for studying the performance of the high-speed train before
and after a maintenance operation confirms that high frequen-
cies are excited by phenomena like wheel corrugation, and they
are reduced when the wheel corrugation is eliminated.
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List of Acronyms

BPFI: Ball Pass Frequency Inner race
BPFO: Ball Pass Frequency Outer race
BSF: Ball Spin Frequency
CBF: Chromogram of Bands of Frequency
CBM: Condition-Based Maintenance
CMM: Coordinate Measuring Machines
EMD: Empirical Mode Decomposition
FEM: Finite Element Method
FTF: Fundamental Train Frequency
GRSC: Graphical Representation of State Configurations
HHT: Hilbert–Huang Transform
HSL: High-Speed Line
HT: Hilbert Transform
ICP: Integrated Circuit Piezoelectric
ICT: Information and Communication Technology
IMF: Intrinsic Mode Function
MLA: Multi-Level Analysis
PSD: Power Spectral Density
RMS: Root Mean Square
SMSFC: Selection of the Most Significant Frequency Compo-

nents
SPF: Sleeper Pass Frequency
SQL: Structured Query Language
UMTS: Universal Mobile Telecommunications System
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Gómez, M. J., Castejón, C., Corral, E., & Garcı́a-Prada, J. C.
(2020). Railway axle condition monitoring technique based
on wavelet packet transform features and support vector
machines. Sensors, 20(12), 3575. https://doi.org/10.3390/s201
23575.

Grieves, M., & Vickers, J. (2017). Digital Twin: Mitigating un-
predictable, undesirable emergent behavior in complex sys-
tems. In F.-J. Kahlen, S. Flumerfelt, & A. Alves (Eds.), Transdis-
ciplinary perspectives on complex systems(pp. 85–113). Springer
International Publishing. https://doi.org/10.1007/978-3-319-
38756-7 4.

Hassan, M., & Bruni, S. (2018). Experimental and numerical in-
vestigation of the possibilities for the structural healthmoni-
toring of railway axles based on accelerationmeasurements.
Structural Health Monitoring, 18(3), 902–919. https://doi.org/10
.1177/1475921718786427.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng,
Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical
mode decomposition and the Hilbert spectrum for nonlin-
ear and non-stationary time series analysis. Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 454, 903–995.

Hyde, P., Ulianov, C., & Defossez, F. (2016). Development and test-
ing of an automatic remote condition monitoring system

https://doi.org/10.1177/0954409716656218
https://www.globalrailwayreview.com/news/21579/alstom-launches-healthhub-an-innovative-tool-for-predictive-maintenance/
https://doi.org/10.1177/1687814016676000
https://doi.org/10.1109/JSEN.2018.2875160
https://doi.org/10.1002/stc.2842
https://doi.org/10.3390/s18030793
https://doi.org/10.1016/j.measurement.2018.11.029
https://doi.org/10.1016/j.jcde.2019.02.001
https://doi.org/10.1016/j.ijpe.2010.07.038
https://doi.org/10.12989/sss.2010.6.9.1079
https://doi.org/10.1016/j.conbuildmat.2014.07.042
https://doi.org/10.1177/0954409712460986
https://www.globalrailwayreview.com/article/74343/predictive-maintenance-safety-efficiency/
https://doi.org/10.1080/09544820600650928
https://doi.org/10.3390/s20123575
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1177/1475921718786427


1620 Methodology for integrating a HST in Maintenance 4.0

for train wheels. IET Intelligent Transport Systems, 10(1), 32–40.
https://doi.org/10.1049/iet-its.2015.0041.

In-Depth Focus: Digital Twins. (2021, April). Global Railway Re-
view, 27(02), 19.

Kans, M., Galar, D., & Thaduri, A. (2016). Maintenance 4.0 in
railway transportation industry. In K. T. Koskinen, H. Ko-
rtelainen, J. Aaltonen, T. Uusitalo, K. Komonen, J. Mathew,
& J. Laitinen (Eds.), Proceedings of the 10th World Congress
on Engineering Asset Management (WCEAM 2015)(pp. 317–331).
Springer International Publishing. https://doi.org/10.1007/97
8-3-319-27064-7 30.

Karakose, M., & Yaman, O. (2020). Complex fuzzy system based
predictive maintenance approach in railways. IEEE Transac-
tions on Industrial Informatics, 16(9), 6023–6032. https://doi.or
g/10.1109/TII.2020.2973231.

Ke, Y., Fan, S., Zhu,W., Li, A., Liu, F., & Shi, X. (2006). Feature-based
reverse modeling strategies. Computer-Aided Design, 38, 485–
506. https://doi.org/10.1016/j.cad.2005.12.002.

Lai, C. C., Kam, J. C. P., Leung, D. C. C., Lee, T. K. Y., Tam, A. Y.
M., Ho, S. L., Tam, H. Y., & Liu, M. S. Y. (2012). Development
of a fiber-optic sensing system for train vibration and train
weight measurements in Hong Kong. Journal of Sensors, 2012,
1–7. https://doi.org/10.1155/2012/365165.

Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014).
Industry 4.0. Business & Information Systems Engineering, 6(4),
239–242. https://doi.org/10.1007/s12599-014-0334-4.

Lebel, D., Soize, C., Funfschilling, C., & Perrin, G. (2019). High-
speed train suspension health monitoring using computa-
tional dynamics and accelerationmeasurements.Vehicle Sys-
tem Dynamics, 58, 1–22. https://doi.org/10.1080/00423114.201
9.1601744.

Lederman, G., Chen, S., Garrett, J. H., Kovačević, J., Noh, H. Y., &
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