
New cross-layer techniques for
multi-criteria scheduling in large-scale

systems

by

Alberto Cascajo García

A dissertation submitted by in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Computer Science and Technology

Universidad Carlos III de Madrid

Advisor(s):

Jesús Carretero Pérez
David Expósito Singh

Tutor:

Jesús Carretero Pérez

December, 2021

This thesis is distributed under license “Creative Commons Atributtion - Non
Commercial - Non Derivatives”.

Dedicado a mi hija, Mía, que con su nacimiento ha conseguido convertir 2020 y 2021 en
los años más especiales que podría imaginar (teniendo en cuenta la situación mundial).
Gracias por tu llegada y por crecer dándonos tantas alegrías como horas de sueño nos

quitas.

Te quiero.

ACKNOWLEDGEMENTS

Gracias. Gracias a todas aquellas personas que han contribuido al desarrollo de esta
tesis, tanto de forma material como en forma de apoyo, ánimo, etc.

De forma más profunda, necesito dar las gracias a una persona muy especial: Irene.
Al término de esta tesis sumamos casi 13 años juntos, casi 5 años de convivencia, más de
un año siendo papá y mamá, y desde el primer día has estado apoyando todo lo que he
querido hacer. Has sacrificado tiempo, horas de sueño, energía y ánimo para que pudiese
dedicarlo a mi trabajo y culminar esta fase. No tengo ninguna duda de que gracias a ti, esto
ha sido más fácil. Sólo lamento no haber estado al 100% los primeros meses de nuestra
pequeña. Las tareas no terminaban y las noches se me quedaban cortas, pero por suerte
todo se calmó y hemos podido vivir juntos lo más maravilloso del mundo. Espero poder
devolverte, de alguna manera, todos esos esfuerzos que has hecho.

También quiero dar las gracias a mis dos directores: Jesús y David. De verdad siento
que habéis sido un gran apoyo, unos guías magníficos, y no sólo en el ámbito de la tesis,
sino también en los aspectos personales. Desde el inicio me he sentido muy arropado y
bien asesorado. Puedo decir con total seguridad que sois dos referentes en cuanto a trabajo,
esfuerzo y dedicación, y los mejores directores que podría haber tenido.

De manera más general quiero dar las gracias a toda mi familia al completo: papá y
mamá, los primeros por derecho. Siempre habéis tratado de darme todo, y para mí, a día de
hoy, “todo” consiste en alcanzar el máximo grado académico, en haber logrado crear una
familia, y el haber labrado el camino para definir mi futuro. Vuestra contribución a todo
esto ha sido clave. Por supuesto, no me olvido de los demás: Nerea, que nos has cuidado y
mimado, y además te has ocupado de quienes te necesitaban en esos momentos tan críticos
(y aprovecho para decirte un enorme GRACIAS por ello también); Yayes que siempre
estáis ahí para todos, pase lo que pase; Iván, gracias a tu apoyo, consejo y las ganas que
me has transmitido de apuntar alto, has ayudado a que mire siempre hacia delante. Tata,
gracias por estar también siempre ahí para aconsejarme, ayudar si era necesario, ser un
apoyo tras la paternidad, etc.; Finalmente, primicos, sobris y allegados (si, va también por
vosotros Rubén y Dani), gracias por contribuir al buen ambiente y alegría que vivimos. Sin
las risas, el buen humor, el meternos unos con otros, etc., la vida sería sería mucho más
aburrida. Tengo la suerte de que nuestra familia está muy unida, nos vemos a menudo, nos
contamos las cosas, ayudáis a aliviar el estrés y nos damos consejos pensando en lo mejor
para las personas. Gracias a todos los fines de semana que pasamos juntos, nos distraemos
e incluso discutimos, nuestro estado de ánimo y nuestras ganas de seguir adelante, todos
juntos, se hacen más fuertes. Y siento que todos me habéis ayudado, de alguna manera, a
terminar todas las tareas que engloban esta tesis. Gracias.

También quiero agradecer los ánimos y las risas que me han transmitido otras tantas
personas, tanto compañeros de despacho, de universidad, compañeros moteros, y a los

iv

Gañanucos, porque sin esas salidas, sin esos chistes y sin esas discusiones, los días habrían
sido mucho más largos y mi mente quizá se habría atascado en varias ocasiones.

Y por supuesto, a aquellos que están siguiendo este largo camino les deseo todo el
ánimo del mundo y, si necesitan algo, saben dónde encontrarme. Esta experiencia me
ha ayudado a ver el nivel de estrés que pueden alcanzar las personas en este campo tan
competitivo, y unas palabras, ánimos, una lluvia de ideas, o cualquier cosa que se salga
de lo normal, por absurdo que parezca, pueden ayudar mucho mentalmente. ¡Contad
conmigo!

“La programación es una carrera entre los desarrolladores, que intentan construir
mayores y mejores programas a prueba de idiotas, y el Universo, que intenta producir
mayores y mejores idiotas. Por ahora va ganando el Universo” - Edward Tufte

“Daría todo lo que sé, por la mitad de todo lo que no sé.” - Descartes

“No te tomes la vida demasiado en serio, jamás saldrás vivo de ella.” - Anónimo

iv

PUBLISHED AND SUBMITTED CONTENT

• A. Cascajo, D. E. Singh, J. Carretero [main author]. “Performance-aware schedul-
ing of parallel applications on non-dedicated clusters”. Published in: Electronics
2019, 8(9), 982; https://doi.org/10.3390/electronics8090982. Ref: [1]

– This publication is partly included in this Thesis in Chapters 3, 4, 5 and 7.

• A. Cascajo, D. E. Singh, J. Carretero [main author]. “Framework escalable para
monitorización y planificación de aplicaciones paralelas”. Presented and published
in: Actas Jornadas Sarteco 2019. ISBN: 978-84-09-12127-4. Ref: [2]

– This publication is partly included in this Thesis in Chapters 3 and 5.

• A. Cascajo, D. E. Singh, J. Carretero [main author]. “LIMITLESS - LIght-weight
MonItoring Tool for Large-Scale Systems”. Published and presented in: 29th
International Conference on Parallel, Distributed and Network-Based Processing
(PDP) 2021. Ref: [3]

– This publication is partly included in this Thesis in Chapters 4, 5 and 7.

• A. Cascajo, D. E. Singh, J. Carretero [main author]. “LIMITLESS - LIght-weight
MonItoring Tool for Large-Scale Systems”. Submitted for approval: MICROPRO-
CESSORS AND MICROSYSTEMS (MICPRO) 2021.

– This publication is partly included in this Thesis in Chapters 4, 5 and 7.

• A. Bustos, A. Cascajo, A. J. Rubio-Montero, J. Navarro, J. A. Moríñigo, D. E. Singh,
R. Mayo-García, J. Carretero [main author]. “Energy Consumption Studies of
WRF Executions with the LIMITLESS Monitor”. Accepted: Latin America High
Performance Computing Conference (CARLA) 2021. .

• A. Cascajo, D. E. Singh, J. Carretero [main author]. “LIMITLESS - Planificación
basada en monitorización”. Presented and published in: Jornadas Sarteco 2021.

– This publication is partly included in this Thesis in Chapters 5 and 7.

• A. Bustos, A. Cascajo, A. J. Rubio-Montero, J. Navarro, J. A. Moríñigo, D. E. Singh,
R. Mayo-García, J. Carretero [Co-author]. “Estudio de consumo energético de las
simulaciones climáticas con WRF usando LIMITLESS”. Published in: Jornadas
Sarteco 2021.

– This publication is partly included in this Thesis in Chapter 3.

vi

• A. Cascajo, G. Gomez, J. Escudero, P. J. García, D. E. Singh, F. Algaro, J. Carretero,
F. J. Quiles [main author]. “Improving Congestion Control through Fine-Grain
Monitoring of InfiniBand Networks”. Submitted for approval in: International
Parallel and Distributed Processing Symposium (IPDPS) 2022.

– This publication is partly included in this Thesis in Chapters 3, 4 and 7.

vi

OTHER RESEARCH MERITS

• A. Cascajo, D. E. Singh, J. Carretero [main author]. “Adaptive scheduling of HPC
applications using malleability and dynamic migration”. Presented and published in:
14th Scheduling for Large Scale Systems Workshop (2019). Ref. [4]

– This publication is partly included in this Thesis in Chapters 3, 5 and 7.

• A. Cascajo, D. E. Singh, J. Carretero [main author]. “LIMITLESS - Planificación
de grano fino basada en monitorización de los dispositivos en tiempo cuasi-real”.
Presented in: Workshop CABAHLA 2021 .

– This publication is partly included in this Thesis in Chapters 3.

Tesis Doctoral

New cross-layer techniques for
multi-criteria scheduling in large-scale

systems.

AUTOR: Alberto Cascajo García
DIRECTOR: Jesús Carretero Pérez
CODIRECTOR: David Expósito Singh

Firmas del Tribunal Calificador

Nombre y apellidos Firma

Presidente:

Secretario:

Vocal:

En Leganés, a de del 202

ix

DECLARATION

I, Alberto Cascajo García, declare that this PhD. thesis titled New cross-layer techniques
for multi-criteria scheduling in large-scale systems and the work presented in it are my
own. I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree at
this University.

■ Where any part of this PhD. thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

■ Where I have consulted the published work of others, this is always clearly attributed.

■ Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this PhD. thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the PhD. thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

ix

This PhD dissertation has been partially
supported by the Spanish Ministry of Sci-
ence and Innovation under an FPI fellow-
ship associated to a National Project with
reference TIN2016-79637-P (from July 1,
2018 to October 10, 2021).

xi

ABSTRACT

The global ecosystem of information technology (IT) is in transition to a new generation
of applications that require more and more intensive data acquisition, processing and
storage systems. As a result of that change towards data intensive computing, there is a
growing overlap between high performance computing (HPC) and Big Data techniques in
applications, since many HPC applications produce large volumes of data, and Big Data
needs HPC capabilities.

The hypothesis of this PhD. thesis is that the potential interoperability and convergence
of the HPC and Big Data systems are crucial for the future, being essential the unification
of both paradigms to address a broad spectrum of research domains. For this reason, the
main objective of this Phd. thesis is purposing and developing a monitoring system to
allow the HPC and Big Data convergence, thanks to giving information about behaviors of
applications in a system which execute both kind of them, giving information to improve
scalability, data locality, and to allow adaptability to large scale computers. To achieve
this goal, this work is focused on the design of resource monitoring and discovery to
exploit parallelism at all levels. These collected data are disseminated to facilitate global
improvements at the whole system, and, thus, avoid mismatches between layers. The
result is a two-level monitoring framework (both at node and application level) with
a low computational load, scalable, and that can communicate with different modules
thanks to an API provided for this purpose. All data collected is disseminated to facilitate
the implementation of improvements globally throughout the system, and thus avoid
mismatches between layers, which combined with the techniques applied to deal with fault
tolerance, makes the system robust and with high availability.

On the other hand, the developed framework includes a task scheduler capable of man-
aging the launch of applications, their migration between nodes, as well as the possibility
of dynamically increasing or decreasing the number of processes. All these thanks to the
cooperation with other modules that are integrated into LIMITLESS, and whose objective
is to optimize the execution of a stack of applications based on multi-criteria policies. This
scheduling mode is called coarse-grain scheduling based on monitoring.

For better performance and in order to further reduce the overhead during the mon-
itorization, different optimizations have been applied at different levels to try to reduce
communications between components, while trying to avoid the loss of information. To
achieve this objective, data filtering techniques, Machine Learning (ML) algorithms, and
Neural Networks (NN) have been used.

In order to improve the scheduling process and to design new multi-criteria scheduling
policies, the monitoring information has been combined with other ML algorithms to
identify (through classification algorithms) the applications and their execution phases,
doing offline profiling. Thanks to this feature, LIMITLESS can detect which phase is exe-

xi

cuting an application and tries to share the computational resources with other applications
that are compatible (there is no performance degradation between them when both are
running at the same time). This feature is called fine-grain scheduling, and can reduce the
makespan of the use cases while makes efficient use of the computational resources that
other applications do not use.

xiii

RESUMEN

El ecosistema global de las tecnologías de la información (IT) se encuentra en transición
a una nueva generación de aplicaciones que requieren sistemas de adquisición de datos,
procesamiento y almacenamiento cada vez más intensivo. Como resultado de ese cambio
hacia la computación intensiva de datos, existe una superposición, cada vez mayor, entre
la computación de alto rendimiento (HPC) y las técnicas Big Data en las aplicaciones,
pues muchas aplicaciones HPC producen grandes volúmenes de datos, y Big Data necesita
capacidades HPC.

La hipótesis de esta tesis es que hay un gran potencial en la interoperabilidad y
convergencia de los sistemas HPC y Big Data, siendo crucial para el futuro tratar una
unificación de ambos para hacer frente a un amplio espectro de problemas de investigación.
Por lo tanto, el objetivo principal de esta tesis es la propuesta y desarrollo de un sistema
de monitorización que facilite la convergencia de los paradigmas HPC y Big Data gracias
a la provisión de datos sobre el comportamiento de las aplicaciones en un entorno en
el que se pueden ejecutar aplicaciones de ambos mundos, ofreciendo información útil
para mejorar la escalabilidad, la explotación de la localidad de datos y la adaptabilidad
en los computadores de gran escala. Para lograr este objetivo, el foco se ha centrado en
el diseño de mecanismos de monitorización y localización de recursos para explotar el
paralelismo en todos los niveles de la pila del software. El resultado es un framework
de monitorización en dos niveles (tanto a nivel de nodo como de aplicación) con una
baja carga computacional, escalable, y que se puede comunicar con distintos módulos
gracias a una API proporcionada para tal objetivo. Todos datos recolectados se difunden
para facilitar la realización de mejoras de manera global en todo el sistema, y así evitar
desajustes entre capas, lo que combinado con las técnicas aplicadas para lidiar con la
tolerancia a fallos, hace que el sistema sea robusto y con una alta disponibilidad.

Por otro lado, el framework desarrollado incluye un planificador de tareas capaz de
gestionar el lanzamiento de aplicaciones, la migración de las mismas entre nodos, además
de la posibilidad de incrementar o disminuir su número de procesos de forma dinámica.
Todo ello gracias a la cooperación con otros módulos que se integran en LIMITLESS, y
cuyo objetivo es optimizar la ejecución de una pila de aplicaciones en base a políticas
multicriterio. Esta funcionalidad se llama planificación de grano grueso.

Para un mejor desempeño y con el objetivo de reducir más aún la carga durante la
ejecución, se han aplicado distintas optimizaciones en distintos niveles para tratar de
reducir las comunicaciones entre componentes, a la vez que se trata de evitar la pérdida
de información. Para lograr este objetivo se ha hecho uso de técnicas de filtrado de datos,
algoritmos de Machine Learning (ML), y Redes Neuronales (NN).

Finalmente, para obtener mejores resultados en la planificación de aplicaciones y
para diseñar nuevas políticas de planificación multi-criterio, los datos de monitorización

xiii

recolectados han sido combinados con nuevos algoritmos de ML para identificar (por
medio de algoritmos de clasificación) aplicaciones y sus fases de ejecución. Todo ello
realizando tareas de profiling offline. Gracias a estas técnicas, LIMITLESS puede detectar
en qué fase de su ejecución se encuentra una determinada aplicación e intentar compartir los
recursos de computacionales con otras aplicaciones que sean compatibles (no se produce
una degradación del rendimiento entre ellas cuando ambas se ejecutan a la vez en el mismo
nodo). Esta funcionalidad se llama planificación de grano fino y puede reducir el tiempo
total de ejecución de la pila de aplicaciones en los casos de uso porque realiza un uso más
eficiente de los recursos de las máquinas.

Contents xv

CONTENTS

1. INTRODUCTION. 1

1.1. Definitions and Scope . 1

1.2. Motivation . 3

1.3. Objectives. 5

1.4. Research methodology. 6

1.5. Structure and content . 6

2. STATE-OF-THE-ART . 8

2.1. Monitoring systems . 9

2.2. Scheduling algorithms . 14

2.3. Modeling, securing and predicting based on monitoring data 20

2.4. Summary . 26

3. SYSTEM ARCHITECTURE AND DESIGN . 27

3.1. LIMITLESS System monitor . 27

3.2. Smart Analytic Component . 32

3.3. Application scheduler . 33

3.4. InfiniBand support . 34

3.5. Cooperation with third-party components . 34

3.5.1. FlexMPI. 35

3.5.2. CLARISSE . 37

3.5.3. ElasticSearch and Kibana . 37

3.6. Summary . 39

4. FRAMEWORK LOGIC AND ALGORITHMS 41

4.1. Performance counter collection . 41

4.2. Monitoring system . 43

4.2.1. Communication between components . 47

4.2.2. Monitoring policies . 48

4.2.3. Fault tolerance . 49

xv

4.2.4. Limitless Daemon Server . 50

4.3. Communication API and Visualization tools 52

4.4. Improving control congestion for InfiniBand networks 57

4.5. Summary . 59

5. ANALYTIC COMPONENT . 60

5.1. Smart analytic support . 60

5.2. Multi-criteria scheduling . 63

5.2.1. Scheduling based on monitoring: Coarse-grain scheduling 63

5.2.2. Scheduling based on monitoring: Fine-grained scheduling 66

5.3. Summary . 69

6. THEORETICAL MODELING. 70

6.1. System monitor model . 70

6.1.1. Communication model. 73

6.1.2. Server workload . 77

6.2. In-node threshold filter. 78

6.3. Fault tolerance . 79

6.4. Simulation model . 80

6.4.1. Simulation model validation . 83

6.5. Communication cost calculator . 84

6.6. In-node threshold calculation . 89

6.7. Summary . 92

7. EVALUATION AND RESULTS. 93

7.1. Monitoring overhead. 93

7.2. LIMITLESS monitoring tool vs Collectd . 95

7.3. Scheduling based on monitoring . 97

7.3.1. Coarse-grain scheduling based on monitoring information. 98

7.3.2. Fine-grained scheduling based on monitoring 108

7.4. Optimizations. 115

7.4.1. In-node analysis optimization . 116

7.4.2. In-transit analysis optimization . 117

7.5. Improving control congestion for InfiniBand networks 131

7.5.1. Platform and experiments description . 131

7.5.2. Results . 132

7.6. Summary . 137

8. CONCLUSION AND FUTURE WORK . 139

8.1. Contribution . 141

8.2. Future work . 142

BIBLIOGRAPHY. 143

List of Figures xviii

LIST OF FIGURES

1.1 Evolution of the internet traffic, data centers workload and energy usage
for the last ten years [7]. The Y-axe represents the growth factor. 3

1.2 Up-to-date graph of Moore’s Law based on a figure by Kurzweil [Steve
Jurvetson, 10 Dec. 2016] [8]. 4

1.3 Flow diagram of the methodology used during the PhD. thesis. 7

2.1 Scheduling in HPC - Exclusive scheduling policy. 16

2.2 Scheduling in HPC - Shared scheduling policy when an application uses
all cores from a node due to the availability of free computational resources. 16

2.3 Scheduling in HPC - Shared scheduling policy when an application uses the
unused cores from various nodes due to their free computational resources. 17

2.4 This taxonomy represents different actions to do with monitoring infor-
mation: displaying the incoming metrics to view the current state of the
system, generating application models for application profiling, creating
a list of trusted applications and send notifications if new application is
detected, and predicting future system and application states to improve
the scheduling task. 20

3.1 General overview of the LIMITLESS architecture and interrelation with
other components (Scheduler, CLARISSE and FlexMPI. 28

3.2 LIMITLESS - Deployment with fault tolerance mechanisms enabled in
the first branch of the topology. 31

3.3 Relation between ES, LA and the application scheduler. 32

3.4 Explanation of how and MPI application is executed in FlexMPI environ-
ment. 36

3.5 ELK stack vs ES + K + LIMIT LES S architecture. 38

3.6 Analytic component - Integration examples. 40

4.1 Top command - Example output. 42

4.2 Systems monitor architecture. 44

4.3 LIMITLESS - Deployment with fault tolerance mechanisms enabled in
the first branch of the topology. 49

4.4 LDS architecture. 50

xviii

4.5 fLASHINg - Visualizing general performance metrics for all nodes regis-
tered and monitored by LIMITLESS. 54

4.6 fLASHINg - Visualizing the CPU heatmap from the nodes registered and
monitored by LIMITLESS. 55

4.7 Kibana - Visualizing general state of the cluster. Each point represents an
aggregation of nodes (bigger sizes represent more nodes, and smaller, less
nodes). 55

4.8 Kibana - Visualizing the general performance metrics for a certain node
with IP 10.0.40.19 in a certain moment. 56

4.9 Kibana - Visualizing the Kibana dashboard which analyzes the data and
provides functions to exploit the information (due to new plugins). 56

4.10 Representation of the pipeline from when the data is collected until in-
structions are sent to the congestion control. 58

5.1 Systems monitor and scheduling architecture for coarse-grain scheduling. 64

5.3 Fine-grain scheduling result - Execution phases where both applications
can share a node. 68

5.2 CPU execution patterns of two random applications that will share a node. 68

6.1 Relation between framework components and the sets defined in the theo-
retical model in Definitions 1 and 2. 71

6.2 Relation between framework components and the sets defined in Defini-
tions 3. 72

6.3 Description of the communication overheads between the framework com-
ponents. It corresponds to the overheads defined in the set of Definitions
13, 14 and 15. 76

6.4 OMNET++. Example with a rack of 20 LDM nodes and one LDS. The
devices in the middle are switches that allow the topology representation. 81

6.5 Screenshot of the SIMCAN Scenario Creator tool. 82

6.6 LIMITLESS Deployment Checker - Example output of the execution of
cmd line 1 without TMR. 86

6.7 LIMITLESS Deployment Checker - Example output of the execution of
cmd line 2 with TMR in mode 1 (no redundancy). 87

6.8 LIMITLESS - TMR connection in the worst case: each component will
send the same information to three next components in the framework. . 87

6.9 LIMITLESS Deployment Checker - Example output of the execution of
cmd line 3 the with TMR enabled and errors due to consuming the network
bandwidth and the maximum nodes that an aggregator or a server can
manage. 89

6.10 Example - Execution of the command-line cmd line 4 based on a monitor-
ing log collected in a real cluster. 91

6.11 Application model - Original Memory and CPU performance of Jacobi
algorithm execution. 91

6.12 Application model - Memory and CPU performance simulated with value
1% in in-node threshold. 92

7.1 LIMITLESS - CPU usage collected during the execution of Jacobi. 97

7.2 LIMITLESS - MEM usage collected during the execution of Jacobi. . . . 98

7.3 Collectd - CPU usage obtained during the execution of Jacobi. 98

7.4 Collectd - Memory usage obtained during the execution of Jacobi. 99

7.5 Schenario A - Coarse-grain scheduling evaluation. Each bar of each
application shows the execution time per 100 iterations. Applications with
striped bars are applications that create interference. Applications with
two bars exhibit change in the execution time due to interferences. 102

7.6 Scenario A - Gantt diagram of the execution when the nodes can be
shared, but the interference detection is not active. The length of diagram
corresponds to the makespan, with a value of 14.889 seconds. 103

7.7 Scenario A - System load using the coarse-grain scheduling policy, includ-
ing shared nodes and interference detection. 104

7.8 Scenario A - System load using shared nodes, but disabling CLARISSE
interference detection. 105

7.9 Scenario A - System load using a typical exclusive policy without shared
nodes and interference detection. 106

7.10 Scenario B - Coarse-grain scheduling evaluation. Each bar of each applica-
tion shows the execution time per 100 iterations. Applications with striped
bars with are applications that create interference. Applications with two
bars exhibit change in the execution time due to interferences. 107

7.11 Scenario B - Gantt diagram of the execution when the nodes can be
shared, but the interference detection is not active. The length of diagram
corresponds to the makespan, with a value of 13.256 seconds. 108

7.12 Distribution of the number of infections with COVID-19 during EpiGraph
simulation for use cases 1 and 2. 109

7.13 EpiGraph use case 1 - Communication during the execution which shows
two waves. 110

7.14 EpiGraph use case 2 - Communication during the execution which shows
one wave. 110

7.15 Use case 1 - Relation between EpiGraph and MG when they are executed
in the same node at the same time (two waves). 112

7.16 Use case 2 - Relation between EpiGraph and MG when they are executed
in the same node at the same time (one wave). 113

7.17 Use case 1 (Node 1) result combining EpiGraph and MG when LIMITLESS
detects compatible phases between both applications. 113

7.18 Use case 2 (Node 1) result combining EpiGraph and MG when LIMITLESS
detects compatible phases between both applications. 114

7.19 Use case 3 (Node 1) result combining EpiGraph and MG when LIMITLESS
detects compatible phases between both applications. 115

7.20 Use case 4 (Node 1) result combining EpiGraph and MG when LIMITLESS
detects compatible phases between both applications. 115

7.21 Synthetic benchmark with three different CPU phases to evaluate the
in-node analysis impact. 117

7.22 A comparison between the number of monitoring packets sent with and
without in-node analysis optimization, including two tolerance values. . . 118

7.23 In-node analysis A - CPU monitored during 24h 118

7.24 In-node analysis A - CPU monitored using 10% tolerance. 119

7.25 In-node analysis B - Memory monitored during 24h 119

7.26 In-node analysis B - Memory monitored using 10% tolerance. 120

7.27 In-node analysis A - Error as difference of CPU performance with/without
tolerance, setting this value un 10% (original figure in Figure 7.24). . . . 120

7.28 LIMITLESS model generation versus top counters. Jacobi algorithm use
case. 122

7.29 Free - Jacobi memory pattern. The total memory consumption is repre-
sented as a percentage of use. 122

7.30 LIMITLESS model generation versus top counters. Scalar Penta-diagonal
solver use case. 123

7.31 LIMITLESS model generation versus top counters. Integer Sort use case. . 123

7.32 LIMITLESS model generation versus top counters. BT-IO use case. 124

7.33 LIMITLESS - BTIO read/write operations over time. The Y-axe represents
the percentage of read/writes with respect to the total. 124

7.34 LIMITLESS model generation versus top counters. Epigraph use case. . . 125

7.35 LIMITLESS - Epigraph communication usage. The Y-axe represents the
communication usage in Kbps. 125

7.36 Performance metrics for Jacobi method executed in an exclusive node. . . 127

7.37 Performance metrics for BT-IO benchmark from NAS Parallel Benchmarks.127

7.38 Use case 1 - CPU use of Jacobi method executed in an exclusive node. . . 128

7.39 Use case 2 - CPU use of two Jacobi instances executing in the same node.
There is I/O interference between them. 129

7.40 Use case 3 - CPU use of BTIO benchmark from NAS Parallel Benchmarks.129

7.41 36-node KNS topology built on the cluster. 132

7.42 portXmitData in node 30. 133

7.43 portXmitWait in node 30. 134

7.44 portXmitData in node 37. 134

7.45 portXmitWait in node 37. 135

7.46 P2PBW+Sync. No congestion (Average). 136

7.47 P2PBW+Sync. No congestion (99%-tile). 136

7.48 P2PBW+Sync with congestion (Average). 137

7.49 P2PBW+Sync with congestion (99%-tile). 137

List of Tables xxiii

LIST OF TABLES

2.1 Key properties of some monitoring platforms. 13

2.2 Machine Learning algorithms studied and tested. 25

3.1 Parameters that can be collected in a monitored node. 30

3.2 Parameters collected in InfiniBand networks. 30

3.3 Parameters collected with IPMITOOL. 30

3.4 Performance counters collected from IBA subnet manager. 35

3.5 Information provided by FlexMPI to the framework for each iteration and
for each process. 36

4.1 Information provided by rstatd process. 43

4.2 Management functions available in LIMITLESS API 53

4.3 Query functions available in LIMITLESS API 54

6.1 Maximum number of packages allowed by CL 76

6.2 Simulation vs Real - Experimentation under different conditions in both
simulated and real environments. Every use case simulates one hour. . . 83

6.3 LIMITLESS - Deployment Checker parameters. 84

7.1 Summary - LIMITLESS monitor overhead under different sampling inter-
vals. 94

7.2 Monitoring overhead with the minimum sampling interval in a compute-
node with Intel(R) Xeon(R) Silver 4214 CPU with 12 real cores, and 24
virtual cores (Hyperthreading). 95

7.3 Monitoring overhead with the minimum sampling interval in a compute-
node with Intel(R) Xeon(R) Gold 6138 CPU with 20 real cores, and 40
virtual cores (Hyperthreading). 95

7.4 LIMITLESS monitor overhead in a local PC. 96

7.5 Summary - Collectd overhead under different sampling intervals in a local
PC. 96

7.6 Use cases characteristics for the evaluation. 99

xxiii

7.7 Example of a workflow that generates interference. T1, T2, T3 are the
execution time per 10 iterations. Overhead represents the overhead of the
migration process measured in seconds. 101

7.8 Summary - Comparison between results obtained in Scenario A and Sce-
nario B with all of the policies. 108

7.9 Accuracy of the different classification algorithms using patterns of 60 and
100 seconds of EpiGraph. 111

7.10 Execution summary of the use cases. Accumulated CPU time for each use
case and scheduling. 116

7.11 Applications modeled by LIMITLESS. 121

7.12 Predictors accuracy at node level monitoring - Accuracy expressed as a
percentage of correct predictions. 130

7.13 Predictors accuracy at application-level monitoring - Accuracy expressed
as a percentage of correct predictions. 130

7.14 Percentage of network traffic saved of all the prediction algorithms, includ-
ing CPU, IO, Memory and Network collected metrics. 131

7.15 Congestion control configuration. 133

Abbreviations xxv

ABBREVIATIONS

LIMITLESS LIght-weight MonItoring Tool for LargE Scale Systems
GPGPU General Purpose Graphic Processing Unit
HPC High Performance Computing
IT Information Technologies
I/O Input / Output
LAPACK Linear Algebra PACKage
MPI Message Passing Interface
OpenMP Open Multi-Processing
SaaS Software as a Service
UC3M University Carlos III of Madrid
NN Neural Network
ML Machine Learning
IP Internet Protocol
PAPI Performance Application Programming Interface
LSDS Large-Scale Distributed Systems
FLOPS Floating Point Operations per Second
LSTM Long Short- Term Memory
ANN Artificial Neural Network
NN Nearest Neighbour
MS Monitoring Systems
MILP Mixed Integer Linear Programming
DVFS Dynamic Voltage Frequency Scaling
CNN Convolutional Neural Network
CCR Cross-Cluster Replication
IBA InfiniBand Architecture
WD WatchDog
TMR Triple Modular Redundancy
API Application Programming Interface
LDM LIMITLESS Daemon Monitor
LDA LIMITLESS Daemon Aggregator
LDS LIMITLESS Daemon Server
ES ElasticSearch
LA LIMITLESS Analytics
fLASHINg LArge Scale Heatmap vIsualizer with Nodejs
KNS KeystoNenesS
AdaBoost AdaptiveBoosting
ANBC Adaptive Naive Bayes Classifier
BAG Boostrap AGgregating
DT Decision Tree
DTW Dynamic Ttime Warping
GMM Gaussian Mixture Model Classifier

xxv

HMM Hidden Markov Models
SVM Support Vector Machine
MAD MAnagement Datagrams
FECN Forward Explicit Ccongetion Notification
BECN Backward Explicit Ccongetion Notification
CC Congestion Control
IBA InfinBand Architecture
GPCNeT Global Performance and Congestion Network Test

Chapter 1. Introduction 1

1. INTRODUCTION

1.1. Definitions and Scope

HPC and Big Data are, traditionally, designed to solve different problems, and that is the

reason why they are built in a different way. At first, the typical HPC infrastructure has the

computation subsystems and the storage decoupled, using a distributed filesystem to store

the data (e.g. GPFS, Lustre). However, Big Data frameworks mix the computation and the

storage in the same node [5].

HPC and Big Data tools and developers are separated, basically because HPC has

been oriented towards computationally intensive problems and are tightly coupled, while

Big Data has been designed towards data analysis in high scalable and loosely coupled

applications. Between both worlds or paradigms, there are different degrees of HPC/Big

Data applications that need intensive computation, storage capability and data management.

Those applications could be executed in both platforms, but none of them is completely

ideal to be run (due to their design) in both development framework, mainly for the

scalability requirements, performance, resource efficiency, etc.

Data intensive applications require a unification of the, traditionally, separated HPC

and Big Data paradigms in order to allow developers and researchers understand better

the results, as well as perform the experiments in an efficient way. As the simulations are

every time more complex, the input, intermediate and output data sets grow noticeably, and

there are new HPC problems that are data-intensive [6]. Moreover, as has been mentioned

before, there are a really close relationship between data-intensive applications and the

necessity of decouple the data and the computation.

For everything described before, researchers are agreeing with the idea that there is a

growing need of those frameworks that deal with problems where HPC performance and

the Big Data flexibility converge. This interest is justified, mainly, by the fact that storage

sharing can help infrastructures to integrate themselves quickly.

Nowadays, in the field of Information Technology (IT) there are two main ways to

operate: Cloud Computing and Cluster Computing. We can say that Cloud Computing is

based on many areas of computer science such as HPC, Grid Computing, Virtualization

and Utility Computing, and Cluster Computing is the way that has been applied with

technical or scientific applications to run more complex tasks like forecast simulations,

which needs more power of computation than general purpose applications. Both ways

1

Chapter 1. Introduction 2

have a similar behavior if we focus our attention in how they solve their problems: they

distribute their work/tasks in many sub-tasks to run them separately and simultaneously in

a computer group, to run the whole tasks more rapidly.

Moreover, the architectures for Cloud Computing are different than for Cluster Com-

puting because they have different objectives and abstraction layers. Cloud Computing

has become a paradigm for delivering services over the Internet, and Cluster Computing

has become a paradigm for researching fields. Monitoring tools for clouds and clusters is

an important task for both providers and clients for many reasons: capacity, resource and

performance planning and management. In this scenario, monitoring activities must be

fine-grained and accurate to operate rapidly and efficiently these platforms, and to manage

their complexity.

In order to guarantee the performance required by the applications (and services in cloud

environments), administrators and developers have to (1) quantify the capacity and the

resources (CPU, memory, storage, etc), and (2) calculate the estimated workload. However,

there are two ways to face the develop of a monitor for cloud and cluster computing

based on what we want to analyze: high-level monitoring is related to information on the

status of virtual platform, and low-level monitoring is related to the status of the physical

infrastructure of the whole cloud/cluster. In our case, we want to understand what is

happening actually in terms of performance, how users use the platform resources, and it

is necessary to obtain this information in soft real time. Analyzing this information, we

could infer system states for (i) resource provisioning, (ii) resource planning, (iii) detection

of system failures, (iv) and other management actions like power off unused machines to

save energy.

To manage such infrastructures in an efficient way, the monitoring tool must support

real or soft real-time operation and must scale up to thousands of heterogeneous nodes,

I/O sub-systems and network topologies. If these requirements are not achieved, system

managers won’t have a global view of their systems.

If the monitoring tool can reach all those requirements and do it in an efficient way, it

will be able to deal with the next generation of clusters and data centers. Besides, it could

be possible to obtain important information about the system and applications (due to the

amount of data collected), providing it in real-time. That information is important, not only

for the user but also for the scheduler. The scheduler could use the information to design

new policies based on the current state of the machines and the available resources at every

moment. It means that the current policies can be improved and new ones can be designed

(for example, allocating applications to nodes with free computational resources).

The scheduler can take advantage of the collected information to allocate the applica-

2

Chapter 1. Introduction 3

Figure 1.1: Evolution of the internet traffic, data centers workload and energy usage for
the last ten years [7]. The Y-axe represents the growth factor.

tions efficiently, relating the profiles of the applications to the available resources on each

machine. If the scheduler receives the application’s performance metrics, it can get the

profile and behavior of each one. Then, the scheduler can select better nodes to execute

one application or execute it in a shared node with other applications that do not produce

performance degradation (interference). This interference between applications means

that, when two (or more) applications are executed in the same compute-node, one (or

more) of them suffers a performance degradation due to de contest to use the available

resources. Hence, detecting this interference is a requirement to design new scheduling

policies for shared nodes.

1.2. Motivation

The growth of the Internet caused an explosion of traffic and data in the world since the

beginning of twenty-first century. As Figure 1.1 shows, the last ten years the traffic and the

data have increased in factors of 12x and 8x respectively. In the past, the traditional way to

store the data consist of a database server, which is a computer with a lot of storage devices

connected, but currently, this idea is unused. The amount of data, its variety, the speed

with which the information is produced, etc., require to distribute the process across a big

infrastructure designed for this purpose. Moreover, if we think about Big Data, the whole

information has to be collected, processed, stored, and analyzed in Large-Scale Distributed

3

Chapter 1. Introduction 4

Figure 1.2: Up-to-date graph of Moore’s Law based on a figure by Kurzweil [Steve
Jurvetson, 10 Dec. 2016] [8].

Systems (LSDS) in a distributed way.

On the other hand, there is an increment of the computing power (which can be seen

in Figure 1.2). We are on the road to the future generation of HPC machines: exascale

computing.

The last years, these two separated paradigms (HPC and Big Data) are in a process of

convergence. The Big Data community wants to use Machine Learning and Deep Learning

algorithms, that are computation intensive algorithms, from HPC. However, HPC users

(who are focused on computation) are seeing how the computation platforms have to deal

with large amounts of data (which is generated by the executing applications), and how

that are becoming a bottleneck of the storage infrastructure.

This convergence is the origin of the idea behind this PhD. thesis: how to know what
is happening in the infrastructure and how to improve the performance of the applica-
tions providing new scheduling techniques based on the holistic view of the platform.
If we can provide solutions for those concepts, users and system administrators could

improve infrastructures and applications to accommodate future hybrid architectures. This

accommodation should imply little effort for reducing the makespan of their tasks. Besides,

one alternative to do it consists of scheduling applications concurrently in the same node.

4

Chapter 1. Introduction 5

1.3. Objectives

The hypothesis that origins this PhD. thesis, as it has been shown before, is based on

the increasing demand for more and more computational resources to face the growth of

Internet traffic, the amount of new data produced each day, and the tendency to provide

Software as a Service (SaaS), instead of desktop applications (or installed applications).

For these reasons, the main objective of this PhD. thesis is to develop a system monitor for

large-scale systems in combination with desirable features, which provide intelligence to

the system and allow improving application scheduling, as well as the understanding of

what happens in the system (both at node and application-level) continuously. In order to

face these challenges, the following objectives have been defined:

• O1. Explore new techniques and abstractions to allow HPC applications the
exploiting of the parallelism, locality, elasticity and adaptability of LSDS. The

idea is to design a monitoring tool capable of making decisions to help applications

run efficiently, identifying where the processes that use the same data are executed,

allocating the best nodes based on the application’s profile, etc.

• O2. Design a monitoring tool to be able to run in heterogeneous and homoge-
neous machines. The idea is to research how to provide the performance information

regardless of the system’s features.

• O3. Explore different techniques to collect information both at node-level and
application-level. A complete monitoring tool for HPC and Big Data should include

different methods to read the performance counters, disable those that are not

detected, and provide as many metrics as possible.

• O4. Design new scheduling policies based on multiple criteria. The idea consists

of improving the current scheduling policies to provide new strategies based on using

Machine Learning and Neural Network algorithms. With these methods, the frame-

work should be able to identify applications, predict their future performance, and

improve the scheduling task based on the data collected, the detection of interference

between applications, and using shared nodes.

• O5. Explore how to bring machine learning and neural network support to the
proposed framework. The plan is to use Machine Learning and Neural Networks to

exploit the information. The framework should be able to recognize applications, pre-

dict their performance, detect interference between their executions, schedule better

the executions, and design topology-aware deployments of the monitor efficiently.

5

Chapter 1. Introduction 6

These objectives are the main goals that this PhD. thesis wants to reach based on the

initial hypothesis.

1.4. Research methodology

The methodology used to develop this PhD. thesis is an empirical and iterative methodology,

which consists of the following steps. Besides, the process is repeated as many times

as necessary depending on the achievement of the objectives previously defined. The

methodology is the following one:

1. Study of the state-of-the-art regarding high-performance techniques for monitoring

and scheduling applications in large-scale systems, as well as their application in

different infrastructures (HPC, BigData, Grids, etc).

2. Analysis of requirements for the strengths and weaknesses found in the previous

study in order to design a proposal that covers the weaknesses detected in the

state-of-the-art.

3. Propose and develop a framework model that is capable of monitoring and providing

support to schedule applications in large-scale distributed systems. Besides, define

new components and features that have not been covered in other similar models.

4. Perform a comprehensive evaluation of the algorithms and tools proposed in point 3,

as well as a comparison with other similar works identified in the state-of-the-art.

The objective is to offer results that can lead to the integration of the proposals in

other systems.

1.5. Structure and content

The rest of the document is divided into the following chapters:

• Chapter 2, State-of-the-art, reviews the state-of-the-art monitoring and scheduling

large scale distributed systems. It also includes HPC techniques that can be applied to

improve scalability and resilience, and other smart techniques to provide intelligence

and visualization features.

• Chapter 3, System architecture and design, presents the developed monitoring

framework and shows its components: a resource collector that is executed in the

6

Chapter 1. Introduction 7

Introduction

Study state of the art

Strengths
and weaknesses

Proposal and development

Evaluation

Research question
Summary of proposal

Literature of the topic and method
Theoretical approach

Evidence of importance
Preliminary findings

Alternatives
What your research will fo

Importance
Results
Contribution

Figure 1.3: Flow diagram of the methodology used during the PhD. thesis.

compute nodes, components that provide scalability retransmitting the information,

a central server that gathers the whole data collected, an analytic component that

executes smart algorithms for allocating the applications (it is done by using new

scheduling policies), and other integrated components.

• Chapter 4, Framework logic and implementation details, presents how each compo-

nent has been implemented and optimized, including its functions and algorithms.

• Chapter 5, Analytic component, shows details about how the framework is able to

identify applications, predict performance and schedule applications dynamically

based on the information collected.

• Chapter 6, Mathematical model, shows the mathematical representation of the

LIMITLESS system monitor, which explains how to calculate the scalability, and

how to design different topologies.

• Chapter 7, Evaluation and results, shows a detailed evaluation of each component,

its performance, the impact of the optimizations, and the results obtained due to the

analytic component scheduling applications.

• Chapter 8, Conclusion and future work, summarizes the results and the contributions

of this work, as well as the future work.

7

Chapter 2. State-of-the-Art 8

2. STATE-OF-THE-ART

In order to put this monitoring and scheduling work in its proper context, I give a brief

overview of some approaches that are representative for the areas of monitoring systems

and application scheduling in large scale systems.

Several studies have attempted to analyze and define the basic concepts related to

large-scale distributed systems (LSDS) monitoring in general, and cloud monitoring in

particular. This is because developers think that monitoring in cloud systems is harder than

in large-scale systems, mainly because monitoring virtual resources is a mayor limitation

in the cloud context. But monitoring high-performance computing (HPC) large-scale

platforms is a difficult task, which becomes more and more challenging as the complexity

and scale of the infrastructure increases. Moreover, managing these kinds of systems is

also a complex task, and, if some components are located in different security domains,

have different configurations or operating systems, it becomes even more difficult.

Before focusing on the background of this PhD. thesis, it is necessary to distinguish be-

tween the different types of monitoring applications in the HPC/Big Data scope. There are

two main groups depending on the monitorization level: node-level and application-level

monitoring systems. The first group collects the metrics from the hardware components,

providing a clear view of how a node (or groups of nodes) is at a certain moment: node-

level performance metrics. This information is useful when the user needs to know how

many resources are available in order to launch more applications, to increase/reduce the

number of processes in execution, or to determine if a node is still running after a failure

sign, for example. The second group is in charge of collecting the performance counters

from applications. This information does not provide a general view of the machine on its

own, but it can be used to check the correct execution of the application, if it is possible to

change the number of resources that it uses, etc. For instance, SLURM, which is a system

that provides job scheduling and cluster managing, provides methods to allocate resources

and monitor job executions, but this task can be improved giving more specific data from

the system and the applications.

LIMITLESS arises from the idea of providing a simple, quickly, and general view of all

machines in a cluster, that can be used to improve other features related to performance:

migrating applications, increasing or reducing the number of processes, scheduling appli-

cations based in user-defined policies, etc. For those reasons, the proposed framework will

try to combine the best of both levels of monitoring: software and hardware levels.

8

Chapter 2. State-of-the-Art 9

2.1. Monitoring systems

Monitoring information in distributed systems (DS) has been addressed through many

approaches and tools from a technological point of view. Exascale requires new monitoring

techniques, such as sub-optimal period scheduling [9] and strong usage of HPC system

statistics [10], to improve the system utilization and reducing the overhead of these tools.

Thus, the effort on developing monitoring tools has been continuous in HPC systems.

Ganglia [11] is one of these tools, which is one of the most used monitoring tools for HPC

systems, such as grids or heterogeneous clusters. However, Ganglia is not designed to be

used for monitoring virtual resources, which is the main challenge in cloud environments.

If the user wants to use Ganglia in a cloud environment, he needs to combine it with other

tools to reach this goal (e.g., sFlow [12]). It uses carefully studied data structures and

algorithms to achieve low overheads and high concurrency levels [13]. It can scale to

manage clusters with 2000 nodes.

Nagios [14][15] is another example, and it consists of an open-source solution for

monitoring compute-nodes and services in a closed network. It is a well-known framework

used to gather monitoring information in large-scale systems, but this approach does not

work in virtual environments, due to the dynamism associated with these systems, and,

typically, the main collected information is related to the availability of the components.

Moreover, one of the main problems using Nagios is its lack of scalability, so, in very

large-scale systems as these systems want to manage, this solution is inadequate to deal

with the monitoring task in the next level of scalability.

The same behavior can be observed in two other well-known systems such as GridICE

[16] and MonALISA [17]. Some researchers think that this lack of functionality is a

limitation [18] but these frameworks were made for monitor large-scale systems (at a host

level), not for cloud environments (with virtual resources). That is why these tools provide

good results on grid platforms, but not in cloud platforms. GridICE is a monitoring service

architecture that provides an entire framework to manage and monitor large mainframe-

style systems (for example, components that collect data and processors of those data).

MonALISA is a set of autonomous subsystems (registered as dynamic services), that are

able to cooperate in monitoring tasks in large-scale distributed applications, and to be used

by other services or clients that require such information.

The TIMaCS project [19] is a hierarchical and scalable monitoring and management

framework for very large computing systems. It reduces the complexity of managing these

kinds of systems by including efficient tools for scalable low-level system monitoring. At

the same time, it increases the quality of the information delivered to the system adminis-

9

Chapter 2. State-of-the-Art 10

trator because it incorporates data analysis to the original data. It allows the administrator

to perform preventive actions or check the state of the whole system. One thing that is not

deeply described is how the authors decided what information is “important”, what is the

overhead of the low-level monitoring component, and the methodology used to analyze the

information and filter it. In this PhD. thesis, LIMITLESS tries to offer the user the whole

possible information and then, delegate to him/her the task of selecting what information

is considered important.

Zenoss [20] is an open-source enterprise solution that allows management, monitoring

and reporting on large-scale systems. Its main objective is to provide features like avail-

ability and performance monitoring, event management and user/alert management. This

tool fulfills the goal of the monitoring paradigm because it makes easier decision-making.

However, related to the fault tolerance, it needs to be configured to prevent the different

single points of failure (e.g., number of nodes per collector, which is also directly related

with the levels of redundancy). In some cases, there are problems because a collector

could fail, and the system status could be wrongly monitored. That is why resilience is

important. Moreover, at the same time as systems increase their complexity (number of

nodes, devices, etc.), Zenoss must be restarted to add the newest platform information to

its configuration.

Some researchers at Los Alamos National Laboratory (LANL) [21] propose some

features that next-generation monitoring systems must have. They have developed their

design and implementation in response to the scale and complexity of the new Trinity [22]

deployment, but this model can be adapted to monitoring other clusters. The monitoring

objectives can be summarized in: (1) the Monitoring System (MS) must cover many

different kind of components such as nodes, file systems, networks, etc.; (2) MS must

provide a large quantity of monitoring information at scale, like management, memory,

storage, etc. (it is important to enable the trend analysis that allows us understanding

the performance of the components in different situations); (3) MS must analyze the

information and capture meaningful data to show the current state of a cluster. In addition,

MS requires a simple but flexible design, because it must be capable of handling big

amounts of data from many different sources to reach a good scalability. Moreover, the

design must be also modular because, in order to monitor all kind of large-scale systems,

the MS must allow integration, reconfiguration, and removal heterogeneous components

quickly and dynamically.

Collected [23] is an application that runs as a daemon, which collects system and

application performance metrics, also providing mechanisms to store the collected metrics

in different ways. It is developed in C for performance and portability, it provides effective

10

Chapter 2. State-of-the-Art 11

networking features and is extensible (it allows the integration with other components). Its

main limitation is that monitoring function is so far limited to simple threshold checking,

and the developers recommend using Collectd in combination with Nagios to show more

details related to machine states, times since power on, workloads, etc.

DIMON [24] is a monitoring tool designed to provide information from decentralized

edge-computing networks. In this kind of clusters, end-users can actively collaborate in

the self-provision of network services. Actually, monitoring these systems is really hard

because the network and the number of devices constantly change. Due to the partitions

of the network and the changes in the monitoring servers, there are frequent failures in

the monitoring system, which produce a lack of information from different parts of the

network. The main information provided by the monitor is related to the number of devices

and the network state. From the performance point of view, there is no information about

the overhead in the CPU in each device. DIMON also provides general information about

the network traffic overhead between different phases during monitoring. However, there

is not a certain value to know the impact of the monitorization in the devices.

The Supermon architecture is presented in [25]. It describes a flexible framework for

cluster monitoring. It is an old proposal that describes how to monitor Linux machines

based on the system call sysctl(). This work is useful because it introduces how the tool

gets the performance metrics from three sources: /proc, rstat and sysctl(). The first one is a

special filesystem used by the Linux kernel to store its information. The second one is a

routine that gathers statistics from the Linux kernel. Finally, the third one performs different

operations in the Linux kernel (e.g., visualizing performance metrics). The comparison

between those three methods shows that the third one is faster than the others, but there is a

limitation: the amount and richness information provided. However, the results show that

it is possible to monitor a system with reduced sampling rates with an acceptable overhead,

showing patterns that would not be seen on coarse-grained monitors. Supermon uses a

data protocol based on symbolic expressions and can be executed in individual nodes or in

entire clusters. This reason allows the author to state that this framework is scalable and

can run in heterogeneous clusters, but there are no proofs of executions in LSDS.

Distributed Modular Monitoring system (DiMMon) [26] is another framework for

monitoring distributed systems. Its main characteristics include: the collected metrics can

be sent in different ways (depending on the purposes), the parameters of the nodes can be

dynamically updated (reconfiguration), and it has the capability of calculating performance

metrics of an individual job while data is being collected. The main issue is how the

architecture has been described, where each monitored node is connected to others, and

all of them send and receive messages between them to store and share the information.

11

Chapter 2. State-of-the-Art 12

Finally, another important feature of DiMMon is that each node can be different, with

different tasks and metrics, improving the adaptability of the system to the applications

and the users.

The next related work is not a monitoring tool per se. In [27] the authors present

XDMoD, a complex and complete visualization tool that includes a component to transmit

collected information from the nodes to the application domain. Then, the application pro-

vides charts and reports per job that are interesting for administrators and users. However,

it needs a component to monitor the machines and collect the information. The key of this

project is that it provides (due to external monitoring components) views and reports of

the collected information. After a poll, users coincide that those views were interesting.

In the same way as the last described work, Graphite [28] is a processor and visualizer

of the incoming metrics, which should have a specific format. The creators describe

it as an open-source time-series metrics monitoring system. However, the application

does not monitor any system, but only obtains the monitoring information from external

components. The point of this application is the combination with other tools to provide a

complete monitoring framework: a metrics collector, a data transmitter, and a visualizer.

CloudWatch [29] is a private tool developed by Amazon for DevOps. It collects

monitoring data in the form of logs, metrics, and events, providing a unified view of AWS

resources, applications, and services running on the servers. Thus, it provides a global

view of the available resources, applications and services that are running. Besides, it can

be used to detect anomalies and to define alarms (or events). And this work is also useful

because many of these features are required by administrators and users. Note that the

anomalies have different grades of interest, and the users need to define their own advices,

alarms and management rules.

HP OpenCall reinforces the idea of creating a monitoring framework (a set of tools

that provide performance information in different platforms) instead of a monitoring

application. It includes a set of more than 50 software tools that cover the majority of

the administration issues in IT areas. The project started 30 years ago and then, HP has

included different tools to extend the offered functionalities. Its objective is to simplify the

performance management and the availability of the systems. However, the user interfaces

are based on Unix and the graphics do not seem to be smooth enough (many users discard

its utilization because of its UI). Moreover, for a given action (e.g., plot the time series,

set some parameters, post-process the information, etc.) it is necessary to access a certain

application because each one runs independently (instead of running in a coordinated way).

Finally, other commercial tools are used in large-scale environments. One of the most

famous tools is IBM Tivoli Monitoring [30] which is a set of service components to

12

Chapter 2. State-of-the-Art 13

monitor the performance and availability of distributed operating systems and applications,

focusing on the physical resources (it can be used in clouds in combination with Tivoli

Monitoring for Virtual Environment tool [31]).

Table 2.1: Key properties of some monitoring platforms.
Pl

at
fo

rm

Sc
al

ab
ili

ty

E
la

st
ic

ity

A
da

pt
ab

ili
ty

E
xt

en
si

bi
lit

y

R
es

ili
en

ce

A
va

ila
bi

lit
y

R
ep

or
tin

g

D
ep

lo
ym

en
t

A
pp

.p
ro

fil
in

g

D
yn

am
ic

re
co

nfi
gu

ra
tio

n

E
ve

nt
de

te
ct

io
n

Sm
ar

ta
na

ly
tic

s

Sc
he

du
lin

g

Ganglia [11] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nagios [32], [33] ✓ ✓ ✓ ✓ ✓ ✓

MonaLisa [17] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GridICE [34] ✓ ✓ ✓ ✓ ✓ ✓

TIMaCS [35] ✓ ✓ ✓ ✓ ✓ ✓

Zenoss [20] ✓ ✓ ✓ ✓ ✓ ✓

Collectd [23] ✓ ✓ ✓

Collectl [36] ✓

Supermon [25] ✓ ✓ ✓

DiMMon [26] ✓ ✓

XDMoD [27] ✓ ✓ ✓ ✓ ✓ ✓ ✓

CloudWatch [29] ✓ ✓ ✓ ✓ ✓ ✓ ✓

HP OpenCall [30] ✓ ✓ ✓ ✓ ✓ ✓1

IBM Tivoli [31] ✓ ✓ ✓ ✓ ✓

Table 2.1 shows a summary of the studied monitoring tools and their main features that

are interesting in HPC environments. As it can be seen, it shows information about sixteen

monitors and/or monitoring frameworks, and the main identified features are described

below. The scalability refers to the ability to accommodate larger loads just by adding

resources or making hardware more powerful. Elasticity is the ability to dynamically

fit the resources needed to cope with high loads. Adaptability is the ability of a process

to continue its execution when changes that can affect its functions are made in the

system. Extensibility indicates the ability of a software to extend its functionality (for

example, include support for new components) and the effort that the integration with the

new components requires. Resilience is the ability of a software to absorb the negative

impact of a potential problem, while continuing to provide its service. Availability is the

probability that a system can continue its execution in the event of a failure. Reporting is

the feature that provides useful and summarized information to the user, in a report, in a
1Among all of its applications, there are some post-processors that can be identified as “analytic” but it is

not included.

13

Chapter 2. State-of-the-Art 14

file or whaterether other method, automatically.

There are other useful features depending on the monitoring objective. The feature

called deployment includes an easy way to deploy the monitor over the whole cluster

without spending time doing manual configurations or coordinating the system components.

Application profiling refers to the capability of providing application models and their

characteristics from their executions. Dynamic reconfiguration refers to he capability of the

monitor to update its parameters without restarting (it means that there is no need to stop

the monitoring service, make the changes and deploy it again). Sometimes, administrators

do not need monitoring tools that collect all data every time interval. For this reason, it is

interesting the concept event-driven monitoring. It refers to a monitoring mode that only

detects and sends notifications when an event occurs (events that should be configured by

the monitor administrator), and these events can be, for example, thresholds defined for

certain performance metrics, specific applications in execution, etc.

2.2. Scheduling algorithms

This PhD. thesis tries to face, as well as the large-scale cluster monitoring, the problem

of optimizing the overall throughput of a set of applications executed on a cluster. The

optimization is done by means of taking advantage of the monitoring information to (1)

design new scheduling policies and (2) provide dynamic multi-criteria scheduling. This

multi-criteria scheduling refers to new application scheduling algorithms that optimize

more than one variable (e.g., makespan and communications. In this case, the algorithm

will try to minimize the total execution time, while allocate applications that perform a lot

of communication in nodes that are topologically far each other). To have a clear view of

the state of the art on application scheduling, a study of the existing research works has

been done.

This PhD. thesis will also present LIMITLESS, a monitoring and scheduling framework

that shows closer coordination between the monitor and scheduler. Both components are

coordinated and work together to improve the scheduling process based on the monitoring

performed at system and application levels. The objective is to determine if there is

performance degradation when more than one application is sharing multicore processors

during HPC workloads executions [37], and if those executions produce performance

hotspots. Finally, to manage these potential cases of performance degradation and hotspots,

a new scheduling policy has to be defined to mitigate the effect of the contention produced

by that shared-nodes [38], and trying to reduce poor scaling conditions.

Schedulers are focused on optimize three main variables: fairness, utilization and dy-

14

Chapter 2. State-of-the-Art 15

namicity (FUD). However, generally, scheduling consists of, taking a queue of applications

and a list of computational resources, executing all the applications using all the available

resources to complete de execution as early as possible (in other words, to reduce the

makespan), taking into account the scheduling strategies specified by the administrator

(scheduling policies and, in some platform, the user hints). The way to find the optimal

solution with the existing number of resources and application executions submitted by

the users depend on the software used (for example Slurm [39]), but the procedure is

conceptually the same. Figures 2.1, 2.2 and 2.3 show an overview of how the scheduling

process is carried out. The first one schedules applications based on an exclusive policy

(Each application will run on a single node unless the number of processes is greater than

the cores of the compute node. In that case, more than one node will be used). The next

two figures show scheduling based on a shared policy, where applications can share nodes

to leverage the computational resources that one of them does not use.

When a set of applications has to be scheduled, the first step starts when the users

submit their applications and the related resources requited by the applications (arrow 1 in

figures). Then, the scheduler puts those applications in queues and evaluates the available

resources, nodes or cores, depending on the policy used (bracket 2 in figures). Finally,

when the scheduler has identified the nodes where an application can be run, it deploys

the application based on the requested and available resources on each node (arrows 3

in figures). In Figure 2.1, an application can be run in one node, and the scheduling

policy is exclusive. So that, the scheduler searches free nodes and runs the application

on them. Figures 2.2 and 2.3 show the same use case, but in the first figure, there is one

node that has available all the computational resources that the application needs. So that,

the scheduler runs the application on that node. However, in the second figure, the first

three nodes have enough resources to run the application, and the scheduler distributes

the application processes between those nodes. In this case, the resources are used more

efficiently, although there is a risk that the applications may interfere (there is interference

between two applications if one of them, or both, suffers performance degradation when

they are sharing a node) with each other, generating interference and degrading their

performance (for example, two numerical memory-intensive applications which heavily

use the memory hierarchy will generate interference at cache level).

In [40] the authors present a new proposal for a static scheduling policy for n periodic

applications, which consists of periodic tasks on time-critical completion time. This solu-

tion uses the information about the applications once they have been executed. However,

in future executions of the applications, if there is any variation in the parameters or

configurations, the scheduling result could not be optimal. The algorithm used to find the

optimal solution is based on an improved Mixed Integer Linear Programming (MILP). The

15

Chapter 2. State-of-the-Art 16

SCHEDULER

Node 1 Node 2 Node 3 Node N…

Applications

B B F B B B F F
F F F F B B B B
B B B F F F B B
B B B B B B F F
F F F F F F B B
B B B B B B B B
B B B B B F F F
F F F F F F F F

Bitmap of free nodes
App1

1

2

3

Figure 2.1: Scheduling in HPC - Exclusive scheduling policy.

SCHEDULER

Node 1 Node 2 Node 3 Node N…

Applications

0 0 12 4 5 1 4 0
6 4 6 6 6 12 12 12
6 6 6 4 8 12 12 12
12 12 12 12 12 12 12 12
12 12 12 12 12 1 12 12
12 8 6 4 12 12 12 2
0 0 0 0 12 12 12 12
12 12 12 12 12 12 12 12

Bitmap of free cores
App1

12 proc

1

2

3

Figure 2.2: Scheduling in HPC - Shared scheduling policy when an application uses all
cores from a node due to the availability of free computational resources.

scheduling policies designed in LIMITLESS differs because it performs real-time schedul-

ing based on monitoring, and our framework can schedule both periodic and non-periodic

tasks. However, it is possible that the solution won’t be optimal because of the lack of

complete application information.

In the same way, authors in [41] present a related work on energy-aware scheduling

based on genetic algorithms. They describe this solution as Hybrid Genetic Algorithm

(HGA) because they mix a classic genetic algorithm with a stochastic evolution algorithm

to take into account the DVFS information in the scheduling process. Sometimes, a certain

optimization problem is not polynomial or linear, which means that it cannot be exactly

solved. For this kind of problem, approximation algorithms must be used. Using Machine

16

Chapter 2. State-of-the-Art 17

SCHEDULER

Node 1 Node 2 Node 3 Node N…

Applications

6 4 12 4 5 1 4 0
6 4 6 6 6 12 12 12
6 6 6 4 8 12 12 12
12 12 12 12 12 12 12 12
12 12 12 12 12 1 12 12
12 8 6 4 12 12 12 2
0 0 0 0 12 12 12 12
12 12 12 12 12 12 12 12

Bitmap of free coresApp1
2 proc

1

2

3
App1
6 proc

App1
4 proc

Figure 2.3: Scheduling in HPC - Shared scheduling policy when an application uses the
unused cores from various nodes due to their free computational resources.

Learning and Artificial Intelligence algorithms is one of the main hot topics for solving

optimization problems.

In [42] the authors exploit modern many-core processors with parallel computing tech-

niques based on threads such as OpenMP and Pthreads. They describe a new methodology

to reduce the penalty of the NUMA effect in specific HPC computational operations (linear

algebra HPC operations), using dynamic load-balancing. This work has been considered

relevant because this solution could be integrated with other monitoring and scheduling

frameworks, providing workload balance between the different parallel applications. In-

tegrating this related work could improve the scheduling process in standard application

schedulers.

Following this researching line, a solution based on a distributed systems monitoring

combined with prediction is proposed in [43]. The main interesting feature of this work is

that this solution is able to determine what is the best set of compute-nodes to execute a

certain application, taking this decision based on the information provided by a monitoring

tool and the prediction performance algorithms. Hence, the scheduling is based on

predicting the immediate future state of the cluster, and distribute the applications in

the nodes that have the predicted better performance.

In [44] authors proposed a co-scheduling (which means that the solution will work

in coordination with the original application scheduler) inside the Linux kernel for bulk

synchronous parallel applications. However, this proposal is not based on monitoring

computational resources but on integrating them. A similar work that includes monitoring

information in co-scheduling is proposed in [45]. It uses the CPU and memory performance

metrics to improve energy efficiency and the overall throughput of a supercomputer when

17

Chapter 2. State-of-the-Art 18

intensive applications are running in the same node. Another work in this field is [46],

which uses monitoring information to provide profiling of HPC applications to take it into

account for co-scheduling.

Sedighi et al. describe their proposal to improve the FUD process in [47]. Their solution

is based on the assumption that a scheduler should optimize three different parameters:

fairness, utilization and dynamicity (FUD). This work presents how to balance scheduling

parameters in shared HPC platforms. However, there are other alternatives that propose

hybrid scheduling algorithms based on monitoring heterogeneous and large-scale clusters

[48], [49].

Other alternatives are Tetris [50] and LoTES [51], which consider the CPU, memory,

network bandwidth and I/O performance to improve the cluster efficiency and reduce the

execution time of the application stack: makespan. Tetris uses its own shortest-running-

time-first algorithm to trade-off cluster efficiency for speeding up individual jobs, and

the results are obtained in a 250-node cluster. The second solution uses combinatorial

optimization techniques to get the optimal scheduling by matching the best dispatch of

jobs between machines based on profiling, and then a linear programming model is used to

maximize the system capacity.

Currently, malleability is one of the main topics in HPC and Cloud computing, but it is

more interesting in virtualized environments (because moving virtual machines is more

difficult than processes). A framework that provides elasticity (malleability) for existing

MPI applications in these environments is proposed in [52]. This framework also includes

performance monitoring for resources. In this case, MPI jobs can share compute-nodes,

but If interference between the jobs is detected between jobs, one of them is terminated

and a new program is restarted on a different number of instances. This work contributes

including malleability in the scheduler, which allows it to dynamically manage the re-

sources that the executing applications are using, redistributing those resources between

the applications based on the scheduling policy decisions. This work is similar to one of the

LIMITLESS features. In the case of LIMITLESS, it does not kill the jobs. The malleability

implemented blocks the execution of a process and restarts it in a new job created in other

node (migration). This process requires waiting for a certain time, depending on the cluster

characteristics and the problem size. Note that there is a timesaving in LIMITLESS because

the jobs are not killed but paused.

In [53] authors describe another proposal focused on clouds environments to provide

elasticity for high-performance applications. Its differentiation factor consists of providing

elasticity for high-performance applications avoiding the necessity of modifying the

original source code. This is an interesting proposal because the authors combine it with

18

Chapter 2. State-of-the-Art 19

policies to increase the resources for the oldest running applications. The throughput

increases reaching ranges of 26%.

Authors in [54] [55] explain how their solution, which is a control layer over MPI

library, reduces the energy consumption by moving or re-sizing the applications. This

solution implies that some syscalls used in the applications should be changed for new

function calls. The provided API allows the applications to dynamically increase or reduce

the number of processes. It means that one application is able to reduce its processes in

one node and create more in other nodes. Moving applications consists of removing all the

processes of an application in one node and creating new processes in another node. The

relationship between the number of processes and the energy consumption is important

because this work allows designing new scheduling policies based on application migration

to reduce energy consumption.

Scheduling applications in sharing-node environments has an important problem: the

interference between applications that are running in the same node. In [56] the authors

propose a methodology to provide scheduling in HPC clusters that allow sharing nodes,

based on detecting contention between jobs when they are executed at the same time on

the same compute-node. The point is that they use a virtual HPC cluster, where jobs are

executed using virtual machines that can be moved between different nodes. The problem

is that the performance penalization is high, generating performance degradation in the

jobs (in comparison with the time spent by the jobs without migration). Besides, the

scheduler does not take into account the contention effects in the decision process (the

interference-related time could be lower than the migration time), and the migration has

to be done in certain execution phases (instead of at the moment when the interference is

detected).

Another proposal related to the malleability feature is presented in [57], which includes

a mechanism to increase and decrease the parallel processes in execution. To do it, the

system migrates the task, performs dynamic load balancing, and uses shared memory and

checkpoint-restart. However, the described scheduler doesn’t include interference-aware

features because the authors assume that each MPI process has dedicated resources.

The idea of combining the scheduler with the monitoring information in real-time

has not been considered in many works, including if the inclusion of malleability and

autonomous decision-making is taken into account. HPC monitoring and analytics for

intelligence resource allocation is a very old field [58]. There is also studies about the

dynamic reconfiguration to avoid contention. However, these solutions have not been

extensively applied. It means that a new solution which includes these ideas can fill this

gap by providing a full monitoring and scheduling framework that can, autonomously,

19

Chapter 2. State-of-the-Art 20

Monitoring information

Display current
state

(Visualization)

Application
modeling

(Identification)

Securing
(trusted

applications)

Predicting
(optimizations
& scheduling)

Figure 2.4: This taxonomy represents different actions to do with monitoring information:
displaying the incoming metrics to view the current state of the system, generating
application models for application profiling, creating a list of trusted applications and send
notifications if new application is detected, and predicting future system and application
states to improve the scheduling task.

manage the system with better throughput than static scheduling approaches.

2.3. Modeling, securing and predicting based on monitoring data

One way to increase the performance of the application (and maximize the system usage)

consists of providing details about the execution of those applications. Figure 2.4 shows

a brief taxonomy of different actions that can be performed with monitoring data. The

first use is to visualize the information collected to provide a global view of the current

(or historical) state of the system. The second application is to use the information to

generate models of the applications that have been running, which involves the applica-

tion identification and profiling. The application models can be used to recognize new

executions of the same application (including when there are minimal variations), and to

improve the application scheduling due to the possibility of executing at the same time,

and in the same node, applications with different profiles (assuming that there will not

be interference between them). The third use is related to security, which uses the list of

applications identified by the scheduler to create a list of trusted applications. The idea is

to send notifications to the administrators when unknown applications are running. This

does not mean that the detected applications are malware, but it is another security layer.

This security layer will be more accurate as new applications are added to the list of known

applications). Finally, the monitoring information can be used, in combination with new

algorithms and techniques, to provide predictions about the future states of the system,

which can be used to optimize the communications, or to improve the scheduling process

20

Chapter 2. State-of-the-Art 21

algorithms. This is carried out taking into account, not only the current state and available

resources, but the future state. Some related works about these topics are presented below.

Many applications have different phases during their executions. It means that each

application shows a performance that depends on the time. Due to this, in [59], the authors

have focused on how to provide dynamic application profiling based on the information

collected by an application monitor. Typically, these kinds of monitoring tools exhibit the

same hierarchical architecture and methodology to obtain the system performance metrics:

collecting performance counters at a node level and, then, sending the data to centralize

the whole information, either in a database, a file, or discarded it. Once the information is

centralized, different algorithms are used to exploit the data to generate knowledge about

the application behavior (such as profiles, models, predictions, etc.). Currently, there is

another step in that methodology that consists of using the application profile to improve

the application scheduling.

Another monitoring framework for applications (tasks and jobs) is presented by Rohl

et al. in [60]. The name of this framework is LIKWID. Its architecture is similar to

another monitor described in [61] because the system is hierarchically organized with the

same objectives and with the same components: there is a monitoring tool (Diamond),

InfluxDB as database (which is non-SQL), and Grafana, which is in charge of visualize

the performance data. However, the difference is that this solution is oriented to small and

medium-sized clusters because authors don’t provide tests in large-scale systems.

Another example of application scheduling based on system monitoring is [27], where

the authors focus on the post-processing of the Slurm log file, with the objective of

extracting certain information and generating reports for the users. From the user’s point

of view, this solution provides important information about their apps. However, the

scheduling process is based on the resources allocated for each application, instead of

the real application performance. In contrast, LIMITLESS includes monitoring in two

levels and provides dynamic scheduling (instead of post-process the data to take future

decisions).

In the same area but including new algorithms, there are related works focused on

combining monitoring with machine-learning techniques for different purposes. The

following examples describe the different related works, starting with Yu et al. [62], which

presents an article that explains how to combine network monitoring with prediction

algorithms to design cross-layer security algorithms for intrusion detection. The proposal

of Rashti et al. [63] tries to reduce the energy consumption in a certain network (based

on wireless sensors) using prediction models. Their idea consists of reducing the power

consumption of the sensors that will be inactive, and those sensors are the results of a

21

Chapter 2. State-of-the-Art 22

prediction algorithm trained with the historical data. In the next related work [64], Tang et

al. propose the utilization of the Support-Vector-Machine (SVM) algorithm to predict the

future state of the bridges that are monitored. Xiaobing et al. [65] provide an evaluation

that shows the benefits of real data exploitation. They made a study of a gas tunnel, and the

predictions prevent gas leaks. It is possible due to predicting based on the monitoring data

and using machine learning algorithms. This work also includes a detailed methodology

description and an exhaustive evaluation of the prediction accuracy. In the same way

as the last work, [66] presents a combination of monitoring and predicting algorithms,

but adapted to wired network transmission line sag. In this case, the predictions try to

advance what will be the movement of those studied wired lines. Finally, in [67] the

authors presented a method to apply the machine learning Nearest Neighbor algorithm [68]

to make predictions using an unprocessed dataset so that the algorithm could be adapted to

any kind of monitoring data, potentially providing good predictions.

In the follow we provide a overview of different prediction techniques based on machine

learning. Note that the field of many of the works is not related to this PhD. thesis, but the

ideas provided in these works can be extended to application and system modelling. In

[69] the authors use Long Short-Term Memory (LSTM) networks to predict stock market

prices. It is an artificial recurrent neural network for deep learning applications. With that

algorithm, this work describes a prediction model and a series of experiments that obtain

up to 55.9% of accuracy.

In [70] the authors point out the importance of glucose control for diabetes management.

Recently, deep learning has been applied in healthcare and medical research, and this

work presents a deep learning model that can forecasting glucose levels in simulated and

real patient cases. This proposal is designed to run on Android devices. However, it is

important to know that the authors have compared the performance of their application in

a smartphone with a similar application in a laptop, reducing the execution time for similar

results in a 100 factor.

Another related work in medical research is [71], that uses neural networks to predict

the tumor category. In this case, an Artificial Neural Network (ANN) model has been

developed based on the Multilayer Perceptron Topology and uses the medical data to

classify the tumor. In this case, the ANN has been trained using a real dataset from the

Institute of Oncology of Ljubljana, Yugoslavia, and the model is able to predict the tumor

category with 76.67% of accuracy.

The authors in [72] present a novel method for predicting the evolution of the students

in online courses. The idea is to collect all possible data from the user when it is studying

(student-lecture, video-watching, clickstreams, etc.) to provide that to a time series neural

22

Chapter 2. State-of-the-Art 23

network. The objective is to predict how is the evolution for each student to adapt the

teaching-models as early as possible. With this proposal, the evaluation on two datasets

shows positive results, detecting better the course baseline (compared to the calculation on

the past years) by more than 60% in the first dataset, and more than 15% in the other.

In [73] authors state that various computational models have been proposed to predict

protein-protein interactions (PPIs) automatically. However, they claim that the problem

is still far from being solved. Lab experiments are expensive and are limited by certain

experimental protocols. It means that simulations or predictions are needed, and that is why

the authors proposed a new model based on neural networks (NN) called Ensemble Deep

Neural Networks (EnsDNN). This model predicts PPIs based on different representations of

amino acid sequences. The evaluation of the model has been done with six PPIs, achieving

an accuracy of 95.29%, sensitivity of 95.12%, and precision of 95.45% on predicting the

interactions. In this case they have to use a NN ensemble because each NN recognizes

one type of interaction. For this reason, to predict if the input data is correct or not, a

combination of NN is needed.

Big Data techniques and algorithms have reached a big important in biomedical and

healthcare communities. However, the analysis accuracy is reduced if the medial data is

incomplete. In [74] the authors propose new machine learning algorithms for predicting

chronic diseases. The novel of this proposal is that they use the medical data in combination

with information about the historical medical characteristics of certain regions to improve

the accuracy. The experimentation has been done over real-life data collected from China

in 2013-2015. Moreover, to deal with the incomplete data, the authors use a latent factor

model to reconstruct that missing information. The solution is based on a Convolutional

Neural Network (CNN), and compared with other prediction algorithms, the accuracy is

around 95%.

Prediction and forecasting can be used in many fields. The study in [75] describes the

utilization of some machine learning algorithms to predict the drilling rate of penetration

(ROP). The behavior of this variable is unique to specific geological conditions, so that,

its application is not simple. Besides, other factors can produce variations in ROP (for

example, the rotation rate, the bit type, etc.). Those characteristics transform the single

variable prediction into a multi-variable problem. The authors evaluate different algorithms

and provide results for all of them: “artificial neural networks (ANN) based on multi-layer

perceptron (MLP), ANN with a radial basis function (RBF), support vector regression

(SVR), and hybrid MLP optimized with a particle swarm algorithm (MLP-PSO)”. All the

algorithms predicted ROP accurately, being MLP-PSO the best.

Many of current related works perform predictions over one variable. In a different way,

23

Chapter 2. State-of-the-Art 24

[76] proposes a multi-variable gray predictor model (GM). This multi-variable grey model,

based on the dynamic background algorithm, improves the forecasting performance on a

certain number of sequences. The novelty here is the defined matrix of the multi-variable

grey model, that can predict well the minimum and maximum values of the future interval.

This work is important because other single-variable algorithms could be adapted to take

into account multiple variables following the steps described in the paper.

Other multi-variable machine learning algorithm has been described in [77], and the

objective is to improve the energy efficiency of the GPU applications based on monitoring

information. The algorithm manages the GPU DVFS and the number of active slices.

Then, its multi-rate predictive control, based on its predictions, is able to reduce the energy

consumption in GPU (up to 25%) in the experiments.

In the same way, [78] introduces a novel method of using Hill Climbing algorithm

(HC) for optimizing a multi-variable problem and a very large search space. The problem

of HC algorithm is that it cannot be applied to tune the objective-variable in the use case

because it has three parameters to be tuned. Hence, the HC algorithm has been modified to

include two dynamic variables to make the prediction search faster. This work is interesting

because the collected information is very large, and deal with it is a challenge.

In [79] the authors present a new machine learning algorithm that combines Random

Forest algorithm with a modified AdaBoost algorithm to classify tumors from the MRI

Brain tissues. The medical images are the input for Random Forest and AdaBoost to

improve the accuracy of the classification. Besides, ANBC algorithms have been used in

[80] to train offline foot contact detection and perform analysis in real-time. The authors

obtain an accuracy around 95%, which means that this algorithm works well in real-time

environments.

Other studies work with Softmax algorithm and others, as [81] conclude that this

algorithm works well with datasets that are linearly separable. In [70], [82]–[84] different

studies based on machine learning algorithms like BAG and Random Forest, Decision Tree,

HMM and DTW are shown. This work includes a description of the different algorithms,

the results, and comparisons between other solutions using different datasets. Note that

all of these related works train the algorithms offline and use meta-algorithms to create

better datasets. Using this information, it is possible to adapt our algorithms to the datasets

depending on the strengths of each one. [85] describes how to use the KNN classifier to

detect potential COVID-19 infected patients. This algorithm is interesting because of its

simplicity and the accuracy reached when working with datasets without noise.

For multi-dimensional datasets, [86] describes how to adapt GMM classifier to identify

different features in the speech in different languages. This solution is an alternative of

24

Chapter 2. State-of-the-Art 25

NN used in this work. Finally, in [87] the authors describe an approach that integrates

genetics algorithm (GA) with support vector machine (SVM) classifier and particle swarm

algorithm for software fault prediction. The work’s strengths are its accuracy and the

possibility of working in real-time and large datasets.

Reaching good results in predictions depends on the used algorithms and the data to

train them. In this field, a study and evaluation of different machine-learning algorithms

have been done. Table 2.2 shows a summary of these features, including a brief descrip-

tion for each algorithm. However, not all have been included in Chapter 6 due to poor

performance or incompatibility with the nature of data used in this paper.

Algorithm Description
AdaBoost Adaptive Boosting. It is a classification algorithm that combines

multiple weak classifiers into a single “strong classifier”.
ANBC Adaptive Naive Bayes Classifier. It is a naive but powerful

classifier that works very well on both basic and more complex
recognition problems

BAG Boostrap Aggregating. It is a meta-algorithm that, combined
with a decision tree method, reduces the variance and tries to
avoid overfitting during the training process.

DT Decision Tree. It corresponds to simple classifiers that work
well on even complex classification tasks. It cuts the space into
rectangular regions, classifying a new value by finding which
region it belongs to.

DTW Dynamic Time Warping. It is a powerful classifier that is de-
signed to work well for recognizing temporal gestures.

GMM Gaussian Mixture Model Classifier. It is basic classification
algorithm that can be used to classify an N-dimensional signal.

HMM Hidden Markov Models. There are two versions: continuous
and discrete. Both powerful classifiers that work well on tem-
poral classification problems when the training dataset is large.

KNN K-Nearest Neighbour. It is a simple classifier that works well
on basic recognition problems; however, it can be slow for
real-time prediction and is not robust to noisy data.

Random Forest It is an ensemble learning method that operate by building
decision trees during training and returning the class with the
majority vote over all the trees in the ensemble.

Softmax It is a simple but effective classifier based on logistic regression.
It works well on problems that are linearly separable

SVM Support Vector Machine. It works well on many classification
problems, even problems in high dimensions and that are not
linearly separable.

Table 2.2: Machine Learning algorithms studied and tested.

25

Chapter 2. State-of-the-Art 26

2.4. Summary

This chapter describes different approaches related to this PhD. thesis, providing a complete

study of the state of the art, and focusing on node-level and application-level monitoring,

scheduling techniques and application malleability to migrate processes and deal with the

performance interferences between applications. Also, it includes advanced techniques

(such as Neural Networks and Machine Learning algorithms) to make predictions about the

future state of the cluster and improve, as well, the scheduling based on those predictions.

Hence, with these proposals, the goal of this PhD. thesis is to provide a framework with

better performance than many previous approaches, without the need for virtualization,

collecting data from the system and the applications, scheduling the tasks based on new

multi-criteria policies and the exploitation of the monitoring data.

The next chapter describes a global view of the framework architecture, and shows a

description and of each component and the interactions between them.

26

Chapter 3. System architecture and design 27

3. SYSTEM ARCHITECTURE AND DESIGN

This chapter presents an overview of the developed monitoring framework and shows

a description of each component.

LIMITLESS is a light-weight and scalable framework that is designed to run on dis-

tributed systems. However, and taking into account that its purpose is to monitor LSDS, it

can be executed to monitor a single node with a little overhead. The framework provides

information about the platform hardware and resources, the current state of each compute

node and the applications that are in execution. It is also dynamically reconfigurable, and

are in communication with the scheduler to improve its decisions. Figure 3.1 shows the

architectural representation of how LIMITLESS integrates the whole components. As it

can be seen, the monitoring tool in LIMITLESS includes four main components: (1) the

System monitor, (2) the database, (3) a visualizer, (4) and an Analytic component to exploit

the data. The first component is in charge of collecting the performance metrics from each

machine. The second one corresponds to ElasticSearch [88] database, which provides

persistent storage. It is a NoSQL database that is fast storing and processing big amounts

of information. Then, the selected application to display the information is Kibana, which

can be connected to ElasticSearch easily. Finally, the analytic component processes the

whole collected data, extracting the most important information.

It is important to note that the information flow follows two global directions: from

the system monitor to the data-analytic component and the visualizer (Kibana in this case)

and from the Analytic component to the system monitor. The first direction corresponds

to the collected monitoring data, whilst the second one corresponds to the application

models, created by the analytic component, and sent to the monitor for performing in-

transit processing of the monitoring data. In the following we provide a more detailed

description of each component.

3.1. LIMITLESS System monitor

The system monitor is designed to collect performance information from the compute

nodes in large-scale distributed systems. This information is used in two ways: (1) is

provided for general purposes to the users, and (2) is used to improve other monitoring

and scheduling tasks. In comparison with other monitoring tools, one interesting feature

is the possibility of changing the configuration parameters dynamically. One of them,

for example, is the monitoring period, which can be modified whenever the user wants,

27

Chapter 3. System architecture and design 28

Applications

LIMITLESS system monitor

ElasticSearch

LIMITLESS analytics

Nodes

CLARISSE

Scheduler
Kibana

FlexMPI

Figure 3.1: General overview of the LIMITLESS architecture and interrelation with other
components (Scheduler, CLARISSE and FlexMPI.

including having different periods in different nodes. The range of this monitoring period

starts in milliseconds and can be augmented to seconds, minutes, and hours. The most

important thing about this feature is that there is no necessity to stop and start anything.

Each component can detect and upgrade its state on the fly. Besides, LIMITLESS benefits

from the interoperability of other components to improve the detail of the monitoring

process and to reduce the communication overhead.

One of the main restrictions in this kind of framework is scalability. For that reason,

the system monitor provides scalability in two different ways, trying to reduce the global

overhead of its tasks. The first one corresponds to the distribution of the monitor logic in a

topological hierarchy. The objective is to deploy and connect the components through a

graph-based scheme, which should be the same as the real network topology. The second

one consists of implementing optimizations to reduce the network monitoring overhead,

which is the main limiting factor for scalability in large-scale platforms.

A general example of deployment consists of executing the three monitoring processes

that collects the information: LIMITLESS Daemon Monitor (LDM), LIMITLESS DaeMon

Aggregator (LDA) and LIMITLESS DaeMon Server (LDS). One instance of LDM is

executed in all nodes in the cluster. LDM is in charge of collecting the performance

28

Chapter 3. System architecture and design 29

counters related to the system and the applications periodically. Then, a set of LDA

instances should be executed in determining nodes (depending on the user) because these

processes are in charge of retransmitting the information from the LDMs to the LDSs. LDA

is also responsible for executing analysis and an important optimization, which will be

described in Chapter 4. Finally, one instance of LDS should be executed in a node (can be

more than one; it depends on if the user wants replication) because (1) it receives and stores

all the information collected in the ElasticSearch database, and (2) sends notifications to

the administrator if something wrong is detected.

Figure 3.2 shows a generic deployment of LIMITLESS. The red lines indicate the fault

tolerance mechanisms, being the solid lines the watchdog processes (WD), and the dotted

lines Triple Modular Redundancy (TMR). It means that this example includes replication

at aggregation and server layers. The objective of the redundancy is to increase the monitor

scalability and resilience. As it will be explained later, the component replication provides

fault tolerance by creating multiple connections between the different levels of the hierarchy.

In addition, each LDA includes the feature of performing in-transit data-processing with

the collected metrics in order to reduce the traffic with the LDSs.

Each LDMs is configured to collect periodically different performance-related infor-

mation from the compute nodes. LIMITLESS is designed for both homogeneous and

heterogeneous clusters (for example, of a system where only certain compute-nodes have

GPUs).

Table 3.1 shows the different performance metrics that can be collected from compute-

nodes, depending on if it has GPU or not. These parameters provide useful information to

understand which is the current real state of a machine, and it includes CPU and memory

consumption, global cache hits and misses, I/O and network bandwidth utilization, energy

that has been consumed by the CPU during the sampling interval, the temperature reached

by each socket during the sampling interval, and detailed information from the GPU.

Finally, the monitor provides a list of running processes every sampling interval.

Table 3.2 describes the main performance events related to InfiniBand networks. There

are more counters, but the indicated counters are the most representative. In a summary, the

counters indicate the octets that have been transmitted, the number of packets transmitted,

and the octets and packets received. Finally, a counter that indicates the delay between

transmissions, which can give an idea of how saturated the connection channel is.

Table 3.3 shows the information obtained due to IPMITOOL [89], and it is information

that cannot be collected directly from the SO partition. This data summarizes the power

consumption, the temperature, and the speed of the different fans. The main important

counter is power consumption, which can help to design a scheduling policy related to

29

Chapter 3. System architecture and design 30

energy and cooling.

Table 3.1: Parameters that can be collected in a monitored node.

Parameter Description
CPU Number of CPUs and cores, percentage of CPU

in use.
RAM Memory Total available RAM memory (in GB), percentage of RAM used.
Cache memory System monitor can obtain different cache-related events,

including the percentage cache hits and misses for each level, and the CPU
stalled cycles.

FLOPS Floating Point Operations Per Second.
I/O Percentage of I/O traffic during the sampling interval, percentage of writes in

I/O traffic.
Network Host IP address, available network bandwidth, percentage of network bandwidth

in use.
Energy Joules consumed during the sampling interval.
Temperature Temperature in ºC reached during the sampling interval of each CPU.
GPU(*) Percentage of memory in use, percentage of GPU in use, temperature, energy

consumed during the sampling.
Processes A list of running processes (with %CPU > 0.0).

Table 3.2: Parameters collected in InfiniBand networks.

Parameter Description
PortXmitData This counter indicates the total number of fabric packet flits transmitted.
PortRcvData The total number of data octets, divided by 4, (counting in double words,

32 bits), received
PortXmitPkts Total number of packets transmitted on all VLs from this port.
PortRcvPkts Total number of packets received.
PortXmitWait The number of ticks during which the port had data to transmit but no data

was sent during the entire tick

Table 3.3: Parameters collected with IPMITOOL.

Parameter Description
Power consumption Machine power consumption during sampling interval.
Temperature CPU temperature (for each socket), and more if other sensors are enabled.
Fan speed For each fan connected to the motherboard.

The lower-level component of this system monitor is LDM, which is a process executed

on each machine and is in charge of collecting the performance metrics, as it has been

30

Chapter 3. System architecture and design 31

LDM LDM LDM LDM LDM LDM LDM LDM

ElasticSearch

LDS LDS

LDM LDM LDM LDM

LDS

ElasticSearch ElasticSearch

Figure 3.2: LIMITLESS - Deployment with fault tolerance mechanisms enabled in the
first branch of the topology.

explained before. Each time interval (that is a configurable parameter) it gets and sends the

collected metrics from the node to the next component, which can be a LDA or an LDS,

depending on the deployment.

The next component in the communication process is LDA. These processes can be

executed depending on the topology and the number of nodes, and their objectives are

to provide scalability retransmitting the packets from the nodes below it. It is important

to know how many LDMs can manage each LDA to configure a good deployment (this

is analyzed in Chapter 6) avoiding running more processes than necessary due to bad

topology designs. Instead of retransmitting one package per LDM, LDA is able to group

packages to send the information in one. Besides, its functionality can be extended because

LDA can execute partial analysis of pre-processing after the information reaches the next

component (for example, for pre-process the received data instead of delegate this complex

task to the LA).

Finally, the last component is LDS, which is the receiver of the whole metrics collected.

Its main function is to receive, process and store the information. Once the information

has been received and uncompressed, two actions are taken: (1) the LDS checks that there

are not hotspots (if there is a hotspot, a notification will be sent), and (2) the information is

31

Chapter 3. System architecture and design 32

ElasticSearch LIMITLESS analytics Scheduler

Figure 3.3: Relation between ES, LA and the application scheduler.

stored in ES for later analysis and visualization.

A detailed description of the functionality of each component can be found in Chapter 4,

and it includes examples, algorithms with pseudo-code, and explanations of their designs.

3.2. Smart Analytic Component

The LIMITLES Analytic (LA) component is a set of functionalities that gives the framework

the necessary tools to analyze and extract interesting information from the LIMITLESS

log, which stores all the packets received. These tools include different algorithms to

provide predictions with the historical application profile data. Algorithms that are based

on modeling, regression, machine learning, and neural networks.

Figure 3.6 shows how the analytic module is integrated into the framework. There are

two alternatives, that are illustrated in the same figure: the first one (on the left side) is

when the same node that executes the LDS, also executes the LA and the ES components;

the second one (on the right) is when one node executes both LDS and LA, but the storage

in ES is delegated to a dedicated node.

The reason is that LA is included in the same box as LDS because, typically, the LDS

runs exclusively in a compute-node, and that node is underused because the main work

of LDS is to receive, process and send the information collected, and It may not imply

big computation and memory loads (it depends on the sampling interval and the number

of incoming packets). So that, LA leverage that fact to take advantage of the unused

resources.

In Figure 3.6, the left example is commonly used in small and medium clusters because

it requires only one node to execute three components. However, in medium and large

clusters, the nodes are usually separated depending on if they are for computation or

storage. So that, the example on the right should be used to run ES in a storage node. The

unique difference between both deployments is one parameter in the configuration file.

This parameter specifies the IP of the ES node. In the first example, this value will be

localhost, however in the second one will be the IP of the ES node.

32

Chapter 3. System architecture and design 33

3.3. Application scheduler

The LIMITLES Analytic (LA) component is in coordination with the application scheduler

to provide resource allocation and dynamic scheduling policies. This relation is described

in Figure 3.3.

The cooperation between these components has two main objectives: resource alloca-

tion and improving the application scheduling process. The first use happens when a user

wants to execute an application and send the application context to the scheduler. After

that, the scheduler sends the same information to LA, which will allocate the computa-

tional resources needed based on the current state of the cluster. Then, LA returns to the

scheduler a list of compute nodes where to run the application, and the scheduler executes

the application on those nodes.

The second use case is always running, but its effect is detected when the scheduler

has a queue of applications ready to run (and other applications already running in the

nodes). In this case, the scheduler and LA try to improve the process of executing the

applications taking into account the available resources, the queue of applications, and the

historical information about those applications (which is exploited using machine learning

and neural network algorithms). This improvement is done in two ways: coarse-grain and

fine-grained scheduling. Both alternatives are based on scheduling applications in shared

nodes. The first one uses the information collected by the monitor to detect interferences

between applications that are allocated in the same nodes. The term interference means

that the applications which are sharing a node have a performance degradation, typically

because both applications are using the same resources. So that, coarse-grain monitoring

tries to share nodes between applications to use efficiently the computational resources, also

detecting interference between applications to migrate one of them to another exclusive

node (avoiding the interference and the performance degradation). On the other hand,

fine-grained scheduling performs the same idea but using machine learning and neural

network algorithms to detect applications phases, predict the future performance of the

applications, and schedule taking into account the compatibility of those phases between n

applications. It means that two applications with the same profile could share a node if

their main phases (those which produce interference) are executed distanced in time (if

phases with the same profile are not executed in the same moment, the interference will

not occur).

All of these scheduling policies are described in Chapter 5, and evaluated with different

use cases in Chapter 6.

33

Chapter 3. System architecture and design 34

3.4. InfiniBand support

One of the fundamental subsystems in HPC clusters and datacenters is the network, because

the applications and services perform millions of communications between computing and

storage nodes. Hence, high-speed and low-latency networks are required to manage those

communications, otherwise the network could become a bottleneck.

There are a lot of network technologies, and HPC systems require the transmission of

the highest possible amount of information in the shortest time interval. One of the most

successful technology is the InfiniBand Architecture (IBA), which is commonly deployed

in datacenters and supercomputers (for example, many of those included in Top500 list

[90]).

Support for this technology has been included in the LIMITLESS monitor to collect

performance metrics of these networks. The main objective of this integration is to collect

the network performance metrics and study the congestion effect on the applications and

take advantage of the communication with the scheduler to design new policies to mitigate

the impact on the network executing applications in nodes without congestion. The

collected performance counters are described in Table 3.4 and are based on the information

obtained by the IBA subnet agents from their Host Channel Adapters (HCAs). The

procedure for collecting all the performance counters consists of request all the information

to the IBA Subnet Manager (SM), which is the process in charge of configuring the local

subnet and ensuring its continued operation. It works in cooperation with the subnet agents,

which are processes that handle the communications between HCAs and the SM. Due to

this cooperation, LIMITLESS can ask for the performance counters to the SM to obtain all

the information.

LIMITLESS obtains all the available IBA performance counters. However, the most

important to have a general knowledge about the network state are the last five in Table

3.4: PortXmitWait, PortRcvPkts, PortXmitPkts, PortRcvData and PortXmitData. These five

performance counters give the user information about the bandwidth usage and if there is

any kind of congestion in the selected ports. The other performance counters give details

about the behaviour of the network, links, errors, etc.

3.5. Cooperation with third-party components

The following components are integrated with LIMITLESS, but there are third-party com-

ponents. For each one, the objective of each integration and how this framework uses it are

described.

34

Chapter 3. System architecture and design 35

Table 3.4: Performance counters collected from IBA subnet manager.

PortSelect PortXmitConstraintErrors
CounterSelect PortRcvConstraintErrors
SymbolErrorCounter CounterSelect2
LinkErrorRecoveryCounter Total number of packets received
LinkDownedCounter LocalLinkIntegrityErrors
PortRcvErrors ExcessiveBufferOverrunErrors
PortRcvRemotePhysicalErrors QP1Dropped
PortRcvSwitchRelayErrors VL15Dropped
PortXmitDiscards PortXmitWait
PortXmitData PortRcvData
PortXmitPkts PortRcvPkts

3.5.1. FlexMPI

FlexMPI is a runtime that is implemented to provide dynamic malleability for iterative MPI

applications based on performance information. FlexMPI also includes a set of interfaces

(API) to allow programmers to use it in other programs or applications. The source code

of FlexMPI as well as many examples can be found in [91]. Moreover, this runtime was

previously developed in [92] and is implemented as a library on top of the MPICH.

LIMITLESS uses FlexMPI in two ways: the first use case is for application migrations

from nodes with poor performance to nodes where they can run better (thanks to the

monitoring information), and using its performance counters to provide more data about

the system and the applications that are running on it. That means the system monitor

has two levels of data: information about the current performance of the real nodes, and

information about the performance of the applications that are running in the cluster.

Figure 3.4 shows an example of an MPI application executer with FlexMPI runtime.

The explanation of how it runs is based on intercepting selected MPI calls and inserting

check points that performs the logic of the algorithms. When the application calls an

MPI routine, it is wrapped by FlexMPI (Figure 3.4 arrow 1), the library executes some

operations and then, the PMPI interface calls the original MPI routine (with a context that

provides malleability). The code is executed in a transparent way: the operations that wrap

the original routine create a context that includes the data structures and parameters to

allow malleability instructions with the MPI original function. It is important to say that not

all MPI calls are intercepted, for example the synchronization and datatype-management

routines, that are directly executed by MPI.

The control point logic is in charge of the coordination of all the application processes

35

Chapter 3. System architecture and design 36

Parallel application

MPI library

(2) MPI non-wrapped

calls

Application rank 1

(1) MPI wrapped calls

FlexMPI

Control Point Logic

MPI library

Application rank 0

FlexMPI

Application Controller

FlexMPI

Control Point Logic

(4) FlexMPI monitoring

and control

(3) FlexMPI application

communication

(1) MPI wrapped calls(2) MPI non-wrapped

calls

Figure 3.4: Explanation of how and MPI application is executed in FlexMPI environment.

(Figure 3.4 arrow 3). This logic performs two different actions: (1) performance data

collection from all the applications and their processes and (2) sharing the control infor-

mation received by the application controller. All this information is sent to the analytic

component where it will be processed, in combination with system data, to improve the

scheduling of the current and future running applications.

Table 3.5: Information provided by FlexMPI to the framework for each iteration and for
each process.

Parameter Description
FLOPs Floating-point operations per second for each process
MFLOPS Mega Floating point Operation per Second for each process.
RTIME Time that each process spends in CPU.
IOTIME Time that each process spends performing I/O operations.
CTIME Time that each process spends executing communication operations.
PTIME Is the sum of RTIME and CTIME at any given time.

Table 3.5 shows the parameters that LIMITLESS obtains from FlexMPI to improve

the scheduling policies. This information is useful because it is directly related to the

36

Chapter 3. System architecture and design 37

performance of the applications, and knowing, for each application, their phases, profile

and duration of each one, allows the creation of dynamic scheduling policies that combine

phases instead of complete executions of the applications.

3.5.2. CLARISSE

CLARISSE is a runtime that provides interference-aware I/O scheduling [93]. The objec-

tive of this integration is to detect interference between the applications that are running

in the same node in order to move one of them if I/O interference is detected. If one

application (or more if there are more than 2 applications running) reduces its performance,

the system monitor confirms that there is interference. At the beginning of the execution

of a certain application, the runtime collects the performance metrics. So that, if during

the execution the system detects lower values in the last samples collected, it means that

the interference exists.

The first step consists of detecting the interference and taking a decision about how

to avoid them is the second. There are different options depending on the type of the

applications and the scheduler policy. For example, one solution consists of migrating one

of the applications to another node. Another example consists of reducing the number

of processes of one of them too. Both solutions are available if the applications use MPI.

However, if there is interference between two applications and it is not possible dealing

with their processes, one of them should be stopped and re-launched in another node.

The interference detection algorithm needs the related performance metrics for each

running application (S init
i). If one application is new (there are no application metrics), it

will be executed in an exclusive node to generate them without interference. The collected

information contains data about the user, the system, how many communications the

application performs, and other performance counters. To obtain that information, there

are two ways: (1) getting the performance counters from previous executions, and (2)

executing the application in an exclusive node, where there is no interference with other

applications.

The general overview of how CLARISSE runs is explained in Chapter 4, however, how

it is integrated with the other components can be seen in Figure 3.1.

3.5.3. ElasticSearch and Kibana

LIMITLESS uses ElasticSearch (ES) as a database, knowing that ES is powerful than this.

It is an analytic engine that provides near real-time search for all types of data. It is able to

37

Chapter 3. System architecture and design 38

KIBANA

ELASTICSEARCH

LOGSTASH

USER INPUT DATA

LIMITLESS SERVER

LIMITLESS DAEMON COLLECTED METRICS

KLE stack LIMITLESS integration

Figure 3.5: ELK stack vs ES + K + LIMIT LES S architecture.

store and index efficiently structured or unstructured information, numerical or geospatial

data, etc. By default, ES indexes the information in every field, and each indexed field has

its own optimized data structure. Two examples of this are: text fields use inverted indexes.

However, numeric data uses BKD trees (there are a type of trees that are commonly used

for searching multidimensional data). That ability to use the specialized data structures to

return search results is what makes ES so fast and efficient providing data access [88].

Besides, ES can be schema-less, which means that the information can be stored

without indicating how to deal with each field of each document. That is why it is so

easy to use, because the user sends the data without parse or organize them. LIMITLESS

organizes the metrics that are going to be sent in a bulk operation as a time-series. It is not

important for ES and its performance, but due to that, the information can be returned to

the user through the connection API in JSON format.

In terms of scalability and resilience, ES has demonstrated that has great availability

and it can scale well. It has good scalability because it was designed to be distributed, and

the incoming packets are divided into small chunks that are inserted in different queues,

each one managed by a different pool of threads. Besides, the users can include as many

servers as they want (ES nodes), that implies that the whole data and queries will be

distributed automatically, improving the response due to availability and replication. Also,

it means that the resilience increases. However, instead of replicating all data, ES also uses

the Cross-cluster replication (CCR) algorithm. CCR provides a way to synchronize the

indices from the primary cluster to another remote cluster that can be used as a backup. It

is important because high-availability architectures demand avoiding the idea of having

38

Chapter 3. System architecture and design 39

one single point of failure, and CCR achieves this goal [94].

Moreover, ES is the main engine for the ELK stack, which also includes Kibana. It is a

visualization tool that is built on top of ES and takes advantage of the functionalities of ES

[95]. Figure 3.5 shows how the ELK components interact to send the input data from the

receivers to ES, and how Kibana is the last component in the stack, which is in charge of

displaying the information in charts and tables.

In conclusion, ES has been selected because of its performance, scalability and in-

tegration with Kibana to display the data. However, as it will be seen, it is possible to

apply other solutions, for example integrating a SQL or NoSQL databases with proprietary

or non-proprietary visualizers. At the beginning of this work, the first solution applied

involves InfluxDB [96] in coordination with fLASHINg. The objective was to show the

global state of a cluster every second. The problem of this solution was the performance of

the communication between InfluxDB and fLASHINg: this communication has more delay

than ES +Kibana. In addition to that, to provide graphical representations of the collected

metrics, a combination In f luxDB +Gra f ana has been used, as other related works like

[97]. Grafana [98] is another visualizer, similar to Kibana but with fewer external plugins

and the support of companies. In this case the performance is not a problem, including

when the number of nodes to manage increases. However, over time, the performance

is reduced due to the amount of data provided due to the processes that manage and

display the historical data. But there are solutions to deal with this problem (for example

auto-deletion of the n-oldest samples).

All of this means that, due to the provided API, there is not only one solution to store

and plot the data. However, the experience shows us that ELK is a good framework to deal

with time-series representations and to perform fast queries and analytics, and that is the

main reason why it has been selected to be integrated with LIMITLESS.

3.6. Summary

This chapter describes the different components included in LIMITLESS framework. It

includes a system monitor to collect the machine performance metrics, two runtimes

that are coordinated with the system monitor to provide performance information at

application-level, a persistent storage module based on ElasticSearch, an analytic module to

provide features like modeling, prediction or knowledge data extraction, and a visualization

dashboard based on Kibana to display, in a user-friendly format, the current state of the

system and the historical performance data. It also includes an integration with a high-

speed network technology (IBA) to collect performance information from these networks,

39

Chapter 3. System architecture and design 40

Node-A

LDS

Analytic

ES

ES

Node-B2Node-B

LDS

Analytic

Figure 3.6: Analytic component - Integration examples.

which is widely used in datacenters and supercomputers.

The following chapter (Chapter 4) describes in deeper how each component has

been implemented, including pseudo-code and algorithms to keep everything clear and

understandable.

40

Chapter 4. Framework logic and algorithms 41

4. FRAMEWORK LOGIC AND ALGORITHMS

Chapter 3 shows the different components of LIMITLESS and what is the main function

of each one. In this chapter the logic and the algorithms that are designed for the proposed

framework are explained. To do so, the descriptions are going to be presented in combina-

tion with graphical examples and pseudo-code in order to improve the understandability.

This chapter is organized into six sections: the first one explains the monitoring

function and how performance counters are collected, the second one describes different

monitoring features, then, the smart analytic support for modeling and predicting are

described, followed by the multi-criteria scheduling explanation. Then, a section shows the

alternatives that allow the visualization and communication with the framework. Finally,

the last section explains how this framework is used to improve the control congestion on

InfiniBand networks.

4.1. Performance counter collection

One of the main components of LIMITLESS is the monitoring system, because it provides

the information that is used to improve scheduling, detect hotspots, make models from the

applications, etc. In order to obtain the state of the machines, the monitor processes the in-

formation that the operating system stores, and obtains the performance related to a certain

application using PAPI [99][100], which is an API for accessing hardware performance

counters available on most modern microprocessors [101]. Using this API facilitates the

task of collecting different performance metrics for each application, and LIMITLESS

leverages the FlexMPI component to have access to the application performance metrics

using PAPI.

The Linux kernel has two main functionalities: manage the access to the physical

devices, and establish how the processes interact with that devices. The filesystem called

/proc stores different information with details about the hardware and every process that

are currently running in the system [102]. This special filesystem has the structure of a

directory; thus, the files are virtual files with zero size and without type (binary, text, etc.).

However, the files can be read and provide the related system information.

One common example of command that access to virtual files in proc are: top [103].

This command shows in the standard output (screen) real-time information of a running

system, providing interesting data such as CPU usage, available memory, current running

41

Chapter 4. Framework logic and algorithms 42

Figure 4.1: Top command - Example output.

processes, etc., as can be seen in Figure 4.1. All of them, given by the Linux kernel in

/proc, processed and displayed in a user-friendly format.

There are other examples of functions and system calls that can provide some perfor-

mance data efficiently, for example rstatd() that obtains performance information from

the kernel. However, the information that it provides is not enough to have a complete

view of the machine, but it is interesting for some management tasks (for example, disable

compute-nodes because of their high loads, power off machines which are up many days

for their maintenance, etc.) [104]. The parameters that rstatd() return are described in

Table 4.1. It shows general information about the CPU load, transfers per second for

I/O and the number of network packets sent and received during the sampling interval.

However, these values are related to computation, communication and storage resources,

and only CPU load is in percentage (which is easy to understand).

In comparison with LIMITLESS monitor parameters, there are some of them that this

process does not obtain, for example, temperatures, energy consumption, or the hardware

configuration. On the contrary, rstatd include some other interesting features like system

load average, which shows the number of active tasks. LIMITLESS has been designed for

scalable and distributed architectures, and it includes the possibility of obtaining a list of

running processes instead. however, its objective is not to provide information related to

the operating system on the running processes.

The reason of using /proc is that the monitor can obtain all available metrics that

the operating system generates, and it can do it efficiently accessing only to the desired

virtual files and getting the desired performance counters with low overheads (avoiding

intermediate processes or system calls).

Finally, the framework includes another important feature: a heartbeat for every node.

42

Chapter 4. Framework logic and algorithms 43

Table 4.1: Information provided by rstatd process.

Parameter Description
CPU user time The percentage of the CPU time taken up executing user commands.
CPU nice time The percentage of the CPU time for all processors globally taken up

by low-priority processes.
CPU system time The percentage of the CPU time for all processors globally taken

up executing system tasks, including system calls to kernel routines.
CPU idle time The percentage of the CPU time the processor was idle.
Rate of IO tansfers The number of disk transfers per second.
Memory pages data The number of pages moved from the disk/cache/swap/storage

to other destination.
Interrupt counter The number of interruptions per second.
Context switch count The number of processor context changes per second.
System load avg The average number of active system tasks.
Network packets Total number of packets sent/received and with errors.

If the server stops receiving data from a node for more than ten times the sampling interval,

it assumes that this node is down, displaying this situation in the charts.

4.2. Monitoring system

This section provides a detailed description of the different components of the monitoring

system. The main components have been already described in Chapters 3 and 4 (LDM,

LDA, LDS and LA), but this chapter will give more information, including algorithms and

implementation details about their integration.

Figure 4.2 shows the monitoring components, their connections and the information

flow directions. Each node will run an instance of LDM (represented as blue circles),

is configured to collect periodically different performance-related information from the

compute nodes, and it is designed for both homogeneous and heterogeneous clusters (for

example, of a system where only certain compute-nodes have GPUs). Each set of LDMs

(depending on the topology designed by the administrator) sends the collected metrics to a

LDA (represented as green triangles), which are in charge of retransmitting the information

from the LDMs to LDSs. In this example, there is only one LDS, but it also depends

on the topology design. The LDS will receive each monitoring packet from the nodes

and will process and store them in ES. Hence, the information flow always follows the

same directions, from LDMs to LDAs, from LDAs to LDAs or LDSs (depending on the

topology), and from LDSs to ES database(s).

43

Chapter 4. Framework logic and algorithms 44

LDM LDM LDM LDM LDM LDM LDM LDM LDM LDM LDM LDM

Figure 4.2: Systems monitor architecture.

The monitoring system can be configured to perform deployments based on different

topologies. This allows designing different deployments, and the best option is to perform

the same topology as the cluster’s communication network. As an example, a deployment

with one LDS, three LDAs, and four LDMs per LDA (12 monitored nodes) can be seen

in Figure 4.2. This deployment can be designed manually, creating an XML file with the

correct labels and defining the monitoring hierarchy branches (a branch is each set of nodes

that send the collected metrics to an LDA (which is directly connected to an LDS).

An example of how to design a topology can be seen in Listing 4.1, which shows

a representation of the Figure 4.2. Taking into account the following labels, whatever

topology can be built.

• node-master: Represents the LDS information (for instance, the ip and listening

port).

• node-group: Indicates that the following labels represent a branch, with nodes

(LDMs) and retransmitters (LDAs). If no retransmitters are indicated, the informa-

tion will be sent to node-master.

• node: Represents each LDM.

• retransmitter: Represents an LDA that waits information from LDMs in the port

defined, and will retransmit it to the node-master (LDS).

44

Chapter 4. Framework logic and algorithms 45

1 < t o p o l o g y>

<node−m a s t e r i p=" compute−9−1" p o r t=" 5000 ">

<node−group>

< r e t r a n s m i t t e r i p=" compute−9−1" p o r t=" 5004 ">

<node i p=" compute−9−1">

6 <node i p=" compute−9−2">

<node i p=" compute−9−3">

<node i p=" compute−9−4">

< / node−group>

<node−group>

11 < r e t r a n s m i t t e r i p=" compute −11−1 " p o r t=" 5004 ">

<node i p=" compute −11−1 ">

<node i p=" compute −11−2 ">

<node i p=" compute −11−3 ">

<node i p=" compute −11−4 ">

16 < / node−group>

<node−group>

< r e t r a n s m i t t e r i p=" compute−1−1" p o r t=" 5004 ">

<node i p=" compute−1−1">

<node i p=" compute−1−2">

21 <node i p=" compute−1−3">

<node i p=" compute−1−4">

< / node−group>

< / t o p o l o g y>

Listing 4.1: XML file that defines the topology of Figure 4.2

In addition to the topological deployment, each component can be independently

configured. As a practical example, let’s assume a system with two different applications

executed in two different sets of compute nodes. The first one is CPU-bounded and

has a steady use of the resources. The second one alternates multiple phases of CPU,

communication and occasionally I/O. In this case, the compute node that executes first

application could be monitored with a coarse-grain sampling interval of several seconds,

reducing the monitoring traffic without losing details about the application behaviour. In

contrast, the sampling interval of the compute node related to the second application should

be much smaller in order to capture the details of the different application phases. Note

that these configuration parameters can also be adjusted by the monitor or provided as

hints by other cluster components like FlexMPI (which performs application monitoring)

45

Chapter 4. Framework logic and algorithms 46

and the application scheduler.

Besides, the system monitor configuration can be dynamically configured without

the need of interrupting the remaining monitor components. This is achieved due to

each monitor component periodically checks whether the related configuration has been

modified. If so, the component is reconfigured according to these changes that include the

following features:

• Change the sample interval that the LDM collects the compute-node performance

metrics.

• Change the referenced network address of another component that the current one is

connected with.

• Change the connection ports of other applications or services.

• Change the fault-tolerance policy of a certain component.

LIMITLESS monitor allows to configure 21 parameters for the different modules on

startup, which can be a tedious and confusing process for non-skilled users. In order to

make the deployment task easier, the framework provides a script-file that performs the

deployment of the platform, by reading the configuration data for deployment from a XML

file that defines the topology deployment, sampling intervals, etc. Each component will

have its own configuration file because the launching parameters differ depending on the

component. If any files do not exist, default parameters are used.

The system monitor provides scalability in two ways to reduce the overhead and

minimize the communication. The first one corresponds to the distribution of the monitor

logic in a topological hierarchy to deploy and connect the components through a graph-

based scheme. The second one consists of applying filtering techniques in the LDMs

(in-node analysis) to reduce the network traffic if the metrics are within a range with the

previous one. The objective is to reduce the communications if the performance metrics

are within a range (defined by the user).

The distributed algorithm behind the LIMITLESS Daemon Monitor can be seen in

Algorithm 1. This algorithm collects the performance counters in the nodes and sends

them to the next component. samplei represents the vector that stores the collected

information (performance counters) at the i-th sampling interval. These performance

counters include information like CPU usage, memory used, number of CPUs, cores, and

energy consumption, among others (they are enumerated in Chapter 3. After each LDM

collects the new metrics, an in-node analysis is performed to evaluate if the information

46

Chapter 4. Framework logic and algorithms 47

should be sent (if the metrics are enough different, given a tolerance tol j, from the previous

sample, denoted as re f _metric). If the algorithm determines that any metric is out of the

given tolerance, the whole vector will be sent to an LDA. In another case, the system

assumes that the current state is the same and the data won’t be sent. Besides, once the

information is sent, the LDM process sleeps until the next sampling interval. For every

new event, that may represent a change in the system, obtain_status() returns the current

status of node i. The possible status values are “NONE”, for no interference, and the

aforementioned “RAM”, “NET”, and “CACHE” hot spots. The hot spots are quantified as

the percentage of use of RAM and network bandwidth and the last-level cache miss ratio.

Note that when one of these values reaches a predefined threshold, the related interference

status value is automatically generated and the aggregator notifies the scheduler about the

interference type by means of noti f y_scheduler() (arrow 3).

Algorithm 1 LDM distributed algorithm.
1: while running do

2: while dosamplei = collect_node_metrics()

3: i + +

4: for each metric j ∈ samplei do

5: if metric j ∉ [re f _metric j − tol j, re f _metric j + tol j] then. // In-node analysis

6: send(samplei)

7: break

8: end if

9: end for

10: update(re f _metric)

11: waitT illNewCollectionT ime(f requency)

12: end while

13: end while

4.2.1. Communication between components

The messages exchanged between the different components are made through User Data-

gram Protocol (UDP) sockets. Other alternatives have been considered, like Transmission

Control Protocol (TCP) and Message Queued Data Transfer (MQDT). However, UDP has

been used due to different criteria: its packets are around 60% smaller than TCP packets,

there is no connection to create and maintain, the user has more control of when a data

is being sent out and, in the experiments, UDP is faster. This option also includes some

disadvantages, like the possibility of increasing the packet loss rate, they can arrive out of

47

Chapter 4. Framework logic and algorithms 48

order and there is no congestion control. Taking this information into account, UDP sockets

have been used but we have also included some features to mitigate these disadvantages.

The standard UDP sockets have been optimized, like MQDT does, with a message

queue to stores the incoming metrics. Then, concurrently, the processing threads get them

and process the information stored. Besides, each packet includes the timestamp of when

its metrics have been collected in order to allow the identification of the correct sequence

of the metrics. This means that there are two features that minimize the disadvantages of

UDP at the same time that keep its advantages.

4.2.2. Monitoring policies

After analyzing the state of the art, there are two kinds of monitoring tools, depending

on the results offered. There are users who want to receive the information continuously

(as soon as the metrics are collected). However, other users prefer to receive only certain

information. That is why the monitoring tool presented in this PhD. thesis includes both

alternatives.

In the continuous policy, each LDM collects and sends, every sampling interval, the

complete set of metrics collected. This policy provides a clear and updated view of the

entire system.

Otherwise, the event-based monitoring policy does not provide the collected metrics

for every sampling interval. Instead of that, this policy sends those vectors of metrics

that overcome the predefined conditions. This feature is designed to receive only relevant

information or metrics that indicate a hot spot (which can be a potential failure in the

system). Before the use of this policy, we introduce the concept of “event”. In this case,

an event arises when one metric overcomes a predefined threshold (for example, when

CPU values are greater than 80%). With this implementation, each LDM will send only

those vectors of metrics that contain values greater than the threshold. This policy has

two main advantages: (1) the communication overhead (network traffic) is reduced, which

increase the scalability, and (2) the framework components have less load due to the lack

of messages to process (the size of the database is also reduced). All of this allows the

user to receive only notifications when the events occur. In addition to this, when an event

is detected and notified, the visualizer shows that situation, and the LDS sends another

notification to the scheduler to enhance the scheduling task [61].

48

Chapter 4. Framework logic and algorithms 49

LDM LDM LDM LDM LDM LDM LDM LDM

ElasticSearch

LDS LDS

LDM LDM LDM LDM

LDS

ElasticSearch ElasticSearch

Figure 4.3: LIMITLESS - Deployment with fault tolerance mechanisms enabled in the
first branch of the topology.

4.2.3. Fault tolerance

In addition to the basic deployment method, LIMITLESS provides fault tolerance policies.

These policies are focused in providing resilience with or without redundancy, and both

policies can be enabled at the same time (they are complementary). The first policy is

Triple Modular Redundancy (TMR) and the second is WatchDog processes (WD).

The first alternative, TMR, provides fault tolerance adding multiple communication

channels between the components. It means that each component will be connected to

another three components in the next level (LDMS to LDAs, LDAs to LDSs, and LDSs to

ES).

This policy includes two different working modes:

• Collective communication: the performance metrics are sent to the connected com-

ponents, providing data replication at expenses of a higher network traffic.

• Peer-to-peer communication: in this mode the metrics are only sent to one of the

next-level connected component. The idea behind this, consist of dealing with

failures without creating extra network traffic and keeping only one communication

49

Chapter 4. Framework logic and algorithms 50

Receiver Client
communicator

Scheduler
communicator

Processors

p p p p p

Buffer

Daemon Server

BBDD
CLARISSE
limitless

controller

Figure 4.4: LDS architecture.

channel. In this mode, since each component only sends the information to one

next-level component, in the case of failure, the data is then sent to the following

component chosen according to a round-robin list.

The second alternative, WD, executes the different components as a service that is

always running and checking if the component processes are also running. So that, it

includes a control process that checks if the main process (LDM, LDA, LDS, etc.) is

running properly or not. If there is a failure in any component, the WD process will attempt

to execute again the component maintaining the configuration. If the process cannot be

re-launched, the node will be flagged as non-operational.

Figure 4.3 shows the fault tolerance mechanisms in red colour over a generic deploy-

ment. The red lines indicate the fault tolerance mechanisms, being the solid lines the

watchdog processes (WD), and the dotted lines Triple Modular Redundancy (TMR).

4.2.4. Limitless Daemon Server

As it has been explained before, the LDS is the component in charge of receiving, process-

ing and saving the monitoring packets from the LDMs (through the LDAs). These functions

require computational resources, and that is why this component executes each function

in different threads. As Figure 4.4 shows, a thread is in charge of receiving incoming

packets (receiver). To extract the information collected, there is a pool of threads in charge

of getting, disassembling, and processing it concurrently (module labeled processors).

Another thread is responsible for communicating with the scheduler, using the monitoring

information to improve its task. These threads are also in charge of evaluating the existence

of hotspots and send the information to the ElasticSearch database. Finally, another thread

is in charge of performing three different actions because there can be done using the same

communication API: it listens to the client petitions, which can be requested by the user,

the visualizer, or the CLARISSE and FlexMPI components.

50

Chapter 4. Framework logic and algorithms 51

Algorithm 2 LDS - Communication algorithm between the scheduler and the LDS.
1: // Thread 1: Receiver

2: while running do

3: rcvd_packet = socket_listener()

4: store_packet_inBu f f er(rcvd_packet)

5: end while

6: // Thread 2: Client communicator

7: while running do

8: rcvd_query = socket_client_listener()

9: query = create_multicriteria_query(rcvd_query)

10: result = DB_exec_query(query)

11: send_to_client(result)

12: end while

13: //Scheduler communicator

14: while running do

15: rcvd_query = socket_scheduler_listener()

16: [appi,∆p, excl] = exec_multicriteria_query(rcvd_query)

17: if allocate(appi,∆p, excl) then

18: if is_new_application(appi) then

19: nodes = allocate_new(∆p)

20: else

21: nodes = reallocate(appi,∆p, excl)

22: end if

23: return_scheduler(nodes)

24: end if

25: end while

26: // Pool of threads: Processors

27: while running do

28: lock_bu f f er_mutex() //Concurrent queue

29: Frame = get_packet_ f romBu f f er()

30: unlock_bu f f er_mutex()

31: db_store(Frame)

32: if evaluate_hotspots(Frame) then

33: send_noti f ication() //to the scheduler

34: end if

35: end while
51

Chapter 4. Framework logic and algorithms 52

It is important to know that the scheduler communicator also acts as a resource manager.

When the users want to execute their applications, this process allocates the required

resources. To describe better this functionality, Algorithm 2 shows the pseudo-code, which

performs the required operations to allocate the resources and execute the applications.

The function named allocate() is in charge of allocating the resources requested by the

scheduler. The resource allocation process needs three input parameters: (1) the application

id, which typically corresponds to the name (appi), (2) the number of processes that the

application will execute (∆p), and (3) the flag to request exclusive or non-exclusive nodes

(excl = 1 or excl = 1 respectively). By means of the id appi, the component can distinguish

between applications that should be executed, or re-executed, and applications that are

currently running and should be migrated to another node using malleability. Recognizing

the application is important the allocation policy depends on it. If the applications are

new, the scheduler executes the function allocate_new(), which returns the compute nodes

allocated to run them. These allocated nodes can be exclusive or shared. In the case of

applications that are already running and should be migrated, the scheduler executes the

function reallocate(). It returns the new allocated nodes, taking into account the value of

the third input parameter excl. The next step is to send the list of the selected nodes to

the scheduler by means of executing the function return_scheduler(). Note that ∆p can

be positive or negative, depending on if the application needs to increase or decrease its

number of processes. If ∆p is positive, new processes of the same application are going

to be executed, and the allocation takes into account the current layout to use the same

compute nodes as the original processes. If the allocation of the same nodes is not possible,

the scheduler will use the topological information to allocate the nearby nodes.

4.3. Communication API and Visualization tools

This section describes the communication API included in LIMITLESS, which allows

other processes to get information about the system performance and hardware, and three

visualizers tested in real environments: one of them has been developed during this PhD.

thesis and the others are third-party software.

LA includes an Application Programming Interface (API) with different functions that

allow other components or processes to obtain the collected data, and it also allows LDSs to

store the information in ES. The idea of this API is to close the framework communications

to the outer components, maintaining only a trusted communication channel to put and get

the data from ES.

The communication with this API is done using sockets, and the communication IP

52

Chapter 4. Framework logic and algorithms 53

and port are parameters set in the configuration files just before the monitor deployment.

Using sockets, any process can request information to the framework, and the information

that can be obtained includes: hardware information, historical data collected and last

collected metrics. All of that for all or one machine in the cluster. Table 4.2 summarizes

the functions related to the system management and Table 4.3 the functions related to the

acquisition of the information.

Table 4.2: Management functions available in LIMITLESS API .

Name Function Description
db_initialization() Creates all the tables needed to manage all the information.
db_insert_conf() Inserts the hardware information for a certain machine.
db_insert_cr() Inserts performance data collected for a certain machine (general

percentage of usage).
db_insert_coreload() Stores the load for each core from each machine.
db_insert_IODev() Inserts information about the IO devices (number and % of

writes and usage) for all nodes.
db_insert_net() Inserts information about the Network interfaces (number, % of

usage and speed) for all machines.
db_insert_cores() Inserts information about the number, energy consumed and

temperature for each core for all the machines.
db_insert_gpu() Inserts information about the GPUs (id, temperature, % memory

usage, energy and % of computation used) for all the machines.
db_insert_summary() Inserts a summary of general-purpose data for a global overview.

Once the information has been collected and stored, the framework displays it for the

users. LIMITLESS includes a web application based on NodeJS that shows the state of

the whole system with a colour scheme. The system is represented as a matrix, where

each cell represents a node, and each one has a background colour depending on the load

of the represented node (heatmap). This tool is called fLASHINg (LArge Scale Heatmap

vIsualizer whit Nodejs). The application includes three sheets to visualize the IP list, which

show the IPs registered, a summary of the main performance metrics for all nodes, and the

heatmaps. This last view includes another four sheets to display the heatmap depending on

a certain performance metric: CPU, memory, GPU and IO (other metrics can be added, but

this tool is a proof of concept). The colour scheme indicates a load of each node depending

on the selected metric: green indicates values lower than 30%, yellow values between 36%

and 75%, and higher values are painted in red.

Figures 4.5 and 4.6 shows the execution of fLASHINg. The first one shows every

performance counter for all compute nodes, and the second one shows the heatmap filtered

by CPU load. Note that the cell colours between the first and the second image may

53

Chapter 4. Framework logic and algorithms 54

Table 4.3: Query functions available in LIMITLESS API .

Name Function Description
db_query_table() Returns the information stored in a certain table.
db_query_spec_cr() Returns the information for all nodes filtering the columns

indicated by parameters
db_query_spec_conf() Returns the hardware data for all nodes filtering the columns

indicated by parameters.
db_query_all_cr() Returns the general information for all nodes.
db_query_all_conf() Returns the hardware information for all nodes.
db_query_all_io() Returns the information about the IO devices for all nodes.
db_query_all_cores() Returns the information about the cores for all nodes.
db_query_all_gpu() Returns the information about the GPUs for all nodes.
db_query_all_net() Returns the information about the network inferfaces for all

nodes.
db_query_all() Returns the whole information stored.
db_query_all_now() Returns the last hardware data and general performance data

received for all nodes.
db_query_all_summary() Returns the average of the performance counters stored

for all nodes.

Figure 4.5: fLASHINg - Visualizing general performance metrics for all nodes registered
and monitored by LIMITLESS.

be different because of the performance fluctuation and because the images have been

captured in different times. In this case, between both images, the main differences appear

in the last two nodes, which shows CPU loads of 0% and 38% in Figure 4.5, but in Figure

4.6 are painted yellow and red. It means that the CPU loads are increased to more than

30% and 75%, respectively.

The following two methods are similar: both visualizers are based on web applications,

include different dashboards to display de information, charts, gauges, tables, etc. They

also include many plugins to display the metrics in a friendly way, to perform analysis

54

Chapter 4. Framework logic and algorithms 55

Figure 4.6: fLASHINg - Visualizing the CPU heatmap from the nodes registered and
monitored by LIMITLESS.

Figure 4.7: Kibana - Visualizing general state of the cluster. Each point represents an
aggregation of nodes (bigger sizes represent more nodes, and smaller, less nodes).

operations to the data. Their use with large volumes of data has been proven. Besides,

the visualizer utilization is basically the same: both visualizers can establish a connection

with ElasticSearch as a data source, defining the tables to import to the web tool. Due

to this, once the information has been imported, the user has to create a new dashboard

(visualization page) and then he/she can insert new charts for the performance metrics.

Figures 4.7, 4.8 and 4.9 shows different views of Kibana dashboards. The first image

represents one view to have a global vision taking into account CPU and main memory.

The Y-axis represents the usage percentage for all charts, and the size of the points indicates

the accumulation of nodes that belong to that percentage. The second image shows the

general information for one certain node. In this case, there is a drop-down list to select

the IP that corresponds to the node that the user wants to check (for instance, 10.0.40.19).

Finally, the last figure shows a dashboard that provides some analysis of the data, indicating

average, most repeated values, a counter of metrics, etc.

55

Chapter 4. Framework logic and algorithms 56

Figure 4.8: Kibana - Visualizing the general performance metrics for a certain node with
IP 10.0.40.19 in a certain moment.

Figure 4.9: Kibana - Visualizing the Kibana dashboard which analyzes the data and
provides functions to exploit the information (due to new plugins).

56

Chapter 4. Framework logic and algorithms 57

4.4. Improving control congestion for InfiniBand networks

One of the major challenges in HPC and data-center infrastructures is how to design

the interconnection network and how to deal with the network congestion. As it is an

important topic, the different alternatives to create that network, for example, InfiniBand

(IBA), include algorithms to mitigate its effects. However, detecting network congestion is

a difficult task because of its variety and dynamism. If the detection is not fast enough, the

system will react too late.

When there are some applications executing in a cluster, and they generate a lot of

communications, network congestion may appear. In this case, this optimization focuses

on the congestion over IBA networks. When an IBA-based network starts congesting,

the origin of the problem is in the network paths, which are clogged channels where the

applications are contending for them. These saturated paths (also called congested flows)

can delay the communications at switches that there are not in the conflicting zone (these

paths are victim flows). This problem is known as HoL blocking (Head-of-Line), and the

percentage of performance degradation can reach important values. For this reason, one

of the major challenges is the designing of new policies or algorithms that can detect and

reduce network congestion.

In the specific case of IBA, the developers have spent a lot of resources to design their

own congestion control (CC), which automatically minimizes the negative effect of the

congestion over the performance. This CC is based on a strategy named closed-loop, which

delegates the detection of the congestion to the switches in the network. The IBA switches

can detect congestion in the output channels (ports), and the process of congestion control

starts when it overcomes a predefined threshold. The process consists of communicating

two switches through special flags to determine the congestion degree. Once the congestion

is detected, the switches reduce the traffic through the congested channels, retransmitting

them through other paths. Finally, when the congestion is reduced, the switches start to

dispatch the packets normally.

The objective of LIMITLESS, in this case, is limited to collect, as fast as possible,

the performance counters of the IBA network and send them to an optimized CC, using

OpenSM and the transmission via MAnagement Datagrams (MADs), in order to update

the IBA CC parameters dynamically. OpenSM allows LIMITLESS to communicate with

the IBA Subnet Manager, and with the correct messages, thresholds, flags, and parameters

of the IBA devices can be modified. It means that we could manage the behavior of the CC

to design new strategies to reduce the negative effects of the congestion in the performance.

Hence, with the OpenSM and the monitoring information about the IBA network, this

57

Chapter 4. Framework logic and algorithms 58

INPUT TRANSFORM OUTPUT

Stream Distributed
BBDD

o

Data to
OpenSM

instructions

Subnet Manager
Instructions

queue

SubnetManager
operations

Figure 4.10: Representation of the pipeline from when the data is collected until
instructions are sent to the congestion control.

feature tries to dynamically modify the configuration IBA CC parameters at the Host

Channel Adapters (HCAs) generating traffic flows contributing to congestion.

Figure 4.10 shows the processes involved in this proposal to manage the congestion

control of the network based on the monitoring data. Three main processes can be

distinguished: the first one corresponds to the data collection from the compute-nodes

(INPUT), which is served as a steam, or through a distributed database that communicates

through the IB network. The second process (TRANSFORM) is in charge of receiving the

input metrics and transform them to instructions in OpenSM, so that the Subnet Manager

understands them. Finally, the last process in the pipeline executes the actions in OpenSM

language to manage the congestion control based on them (OUTPUT). Note that this is a

proof of concept, and the information collected is centralized before generating the Subnet

Manager instructions. However, as future work, this process should be distributed in order

to communicate, directly, the performance counter collection in the compute-nodes to the

Subnet Agents (instead of sending the instructions to the Subnet Manager).

The following description explains how LIMITLESS contributes to increasing the

accuracy and the reactivity of the CC. At first, LIMITLESS gets the PortXmitWait parameter,

which provides a measure about how much time a certain HCA delays the traffic injection.

If the delay value is greater than a threshold, it confirms that the communication channel is

contributing to congestion. This situation is the cause that the HCAs do not receive the

monitored packets in a short period of time, which implies an increment of the victim flows.

Combining the monitoring information provided by LIMITLESS with the CC strategies,

the system tries to update the OpenSM parameters to activate the injection throttling.

58

Chapter 4. Framework logic and algorithms 59

When an HCA truly contributes to congestion, a high value for PortXmitWait indicates

that the congesting channels are waiting to be injected because the congestion tree has

been propagated throughout the network. In this situation, it is needed to activate the

injection throttling manual and dynamically, and one option to do it consists of updating the

CCTI_increase parameter in the HCA configuration. Based on the value of PortXmitWait,

if it is over an upper_limit, then the CCTI_increase is enabled (in IBA-CC this parameter

is disabled by default). On the contrary, reduced values of PortXmitWait confirm that the

congestion is vanishing. If the congestion is reduced and assumable, the injection throttling

is disabled and the CCTI_increase value is initialized to zero.

The main results of applying this optimization (LIMITLESS + CC) are shown and

described in Section 7.

4.5. Summary

This chapter describes how the implementation of each component has been done. The first

section shows how the performance metrics are collected, and why the /proc processing is

the best option. The second section describes the implementation of the monitoring system,

explaining the communications, how to use it, the different optimizations developed,

and all of that with pseudo-code and algorithms. The third section is dedicated to one

of the main components in the framework: the analytic component. It is in charge of

analyzing the whole data, modeling applications, predicting future states of the cluster and

performing other operations to improve the framework performance (for example, reduce

the monitoring network traffic, or improve the scheduling policies). The fourth section

describes the concept of multi-criteria scheduling and the two different policies designed

to schedule the applications based on shared nodes: coarse and fine-grained monitoring.

Finally, the last section describes the communication API to allow other processes get

information collected, and two alternatives to display the collected information, which

have been tested in combination with LIMITLESS.

The following chapter (Chapter 5) shows a deep description about the Analytic com-

ponent, which is in charge of generating models, identifying applications in execution,

predicting the performance of the applications in the nodes, and performing two new

scheduling policies based on monitoring.

59

Chapter 5. Analytic component 60

5. ANALYTIC COMPONENT

Chapter 4 shows the implementation of the different components of LIMITLESS and

what is the main function of each. This chapter focuses on the implementation details

about the Analytic Component described in Chapter 3. To do so, the descriptions are

going to be presented in combination with graphical examples and pseudo-code in order to

improve the understandability.

This chapter is organized into two sections: the first one describes the different algo-

rithms used to provide smart functions, and the second one presents two novel scheduling

policies based on the algorithms presented in the first section.

5.1. Smart analytic support

In this subsection, there is a deep description of the different algorithms developed to pro-

vide smart functions to LIMITLESS. The main function of this component can be separated

into three fields: application modeling, predicting algorithms, and classification/identifica-

tion algorithms. The objective of using these algorithms is to exploit the data captured by

the monitoring tool to (1) obtain profiles and predictors from the applications, and (2) to

improve the scheduling process.

From the scheduling point of view, this component is used to leverage the performance

information collected from the applications and the platform to predict future behaviours

of the applications and, then, reduce the communication between the LDMs and the LDAs.

A second goal consists of enhancing the application scheduling by means of identifying

and predicting applications that be executed in the same compute node without degrading

their performance. Once the applications have been identified, the LA performs predictions

of the future performance metrics based on two kinds of algorithms: single-variable and

multivariable analysis. The single-variable techniques are application pattern matching,

prediction based on a historical window, and prediction based on neural networks. The mul-

tivariable analysis consists of using different machine learning algorithms: classification

and searching.

Starting with single-variable prediction algorithms, the first method is based on pattern

or model generation. When an application starts its execution, the framework stores its

performance metrics as a pattern. In the following executions, the LA will try to predict the

performance metrics using those patterns. 3 describes the logic of this solution, and there

60

Chapter 5. Analytic component 61

Algorithm 3 Application performance model logic based on pattern matching. Variables
ni and mi corresponds, respectively, to the ith measured and recorded performance metrics.

1: // Limitless Analytic
2: INPUT (from Elastic search): mi

3: {ni} = ES _read_metrics(i)
4: if ||ni − mi|| < threshold then
5: ni+1 = ES _read_metrics(i + 1)
6: return(ni+1)
7: else
8: return(”Prediction f ailed”)
9: end if

can be seen that each sampling interval, the LA evaluates if the real metrics correspond to

those stored in the pattern. If the metrics are similar (their difference is below a determined

threshold), the following metrics will be generated from the pattern (assuming the same

behaviour). If the predictions fail, the pattern is discarded. This alternative is lightweight,

but it only works with applications that do not change their performance between different

executions.

The second technique consists of providing predictions based on a regression of the last

n samples received. This technique performs the interpolation of the n previous samples.

The number of the sampling intervals to consider computing the interpolation is five (the

sample window). The result of this operation is similar to the process of find tendencies,

and its result is the predicted value. As the first technique, this alternative predicts well

for periodic applications, which perform different phases (IO, communication, CPU, etc.).

In this case, the duration of each phase should be similar during different executions

to increase the predictor accuracy. The objective of using interpolation is to refine the

predictions instead of using the stored value in the pattern. It allows certain tolerance to

performance variability between executions.

The last single variable technique is based on the using of neural networks to learn, au-

tomatically, the performance patterns from the data collected from the previous executions,

and then, to predict the following states when a known application starts. Each predictor

includes a set of neural networks, one per variable that the user wants to predict. Each

one is based on the Multi-Layer Perceptron (MLP) algorithm, and it is built with three

layers fully connected with 120, 60, and one neuron respectively. Once one application has

already been executed (an application ensemble is created), the training starts. After the

training, the networks are capable of set their weights to recognize the patterns. However,

the second execution of the application verifies the accuracy of the predictions (its results

are used as a test). If the predictor is not accurate enough, more executions are needed to

provide more training data. Note that one of the main advantages of this alternative is that

there is no necessity to use historical data.

61

Chapter 5. Analytic component 62

The last prediction technique is based on a multi-variable correlation using the machine

learning algorithms. The first studied algorithm is Nearest Neighbour (NN) [105], [106],

then the solution is extended with AdaBoost and Support Vector Machine algorithms due

to their accuracy in the analysis, which will be described in Chapter 6, although other

algorithms have been also tested.

In this approach, given a set of k performance metrics collected by a LDM in a current

sample, our solution predicts the application performance and uses this information for two

different actions: to reduce the network communication between the monitor components

and to improve the application scheduling. The main idea behind the second goal is

to obtain the application profile using the monitor and then, use this information for

predicting the application performance when it is executed in the same node with other

applications. Executing applications concurrently in the same nodes aims to optimize the

resource utilization by leveraging the computational resources (cores) not used by one

of the applications. It can result in less energy utilization (given that less compute nodes

may be used). In case of large workloads, it contributes to reduce the overall makespan

reduction and increase the platform throughput because the system has more compute

nodes available to run extra applications. However, running multiple applications in the

same compute node may produce performance degradation due to contention in the sharing

of the compute node’s resources between applications with different characteristics. We

call this effect application interference. For this reason, this decision (sharing or not the

compute node) has to be taken based on the application characteristics. In this work, we

will leverage monitoring information to determine that application interference does not

occur.

For the first goal, an algorithm capable of predicting the following performance metrics

is enough, and we use NN. Having the set of k metrics, this algorithm finds the most

similar k-metrics to this set in the complete historical data. It means that the algorithm has

found the i-th vector of metrics in the set, being i the execution time, and then the predictor

returns the vector of metrics that corresponds to the instant i + 1. One advantage of using

this approach is that it can process really fast and efficiently a large set of data (like the

historical log that stores the different application ensembles). The second advantage is

that this method is multivariable, which means that there is only one ML algorithm per

application (instead of one per metric, and per application).

For the second goal, it is not enough to predict the state of the cluster, but we also need

information about the application profile that distinguishes its execution phases. That is,

we need fine-grained monitoring. For this reason, we use support for machine learning

classification algorithms. When the scheduler wants to execute applications in shared

62

Chapter 5. Analytic component 63

nodes, sends the appropriate information to LA, which analyzes the scenario, predicts the

future state of the applications, and identifies their phases to run both of them in the best

moment (which is when the phases that cause interference do not overlap).

5.2. Multi-criteria scheduling

This section describes two novel techniques for application scheduling based on monitoring

information. This process is done taking into account scheduling policies for shared nodes,

where two, or more, applications can be executed in the same node at the same time

(depending on the available resources). The first scheduling process executes applications

in the same node when there is no interference between them (it means that there is no

performance degradation when both applications are running concurrently). The second

process executes applications but taking into account their internal phases. This method

is based on decomposing applications in phases, get the profile of each one, and execute

applications when their phases will not produce interference.

The policies of these processes are multi-criteria because, although they are based

on detecting interference between the applications, the administrator can establish higher

criteria that will always be taken into account. For example, the scheduler can perform

the allocations taking into account the energy consumed, I/O or network usage, makespan,

etc. It means that the scheduler will dispatch the applications based on those policies (a

set of metrics to improve can be indicated), and then it will also try to share nodes to

reduce the makespan, using the available resources efficiently. This can be done due to

new scheduling policies that try to maximize all metrics, but prioritizing one to avoid

conflicting criteria (for example, executing applications using 100% of CPU, and saving

energy. Both metrics are in conflict, so that, one should be marked as principal).

Following, both methodologies to schedule the applications are described.

5.2.1. Scheduling based on monitoring: Coarse-grain scheduling

Figure 5.1 shows a general overview of the monitoring framework (without including the

analytic, storage and visualization modules). The center of the figure shows the cluster’s

compute nodes, which are organized in two racks of three nodes each. The top of the figure

shows the LIMITLESS monitoring tool, which is in charge of monitoring the applications

and platform resources. The monitoring tool is deployed using one LDM per compute

node to collect the performance metrics, one LDA per rack to gather the information from

the LDMs (arrow 1) and then to send it to LDS (arrow 2). The LDS is the process in

63

Chapter 5. Analytic component 64

App 1

FlexMPI

LDM

App 2

FlexMPI

LDM

App
1

Flex
MPI

LDM

App
2

Flex
MPI

Rack 1

CLARISSE
FlexMPI

controller
Scheduler

node 1 node 2 node 3

New jobs

LDS

LDA 1

2

44

7

8

App 2

FlexMPI

LDM LDMLDM

Rack 2

node 5 node 6

LDA 1

node 4

CLARISSE
interference

-aware
policy

6

CLARISSE
Limitless
controller 5

3

Figure 5.1: Systems monitor and scheduling architecture for coarse-grain scheduling.

charge of storing the whole received information in an ElasticSearch database. Besides, it

processes the information received, analyzes the performance, and, in case of detecting a

hot spot, it sends this information to the CLARISSE component (arrow 3).

Finally, the bottom of the figure represents the scheduling features, including FlexMPI

and CLARISSE that are integrated components. FlexMPI is an implementation of Open-

MPI that provides application-level monitoring and malleability of MPI applications, and

it is connected with the CLARISSE’s controller (arrow 4) to analyze the performance

metrics. CLARISSE’s interference-aware component leverages the monitoring information

gathered from the monitoring system and FlexMPI (arrows 5 and 6) to check if there is

a hot spot in any compute node that produces a performance degradation in the applica-

tions running. If degradation is detected, the policy manager is in charge of sending the

instructions to the scheduler, with the objective of migrating the applications (arrow 7) and

FlexMPI (arrow 6). Note that, in this scheduling policy, LIMITLESS performs two roles:

(1) it monitors the system and (2) acts as a resource allocator providing the list of nodes

where the applications have to be executed or migrated.

In every cluster, there are a certain number of queues where the applications wait until

the scheduler dispatches them to hosts. These queues can have different priorities, different

target hosts, different policies, or are designed for different users. Once a user wants to

run an application, this is put into a ready-to-run queue, and the scheduler, when there

are enough resources, executes it into a compute-node. This process is called scheduling.

64

Chapter 5. Analytic component 65

There are different policies to provide this scheduling, but the most common consists of

running applications in nodes when these are free without applications running on them

(exclusive-policy. However, sometimes the scheduler can be configured to share nodes

between applications, but not computational resources (for example CPUs or cores). It

means that the throughput could be increased (depending on the applications) and the

resources can be used in a more efficient way (shared-policy).

To explain better the meaning of the Figure 5.1, following there is a practical example

description that uses the coarse-grain scheduling in shared nodes. Before starting, assume

that the cluster nodes are homogeneous with 12 cores each, and there is an execution queue

of two applications with 18 and 30 processes. The first application App1 is executed in

the first place, in nodes 1 and 2. Note that node 1 executes 12 processes (one per core)

and node 2 the rest 6 processes. During a short time, FlexMPI monitors the performance

of App1 while it is executing without node sharing. Then, the second application App2

is executed in the free nodes 3, 4, and 5, executing 12, 12, and 6 processes respectively.

FlexMPI now monitors the performance of App2. Note that this monitoring process is

done when the applications are running without sharing resources. For this reason, there is

no risk of interference, and the performance metrics correspond to the real performance

of each application. Once CLARISSE has received the performance of each application,

the system tries to share nodes with unused resources. At this moment, the 6 processes

allocated in node 5 from the App2 are dynamically moved using malleability to compute 2,

where there are already 6 processes executing from App1. The point of this policy consists

of using the resources efficiently, trying to reduce the utilization of nodes: currently, four

nodes are in use instead of five. It means energy-saving. Note that the stage of collecting

the original performance metrics (without interference) can be avoided if the framework

has already them (for instance, due to previous executions of the same applications). In

this case, the framework could apply the sharing-node policy directly.

Let’s now assume that App1 and App2 suffer performance degradation in node 2 due to

cache-related interference. The monitoring tool detects this interference when the system

performance metrics arrive at the LDS. Then, the LDS sends a notification with the risk

to the CLARISSE controller. In order to evaluate the interference, CLARISSE activates

the application-level monitoring in both applications, collecting the current performance

metrics. The last step is to compare the current metrics with those without interference

(initial performance in exclusive nodes). Once performance degradation is confirmed, the

six processes of App2 in node 2 are migrated to another free node (node 5 or 6, depending

on the allocator process), where the application will recover its expected performance due

to continuing its execution in an exclusive node. At this moment, node 2, as well as the

node where App2 has been moved, can be shared.

65

Chapter 5. Analytic component 66

As it can be seen, the system monitoring tool is scalable because the LDAs manage

many LDM instances, and is connected to LDSs in a hierarchical way. At the application

level, there is one connection between FlexMPI and each application, and the rest of

the connections are peer-to-peer basis between the components. And the application

monitoring provided by FlexMPI is executed on demand when there is a possibility of

interference between the applications that share a node.

5.2.2. Scheduling based on monitoring: Fine-grained scheduling

This scheduling process is similar to the one described above, but, instead of detecting

interference between applications, this process tries to find which phases of the applications

cause interferences. The main challenge of this process is to know which execution, from

the application ensemble stored in ES (and managed by LA) corresponds to the current

execution, with the objective of predicting and detecting its phases. For this reason LA uses

machine learning algorithms to identify which execution from the application ensemble

take as application model (based on ML Classification algorithms). Once the application

and its phases have been identified, LA performs a series of analysis to determine if another

application (or more if they fit in the non-interference phase) can be run together without

interference, which would mean that LIMITLESS would be using the resources efficiently,

reducing the makespan, and allowing new executions in the nodes that have released the

applications in shared nodes.

The idea includes three steps: running concurrently two applications to know if there

is application interference. Then, if it happens, dividing the application models (of both

applications) into different phases that will be recognizable by the classification algo-

rithms. Once these phases are identified, and the profile of each one (CPU-intensive,

communications-intensive, etc.) is known, the phases of different applications that do

not generate interference can be combined, allowing to run in the same compute node

to maximize the machine resource utilization. Algorithm 4 shows the general algorithm

pseudocode for this fine-grained scheduling algorithm, which consists of the study and

schedule the phases of applications, instead of their complete execution. This technique al-

lows LIMITLESS to combine long-time with short-time execution applications depending

on the profile of their phases. The scheduler, for each application ready to be executed,

sends a notification to the LAN component (Line 1) and obtains the related application

model (Line 2). Then, the LAN component obtains the list of the running applications

from the scheduler (Line 4). For each one, it identifies its model, profile and phases (Line

5). The next step consists of evaluating if there is interference between the models of the

application ready to run and the currently running. If there is no interference between

66

Chapter 5. Analytic component 67

Algorithm 4 Fine-grained scheduling algorithm. Variable appk represents a given ap-
plication k that may be in execution or ready for being executed. Mappk represents the
application model used by the Analytic component, and nodek is the compute node where
the application is being executed.

1: for each appk in Ready_Queue do
2: Mappk = model(appk, AdaBoost, S V M)
3: nodek =

4: for each app j in Execution do
5: Mapp j = model(app j, AdaBoost, S V M)
6: if inter f erence(Mappk,Mapp j) == FALS E then
7: nodek = request_node(app j)
8: end if
9: end for

10: if nodek == then
11: nodek = request_new_node()
12: end if
13: execute(appk, nodek)
14: end for

two applications (Line 6) and there are enough available resources in the same compute

node, then the LAN component uses the same node for running the new application (Line

7). However, if interference is detected or there are not enough resources, then the LAN

component requests to allocate appk in a new node. Finally, in Line 13 the LAN notifies

the scheduler which is the compute node where application appk should be executed.

This scheduling process has been done taking into account multiple factors. At first,

the scheduler notifies LA that the application App1 will be executed in nodei (for this use

case). Once App1 has started, the monitor starts providing the collected metrics and the

application model of App1 is obtained from ES. This process of identifying the current

application from the application ensemble is done by executing two machine learning

algorithms (AdaBoost and SVM) and making a consensus between their results. Then, the

scheduler gets a new application App2 from the application queue and notifies its execution

to LA. With this information, LA obtains the application models from App2 and evaluates

if there could be interference between both applications taking into account their models

and the current state of the App1, because it is running for a while. If no interference is

detected (theoretically), LA allows the execution of App2 in nodei, where App1 is running.

Otherwise, a new node node j is returned by LA, and the scheduler executes App2 in node j.

Note that this scheduling process is complementary to coarse-grain scheduling. If real

interference is detected during the execution of App1 and App2 in nodei, App2 would be

moved to another free node.

The objectives of this strategy are to detect when an application Appi is running in

a certain node nodei and detect the current execution phase of App1 when the scheduler

wants to execute another application App2 in the same node.

67

Chapter 5. Analytic component 68

0

20

40

60

80

100

1 3 5 7 9 11131517192123252729313335373941434547495153555759

CP
U

 u
sa

ge
 (%

)

Time (min)

Shared phases without interference

Application-2 Application-1

Non-interference execution phase

Figure 5.3: Fine-grain scheduling result - Execution phases where both applications can
share a node.

0

20

40

60

80

100

1 3 5 7 9 11131517192123252729313335373941434547495153555759

CP
U

 u
sa

ge
 (%

)

Time (min)

Application-1

Application-1

(i) Application 1 - CPU pattern.

0

20

40

60

80

100

1 3 5 7 9 11131517192123252729313335373941434547495153555759

CP
U

 u
sa

ge
 (%

)

Time (min)

Application-2

Application-2

(ii) Application 2 - CPU pattern.

Figure 5.2: CPU execution patterns of two random applications that will share a node.

An example of how this scheduling policy tries to find interference between applications

can be seen in Figures 5.2 and 5.3. Both charts in Figure 5.2 represent the CPU pattern

of two random applications that are in the execution queue. Once the Application-1 is

executed in a certain node, the analytic component tries to find out if the next application

in the queue, Application-2, can be executed in the same node-x. This process is done

by predicting the performance of both applications and finding out if there are enough

resources at different points in time. The result of this process can be seen in Figure 5.3,

which shows how the analytic component is able to detect that there would be a lack

of computational resources (required CPU is greater than 100%) if Application-1 and

68

Chapter 5. Analytic component 69

Application-2 share a node when Application-1 is executing the phase between the 20 and

45 minutes. It means that both applications can share the node in two phases: since the

beginning of the Application-1 to minute 20, and since minute 45 to the end.

The combination of applications in shared nodes (with available computational re-

sources) should reduce the makespan of the executing queue because of the leveraging

of those free resources, also increasing the throughput. However, as this scheduling pro-

cess is based on ML algorithms, and they are not perfect in terms of accuracy, there are

possibilities of executing applications with real interference in the same node (due to

prediction and identification failures), producing a bit of performance degradation. But in

these cases, CLARISSE would detect those conflicts and they would be avoided migrating

applications to other free nodes. So that, the worst scenario would be one with a set of

applications ready to be run, where all of them causes interference between them. In this

case, the combination LA + S cheduler would detect the profile of the applications (and

their phases) and would execute all of them as an exclusive policy, avoiding interference

from the beginning.

5.3. Summary

This chapter is dedicated to one of the main points of the LIMITLESS framework, the

analytic component, which is in charge of analyzing the whole data, modeling applications,

predicting future states of the cluster and performing other operations to improve the

framework performance (for example, reduce the monitoring network traffic, or improve

the scheduling policies). The second section describes the concept of multi-criteria

scheduling and the two different policies designed to schedule the applications based on

(1) monitoring data and (2) the use of shared nodes: coarse and fine-grained monitoring.

The following chapter (Chapter 6) shows a formal model, simulations, and another

developed tool to help users with the deployment and the topology design related to the

monitoring tool included in LIMITLESS.

69

Chapter 6. Theoretical modeling 70

6. THEORETICAL MODELING

This chapter presents the model behind the system monitor of LIMITLESS framework,

with the objective of define a mathematical description of it. The goal is to present some

results in this way to make clear and understandable the capabilities and limitations of its

implementation. It includes one formal model for the system monitor (structure, commu-

nications and node loads), it also analyzes the impact of different general optimizations,

and finally, a study that considers the fault tolerance scheme. Also, this chapter includes a

simulation example using OMNET++ [107] to evaluate the scalability of the model, and

the description of a new developed tool to estimate the communication cost of the input

topological designs.

6.1. System monitor model

Following, the main structures of this system monitor are presented. At this point, the

defined objects are identified as a node, instead of processes, because we are assuming that

each node executes only one function. It means that each node object is directly related to

its main process: LDM, LDA or LDS, and the organization of these nodes can be seen in

Figures 6.1 and 6.2.

Definition 1:

D→ DaemonMonitorNode

A→ AggregatorNode

S → S ervernode

C → Communication

ES → ElasticS earch

The system is organized based on sets, so that the set of a component (S x) include all

nodes connected to that element x. Now, knowing the different structures, Figure 6.1 shows

the relation between the framework components and the sets defined in the architectural

model, which is described as:

70

Chapter 6. Theoretical modeling 71

LDM LDM LDM LDM LDM LDM LDM LDM LDM LDM LDM LDM Di

Ai

S

ES

ES

Figure 6.1: Relation between framework components and the sets defined in the
theoretical model in Definitions 1 and 2.

Definition 2:

Di = {{D0, ...,Dn} → n ∈ S D}

Ai = {{D0, ...,Dn} ∪ {A0, ..., Am} → n,m ∈ S A}

S = {{A0, ..., Ap} ∪ {D0, ...,Dq} → p, q ∈ S S }

S A represents a set of daemon monitor nodes and a set of aggregator nodes that are

connected to Ai. S S represents a ser of aggregator nodes and daemon nodes that are

connected to S .

Let’s assume that we are working with a set of tree-based topologies that send the

information to an ElasticSearch ES database, and for each branch of the tree S n, indexes

i and j define the horizontal position of an element, and q defines the aggregation level

for each subtree, assuming that the maximum number of levels is 2. The graphical

representation of this model can be seen in Figure 6.2. In this topology, the previous

subsets can be particularized as follows:

71

Chapter 6. Theoretical modeling 72

Dq

A1,j

Sn

D0 Dn…

A1,0

Dn+1 Dm…

A1,n

…

A0,0 A0,i

Dm+1 Dr…

A1,n+1

Dr+1 Dq…

A1,j

…

S0 Sn

ES

A0,i

ES

… ……

… ……

Figure 6.2: Relation between framework components and the sets defined in Definitions 3.

Definition 3:

ES = {S 0, ..., S n}

S n = {D0,0, ...,D0,q} ∪ {A0,0, ..., A0,q}

A0,i = {D1,0, ...,D1,i} ∪ {A1,0, ..., A1,i}

A1, j = {D2,0, ...,D2,q}

Next formulas represent the connections (network communication channel) between

components in order to proceed to explain the results mathematically. These connections

are represented in Figures 6.1 and 6.2 by arrows, and always follows the same directions:

from D to A, from A to A or to S , and from S to ES .

72

Chapter 6. Theoretical modeling 73

Definition 4:

(∀Di ∈ S A) ∃ CDi,A

(∀Dk ∈ S S) ∃ CDk ,S

(∀A j ∈ S S) ∃ CA j,S

(∀S l ∈ ES) ∃ CS l,ES

As you can see, each aggregator node (Ai) will receive one packet per daemon (D)

and aggregator (A) in its set. In the same way, the server (S) will receive one packet per

daemon (D) in its set and as many packets as each aggregator (A) in its set has received.

Thus, we can define the number of connections to an Aggregator (A) as:

Definition 5:

CA0,i = (
∑︂

CA1,i,A0,i +
∑︂

CD1,i,A0,i)→ i ∈ S A

CA1, j =
∑︂

CD2, j,A → j ∈ S A1, j

And the number of connections to a server (CS n) with the following equation:

Definition 6:

CS n = (
∑︂

CA0,i,S +
∑︂

CD0, j,S)→ i, j ∈ S S n

Extending the equation to reflect the total number of connections in LIMITLESS

monitoring tool to the ES database CES (we are assuming one database instance):

Definition 7:

CES =

q∑︂
i=0

CS i → q ∈ S ES

6.1.1. Communication model

Each connection between D-A, D-S, A-S or S-ES will have a certain network overhead

during the monitor running. This overhead will depend on the number of messages sent

73

Chapter 6. Theoretical modeling 74

during a certain time, which frequency is the reverse of the sample_period (time between

measures, defined by the user in the deployment).

Let CDi,A j represent the connection between the component Di and A j in the system.

Thus, the number of messages between two elements Di and A j of the monitor can be

calculated as:

Definition 8:

Ts =
time

sample_period

Assuming that PD bytes is the size of each packet with monitoring data sent by Di, the

number of bytes sent along time through the connection link will be:

Definition 9:

ODi,A j = PD ∗ Ts

Assuming that PA bytes is the size of each packet with monitoring data sent by A j to

another Ak or to S , the number of bytes sent along time through the connection link will

be:

Definition 10:

OAi,A j|S = PA ∗ Ts

Assuming that PS bytes is the size of each packet with monitoring data sent by S q to

ES , the number of bytes sent along time through the connection link will be:

Definition 11:

OS ,ES = PS ∗ Ts

The communication overhead Oi can be modeled generally as follows:

74

Chapter 6. Theoretical modeling 75

Definition 12:

OA = (
∑︂

ODi,A +
∑︂

OA j,A)→ i, j ∈ S A

OS = (
∑︂

OAk +
∑︂

ODp,S)→ k, p ∈ S S

OES =
∑︂

OS p → p ∈ ES

Taking into account all the partial equations, the global overheads can be summarized

as follows:

Definition 13:

OA j = (
∑︂

(PD ∗ Ts) +
∑︂

(PA ∗ Ts))→ j ∈ S A

OA j = |CDi,A| ∗ (PD ∗ Ts) + |CAi,A j | ∗ (PA ∗ Ts)→ i, j ∈ S A

OA j = (|CDi,A| ∗ PD + |CAi,A j | ∗ PA) ∗ Ts → i, j ∈ S A

Definition 14:

OS j = (
∑︂

(PD ∗ Ts) +
∑︂

(PA ∗ Ts))→ j ∈ S S

OS j = |CDi,S | ∗ (PD ∗ Ts) + |CAi,S | ∗ (PA ∗ Ts)→ i ∈ S S

OS j = (|CDi,S | ∗ PD + |CAi,S | ∗ PA) ∗ Ts → i ∈ S S

Definition 15:

OES =
∑︂

(PS ∗ Ts)

OES = |CS i,ES | ∗ (PS ∗ Ts)→ i ∈ S ES

The formulas described before represent the communication overhead between compute

nodes and aggregator nodes (OA), between compute nodes and/or aggregator nodes, and

server (OS), and between servers and ElasticSearch database (OES). The relation of this

overheads and the communications between the framework components can be seen in

Figure 6.3.

75

Chapter 6. Theoretical modeling 76

Dq
Ai,j Sn ES

OA OS OES

Figure 6.3: Description of the communication overheads between the framework
components. It corresponds to the overheads defined in the set of Definitions 13, 14 and
15.

Communication Limits

Assuming a bandwidth (B) of the network link, reducing the size of packets sent by sample

(B) is critical as the maximum number of messages that could be sent through the link

would be:

Definition 16:

CLEi,E j =
B

PD ∗ 8

CL limits, not only the maximum number of packets per second, but also the aggrega-

tion capacity in the Aggregator nodes and the S erver, giving a critical parameter to build

the graph of the monitoring system as the monitored system scales. In LIMITLESS, the

packet size in a common compute-node use to be small than 70B. Then, we theoretically

could send:

Definition 17:

CLEi,E j =
B

70 ∗ 8

Bandwidth Samples per Second
1 Gbps 1.7e6
10 Gbps 1.7e7

Table 6.1: Maximum number of packages allowed by CL

76

Chapter 6. Theoretical modeling 77

Table 6.1 shown the maximum number of messages that could be sent through a

network connection. As may be seen, network capacity is not a strong limitation to a have

a second, and even subsecond, sample period. The amount of resources needed to provide

that number of packets is really high.

6.1.2. Server workload

This section explains how the time affects the server in terms of workload, which is a

product of the computation done per packet received. So that, each connection CiA|C

implies that a NodeA|S receives Ts packets per input connection that has the Nodei along

an execution time.

In this way, the total number of packets received (Ldcomponent) can be obtained. Each

aggregator node in the first level (A0,i) will receive one packet per daemon (D1, j) in its set,

and n packets per aggregator (A1,k) its set, each sample_period; In the same way, each

aggregator node in the second level (A1,k) will receive one packet per daemon (D2,r) in its

set each sample_period:

Definition 18:

LdA0,i = (
q∑︂

j=0

CD1, j) ∗ Ts + LdA1,k

LdA1,k = (
q∑︂

r=0

CD2,r) ∗ Ts

Following this model, each server (S n) will receive one packet per daemon (D), and as

many packets as aggregators in its set had received during that sample_period.

Definition 19:

LdS n =

q∑︂
i=0

LdA0,i + (
q∑︂

j=0

CD0, j) ∗ Ts

It means that the maximum number of packets that ES server will receive in a certain

amount of time time, is defined by the following equation, and it represents the main

77

Chapter 6. Theoretical modeling 78

bottleneck of the system LdS .

Definition 20:

LdES =

q∑︂
i=0

LdS i → i ∈ S ES

6.2. In-node threshold filter

In order to try to reduce the number of packets sent by the daemon nodes (D), we have

introduced a function in each daemon with the objective of analyze the data collected and

determine if the information is relevant to be sent. The method to do this consists of add a

window range +/ − ∆m (defined by the user), and if measurements are within this range,

the information will be sent. Otherwise, no.

Mathematically, this algorithm can be modeled as follows: knowing that Mi represents

a raw of metrics collected in a compute-node, Mk is the last sample sent, and F(Mi) is the

function which defines the threshold filter:

Definition 21:

Mi = {Cpu,Mem,Net, Io}

Mk → k ∈ [0, (i − 1)]

F(Mi) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩0 Mi ∈ (Mk − ∆m,Mk + ∆m)

1 Mi ∉ [Mk − ∆m,Mk + ∆m]

With this optimization the communication model change reducing the amount of traffic

through the network thanks to the threshold filter over each packet sent between two

elements O f−E1,E2:

Definition 22:

O f−E1,E2 =

Ts∑︂
i=1

P ∗ F(Mi)

78

Chapter 6. Theoretical modeling 79

The equation that defines the server with this optimization is:

Definition 23:

OS = (
∑︂

O f−A jS +
∑︂

O f−DiS)→ i, j ∈ S S

6.3. Fault tolerance

To deal with failures in the different levels of this framework it has been implemented two

mechanisms:

• Watchdog processes: The three different modules (daemon, aggregator and server)

have control about their state (running or not). Each 30 seconds, each process calls a

function to check if it is running in the system. If the result is that it is not running,

it re-launches itself with the same configuration to continue its job.

• TMR: To maintain the communications between the modules in case of network

failure or superior-nodes failures it has been implemented a triple redundancy to send

the data. Each compute-node and aggregator node have three different directions to

send the information: the main path and two backups. In case of failure sending the

data, the module will try to send the information to the second path, and in case of

failure too, it will try with the third option. This method implies that there are, at

least, three daemon aggregators (for TMR in daemon layer), and three servers (for

TMR in last aggregator layer).

The first method has not cost (is lower than 0.1% in CPU usage) because it consists of

a simple check of a process state each 30 seconds and, only if the process is not running, a

command is executed.

The second method has two different configurations:

1. Always send the information to the same node unless there is a failure, in this case

try to send to the first backup node and then, to the second backup node.

2. Always send the information to three referenced nodes (redundancy).

Option 1. has no cost because there aren’t new computations and the information sent

is the same. However, Option 2. increases the amount of information sent through the

network and increases the number of packets that the referenced nodes must process. So

79

Chapter 6. Theoretical modeling 80

that, with this second option the formulas must be adapted including the set of A S A to S A∗ ,

that now grows up to include the set of other two aggregator nodes in its same depth level:

Definition 24:

S A∗i, j = {S Ai, j ∪ S Ai,k ∪ S Ai,p} → i, j, k, p ∈ S A → k, p

O_T MRAi, j = (
∑︂

ODiAi, j +
∑︂

OA jAi, j)→ i, j ∈ S A∗i, j

O_T MRS z = (
∑︂

OAi +
∑︂

OD jS)→ i, j ∈ {S S 1 ∪ S S 2 ∪ S S 3}, z ∈ {1, 2, 3}

O_T MRAi, j represents the overhead of an aggregator node with TMR and redundancy,

and includes the overhead of two other aggregator nodes in its same parent set (S A∗i, j). It

includes the amount of data from its compute-nodes, its aggregator-nodes and the overhead

from other two aggregators in its same level of scalability. O_T MRS z represents the

overhead of the three servers, which is the same than without TMR and redundancy but, in

this case, instead of having one main server, the information is replicated three times. Then,

when the servers try to consolidate the information in the shared database the redundancy

is managed.

6.4. Simulation model

The idea of using simulations to tests some features had been taken from [108], where

authors describe a platform to model and simulate cloud computing systems. As the

monitor is distributed and can be executed in both environments, real and virtual platforms,

and due to the difficulty of having access to a large cluster (more than eighty two nodes),

the scalability limit of the monitoring tool included in LIMITLESS has been evaluated

based on simulation techniques, through the using of SIMCAN [109] and OMNET++

[107].

In this case, OMNET++ and SIMCAN are configured to run under the same conditions

as the real cluster that the tests have been performed, which consists of a set of nodes in

the same rack (everyone executes LDM functions), and a node separated by two switches

(which executes LDM functions) because it is in another network segment. To do this,

the simulator includes INET Framework [110] [111], an open-source model library, that

provides protocols, agents, and other features for designing and validating new scenarios

80

Chapter 6. Theoretical modeling 81

Figure 6.4: OMNET++. Example with a rack of 20 LDM nodes and one LDS. The
devices in the middle are switches that allow the topology representation.

based, among other things, on:

• Models for the Internet stack (TCP, UDP, IPv4-6, etc.).

• Wired and Wireless protocols (Eth, PPP, IEEE 802-11)

• MANET protocols.

The simulation model corresponds to a general hierarchical deployment, which contains

n homogeneous nodes with the following configuration: each node executes the LDM

process, and the hardware includes one network interface and I/O device. All nodes that

execute LDM functions are connected with another node that executes the LDS function,

and the connection is done between an intermediate switch. The communication links are

1Gbps Ethernet, and the simulated use case corresponds to intensive monitoring, which

consists of setting the sampling interval in one second, and only one thread to operate in

LDAs and LDS. Note that LDS is, actually, a multithread process, which means that the

performance in real scenarios is higher. Figure 6.4 shows an example of the described

configuration in the simulator. The blue figures represent the intermediate switches, the

machine on the right represents LDS, and the set of machines on the left are the nodes that

execute LDM. Figure 6.5 shows how SIMCAM simplifies the process of configuring nodes

in a network, only including the hardware features and the number of devices that are

needed. These images show an example. However, complex topologies can be designed

and simulated to test different configurations.

In addition to the basic configuration, the original models from INET have been modi-

fied to fit functionality of the real functions. This means that each compute-node includes

81

Chapter 6. Theoretical modeling 82

Figure 6.5: Screenshot of the SIMCAN Scenario Creator tool.

a processing overhead, which simulates the LDS functions of receiving, processing, and

storing the incoming metrics. These overheads have been carefully calculated:

1. Calculating how long it takes for a package to be received, processed, and stored,

along the time in a real use case with an LDS with one thread.

2. Obtaining the average time and the standard deviation.

3. Creating a model for LIMITLESS in OMNET++ that includes this processing over-

head in the server. To perform the worst case, the final overhead for processing

is avg_time + std_dev seconds, where avg_time is the average time that a thread

spends in receiving, processing, and storing a packet, and std_dev is the standard

deviation of the same variable. The objective of considering both is to create the

worst-case simulation.

Finally, in order to simulate in a more realistic way, the model includes a feature to run

the simulations with a log created with real data (monitoring information directly collected

from a real platform). The objective of this feature is to perform simulations based on the

real platform configuration, design and information collected. So that, the packets that

each monitor sends, are obtained from a log which stores the metrics collected in the real

cluster, resulting in sending the same information through the network as a real cluster and

producing more accurate simulations.

82

Chapter 6. Theoretical modeling 83

After running different simulations, the results can be observed in a log file, which

includes the whole packets created and transferred, and the timing of each event. The most

important values in the log are the number of packets created for each monitor, the number

of packets received by the server, and the queue of waiting packets. If the last value is

greater than zero, it means that the server can’t manage the volume of incoming metrics.

However, if that value is zero and the packets created are the same as processed, it means

that the model designed is valid (from a simulating point of view).

Under these circumstances, the results show that each LDA and LDS can manage up to

200 connections to them (LDMs or LDAs). Note that this result corresponds to an unreal

case (taking into account the current technology), but it represents the worst-case scenario.

6.4.1. Simulation model validation

In order to validate the simulation model described before, the same configuration and

experiments have been performed on a real platform. This configuration includes different

topologies to test different conditions, variations in the number of nodes that are moni-

tored, same speed interconnection and latencies, and LDSs in one-thread processor mode.

Besides, the monitor has been updated to write a log that shows the size of the incoming

packets queue, and the time spent to process and send it.

Table 6.2: Simulation vs Real - Experimentation under different conditions in both
simulated and real environments. Every use case simulates one hour.

Nodes Interval (s) Sim. sent/recv. Real avg. sent/revc. Unreceived msg.
1 1 3598 / 3598 3599 / 3599 0 %

5 721 / 720 720 / 720 0 %
10 361 / 360 360 / 360 0 %

5 1 17991 / 17900 17995 / 17995 %
5 3601 / 3600 3595 / 3590 0.83%

10 1801 / 1800 1795 / 1795 0%
10 1 35981 / 35980 35987 / 35978 0.63%

5 7201 / 7200 7200 / 7200 0.34%
10 3601 / 3600 3600 / 3600 0%

20 1 71961 / 71960 71960 / 71936 1.16%
5 14401 / 14400 14347 / 14036 2.16%

10 7201 / 7200 7150 / 7040 1.53%

Table 6.2 shows the number of packets sent and received both in real and simulated

experiments. The results show that the real environment is well represented by the model

in OMNET++, that can be verified seeing the correlation between the packets sent and

received in the experimentation. Note that the simulated sends and receives differs in one

packet. This behaviour is identified as a simulation issue because when the simulation

83

Chapter 6. Theoretical modeling 84

timer reaches the maximum time, the whole simulation processes are stopped, including

the server process, which can’t receive the last message sent. If the finalization process

is delayed, the whole packets are well received. On the other hand, real experiments

have also been repeated ten times and the table shows the average results, as well as the

percentage of packets that the server has not received on each one. Note that in the worst

case, the unreceived packets represent the 2.16% of the total sent packets, and these results

are obtained with the server configured with one processor thread (in the same way as the

model).

6.5. Communication cost calculator

The monitoring tool has two limiting factors: the network bandwidth and the computation

in some components, which are servers and aggregators. The previous model explains,

theoretically, in a formal way, how to deal with the communications between components.

In the same way, the computation in aggregators and servers has been simulated thanks to

OMNET++. In order to give feedback to the user when he/she wants to design a topology,

a tool called LIMITLESS Deployment Checker has been implemented in Python.

This tool is able to detect if the configuration selected for a platform is correct or if

there is possibility of future performance issues (overloaded aggregators or servers due to

the number of communications from other components). To check the configuration, the

program accepts the parameters described in Table 6.3.

Table 6.3: LIMITLESS - Deployment Checker parameters.

Parameter Description
Num. nodes The number of nodes where the monitor will be deployed.
Aggs per server The number of aggregators that will be connected to each

server.
Number of servers The number of servers to receive the information.
TMR mode Triple modular redundancy mode: 0 enabled, 1 enabled in

round-robin mode, and 2 to disable it.
Threshold filter Value for the in-node threshold filter to estimate the amount of

packets not sent.
Num. Nets The number of network interfaces in each node.
Num. I/Os The number of I/O devices in each node.
Num. GPUs The number of GPUs in each node.
Sampling interval Every sampling interval the LDM collects and sends the metrics.
Network speed The speed of the network in Gbps. By default 1Gbps is configured.

The checker evaluates the viability of the desired deployment in two ways: calculating

84

Chapter 6. Theoretical modeling 85

the percentage of the network bandwidth that will be used by the monitoring information,

and the limit provided by OMNET++ by means of simulation, to advice the user about the

possibility of performance issues due to servers or aggregators saturation.

To run the deployment checker, the user has to execute a command line like the

following:

$ python depChecker.py 400 2 2 2 10 1 1 1 1 1 (cmd line 1)

400 nodes.

2 LDA per LDS.

2 LDS nodes.

2 TMR mode disabled.

10 Threshold filter value.

1 Number of network interfaces per node.

1 Number of I/O devices per node.

1 Number of GPUs per node.

1 Sampling interval.

1 Gbps network channel speed.

The parameters in the command line are in the same order as the Table 6.3, indicating

that the example is going to check if the configuration for 400 nodes, two aggregators per

server, two servers, TMR in mode two (disabled), threshold set to ten, and one for the rest

of the parameters: number of network interfaces, IO devices and GPUs, sampling interval

and network speed.

When an administrator, or user, wants to deploy the monitor, there are two ways:

designing a model and simulate it in OMNET++ or executing this Deployment Checker

with the desired parameters. Using this tool is fast and easier, but it could be less accurate.

The execution example displayed in Figure 6.6 corresponds to the execution of command-

line 1, and its results show that the configuration is correct. This tool is complementary to

OMNET++ simulations because it reduces the time spend to decide which configuration

the user wants to deploy.

85

Chapter 6. Theoretical modeling 86

Figure 6.6: LIMITLESS Deployment Checker - Example output of the execution of cmd
line 1 without TMR.

Another interesting example can be found in the next command-line, where the point

is the TMR mode set in 1. In modes zero and one, each component is linked with other

three in the next layer (this feature is described in Chapter 5) to send the information to all

of them. However, the difference between them is the redundancy: the first method sends

all to the three components, but the second uses the channels only to send the information

until it verifies that the information has been received by one of the next components. That

avoids redundancy and reduces the amount of data transmitted. Figure 6.7 shows the result

for this example.

$ python depChecker.py 800 2 3 1 10 1 1 1 1 1 (cmd line 2)

800 nodes.

2 LDA per LDS.

3 LDS nodes.

1 TMR mode enabled without redundancy.

10 Threshold filter value.

1 Number of network interfaces per node.

1 Number of I/O devices per node.

1 Number of GPUs per node.

1 Sampling interval.

1 Gbps network channel speed.

86

Chapter 6. Theoretical modeling 87

Figure 6.7: LIMITLESS Deployment Checker - Example output of the execution of cmd
line 2 with TMR in mode 1 (no redundancy).

D0 Dn Dn+1 Dm

ElasticSearch

S0

Dm+1 Di

ElasticSearch ElasticSearch

Di

Ai

S

ES

Figure 6.8: LIMITLESS - TMR connection in the worst case: each component will send
the same information to three next components in the framework.

87

Chapter 6. Theoretical modeling 88

In the output observed in Figure 6.7, the lines that contains the string failure stand

out. These lines indicate the amount of information received in case of a failure in

the transmission, when the TMR is enabled (Figure 6.8 shows an example of how the

monitoring packets are multiplied by three). The results correspond to the worst case,

where all the connections established by the TMR fail, but only one is active and points

to one server or aggregator. It means that the component will receive 3x packets in a row.

The script checks if the transmission is possible and prints a message about that. In this

example, the message is Design accepted., and in the following case, an error message is

displayed because something wrong is detected in the configuration: the number of packets

per second that the LDS receives would overload the network. This use case can be seen

in Figure 6.9), which corresponds to the execution of the command-line 3.

$ python depChecker.py 2000 2 3 1 10 1 1 1 1 1 (cmd line 3)

2000 nodes.

2 LDA per LDS.

3 LDS nodes.

1 TMR mode enabled without redundancy.

10 Threshold filter value.

1 Number of network interfaces per node.

1 Number of I/O devices per node.

1 Number of GPUs per node.

1 Sampling interval.

1 Gbps network channel speed.

88

Chapter 6. Theoretical modeling 89

Figure 6.9: LIMITLESS Deployment Checker - Example output of the execution of cmd
line 3 the with TMR enabled and errors due to consuming the network bandwidth and the
maximum nodes that an aggregator or a server can manage.

The advantage of this script is that there is no necessity of designing the model in

OMNET, which requires spend time in a graphical tool to build the architecture, and

time with files configuring the communications, the relations, and the functionalities of

each component. The result provided by the development checker is less precise than the

simulation because it is based on the mathematical limits calculated in this Chapter (instead

of simulation), but is easy to use, faster because it is not necessary to build a complete

design and wait for the simulation result (which can last several minutes, including hours),

and does not require a specific installation (only Python).

6.6. In-node threshold calculation

As it has been commented before, the network communication is crucial for the correct

performance of the framework. For this reason, trying to reduce the network usage between

the compute-nodes, where the monitors share resources with the applications, and the

aggregators and servers, the optimization called In-node analysis has been developed.

However, to facilitate the task of studying which is the best value for the threshold, another

script in Python is provided to perform tests in the real environment.

If one user wants to find the best threshold value, two issues arise: it depends on the

granularity of the monitoring results expected, and the time that there is needed to execute

89

Chapter 6. Theoretical modeling 90

the tests. It depends on the granularity because lower values in the threshold implies

more metrics received and more precise monitoring. However, greater values reduce the

precision but also reduce communication because of the absence of information and the

non-sending packets. It is a trade-off that the user has to evaluate (an evaluation of this

algorithm, including results about precision and packets sent, is detailed in Chapter 6). On

the other hand, the time to evaluate different threshold values can be unaffordable if the

time of common applications in the system is too large.

For those reasons, the threshold calculator has been developed. Once the framework

has collected information for a suitable time (the monitoring has information of typical use

of the cluster), the generated log can be used to evaluate this optimization with the script.

In a short time, the program gives to the user the original number of messages sent and

received, and the number of messages that would be saved with the determined value for

the threshold.

To use the script, the user has to indicate three parameters: the log with the monitored

data, the value for the threshold, and the name for the output log. When the script finishes,

the output log contains the performance metrics that would be received if the threshold was

the defined value, and on the screen, the number of saved communications is indicated.

The next box shows an example, followed by the figures that shows the results. Figure

6.10 represents the terminal where the script has been executed. The use case designed for

this feature corresponds to the execution of Jacobi algorithm, with original memory and

CPU metrics plotted in Figure 7.25.

$ python testThreshold.py log_node12 1 output_log12 (cmd line 4)

log_node12 Input file: monitoring data from Jacobi execution.

1 Threshold value.

output_log12 Output file.

The example uses the log collected during the execution of Jacobi algorithm, which

takes around eighteen minutes, with sampling interval set in one second. Figure 6.10 prints

on screen the result of the threshold simulation: from a log that contains 995 messages

with monitoring data, assuming a tolerance of 1%, the number of messages that would not

have been sent is 502 (49% saved).

Taking into account this potential traffic reduction, to evaluate the trade-off between

the granularity and the accuracy, Figure 6.12 shows the results of the simulation, that

can be compared with the original in Figure 6.11. As this is an example, a value of

90

Chapter 6. Theoretical modeling 91

Figure 6.10: Example - Execution of the command-line cmd line 4 based on a monitoring
log collected in a real cluster.

1% is acceptable taking into account the accuracy and the network traffic reduction. An

evaluation of this feature, including an example with different threshold values, can be

seen in Chapter 6.

0

10

20

30

40

50

60

70

80

90

100

15
:0
7

15
:0
7

15
:0
8

15
:0
8

15
:0
9

15
:0
9

15
:1
0

15
:1
0

15
:1
1

15
:1
1

15
:1
2

15
:1
2

15
:1
3

15
:1
3

15
:1
4

15
:1
4

15
:1
5

15
:1
5

15
:1
6

15
:1
6

15
:1
7

15
:1
7

15
:1
8

15
:1
8

15
:1
9

15
:1
9

15
:2
0

15
:2
0

15
:2
1

15
:2
1

15
:2
2

15
:2
2

15
:2
3

15
:2
3

%
 U

sa
ge

Time

Mem CPU

(min)

Figure 6.11: Application model - Original Memory and CPU performance of Jacobi
algorithm execution.

91

Chapter 6. Theoretical modeling 92

0

10

20

30

40

50

60

70

80

90

100

15
:0
7

15
:0
7

15
:0
8

15
:0
8

15
:0
9

15
:0
9

15
:0
9

15
:1
0

15
:1
0

15
:1
1

15
:1
1

15
:1
1

15
:1
2

15
:1
2

15
:1
2

15
:1
3

15
:1
3

15
:1
4

15
:1
4

15
:1
5

15
:1
5

15
:1
5

15
:1
6

15
:1
6

15
:1
7

15
:1
7

15
:1
8

15
:1
9

15
:1
9

15
:1
9

15
:2
0

15
:2
0

15
:2
1

15
:2
2

%
 U

sa
ge

Time

Series1 Series2

(min)

Figure 6.12: Application model - Memory and CPU performance simulated with value 1%
in in-node threshold.

6.7. Summary

This chapter describes, in a formal way, the different components of the monitor, the

communications between them, and how the limits are estimated. Also, the formal model

of the different optimizations (the threshold filter and the fault tolerance strategies), and

their impact on the communication performance have been included.

On the other hand, two different jobs have been done to calculate the scalability of

the monitor thanks to simulation, and a program, developed in Python, to calculate which

value can be a good option to set the threshold value.

All of these sections indicate different ways to obtain information to design, or deploy,

in a better way the monitor. That information helps to understand the viability of the

designed topology, from a communication point of view, the correctness of the design,

thanks to simulation, and how to set an assumable threshold filter value thanks to the

Python cost calculator developed.

In the following chapter, the results and de evaluation of all of this work are presented,

including different experiments and comparisons with other similar tools.

92

Chapter 7. Evaluation and results 93

7. EVALUATION AND RESULTS

In this chapter, the results of using LIMITLESS framework over different clusters

(both production and development clusters) are presented. It includes a comparison

between other common system monitors, from the performance and overhead point of

view, results obtained thanks to using monitoring for schedule applications, and results

about the different optimizations, including the models and predictions in the smart

analytic component. The objective is to show, in different environments, the potential of

the framework. Also, examples of the data collected will be displayed, and examples of

the visualization offered to the user.

7.1. Monitoring overhead

The monitoring overhead is directly related to the sampling interval and the platform.

Each LDM uses one core during a fraction of a second to collect and send (or not if the

optimizations are enabled) the metrics. Taking it into account, the overhead will not be the

same in a quad-core machine as in an octa-core, because the overhead is calculated as the

percentage of CPU time consumed in a period of time. It means that the total overhead will

depend on the number of cores used during the monitoring, and the time spent to perform

the actions, which is directly related to the frequency and the FLOPS of the machine.

To provide an indicative value for the overhead, the calculation has been done in a

common compute node: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz with 12 real cores,

and 24 virtual cores (Hyperthreading).

The methodology to obtain the overhead of each LDM consists of running the monitor

during a certain period of time, and then, ask to the system how much CPU time has been

required. With this data, the calculation is defined as:

Overhead =
Tcpu

Ttotal
∗ 100

Where Tcpu is the real cpu time consumed, Ttotal is the total time that the monitor has

been running, and the product is to obtain the percentage value.

93

Chapter 7. Evaluation and results 94

The experimentation has been performed using four different sampling intervals: a

short interval time that provides fine-grained monitoring every second, a medium interval

time for every five seconds, and an acceptable interval time for a general-purpose, which is

ten seconds. Originally, a long-term monitoring for every 60 seconds was planned, but the

overhead obtained is negligible. The results can be seen in Table 7.1, reflecting the total

times, the CPU consumed time and the global overhead obtained.

Table 7.1: Summary - LIMITLESS monitor overhead under different sampling intervals.

Case Interval (s) Total time (H) CPU time (s) Overhead (%)
Fine-grained mon. 1 24 144 0.160
medium-grained mon. 5 24 24 0.027
General monitoring 10 24 11 0.012

Note that the results displayed in Table 7.1 are lower than 1%. This value is important

because running in production clusters implies that the interference with other applications

must be minimum. The best solution is to collect the information consuming fewer

resources, and these results support us.

For some researching applications, the sampling interval of one second could be a long

or a short time interval. It depends on how much time do the applications need to finish their

executions (for example, applications that perform little tasks will need a shorter sampling

interval, but applications that are executed during hours or days could be monitored by

seconds, minutes or hours, depending on the user objective). For the applications in the

first group, LIMITLESS is able to collect and send information in sub-second intervals.

However, the overhead increases rapidly and sometimes monitoring data packet is lost.

The minimum interval time for a correct execution of the LDM code is 25 milliseconds.

With this value the monitor does not produce any error, but some packets could be lost

due to the network and the server synchronization (they do not arrive to the server due to

network traffic, or when the server is restarting the connection2). So that, lower sampling

intervals could produce losing monitoring packets, but on the contrary, the LDMs send

more of them per second.

Although the monitor is designed for use in distributed systems, a LDM instance can

be executed locally in a PC or a compute-node without sending the monitoring data, but

storing it into a log-file (local running). If the monitor is running in this mode, sampling

intervals of 25ms are accepted because there is no packet lost (every generated packet is

written into a file, instead of sending it). For distributed systems, after performing some

tests collecting the basic data (without cache, GPU, InfiniBand, Power consumption, fan
2To avoid an infinite wait in the server due to recv(), recvfrom() or recvmsg() syscalls, each determined

time the connection is restarted. If a packet arrives during this process, that takes a portion of a second to
finish, it is discarded

94

Chapter 7. Evaluation and results 95

speed, etc., because they require additional time), an acceptable sampling interval is 250

milliseconds because it keeps the overhead under the 1% giving four collections of metrics

per second. The overheads of sub-second monitoring are available in Table 7.2.

Table 7.2: Monitoring overhead with the minimum sampling interval in a compute-node
with Intel(R) Xeon(R) Silver 4214 CPU with 12 real cores, and 24 virtual cores
(Hyperthreading).

Case Interval (s) Total time (H) CPU time (s) Overhead (%)
Min interval local 0.025 24 7968 9.20
Min interval distrib. 0.250 24 648 0.75

Finally, in order to show how the monitored machine produces variations in the total

overhead, other tests have been performed in one compute node Intel(R) Xeon(R) Gold

6138 CPU @ 2.00GHz with 2 CPUs and 20 cores per CPU. In this case, the overhead can

be seen in Table 7.3. As it can be seen, this compute node has more cores than the last.

However, maybe due to the low CPUa frequency the overhead is greater.

Table 7.3: Monitoring overhead with the minimum sampling interval in a compute-node
with Intel(R) Xeon(R) Gold 6138 CPU with 20 real cores, and 40 virtual cores
(Hyperthreading).

Case Interval (s) Total time (H) CPU time (s) Overhead (%)
Fine-grained mon. 1 24 504 0.583
medium-grained mon. 5 24 122 0.141
General monitoring 10 24 61 0.071

As a summary, this section shows the overheads of different configurations to under-

stand the impact of different sampling intervals on the machines, including a sub-second

sampling interval analysis.

7.2. LIMITLESS monitoring tool vs Collectd

This section shows a comparison between the LDM component of the LIMITLESS moni-

toring tool, and Collectd, a well-known monitor that has been described in the state of the

art (Chapter 2). Both “applications” execute the same tasks: data collection and store/-

transmission, and the configurations have been changed to perform the same tests. The

objective is to compare the overhead of both tools, as well as their outputs, to determine

the quality of the developed work.

This section includes three use cases, which are the following: a short interval time

that monitors every second, a medium interval time for every five seconds, and a longer

95

Chapter 7. Evaluation and results 96

interval time of ten seconds. These tests are design to see the trend of the overhead at low

and medium sampling intervals.

The testing machine is a desktop computer with an Intel(R) Core(TM) i5 CPU 760 at

2.80GHz and with two real cores with Hyperthreading, 18GB of RAM memory, and 1TB

of HD storage. For this new testing machine, the monitoring overhead is shown in Table

7.4, obtaining values for one, five and ten seconds intervals (the defined use cases). As the

machine is a personal computer and its processor is a dual-core, the overhead is greater

than in a compute-node because it has less computational resources (this is the reason why

the overhead depends on the machine).

Table 7.4: LIMITLESS monitor overhead in a local PC.

Interval (s) Total time (H) CPU time (s) Overhead (%)
1 24 259 0.30
5 24 62.4 0.07
10 24 29.7 0.03

Each test has been running 24 hours with the predefined sampling interval. The real

CPU consumption has been collected from the system log, and the overhead has been

calculated as in the last section. Table 7.5 shows the comparison results between Collectd

and LIMITLESS.

Under the same load conditions, measurement interval, and collected metrics, LIMITLESS

has better performance as Collectd, obtaining lower overhead in all the use cases. More-

over, the Collectd documentation recommends using an interval of 10 seconds, and seeing

the overhead for that case, the recommendation is based on the designer’s evaluation of the

trade-off between accuracy and interference. Note that LIMITLESS with 1 second interval

consumes less resources than 5 seconds of Collectd providing the same information.

Table 7.5: Summary - Collectd overhead under different sampling intervals in a local PC.

Interval (s) Total time (H) CPU time (s) Overhead (%) O. LDM (%)
1 24 2062 2.3 0.3
5 24 410 0.5 0.07
10 24 165 0.19 0.03

Once the overhead has been compared, in the same way and under the same circum-

stances, the objective is to compare the outputs of both applications. For that reason, they

have monitored the same machine for the same interval (at the same time), when the Jacobi

application were running. The objective is to obtain the performance metrics for both

monitors whilst the machine is working (not in idle state).

The results for this test can be observed in Figure 7.1, 7.2, 7.3 and 7.4. The first

96

Chapter 7. Evaluation and results 97

0

10

20

30

40

50

60

70

80

90

100

22
:3
1:
00

22
:3
1:
16

22
:3
1:
32

22
:3
1:
48

22
:3
2:
04

22
:3
2:
20

22
:3
2:
36

22
:3
2:
52

22
:3
3:
08

22
:3
3:
24

22
:3
3:
40

22
:3
3:
56

22
:3
4:
12

22
:3
4:
28

22
:3
4:
44

22
:3
5:
00

22
:3
5:
16

22
:3
5:
32

22
:3
5:
48

22
:3
6:
04

22
:3
6:
20

22
:3
6:
36

22
:3
6:
52

22
:3
7:
08

22
:3
7:
24

22
:3
7:
40

22
:3
7:
56

22
:3
8:
12

22
:3
8:
28

22
:3
8:
44

22
:3
9:
00

22
:3
9:
16

22
:3
9:
32

22
:3
9:
48

22
:4
0:
04

22
:4
0:
20

22
:4
0:
36

22
:4
0:
52

22
:4
1:
08

22
:4
1:
24

22
:4
1:
40

22
:4
1:
56

22
:4
2:
12

22
:4
2:
28

22
:4
2:
44

22
:4
3:
00

22
:4
3:
16

22
:4
3:
32

22
:4
3:
48

22
:4
4:
04

22
:4
4:
20

22
:4
4:
36

22
:4
4:
52

22
:4
5:
08

22
:4
5:
24

22
:4
5:
40

22
:4
5:
56

22
:4
6:
12

22
:4
6:
28

22
:4
6:
44

22
:4
7:
00

22
:4
7:
16

22
:4
7:
32

22
:4
7:
48

22
:4
8:
04

22
:4
8:
20

22
:4
8:
36

22
:4
8:
52

22
:4
9:
08

22
:4
9:
24

22
:4
9:
40

LIMITLESS - Jacobi CPU load

CPU

Figure 7.1: LIMITLESS - CPU usage collected during the execution of Jacobi.

two figures represent the CPU and Memory consumption captured by LIMITLESS during

the execution of Jacobi algorithm. In them, you can see that the application has CPU

phases, combined with a long memory-intensive phase. The next two figures represent

the CPU (Figure 7.3) and the memory (Figure 7.4) captured by Collectd. In those images,

you can see that both results are very similar to those collected by LIMITLESS. If the

quantitative analysis is performed, Collectd shows higher peaks than LIMITLESS in CPU

measurements with a difference of +5%, and similar values for low workloads (note that

the representation changes in the Y-axe, starting in zero with the first increment of forty,

but then the increment is set to twenty until one hundred is reached). In terms of memory,

both monitors show the same behavior: LIMITLESS shows values between 28% and 39%,

which traduced into GB of memory means 4.7GB and 6.6GB, which is approximately

what Collectd shows.

In a summary, two monitors have been compared, both obtain the same output metrics,

but LIMITLESS is less intrusive than Collectd due to to its reduced overhead.

7.3. Scheduling based on monitoring

This section describes two different scheduling techniques: coarse-grain and fine-grained

scheduling. Both alternatives use monitoring information (current and historical) to

improve the scheduling process. The first one provides scheduling at the application or

task level, while the second provides it at the application-phases level. It means that the

coarse-grain scheduling deals with applications and tries to share nodes between complete

application executions, and the fine-grained scheduling decomposes the application in

97

Chapter 7. Evaluation and results 98

0

10

20

30

40

50

60

70

80

90

100

22
:3
1:
00

22
:3
1:
16

22
:3
1:
32

22
:3
1:
48

22
:3
2:
04

22
:3
2:
20

22
:3
2:
36

22
:3
2:
52

22
:3
3:
08

22
:3
3:
24

22
:3
3:
40

22
:3
3:
56

22
:3
4:
12

22
:3
4:
28

22
:3
4:
44

22
:3
5:
00

22
:3
5:
16

22
:3
5:
32

22
:3
5:
48

22
:3
6:
04

22
:3
6:
20

22
:3
6:
36

22
:3
6:
52

22
:3
7:
08

22
:3
7:
24

22
:3
7:
40

22
:3
7:
56

22
:3
8:
12

22
:3
8:
28

22
:3
8:
44

22
:3
9:
00

22
:3
9:
16

22
:3
9:
32

22
:3
9:
48

22
:4
0:
04

22
:4
0:
20

22
:4
0:
36

22
:4
0:
52

22
:4
1:
08

22
:4
1:
24

22
:4
1:
40

22
:4
1:
56

22
:4
2:
12

22
:4
2:
28

22
:4
2:
44

22
:4
3:
00

22
:4
3:
16

22
:4
3:
32

22
:4
3:
48

22
:4
4:
04

22
:4
4:
20

22
:4
4:
36

22
:4
4:
52

22
:4
5:
08

22
:4
5:
24

22
:4
5:
40

22
:4
5:
56

22
:4
6:
12

22
:4
6:
28

22
:4
6:
44

22
:4
7:
00

22
:4
7:
16

22
:4
7:
32

22
:4
7:
48

22
:4
8:
04

22
:4
8:
20

22
:4
8:
36

22
:4
8:
52

22
:4
9:
08

22
:4
9:
24

22
:4
9:
40

LIMITLESS - Jacobi MEM load

MEM

Figure 7.2: LIMITLESS - MEM usage collected during the execution of Jacobi.

Figure 7.3: Collectd - CPU usage obtained during the execution of Jacobi.

phases using the generated models, and tries to share nodes between phases of applications

if they are compatible.

7.3.1. Coarse-grain scheduling based on monitoring information

To evaluate the behavior of LIMITLESSwhen it uses the monitoring information to improve

scheduling, a scenario with different combinations of applications has been designed. The

idea here is to reduce the make-span of the complete execution of the application queues.

98

Chapter 7. Evaluation and results 99

Figure 7.4: Collectd - Memory usage obtained during the execution of Jacobi.

Platform and experiments description

For these experiments, the platform that has been used is a heterogeneous cluster with two

racks. The first rack contains two nodes with Intel(R) Xeon(R) E5 with eight cores each

and 256GB of RAM memory. On the other hand, the second rack contains six nodes with

Intel(R) Xeon(R) E7, 128GB of RAM memory, and twelve cores per node.

Table 7.6: Use cases characteristics for the evaluation.

Code Name Class Access pattern Size Intensive on
A EpiGraph Application irregular small CPU & network

Bll, Bhl CG Kernel irregular small CPU
C Jacobi Kernel regular medium CPU
Dm CPU Synthetic regular medium CPU
Dxl CPU Synthetic regular large CPU & memory
E CPUNET Synthetic regular medium CPU & network
F IMEM Synthetic irregular medium memory

As use cases, a collection of applications and real and synthetic kernels have been

chosen. All those benchmarks have been integrated with FlexMPI to apply malleability

techniques (which consist of increase or decrease the number of processes of MPI applica-

tions, allowing the creation of new processes in new nodes, and destroy other processes in

used nodes). Table 7.6 shows each use cases characteristics.

The application EpiGraph [112] [113] is a stochastic and parallel simulator of the

propagation of the influenza and COVID-19 viruses. It uses an un-directed weighted graph

of 703,258 nodes and 8,806,520 edges, that corresponds to the individual-connections in

the simulation.

CG is an application that performs the Conjugate Gradient iterative method, that

operates with sparse matrices and executes sparse-matrix-vector multiplications (SpMV).

99

Chapter 7. Evaluation and results 100

This algorithm is applicable to those cases that are too large to be solved directly by

other methods (for example, the Cholesky decomposition). This kernel also includes two

different input matrices that analyze the impact of the data locality in the algorithm. The

first matrix, which is identified by Bll (CG kernel with low locality), corresponds to a

square sparse matrix with 500,000 rows and 40 million of non-zero values. Those non-zero

entries are randomly distributed to generate low data locality on the vector accesses during

the SpMV. The second matrix is identified by the code Bhl (CG kernel with high locality).

This case is a random sparse matrix of the same size and number of non-zero values as

the last, but, in order to provide better data locality on the vector accesses, those non-zero

values are randomly distributed creating a block diagonal matrix of 20,000 entries.

Jacobi is an application that executes the kernel of the Jacobi iterative method operating

with dense matrices. The basis of the method consists of creating an iterative convergent

and defined sequence. The limit of this sequence is the solution of the system. For that

reason, if the algorithm stops after a finite number of steps, an approximation to the value

of x of the solution of the system is reached.

A set of synthetic kernels are also added to provide complete scenarios with different

features. The kernel with code CPU is similar to the application Jacobi, with the difference

that this process does not perform communications (it is a pure CPU application). Besides,

it executes two processes: the first one is Dm which has a memory footprint for six dense

matrices of 20,000 entries, and the second is Dxl (extra-large), which uses the same matrices

but with 50,000 entries (120GB). IMEM is a memory-intensive application that operates

with several matrices using indirections, and its main function in these use cases consist of

generating interference in the cache memory due to the processing of six dense matrices

with 20,000 entries (19.2GB). Finally, CPUNET is similar to Dm but alternating CPU with

communication-intensive phases. This application generates network interference.

Results

This part of the evaluation corresponds to the use case that checks the performance of

coarse-grain scheduling with different classes of interference. Moreover, this section

illustrates the overhead and the impact related to the framework. This use case represents a

workflow (a sequence of applications) that is executed in three shared compute nodes. The

results of the execution of the proposed workflow can be seen in Table 7.7. It shows the

application execution order (in the column id) and the results of the scheduling process.

The table includes, for each code, the name, number of processors used, and the memory

footprint. The column S hared shows the id of the applications that have shared a compute

node with the current application.

100

Chapter 7. Evaluation and results 101

To understand better the results shown in Table 7.7, the following paragraphs will

describe the different situations separately. The first use case corresponds to applications 1

and 2, which have been executed in the same shared node, where they increase the miss ratio

in the last-level cache. At first, this event is detected by the LIMITLESS system monitor.

Then, it sends notifications to the scheduler and FlexMPI, which starts the application-level

monitoring for both applications. The columns T1, T2, and T3 represent the execution

time when the applications run without sharing a node, when there are running in the same

node with interference, and after the conflict has been solved respectively. The table also

shows the difference in the execution time between App 1 and App 2, where the first one

doubles it while the second is unaffected. The reason is that it does not have a temporal

data locality. In order to avoid this interference, App 2 is migrated to another free node.

After that, both applications run exclusively without interferences between them.

The column Overhead shows the reconfiguration overhead, which is the process in

charge of migrating an application to another node (because of the interference). The

migration task requires four operations, which are included in the Overhead. The first step

consists of creating 8 processes in the node that are going to be shared. The second step is

the destruction of the 8 processes allocated in the initial exclusive node. Once interference

is detected, the third step is the creation of 8 processes in a new free node. Finally, the

framework has to destroy the 8 processes allocated in the shared node. Note that the first

two reconfigurations can be avoided if the framework has already stored the performance

metrics of the applications (for instance, due to previous executions).

Table 7.7: Example of a workflow that generates interference. T1, T2, T3 are the
execution time per 10 iterations. Overhead represents the overhead of the migration
process measured in seconds.

Id. Code Procs. Size(Gb) Shared T1(s) T2(s) T3(s) Overhead Iterations
1 Bll 4 0.30 2 3.20 6.40 3.20 - 1.5 ∗ 104

2 F 20 17.9 1 29.6 29.2 29.1 32.2 6 ∗ 102

3 Bhl 4 0.30 4 2.80 2.80 2.80 - 1.2 ∗ 104

4 F 20 17.9 3 29.5 29.6 29.5 - 5 ∗ 102

5 E 20 1.20 6-7 6.90 9.00 7.00 - 4 ∗ 102

6 E 20 1.20 5 7.00 8.78 7.60 2.80 4 ∗ 103

7 Dm 20 1.20 5 0.03 0.03 0.03 - 2 ∗ 106

8 Dxl 6 94.6 9 21.0 27.8 21.6 - 5 ∗ 102

9 Dxl 16 111.8 8 9.40 9.60 9.40 101.1 1.5 ∗ 103

The second use case involves applications 3 and 4, which are executed in a shared

node without producing performance degradation (there is no interference between these

applications). The cause is that there have a good data locality, and there is no necessity

for reconfiguring.

101

Chapter 7. Evaluation and results 102

0

5

10

15

20

25

30

35

40

45

1
 (

B
LL

)

2
 (

F)

3
 (

B
LL

)

4
 (

A
)

5
 (

F)

6
 (

F)

7
 (

B
LL

)

8
 (

F)

9
 (

F)

1
0

 (
B

LL
)

1
1

 (
F)

1
2

 (
B

LL
)

1
3

 (
F)

1
4

 (
F)

1
5

 (
A

)

1
6

 (
F)

1
7

 (
B

LL
)

1
8

 (
F)

1
9

 (
A

)

2
0

 (
F)

Ti
m

e
 p

e
r

1
0

0
 it

er
at

io
n

s
(s

ec
)

Before redistribution After redistribution

Figure 7.5: Schenario A - Coarse-grain scheduling evaluation. Each bar of each
application shows the execution time per 100 iterations. Applications with striped bars are
applications that create interference. Applications with two bars exhibit change in the
execution time due to interferences.

In the third use case, there is, initially, communication interference between applications

5 and 6, and it affects both applications negatively. Due to this interference, application

6 is migrated to a free node allocated in a different rack, which increases the execution

time T3 due to slower network bandwidth. If a process allocates a small amount of data

the overhead is related to the processes of creation and destruction. Once application 6 has

been moved, application 7 is executed in the same node as application 5. However, there is

no interference between them because their profiles are different.

Finally, in the last use case, applications 8 and 9 generates interference between them

because they consume more memory than the node has. When the interference is detected,

application 9 is migrated to an exclusive node. Note that, in this case, the overhead is

greater than the other use cases due to the superior amount of data used.

Figure 7.5 shows the performance evaluation for Scenario A using the coarse-grain

scheduling policy. This scenario consists of 20 jobs, being each job an independent

application, and they are executed as a workflow. The x-axis shows the name of the

application and the y-axis represents the execution time per 100 iterations. Note that

some applications, like 4(A) in Scenario A, may have a much smaller execution time per

iteration than the others, but their impact on the overall time might be important due to

executing a larger number of iterations. Detecting a hot spot during the execution is based

102

Chapter 7. Evaluation and results 103

Figure 7.6: Scenario A - Gantt diagram of the execution when the nodes can be shared, but
the interference detection is not active. The length of diagram corresponds to the
makespan, with a value of 14.889 seconds.

on predefined thresholds. Those threshold values are: more than 90% of memory usage,

a miss rate greater than 40% of global last-level cache, and a network bandwidth usage

greater than 40%.

Scenario A is a medium-conflict workflow with jobs of classes A, BLL and F. Note

that the first two applications will have a performance degradation due to F, and the

performance of F is unaffected by interference. Figure 7.6 shows the Gantt diagram

associated to this scenario. The point is that 6 conflicting applications produced hot-spots,

that resulted in six cases of performance degradation. However, another interference case

existed (7 (BLL)). Six performance-degraded cases were detected and avoided, except the 7

(BLL) case in which the degradation did not exceed the predefined threshold and no action

was taken.

Figure 7.5 shows these use cases with two bars per application. The left bar represents

the execution time when there is interference with other applications, taking into account

that this time is to before redistribution. The left bar represents the execution time when

there is interference with other applications, taking into account that this time is to before

redistribution. The right bar represents the final execution time when the interference has

been avoided. In the case of 7 (bLL), this application does not improve the execution time.

So that, the graphical result is the opposite: the initial execution time does not include the

interference, and the final time is longer because it includes that interference. In the cases

that the second bar is not shown (after redistributing the processes), it means that they do

103

Chapter 7. Evaluation and results 104

2000 4000 6000 8000 10000
Time (s)

node7

node6

node5

node4

node3

node2

node1

0

2

4

6

8

10

12

Figure 7.7: Scenario A - System load using the coarse-grain scheduling policy, including
shared nodes and interference detection.

not exhibit performance degradation, and these bars are omitted for clarity.

The system identifies an interfering application like the one that, after starting its

execution, reduces the performance of another application that is already running on the

same shared node. These applications are represented by striped bars in Figure 7.5. During

the execution, the framework (the cooperation between the system monitor, CLARISSE,

and FlexMPI) detects and moves the interfering applications to other compute nodes. Note

that, in the case of interfering applications, the execution time is the same after and before

the migration process. That is why only one striped bar is shown. As it can be deduced,

the migration process has a certain overhead related to the processes creation/destruction

and data redistribution. Overall, the total overhead is of 17.8 seconds (taking into account

the complete workflow execution) per process creation/destruction and 183.6 for data

redistribution.

Before explaining the certain results of this scenario, it is important to know one

assumption: actually, there are five compute nodes allocated to execute the workflow

(nodes 1 to 5), but there are another two nodes (nodes 6 and 7) that are reserved to be used

by CLARISSE. In there, only the applications that generate interference will be executed.

Besides, node 8, which is not displayed, is used to execute processes of new applications.

The objective is to obtain the initial performance metrics (which should not be affected by

other applications). After collecting them, the application can be scheduled with a shared

104

Chapter 7. Evaluation and results 105

2000 4000 6000 8000 10000 12000 14000
Time (s)

node7

node6

node5

node4

node3

node2

node1

0

2

4

6

8

10

12

Figure 7.8: Scenario A - System load using shared nodes, but disabling CLARISSE
interference detection.

policy.

Figure 7.7 shows a diagram with the CPU use of each compute node during the

workflow execution, including the interference detection. This evaluation takes a short time

and following this, these processes are migrated to a shared node. In total, the workflow

makespan is 11,909 s (including overheads) and the total energy consumption (taking into

account the eight compute nodes) is 6.9 MJ.

Figure 7.8 shows CPU use when CLARISSE is not used, and the conflicts are not

avoided. In this case, the makespan is 14,889 s. Two main reasons explain why the

makespan has been incremented in comparison with the previous strategy. At first, given

that the conflicts are not avoided, the conflicting applications take longer to complete their

executions, and then, nodes 6 and 7 are not used because they are reserved for CLARISSE.

Note that there is a trade-off between the number of computational resources involved

in the execution and the application execution time. For this scenario, the total energy

consumption is 7.7 MJ. Despite using less computational resource, the increase in the

conflicting application execution time produces a larger amount of energy consumption.

Finally, Figure 7.9 shows system use when each application is executed in exclusive

nodes (without CLARISSE and without share nodes with other applications). Here the

applications do not experience performance degradation due to the lack of conflicts.

However, some computational resources may be underused. For example, nodes 1 and

105

Chapter 7. Evaluation and results 106

2000 4000 6000 8000 10000 12000 14000
Time (s)

node7

node6

node5

node4

node3

node2

node1

0

2

4

6

8

10

12

Figure 7.9: Scenario A - System load using a typical exclusive policy without shared
nodes and interference detection.

2 have a reduce workload as some jobs only use two processes. Now, the makespan is

15,277 s and the energy consumption is 7.9 MJ. In this case, both measures are larger than

the previous policies, which are based on sharing the compute-nodes.

The second scenario (scenario B) consists of another workflow of the previously

described applications but using different input data. This configuration produces a

scenario with more conflicts. The objective of this scenario is to test the interference

detection and migration with a more intensive workflow. In this case, 9 applications

produce interference (generating performance degradation) over the other 6 applications.

Figure 7.11 shows the Gantt diagram associated to this scenario.

The combination of the monitor and the scheduler allows to detect the interferences

between applications, mitigating their effects thanks to the migration of the conflicting

applications. The migration overhead in this case is 31.3 s for process creation and 501.9

for data redistribution. For applications 13(BLL) and 16(BLL) there are several jobs that

produce conflict with them: jobs 14(DM), 15(DM), 17(DM) and 20(F). Due to the number

of conflicts, the scheduler tries to migrate all of them but, because of their large number,

the original applications (13(BLL) and 16(BLL)) cannot be executed without conflicts for

a significant amount of time. It means that the applications will suffer a performance

degradation because there are not enough exclusive resources to manage all conflicts (HPC

clusters cannot be upgraded in execution time, however more resources could be requested

106

Chapter 7. Evaluation and results 107

0

10

20

30

40

50

60

70

1
 (

A
)

2
 (

F)

3
 (

B
LL

)

4
 (

B
H

L)

5
 (

C
)

6
 (

F)

7
 (

A
)

8
 (

B
LL

)

9
 (

C
)

1
0

 (
F)

1
1

 (
C

)

1
2

 (
D

M
)

1
3

 (
B

LL
)

1
4

 (
D

M
)

1
5

 (
D

M
)

1
6

 (
B

LL
)

1
7

 (
D

M
)

1
8

 (
F)

1
9

 (
B

LL
)

2
0

 (
F)

Ti
m

e
 p

e
r

1
0

0
 it

er
at

io
n

s
(s

ec
)

Before redistribution After redistribution

Figure 7.10: Scenario B - Coarse-grain scheduling evaluation. Each bar of each
application shows the execution time per 100 iterations. Applications with striped bars
with are applications that create interference. Applications with two bars exhibit change in
the execution time due to interferences.

in cloud environments).

Despite that, the makespan and energy consumption of this scenario with the interfer-

ence detection enabled is 10,759 s and 6.3 MJ. If the workflow is executed without the

interference detection, the values are larger than before, producing a makespan of 13,256 s

and an energy consumption of 6.9 MJ. Finally, executing the workflow exclusively, the

makespan and the energy consumption grow up to 14,929 s and 7.4 MJ.

Table 7.8 shows a summary of the experiments in this section. For both scenarios, the

global results about the makespan and the energy consumption are displayed. Also, the

values are indicated depending on the scheduling policy, where Policy 1 is based on the

interference detection in shared nodes, Policy 2 on using shared nodes without managing

the interferences, and Policy 3 on running all applications exclusively.

Taking these scenarios into account, the framework provides a more efficient execution

in both cases, reducing the makespan and the energy consumption.

107

Chapter 7. Evaluation and results 108

Figure 7.11: Scenario B - Gantt diagram of the execution when the nodes can be shared,
but the interference detection is not active. The length of diagram corresponds to the
makespan, with a value of 13.256 seconds.

Table 7.8: Summary - Comparison between results obtained in Scenario A and Scenario B
with all of the policies.

Scenario Policy 1 Policy 2 Policy 3
Makespan Energy Makespan Energy Makespan Energy

Scenario A 11,909 s 6.9 MJ 14,889 s 7.7 MJ 15,277 s 7.9 MJ
Scenario B 10,759 s 6.3 MJ 13,256 s 6.9 MJ 14,929 s 7.4 MJ

7.3.2. Fine-grained scheduling based on monitoring

This subsection describes how LIMITLESS uses the data collected and the machine-learning

classification features to support the feature fine-grained scheduling.

Platform and experiments description

For these experiments, the platform that has been used is a heterogeneous cluster with two

racks. The first rack contains two nodes with Intel(R) Xeon(R) E5 with eight cores each

and 256GB of RAM memory. On the other hand, the second rack contains six nodes with

Intel(R) Xeon(R) E7, 128GB of RAM memory, and twelve cores per node.

As in the previous scheduling mode, the platform that has been used is a heterogeneous

cluster with two racks. The first rack contains two nodes with Intel(R) Xeon(R) E5 with

108

Chapter 7. Evaluation and results 109

Figure 7.12: Distribution of the number of infections with COVID-19 during EpiGraph
simulation for use cases 1 and 2.

eight cores each and 256GB of RAM memory. On the other hand, the second rack contains

six nodes with Intel(R) Xeon(R) E7, 128GB of RAM memory, and twelve cores per node.

In this case, four use cases, which consist of combining the execution of EpiGraph,

which executes 6 processes, with N-MG benchmarks that execute six processes, which

are memory-intensive and performs long and short-distance communications, for 100

seconds. The difference between these use cases is the infection propagation: the use

cases one and three simulates one COVID-19 infection wave for Spain in 2020, and the

use cases two and four two COVID-19 infection waves (see Figure 7.12) for Spain in

2021. The figure represents the number of infections for each one wave using a small

scenario of a city with 500,000 inhabitants. These represent the execution takes around

2950 seconds, and Figures 7.13 and 7.14 show the communication usage during each

execution. This communication is expressed as KB per second (input and output), and it

shows the communication pattern of each use case. Note that the communication pattern

is strongly correlated with the infection curves: when the number of infections increases,

EpiGraph becomes more cpu-intensive, and the communication intensity decreases. On the

other hand, when there are less infections, the simulator performs less computations, and

the communication phases are executed more frequently, increasing the communication

intensity.

109

Chapter 7. Evaluation and results 110

Figure 7.13: EpiGraph use case 1 - Communication during the execution which shows two
waves.

Figure 7.14: EpiGraph use case 2 - Communication during the execution which shows one
wave.

110

Chapter 7. Evaluation and results 111

The aims of this strategy are (1) to detect when EpiGraph is running in a certain node,

and (2) detect the current execution phase. With this information, that can be acquired from

the monitoring data and machine learning algorithms, the scheduler can run instances of

MG when there is no interference with EpiGraph. Note that this profiling process is done

offline when there is enough data about applications, and some classification algorithms

used to identify phases and applications can be seen in 7.9, including the accuracy in our

experiments of identifying applications. Besides, these tests have been performed in two

nodes with twelve cores with Hyperthreading. We have decided to do not use this feature

and limit the maximum number of processes (of EpiGraph and MGs) to 12 per node. This

is why the combined executions CPU use is 50% instead of 100%.

Results

Based on the profile of each application, EpiGraph and MG have interference when

the first one increases its communications. The cause is that the first one makes more

communications when the number of infected people decreases. However, MG is constant

in CPU and communication intensities, and the interference becomes important when

EpiGraph generates those peaks of network usage. This behaviour can be seen in Figure

7.15 shows how EpiGraph increases MG’s iteration times when EpiGraph’s iteration times

are shorter (note that smaller iteration times for EpiGraph means larger communication

intensities). Figure 7.16 shows the same but in a use case with one bigger wave. As it

can be seen in these cases, both applications run concurrently generating an important

degradation between them: the degradation is 32.5% for the first case, and 32.2% for the

second. Detecting when EpiGraph performs low-intensity communication phases allows

LIMITLESS to run MG tasks during those phases, using the information of the predictors.

The scheduler will execute MG during the peaks of the infection propagation and EpiGraph

will be exclusively executed during the periods with low COVID-19 incidence, that is

when the communication frequency reaches the maximum values.

Executing these use cases in a two compute-nodes means that the applications will

Algorithm 60 s. 100 s.
AdaBoost 45% 75.6%
ANBC 31.1% 45.8%
BAG 34.5% 56.9%
MinDistance. 45.8% 80.7%
SVM 86.9% 100%

Table 7.9: Accuracy of the different classification algorithms using patterns of 60 and 100
seconds of EpiGraph.

111

Chapter 7. Evaluation and results 112

Figure 7.15: Use case 1 - Relation between EpiGraph and MG when they are executed in
the same node at the same time (two waves).

run at the same time. However, the second compute node will run exclusively instances

of MG (the number depends on the scheduling and the compatible phases). The first use

case is executed with 14 MG instances as a workflow. The second one is executed with

12 MG instances as a workflow. Finally, the last two use cases are executed with 25 MG

instances. As it can be seen in Figure 7.17 for use case 1, Figure 7.18 for use case 2,

Figure 7.19 for use case 3 and Figure 7.20 for use case 4. Combining different executions

of different applications, when there is no interference between them, decreases the use

of the computational resources. In all the figures, the execution of MG instances can be

noticed when the CPU of the machine increases from 25% to 50%. Note that figures 7.18

and 7.20 are similar because the node 1 does not change respect the second use case. The

second node (not shown in the figure) runs the instances of MG exclusively when it is not

possible to run them in the same node as EpiGraph. Note that the number of the instances

executed in the second node depends on the current execution stage of EpiGraph (whether

it creates interference or not) and the remaining MG instances that have to be executed. In

the considered scenario these numbers (instances of MG executed in exclusively in the

second compute node) are 9 for the first use case, zero for the second, 15 for the third, and

12 for the last one.

The combination of both applications produces between 2.1% and 2.4% of performance

112

Chapter 7. Evaluation and results 113

Figure 7.16: Use case 2 - Relation between EpiGraph and MG when they are executed in
the same node at the same time (one wave).

Figure 7.17: Use case 1 (Node 1) result combining EpiGraph and MG when LIMITLESS
detects compatible phases between both applications.

113

Chapter 7. Evaluation and results 114

Figure 7.18: Use case 2 (Node 1) result combining EpiGraph and MG when LIMITLESS
detects compatible phases between both applications.

degradation in the four use cases. It is caused by the overlap of MG with some CPU phases

of EpiGraph due to the precision in identifying the execution phase. LIMITLESS uses a

voting process between the machine learning classifiers to validate each phase identification.

As this process is not 100% accurate, it is possible to obtain certain interference degree.

The results are summarized in Table 7.10 that shows the computational resources used

on each use case, expressed as total CPU time used. The first column of the table shows the

results when different exclusive nodes are used for EpiGraph and MG, i.e., each application

are executed separately. Note that in this case not all the cores of each compute node

are used. For instance, in the first use case, the accumulated CPU time (52,200 seconds)

will be equal to 12 times the use time of the first compute node (used by EpiGraph) plus

12 times the use time of the second compute node (used by MG instances), where 12 is

the number of cores in each node. When fine-grained scheduling is enabled, some MG

instances are executed in the same node as EpiGraph (compute node 1) decreasing the

utilization of the second node. This leads to a reduction in the accumulated CPU time to

46,200 seconds. As it can be seen, the fine-grained scheduling allows the system to take

advantage of the unused resources existing in a node improving the system utilization.

114

Chapter 7. Evaluation and results 115

Figure 7.19: Use case 3 (Node 1) result combining EpiGraph and MG when LIMITLESS
detects compatible phases between both applications.

Figure 7.20: Use case 4 (Node 1) result combining EpiGraph and MG when LIMITLESS
detects compatible phases between both applications.

7.4. Optimizations

The main goal of these optimizations consist of reducing the network traffic due to moni-

toring communications.
115

Chapter 7. Evaluation and results 116

7.4.1. In-node analysis optimization

This section shows a quantitative analysis of the optimization in-node analysis to try to

reduce the communication between the LDMs and the LDAs. Following, an evaluation of

the effect of this optimization, focused on reducing network usage, is shown. In order to test

the in-node analysis under different conditions, a synthetic benchmark has been designed

and deployed in two nodes. One node is in charge of executing the LDS process, while

the second is in charge of executing the LDM. The benchmark consists of a workflow that

executes three computation phases: the first ten minutes the node is in idle state, the second

ten minutes the node executes a computation algorithm that produces a constant CPU load

around 75%, and the last ten minutes, another computation algorithm is performed, but

including sleep instructions periodically. The CPU load is displayed in Figure 7.21.

Figure 7.22 shows the network traffic related to the monitor when in-node analysis is

enabled as well as when in-node analysis is disabled. The results of the experiment show

that the in-node analysis reduces the network traffic dramatically (up to 90% in phases 1

and 2). Even with variable load (phase 3) almost 50% of the monitor traffic can be reduced.

Note that there is a trade-off between the tolerance value and the amount of information

that the server receives. In our experiments we found that tolerance values between 5%

and 10% provides accurate measurements with important reductions in network use.

For a deeper analysis, in Figure 7.23 the CPU load of a single compute node for a 10%

tolerance is represented for a period of 24 hours. In the same way, Figure 7.25 shows the

same information but for main memory usage. During this period, two workflows were

running in the system.

Figure 7.27 represents the difference between the metrics obtained with 10% tolerance

and without tolerance. Note that these values are the error produced by using the tolerance

threshold. As it can be seen, the biggest error obtained in some samples is 10% but on

average is 0.27% - and the total percentage of metrics with an error is 5.6%. In terms of

network traffic, the use of tolerance drastically decreases the number of packets sent from

U.C. CPU time (s) CPU time (s) Saved resources
Exclusive nodes Fine-grained scheduling %

1 52200 46200 11.5
2 49800 35400 28.9
3 65400 53400 19.4
4 65400 49800 23.9

Table 7.10: Execution summary of the use cases. Accumulated CPU time for each use
case and scheduling.

116

Chapter 7. Evaluation and results 117

the monitors to the aggregator. In this example, this number decreases by more than 87%

(from 5314 packets to 680).

Performing different tests under different conditions (both real and simulated) shows

that a tolerance value between 5 and 10 % provides a good relationship in the accuracy-

traffic reduction trade-off.

Figures 7.24 and 7.26 show the results of applying this optimization graphically, and

they can be directly compared with the original performance graphs in Figures 7.23 and

7.25 respectively.

7.4.2. In-transit analysis optimization

As it has been said before, one of the main limitations of scalability is communication.

When systems try to gather and centralize the information, the network becomes a bottle-

neck due to the amount of data. This section describes the optimization that reduces de

communication between the LDAs and the LDSs, based on performance prediction. It also

includes a practical evaluation that shows the overall accuracy of the different prediction

alternatives, as well as the reduction in the network usage by the monitor.

The evaluation of this optimization focuses on the LIMITLESS Analytic (LAN), which

can be seen in Figure 3.1. It is in charge of performing the smart functions to predict the

performance of the executing applications.

The evaluation has been done using simulation and a real platform. This real cluster is

a heterogeneous cluster with two racks. The first rack contains two nodes with Intel(R)

Xeon(R) E5 with eight cores each and 256GB of RAM memory. On the other hand, the

Figure 7.21: Synthetic benchmark with three different CPU phases to evaluate the in-node
analysis impact.

117

Chapter 7. Evaluation and results 118

Figure 7.22: A comparison between the number of monitoring packets sent with and
without in-node analysis optimization, including two tolerance values.

0

20

40

60

80

100

120

1 88 17
5

26
2

34
9

43
6

52
3

61
0

69
7

78
4

87
1

95
8

10
45

11
32

12
19

13
06

13
93

14
80

15
67

16
54

17
41

18
28

19
15

20
02

20
89

21
76

22
63

23
50

24
37

25
24

26
11

26
98

27
85

28
72

29
59

30
46

31
33

32
20

33
07

33
94

34
81

35
68

36
55

37
42

38
29

39
16

40
03

40
90

41
77

42
64

43
51

44
38

45
25

46
12

46
99

47
86

48
73

49
60

50
47

51
34

52
21

53
08

CPU orig

Figure 7.23: In-node analysis A - CPU monitored during 24h

second rack contains six nodes with Intel(R) Xeon(R) E7, 128GB of RAM memory, and

twelve cores per node. The connection between nodes is made through a 10 Gbps Ethernet.

The I/O is based on Gluster parallel file system.

Application Modeling and comparison TOP command vs. LIMITLESS

One interesting feature of a monitor is the ability to detect applications. Thanks to the

communication with the scheduler, LIMITLESS is able to detect applications that are

running exclusively in a node, which means that the performance metrics collected for

that node will be produced by that application. As it has been demonstrated before, the

118

Chapter 7. Evaluation and results 119

0

20

40

60

80

100

120
1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

37
3

38
5

39
7

40
9

42
1

43
3

44
5

45
7

46
9

48
1

49
3

50
5

51
7

52
9

54
1

55
3

56
5

57
7

58
9

60
1

61
3

62
5

63
7

64
9

66
1

67
3

68
5

69
7

70
9

CPU simulated

Figure 7.24: In-node analysis A - CPU monitored using 10% tolerance.

0

10

20

30

40

50

60

70

80

90

1 86 17
1

25
6

34
1

42
6

51
1

59
6

68
1

76
6

85
1

93
6

10
21

11
06

11
91

12
76

13
61

14
46

15
31

16
16

17
01

17
86

18
71

19
56

20
41

21
26

22
11

22
96

23
81

24
66

25
51

26
36

27
21

28
06

28
91

29
76

30
61

31
46

32
31

33
16

34
01

34
86

35
71

36
56

37
41

38
26

39
11

39
96

40
81

41
66

42
51

43
36

44
21

45
06

45
91

46
76

47
61

48
46

49
31

50
16

51
01

51
86

52
71

MEM orig

Figure 7.25: In-node analysis B - Memory monitored during 24h

performance counters collected by LIMITLESS are so similar to the metrics offered by

Collectd, but in this case, a comparison has been done with the top command. The objective

is to show the results, including another comparison between two methods of obtaining

performance data. So that, this subsection will focus on the application modeling and

the results obtained combining their executions instead of explaining differences between

collection methods.

119

Chapter 7. Evaluation and results 120

0

10

20

30

40

50

60

70

80

90
1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

37
3

38
5

39
7

40
9

42
1

43
3

44
5

45
7

46
9

48
1

49
3

50
5

51
7

52
9

54
1

55
3

56
5

57
7

58
9

60
1

61
3

62
5

63
7

64
9

66
1

67
3

68
5

69
7

70
9

MEM simulated

Figure 7.26: In-node analysis B - Memory monitored using 10% tolerance.

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

Error (%)

Figure 7.27: In-node analysis A - Error as difference of CPU performance with/without
tolerance, setting this value un 10% (original figure in Figure 7.24).

The following results show how LIMITLESS creates profiles from the applications

when they have been run in exclusive nodes. The applications modeled are described

in Table 7.11. Note that all applications have been executed running 6 processes. The

objective of this configuration is to show the individual performance of each application,

and then, different combinations between them to measure the consumed resources (the

total resources used should be the combination of both individual models) in compute-

nodes with 12 cores.

The Jacobi method is, in numerical analysis, an iterative method used to solve systems

of linear equations of the type Ax = b. The algorithm is based on finding approximate

120

Chapter 7. Evaluation and results 121

solutions from the diagonal matrix and iterating until it converges.

Application Description
Jacobi Iterative algorithm for determining the solutions of linear equations. It

combines CPU and I/O phases during its execution. Developed using
MPI.

SP Scalar Penta-diagonal solver. CPU intensive. Developed using
OpenMP.

IS Integer Sort. It performs random memory access with constant use of
CPU and memory. Developed using MPI.

BT-IO It is a test of different parallel I/O techniques.
Epigraph It is an efficient graph-based algorithm for designing vaccine antigens.

It performs CPU and communication phases, depending on the number
of the infected every iteration. Developed using MPI.

Table 7.11: Applications modeled by LIMITLESS.

The following figures show the different models for each application. Note that these

models correspond to one execution and certain parameters (for example the class of the

problem, which sets the size of the matrices or the number of iterations of each application).

The first use case corresponds to the execution of the Jacobi algorithm. It is a CPU-

intensive application with a combination of memory and IO operations in MPI. The model

generated thanks to the performance counters collected can be seen in Figure 7.28, which

includes two figures inside it. At first, Figure 7.28i is the graphical result obtained by

LIMITLESS. On the other side, Figure 7.28ii represents the CPU performance based on

the information retrieved by the top command. Measuring CPU with high variations

top is less precise than LIMITLESS because it computes the performance counters less

time (note that top displays information about many processes instead one, and in this

experiments the interval time is set to one second). So that, in many cases the displayed

information corresponds to max and min values. As top does not obtain buffered and

shared memory information, Figure 7.29 has been obtained using the tool Free: it provides

information about the total amount of the physical and swap memory, as well as the free

and used memory. With this tool, Figure 7.28i can be validated in combination with the

CPU returned by top.

121

Chapter 7. Evaluation and results 122

0

10

20

30

40

50

60

70

80

90

100

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

30
0

32
3

34
6

36
9

39
2

41
5

43
8

46
1

48
4

50
7

53
0

55
3

57
6

59
9

62
2

64
5

66
8

69
1

71
4

73
7

76
0

78
3

80
6

82
9

85
2

87
5

89
8

92
1

LIMITLESS - JACOBI

CPU MEM

(i) Model generated by LIMITLESS from the
original application Jacobi. Each series
represents the percentage of use.

0

10

20

30

40

50

60

70

80

90

100

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

50
5

52
9

55
3

57
7

60
1

62
5

64
9

67
3

69
7

72
1

74
5

76
9

79
3

81
7

84
1

86
5

88
9

91
3

93
7

TOP - JACOBI

CPU

(ii) Model generated by top counters from the
original application Jacobi. The series represents
the CPU usage as a percentage.

Figure 7.28: LIMITLESS model generation versus top counters. Jacobi algorithm use case.

0

10000

20000

30000

40000

50000

60000

70000

80000

0

10

20

30

40

50

60

70

80

90

100

1 26 51 76 10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

32
6

35
1

37
6

40
1

42
6

45
1

47
6

50
1

52
6

55
1

57
6

60
1

62
6

65
1

67
6

70
1

72
6

75
1

77
6

80
1

82
6

85
1

87
6

90
1

92
6

95
1

FREE - JACOBI memory pattern

shared CPU buffer

Figure 7.29: Free - Jacobi memory pattern. The total memory consumption is represented
as a percentage of use.

The second use case corresponds to the execution of the Scalar Penta-diagonal solver.

It is a CPU-intensive application with a high usage of main memory due to big matrixes

storage. The model generated thanks to the performance counter collected can be seen in

Figure 7.30, which includes two figures inside it. At first, Figure 7.30i is the graphical result

obtained by LIMITLESS. On the other side, Figure 7.30ii represents the same information

based on the information retrieved by the top command, but another series called memp

appears. memt is equivalent to mem in LIMITLESS and represents the total memory

consumed: real and virtual. However, memp is the value returned by top, which is the

resident memory used. Adding manually the virtual memory, the result is memt.

122

Chapter 7. Evaluation and results 123

0

10

20

30

40

50

60

70

80

90

100

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

33
1

35
3

37
5

39
7

41
9

44
1

46
3

48
5

50
7

52
9

55
1

57
3

59
5

61
7

63
9

66
1

68
3

70
5

72
7

74
9

77
1

79
3

81
5

83
7

85
9

88
1

90
3

92
5

LIMITLESS - SP

CPU MEM

(i) Model generated by LIMITLESS from the
original application SP. Each series represents the
percentage of use.

0

10

20

30

40

50

60

70

80

90

100

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

33
1

35
3

37
5

39
7

41
9

44
1

46
3

48
5

50
7

52
9

55
1

57
3

59
5

61
7

63
9

66
1

68
3

70
5

72
7

74
9

77
1

79
3

81
5

83
7

85
9

88
1

90
3

92
5

TOP - SP

CPU MEM_t MEM_p

(ii) Model generated by top counters from the
original application SP. Each series represents the
percentage of use.

Figure 7.30: LIMITLESS model generation versus top counters. Scalar Penta-diagonal
solver use case.

The third use case corresponds to the execution of the MPI distributed Integer-Sort

algorithm. It is a CPU-intensive application with a high usage of main memory and random

memory accesses. The model generated thanks to the performance counter collected can

be seen in Figure 7.31, which includes two figures inside it. At first, Figure 7.31i is the

graphical result obtained by LIMITLESS. On the other side, Figure 7.31ii represents the

same information based on the information retrieved by the top command. As in the last

use case, another series called memp appears, but taking into account the virtual memory

consumed and the dynamic buffers, the total memory used can be seen in memt series.

0

10

20

30

40

50

60

70

80

90

100

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

30
0

32
3

34
6

36
9

39
2

41
5

43
8

46
1

48
4

50
7

53
0

55
3

57
6

59
9

62
2

64
5

66
8

69
1

71
4

73
7

76
0

78
3

80
6

82
9

85
2

87
5

89
8

92
1

94
4

LIMITLESS - IS

CPU MEM

(i) Model generated by LIMITLESS from the
original application IS. Each series represents the
percentage of use.

0

10

20

30

40

50

60

70

80

90

100

1 22 43 64 85 10
6

12
7

14
8

16
9

19
0

21
1

23
2

25
3

27
4

29
5

31
6

33
7

35
8

37
9

40
0

42
1

44
2

46
3

48
4

50
5

52
6

54
7

56
8

58
9

61
0

63
1

65
2

67
3

69
4

71
5

73
6

75
7

77
8

79
9

82
0

84
1

86
2

88
3

TOP - IS

CPU MEM_t MEM_p

(ii) Model generated by top counters from the
original application IS. Each series represents the
percentage of use.

Figure 7.31: LIMITLESS model generation versus top counters. Integer Sort use case.

The next use case corresponds to the execution of the Block Tri-diagonal solver algo-

rithm, performing different parallel I/O operations. It is a CPU-intensive application due

to matrix operations, but then it performs a lot of I/O operations. The model generated

123

Chapter 7. Evaluation and results 124

thanks to the performance counter collected can be seen in Figure 7.32, which includes two

subfigures inside it. At first, Figure 7.32i is the graphical result obtained by LIMITLESS.

On the other side, Figure 7.32ii represents the same information based on the informa-

tion retrieved by the top command. Besides, top does not provide I/O information, but

LIMITLESS does. The result can be seen in Figure 7.33. This figure shows how BTIO

performs different I/O operations and following different access patterns. The result is the

percentage of writes during the sampling interval.

(i) Model generated by LIMITLESS from the
original application BTIO. Each series represents
the perc. of use.

(ii) Model generated by top counters from the
original application BTIO. Each series represents
the perc. of use.

Figure 7.32: LIMITLESS model generation versus top counters. BT-IO use case.

0

10

20

30

40

50

60

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

IO

IO

Figure 7.33: LIMITLESS - BTIO read/write operations over time. The Y-axe represents
the percentage of read/writes with respect to the total.

The last use case corresponds to the execution of the Epigraph, a scalable, fully

124

Chapter 7. Evaluation and results 125

distributed simulator that performs large scale and realistic stochastic simulations of the

propagation of some viruses (for example, COVID-19 [114]). The model generated thanks

to the performance counter collected can be seen in Figure 7.34, which includes two

subfigures. At first, Figure 7.34i is the graphical result obtained by LIMITLESS. On the

other side, Figure 7.34ii represents the same information based on the information retrieved

by the top command. In this case, top does not provide communication information,

but LIMITLESS does. The result can be seen in Figure 7.35. This figure shows the

communication pattern during the execution of the application. It is directly related to the

number of people infected.

0

10

20

30

40

50

60

70

80

90

100

1 62 12
3

18
4

24
5

30
6

36
7

42
8

48
9

55
0

61
1

67
2

73
3

79
4

85
5

91
6

97
7

10
38

10
99

11
60

12
21

12
82

13
43

14
04

14
65

15
26

15
87

16
48

17
09

17
70

18
31

18
92

19
53

20
14

20
75

21
36

21
97

LIMITLESS - EPIGRAPH

CPU MEM

(i) Model generated by LIMITLESS from the
original application Epigraph. Each series
represents the perc. of use.

0

10

20

30

40

50

60

70

80

90

100

1 62 12
3

18
4

24
5

30
6

36
7

42
8

48
9

55
0

61
1

67
2

73
3

79
4

85
5

91
6

97
7

10
38

10
99

11
60

12
21

12
82

13
43

14
04

14
65

15
26

15
87

16
48

17
09

17
70

18
31

18
92

19
53

20
14

20
75

21
36

21
97

TOP - EPIGRAPH

CPU MEM

(ii) Model generated by top counters from the
original application Epigraph. Each series
represents the perc. of use.

Figure 7.34: LIMITLESS model generation versus top counters. Epigraph use case.

0

50

100

150

200

250

300

350

400

1 39 77 11
5

15
3

19
1

22
9

26
7

30
5

34
3

38
1

41
9

45
7

49
5

53
3

57
1

60
9

64
7

68
5

72
3

76
1

79
9

83
7

87
5

91
3

95
1

98
9

10
27

10
65

11
03

11
41

11
79

12
17

12
55

12
93

13
31

13
69

14
07

14
45

14
83

15
21

15
59

15
97

16
35

16
73

17
11

17
49

17
87

18
25

18
63

19
01

19
39

19
77

20
15

20
53

20
91

21
29

21
67

22
05

22
43

22
81

EPIGRAPH-1

KBS

Figure 7.35: LIMITLESS - Epigraph communication usage. The Y-axe represents the
communication usage in Kbps.

125

Chapter 7. Evaluation and results 126

Performance prediction

This subsection focuses on describing the algorithms included in LIMITLESS to make

predictions about the performance of the applications. It also provides a deep evaluation

that shows the results of the different algorithms and confirms the benefit of using them,

not only for implementing optimizations but for designing new scheduling policies based

on predictions. The LA is the component in charge of performing these predictions,

leveraging the large amount of data collected. There are two objectives for developing

these algorithms: the first one is to optimize the communications between the LDAs and

the LDSs (in-transit analysis), and the second is to improve the scheduling process by

designing a new scheduling policy (fine-grain scheduling policy).

To reach those goals, this section evaluates four different algorithms, three of them

based on uni-variable analysis, and one based on multivariable analysis. The proposed

algorithms based on analyzing each variable separately are application pattern matching,

prediction based on a historical window, and neural networks. Finally, the algorithm

proposed to make multivariable predictions is based on machine learning. All of them

have been described in Chapter 5.

Both neural networks and machine learning techniques need a big amount of infor-

mation to train correctly, and usually, this process may require a considerable amount

of time. Because of that, in the case of the neural network, there is a lag between the

application executions and the possibility to use the predictions generated. However, in

the case of the machine learning algorithm the delay is much smaller and assumable,

and it can be used since the beginning (but the accuracy increases with more execution

examples). The training process in machine learning needs to spend few seconds, even

with an important number of input monitoring data. For instance, we have performed a test

with an application ensemble of four days, collecting metrics each second, and generating

a 28MB log, and the process was done in less than 5 seconds. The same process with

machine learning takes more than 50 seconds.

The next two figures show the performance pattern for the Jacobi and BT-IO applica-

tions. The objective is to show the different performance metrics when the applications

are executed in exclusive nodes. Figure 7.36 shows the main performance metrics of the

Jacobi application. In this case, the application has been executed using four processes.

Figure 7.37 shows the same performance metrics of BT-IO, but using eight processes. Note

that the objective of these figures is to show the profile of each application; they are not

the use cases.

For the experimentation, three different use cases have been considered. The first

126

Chapter 7. Evaluation and results 127

Figure 7.36: Performance metrics for Jacobi method executed in an exclusive node.

Figure 7.37: Performance metrics for BT-IO benchmark from NAS Parallel Benchmarks.

one corresponds to the parallel implementation of a Jacobi algorithm, which has been

already described before. This use case executes eight processes using an input matrix

with 15,000 entries. As the application executes its processes exclusively in one compute

node (most of the time), each phase of its execution is approximately constant during all

the execution and between different executions. Figure 7.38 shows the percentage of CPU,

which is consumed during the execution of this use case. The instants where there is a

CPU reduction corresponds to the I/O phases, which are executed periodically. As it can

be seen, there is an important increase in CPU around the second 25,000, which is related

to a synchronization process.

127

Chapter 7. Evaluation and results 128

Figure 7.38: Use case 1 - CPU use of Jacobi method executed in an exclusive node.

The second use case consists of executing simultaneously two instances of the Jacobi

method in the same nodes. Due to this, the CPU and communication phases keep barely

constant. However, the I/O phases change their duration because both applications are

executing I/O operations at the same time. That is the reason why there is interference

between both applications: they share the I/O bandwidth, reducing their access (read and

write) speed, and producing an increased phase duration. Figure 7.39 shows the CPU

use when two Jacobi instances are running in the same compute node. Each application

executes 6 processes, and the CPU consumption is nearly 100%. As it can be seen, there is

not a constant distance between the CPU reductions (I/O phases) due to the interference.

The third use case corresponds to BT-IO from NAS Parallel Benchmarks configured as

class C, which means that is 12X complex than the standard BT-IO case. This benchmark

alternates CPU and I/O phases. Figure 7.40 shows the CPU usage for this benchmark.

The following results show only CPU information, but the framework processes the

complete vector of metrics. Note that there are two kinds of metrics depending on the

variability of their values: high variability and low variability values. For instance, CPU

belongs to the first group due to its volatility. However, temperature belongs to the second

group because it is more constant and typically has limits. The reason why the evaluation

shows only CPU results is that it belongs to the group that is most difficult to predict. It

shows more clearly the proposal benefits.

On the other hand, as each execution generates different values, including executions

with same parameters, produce exact predictions is really hard. For this reason, LIMITLESS

128

Chapter 7. Evaluation and results 129

Figure 7.39: Use case 2 - CPU use of two Jacobi instances executing in the same node.
There is I/O interference between them.

Figure 7.40: Use case 3 - CPU use of BTIO benchmark from NAS Parallel Benchmarks.

considers good values those that are within a predefined range.

Table 7.12 shows the accuracy of the predictions based on the performance metrics

that LIMITLESS has collected from the execution of the applications. The accuracy

corresponds to the percentage of predictions that have the same value as expected, including

an acceptation margin of 3% in each algorithm. Comparing the use cases one and two (one

instance of Jacobi executed in an exclusive node and two instances of Jacobi executing in

the same node), the first one has a steadier behavior, producing more accurate predictions

for this case. In the optimization in-transit analysis, the traffic reduction between LDAs

129

Chapter 7. Evaluation and results 130

and LDSs is directly related to the precision of these predictors. Each correct prediction

allows the LDA to avoid sending one monitoring packet to the LDS.

Note that the key of in-transit analysis consists of sharing the same predictor (created

and trained by LA) between LDAs and LDSs. In terms of transmission overhead, due

to the predictors sharing between different components, the first two algorithms (pattern

matching and historical window) have no input parameters, thus, there is no transmission of

data. However, neural networks and machine learning algorithms need the data related to

their configuration (for instance, the weight of each neuron in the neural network). In these

cases, there is an overhead of 28KB for sharing the neural network-related configuration,

and 23KB for the machine learning algorithm.

Table 7.13 shows the accuracy of the predictions based on the performance metrics that

CLARISSE and FlexMPI have collected from the applications (which are directly stored

in ElasticSearch). In this case, there was not possible to collect performance information

from the BTIO application because it is written in Fortran. Note that using these runtimes

brings a more accurate representation of the application that enhances the modeling. They

use timestamps for collecting the duration of the different phases (CPU and I/O). This

monitorization improves the accuracy of the predictions, as can be seen in Table 7.13.

UC 1: UC 2: UC 3:
Jacobi excl. Jacobi interf. BTIO

Pattern matching 25.2% 25.2% 24.7%
Historical window 61.5% 82.7% 50.0%
Neural networks 99.5% 93.3% 98.0%
Machine Learning 90.8% 90.5% 88.5%

Table 7.12: Predictors accuracy at node level monitoring - Accuracy expressed as a
percentage of correct predictions.

UC 1: UC 2:
Jacobi excl. Jacobi interf.

Pattern matching 48.5% 53.2%
Historical window 98.6% 98.7%
Neural networks 99.3% 99.5%
Machine Learning 98.7% 98.8%

Table 7.13: Predictors accuracy at application-level monitoring - Accuracy expressed as a
percentage of correct predictions.

All these algorithms have been included in the optimization process called in-transit

analysis, having an impact on the number of monitoring packets sent from LDAs to LDSs.

130

Chapter 7. Evaluation and results 131

In table 7.14 can be seen the global traffic reduction when these prediction algorithms are

in use. Note that those values include the prediction of four performance metrics: CPU,

memory, I/O, and communication. As it can be seen, the final results exhibit almost the

same results as the experiments. However, the addition of more metrics to predict reduces

the accuracy due to the accumulated variability.

Use case 1: Use case 2: Use case 3:
Jacobi excl. Jacobi interf. btio

Pattern matching 24% 23% 24%
Historical window 60% 80% 50%
Neuronal networks 96% 92% 96%
Machine Learning 90% 90% 88%

Table 7.14: Percentage of network traffic saved of all the prediction algorithms, including
CPU, IO, Memory and Network collected metrics.

7.5. Improving control congestion for InfiniBand networks

This section shows that LIMITLESS in combination with congestion control mechanisms is

able to dynamically configure the InfiniBand congestion control (CC) efficiently. Following,

the platform and the experiments performed using the GPCNeT benchmark are described.

Note that this work is the result of a cooperation between the author of this PhD. thesis and

his supervisors, and a group of researchers at Universidad de Castilla-La Mancha (UCLM).

7.5.1. Platform and experiments description

The cluster is composed of 50 server nodes HP Proliant DL120 Gen9, with processors

Intel Xeon E5-2630v3 with 8 cores at 1.80 GHz and 16 GB of RAM each. The network

connection is built with IBA-based hardware: 50 Mellanox IS5022 switches with 8 ports

with QDR technology. Each link offers 32 Gbps (instead of 40Gbps) due to the encoding

protocol. Finally, the connection between nodes corresponds to a KNS topology using the

IBA-based hardware, which can be seen in Figure 7.41.

This topology exhibits 12 switches (in blue) and 36 switches that operate as routers

(in orange). This has been done to perform the re-routing functionality required by KNS.

Routers are labeled with “R” with the X-coordinate and the Y-coordinate. End-nodes are

labeled as “H” followed by the coordinates of each one. Finally, switches are labeled as

“Sw” followed by the number of the dimension D where that switch is connected and the

position of that switch N.

131

Chapter 7. Evaluation and results 132

Figure 7.41: 36-node KNS topology built on the cluster.

The experimentation has been done using the GPCNeT benchmark [115], which is

used to measure the impact of congestion in HPC systems. GPCNeT is a benchmark based

on MPI that runs among all the nodes, but, in this case, it has been modified to set manually

which nodes will provide results that do not depend on the random distribution between

the different tests.

For each test in the evaluation, GPCNeT processes the mean and 99th percentile in

MiB/s per MPI rank. Initially, the results are collected without congestion, and then, the

congestor nodes inject traffic. GPCNeT will calculate the congestion, comparing the results

obtained with the results obtained without congestion. In this case, the collected metrics

provided by LIMITLESS have been studied to understand the congestion using metrics

such as portXmitData and portXmitWait.

7.5.2. Results

The experiment execution consists of 8 MPI ranks per node in the 36 nodes in the KNS

topology, and the tests have been executed using different values for CCTI_increase

because the objective is to observe the impact of this factor on the CC performance and

efficiency. The most relevant parameters of the IBA-CC mechanism can be seen in Table

7.15.

132

Chapter 7. Evaluation and results 133

Table 7.15: Congestion control configuration.

Parameter Value
Threshold 0x7
Packet_Size 1
Marking_Rate 0x000f
CCTI_Timer 150
CCTI_Increase {1,2,5,10,20}

0.0 B/s

500.0MB/s

1.0GB/s

1.5GB/s

2.0GB/s

2.5GB/s

00:00 01:0002:00 03:00 04:0005:00 06:00

O
u
t
p
u
t

B
a
n
d
w
i
d
t
h

portXmitData nodo30

CC
Monitor+CC

Figure 7.42: portXmitData in node 30.

Following Figures 7.42, 7.43, 7.44 and 7.45 show the metrics collected by LIMITLESS

system monitor in comparison with the time for the PortXmitData and PortXmitData

performance counters during GPCNeT benchmark execution. As it can be seen in the

figures, congestion starts around 1:20 from the beginning. The policies used in the

experiments are: IBA-CC exclusively (CC) and LIMITLESS (LIMITLESS+CC). The IBA-

CC CCTI_Increase parameter is set to 5, which is an intermediate value in the category

passive-aggressive of throttle degree at end-nodes.

As it has been said, the study focuses on the PortXmitData and PortXmitWait perfor-

mance counters. The first one shows an approximation of the bandwidth reached by each

end-node, while the second measures the number of cycles that a node cannot send data

because of the congestion. These values are used to estimate the congestion impact at this

end-node.

Figure 7.42 shows the bandwidth results for the PortXmitData performance counter in

node 30, when the IBA-CC and LIMITLESS+CC configurations are used. Since approxi-

mately 1:20, as it can be seen, when we use the LIMITLESS configuration the bandwidth

133

Chapter 7. Evaluation and results 134

 0

 0.5

 1

 1.5

 2

 2.5

 3

00:00 01:00 02:00 03:00 04:00 05:00 06:00

m
s

w
a
i
t
e
d

t
o

s
e
n
d

d
a
t
a

portXmitWait nodo30

CC
Monitor+CC

Figure 7.43: portXmitWait in node 30.

0.0 B/s

500.0MB/s

1.0GB/s

1.5GB/s

2.0GB/s

2.5GB/s

00:00 01:0002:00 03:00 04:0005:00 06:00

O
u
t
p
u
t

B
a
n
d
w
i
d
t
h

portXmitData nodo37

CC
Monitor+CC

Figure 7.44: portXmitData in node 37.

reaches a maximum of 2.5 GByte/s, while when the default IBA CC is used, it remains at

2 Gbyte/s. That increase of the bandwidth corresponds to the P2PBW+Sync test, as this is

where the most data is sent.

On the other hand, Figure 7.43 shows the time that the same node 30 has to wait

to transmit packets. The time needed to send data using the LIMITLESS is longer than

that required when using the IBA CC alone in no-congestion conditions. However, this

134

Chapter 7. Evaluation and results 135

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

00:00 01:00 02:00 03:00 04:00 05:00 06:00

m
s

w
a
i
t
e
d

t
o

s
e
n
d

d
a
t
a

portXmitWait nodo37

CC
Monitor+CC

Figure 7.45: portXmitWait in node 37.

difference is marginal and due to anodyne congestion. When the scenario becomes more

intensive, the time to send data exceeds the upper_limit set for detecting congestion, and

the IBA CC starts working after the time needed for the CC to react. Note that, when the

congestion is high, PortXmitWait is updated around the 3:00 minutes of execution time.

Figures 7.44 and 7.45 show the same information in node 37. As the figures show, the

utilization of LIMITLESS+CC obtains higher values of bandwidth than the standard IBA

CC.

Following figures show the results for the P2PBW+Sync (Random Ring Point-to-point

Bandwidth with Synchronization) experiment. They also show the comparison between

the standard CC and the LIMITLESS+CC alternative. Different values of CCTI_increase

have been used to check its impact on the network bandwidth.

Figures 7.46 and 7.47 show the results of the P2PBW+Sync scenario when there is no

congestion, measuring them in average and focusing on the 99 percentile. Note that higher

values of CCTI_Increase parameter produces higher levels of intrusion of the IBA CC,

reaching lower levels of bandwidth. However, using the implementation with LIMITLESS,

regardless of the CCTI_Increase value, the bandwidth keeps at maximum values.

Finally, figures 7.48 and 7.49 show the results when GPCNeT generates congestion in

the network. In this case, the traffic in the network is intensive, and the reached bandwidth

is lower. It can be seen smaller values on portXmitWait when LIMITLESS+CC is active

because this alternative seems to react faster adjusting the injection rate. It can also be seen

that, in average, higher values for CCTI_increase do not produce significant variations in

135

Chapter 7. Evaluation and results 136

 0

 50

 100

 150

 200

 250

 300

OpensmCC CC+Monitor

M
i
B
/
s
/
r
a
n
k

Results without Congestion RR Two sided BW+Sync

cctiInc01
cctiInc02

cctiInc05
cctiInc10

cctiInc20

Figure 7.46: P2PBW+Sync. No congestion (Average).

 0

 50

 100

 150

 200

 250

 300

OpensmCC CC+Monitor

M
i
B
/
s
/
r
a
n
k

99% Results without Congestion RR Two sided BW+Sync

cctiInc01
cctiInc02

cctiInc05
cctiInc10

cctiInc20

Figure 7.47: P2PBW+Sync. No congestion (99%-tile).

the bandwidth, and the standard CC detects congestion when the network is not actually

congested. On the other hand, LIMITLESS+CC can estimate better the congestion, based

on these results, because it reacts faster and refine the congestion control.

In a summary, LIMITLESS+CC dynamically sets the CCTI_Increase value at given

HCA based on the collected portXmitWait and portXmitData performance counters (which

gives an idea of the congestion). This solution allows the adjustment of the injection rate

136

Chapter 7. Evaluation and results 137

 0

 50

 100

 150

 200

 250

OpensmCC CC+Monitor

M
i
B
/
s
/
r
a
n
k

Results with Congestion RR Two sided BW+Sync

cctiInc01
cctiInc02

cctiInc05
cctiInc10

cctiInc20

Figure 7.48: P2PBW+Sync with congestion (Average).

 0

 50

 100

 150

 200

 250

OpensmCC CC+Monitor

M
i
B
/
s
/
r
a
n
k

99% Results with Congestion RR Two sided BW+Sync

cctiInc01
cctiInc02

cctiInc05
cctiInc10

cctiInc20

Figure 7.49: P2PBW+Sync with congestion (99%-tile).

of the traffic flows, regardless of whether the congestion is higher or lower.

7.6. Summary

This chapter shows the different results obtained for each feature that is a candidate for

an evaluation: monitoring overhead, a comparison with other monitor, the benefits of the

137

Chapter 7. Evaluation and results 138

new scheduling policies designed, the impact of the optimizations to reduce the monitor

communication overhead, etc., and includes results for each section described in Chapter 3

(Architecture) and Chapter 5 (Implementation).

The next chapter shows the conclusions of this PhD. thesis and the planned future

works, as well as the contributions and the objectives completed.

138

Chapter 8. Conclusion and future work 139

8. CONCLUSION AND FUTURE WORK

This PhD. thesis describes the design and development of a monitoring and scheduling

framework that has been designed for large-scale computing infrastructures. It schedules

applications with different multi-criteria policies, and includes various optimizations to

reduce the impact of the monitoring to the machines, and brings smart support thanks to

the use of ML and NN.

The features that it provides include topological-aware deployment, dynamic recon-

figuration, in-situ and in-transit processing for reducing the monitor traffic, performance

modeling, event detection and notification, and two new and advanced scheduling policies

based on monitoring information combined with Machine Learning algorithms. This

work is aimed to address some of the European research priorities in the area of HPC

technology. One of the main characteristics of LIMITLESS is its integration with other

platform software components like the application scheduler, CLARISSE and FlexMPI

runtimes.

The monitoring tool has a really low overhead, as it has been demonstrated, in compar-

ison with other similar tools studied in a deep researching of the state of the art. Besides,

is is easy to deploy, does not need special installation packages or instructions, and it is

fully and dynamically configured without the necessity of restart the system to apply the

changes. It includes elements to facilitate the visualization and exploitation of the data,

can be connected to other software through the developed API, and has some desirable

software characteristics: it is scalable, extensible and robust.

This work includes some optimizations to reduce the overhead generated by the

communications between the components, including optimizations inside the monitoring

nodes and the other elements of the hierarchy, and out of the monitoring nodes applying

Machine Learning techniques for identifying and predicting applications to design new

scheduling policies, that can reduce (as has been seen in Chapter 6) the monitoring traffic

up to 85%. Also, new scheduling techniques have been described: fine-grain scheduling,

which is based on running applications at the same time in the same node, leveraging the

phases which do not produce performance degradation in any of them. With this solution

LIMITLESS can reduce the makespan on the described use cases in more than 25%, and

coarse-grain scheduling, which is based on share applications in a node if the complete

concurrent execution of both applications does not produce performance degradation in

any of them. With this scheduling mode, the makespan on the described use cases can be

139

Chapter 8. Conclusion and future work 140

reduced between 20% and 30%.

At the end of the PhD. thesis, the status of the objectives listed in Section 1.3 is the

following:

• O1. Explore new techniques and abstractions to allow HPC applications the
exploiting of the parallelism, locality, elasticity and adaptability of LSDS. A

monitoring framework has been designed to be able to work in LSDS, providing

useful information about the platform and the status of each machine with the

objective of having a global view of the infrastructure, and using that information

to assign applications to the better nodes depending on their performance, and to

design new scheduling policies.

• O2. Design the monitoring tool to be able to run in heterogeneous and homoge-
neous machines. The designed framework is capable of operating in heterogeneous

and homogeneous systems because the methodology for collecting the data is inde-

pendent of the devices in the machines. It has been tested in four different clusters,

homogeneous and heterogeneous, with good results.

• O3. Explore different techniques to collect information in a machine in two
levels: node and application. As it has been described, the monitoring information

provided includes information about the hardware performance of the machines, and

the applications that are running in them. All of them available to be displayed in

visualizers or processed by user applications.

• O4. Design new scheduling policies based on multiple criteria. LIMITLESS
includes two different scheduling policies for shared nodes: coarse-grain and fine-

grain scheduling. Both of them try to execute different applications in the same

node, reducing the makespan, but this combination can be done based on multiple

criteria. For example, scheduling taking into account the available resources and the

energy consumption, or I/O and network usage.

• O5. Explore how to bring machine learning and neural networks support to
the proposed framework. LIMITLESS includes a module to perform machine

learning operations over the collected data. Thanks to this feature, the framework can

exploit the data and can make predictions and application identifications efficiently

and with high accuracy. All of those results are used to improve the scheduling

process, and to optimize the communications between the framework components (if

the predictions are correct, there is no necessity of send future monitoring packets).

It is considered all of them achieved.

140

Chapter 8. Conclusion and future work 141

8.1. Contribution

Altogether, this PhD. thesis provides the following contributions: LIMITLESS - LIght-

weight MonItoring Tool for LargE Scale Systems

• A light-weight monitoring tool designed to be used in Large-Scale Distributed
Systems. The monitoring tool included in LIMITLESS has a very low overhead in

comparison with other monitors. Its architecture and components provide scalability

levels to make possible the execution in very large-scale system (taking into account

the trend towards exascale).

• Mechanisms to coordinate the monitoring tool with other system components
to increase the global results. The monitoring tool can be integrated with other

components and system runtimes to take advantage of their functionalities and collect

more information to feed into the scheduler and analytic component.

• An API that allows the users to get every information collected since the begin-
ning of the execution of the framework. This API includes functions to communi-

cate C/C++ applications directly to the LDS component, which is in charge of store

and load the monitoring information received. There are two groups of functions,

depending on the data that the user wants: data about the current state of the system

(current data) or previous data collected (historical data).

• Optimization techniques to reduce the communication overhead of the frame-
work, which is one of the most important factors in monitoring, because the whole

information should finish in a central or distributed storage, which implies moves

of large amount of data through the network. Application of filtering techniques

and the methodology called in-transit optimization manage to reduce the number of

communications by a large percentage.

• A component that integrates some Machine Learning algorithms to allow pre-
dictions, classifications and profiling. The LA component includes smart analytic

functionalities that provide functions to predict future states of the system (for

scheduling and for reducing the communications in in-transit processing), classifica-

tion to identify which applications are currently running in the compute-nodes (using

the application models, LA can train ML algorithms to recognize applications), and

profiling to decompose the applications, find out their profiles, how many phases do

they perform (also their performance), and all of them to improve the scheduling

with new and smart scheduling policies that can be updated dynamically.

141

Chapter 8. Conclusion and future work 142

• A deep study and evaluation of the framework that shows its overhead, its
performance, and the results of the analytic component. At first, a deep study of

the state of the art has been done in three different areas: monitoring, scheduling and

Machine Learning techniques, describing solutions and the importance of the works.

On the other hand, many tests of each framework component have been done and

organized in Chapter 6, where the use cases, considerations and results can be seen

with complete descriptions and explanations about the process.

8.2. Future work

There are several future researching lines resulting from this PhD. thesis:

• Include a new feature in the framework to automatically detect the cluster topology

with the objective of auto-deploy the monitor with an efficient layout. Currently

the system has to be deployed designing manually a topology (flat or hierarchical),

but now we are researching the way to facilitate this task optimizing the process of

discovering the resources in a network.

• Include more refined prediction algorithms for improving the in-transit processing

algorithm (optimization to reduce the network usage overhead), and to improve the

predictions to perform scheduling based on future states of the system.

• Integrate this smart framework into a worldwide used workload manager: SLURM.

The objective is to design a plugin for that software to take advantage of its popularity,

to give other researchers the possibility of use our framework to reduce the makespan

of their workloads, to have a clear view of the performance of their systems, and to

predict future events based on the monitoring historical data.

142

Chapter 8. Conclusion and future work 143

BIBLIOGRAPHY

[1] A. Cascajo, D. E. Singh, and J. Carretero, “Performance-Aware Scheduling of

Parallel Applications on Non-Dedicated Clusters,” Electronics, vol. 8, no. 9, p. 982,

2019. doi: 10.3390/electronics8090982.

[2] Cascajo, Alberto and Singh, David E. and Carretero, Jesus, Avances en Arquitectura

y Tecnología de Computadores. Actas de las Jornadas SARTECO 2019, U. de

Extremadura, Ed. Universidad de Extremadura, Servicio de Publicaciones, 2019,

pp. 530–537. [Online]. Available: https://dehesa.unex.es/handle/10662/

9626.

[3] A. Cascajo, D. E. Singh, and J. Carretero, “LIMITLESS - LIght-weight MonItoring

Tool for LargE Scale Systems,” in Proceedings - 29th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing, PDP 2021,

Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 220–227. doi:

10.1109/PDP52278.2021.00042.

[4] A. Cascajo, D. E. Singh, and J. Carretero, Adaptive scheduling of HPC applications

using malleability and dynamic migration, 2019. [Online]. Available: https:

//scheduling2019.sciencesconf.org/271456 (visited on 06/18/2021).

[5] S. Jha, J. Qiu, A. Luckow, P. Mantha, and G. C. Fox, “A Tale of Two Data-

Intensive Paradigms: Applications, Abstractions, and Architectures,” in 2014

IEEE International Congress on Big Data, IEEE, Jun. 2014, pp. 645–652. doi:

10.1109/BigData.Congress.2014.137.

[6] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock, “I/O perfor-

mance challenges at leadership scale,” in Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis - SC ’09, New York,

New York, USA: ACM Press, 2009, p. 1. doi: 10.1145/1654059.1654100.

[Online]. Available: http://dl.acm.org/citation.cfm?doid=1654059.

1654100.

[7] Global trends in internet traffic, data centre workloads and data centre energy

use, 2010-2010, 2020. [Online]. Available: https://www.iea.org/data-

and-statistics/charts/global-trends-in-internet-traffic-data-

centre-%5C%5C%20workloads-and-data-centre-energy-use-2010-

2019.

143

https://doi.org/10.3390/electronics8090982
https://dehesa.unex.es/handle/10662/9626
https://dehesa.unex.es/handle/10662/9626
https://doi.org/10.1109/PDP52278.2021.00042
https://scheduling2019.sciencesconf.org/271456
https://scheduling2019.sciencesconf.org/271456
https://doi.org/10.1109/BigData.Congress.2014.137
https://doi.org/10.1145/1654059.1654100
http://dl.acm.org/citation.cfm?doid=1654059.1654100
http://dl.acm.org/citation.cfm?doid=1654059.1654100
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-%5C%5C%20workloads-and-data-centre-energy-use-2010-2019
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-%5C%5C%20workloads-and-data-centre-energy-use-2010-2019
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-%5C%5C%20workloads-and-data-centre-energy-use-2010-2019
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-%5C%5C%20workloads-and-data-centre-energy-use-2010-2019

Chapter 8. Conclusion and future work 144

[8] Is Current Progress in Artificial Intelligence Exponential? 2020. [Online]. Avail-

able: https://medium.com/@reevesastronomy/is-current-progress-

in-artificial-intelligence-exponential-8e18f126d2cb.

[9] W. M. Jones, J. T. Daly, and N. DeBardeleben, “Application monitoring and

checkpointing in HPC: Looking towards exascale systems,” in Proceedings of

the 50th Annual Southeast Regional Conference, ser. ACM-SE ’12, Tuscaloosa,

Alabama: ACM, 2012, pp. 262–267.

[10] T. Evans et al., “Comprehensive resource use monitoring for hpc systems with

TACC Stats,” in Proceedings of the First International Workshop on HPC User

Support Tools, ser. HUST ’14, New Orleans, Louisiana, 2014, pp. 13–21.

[11] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed monitoring

system: design, implementation, and experience,” Parallel Computing, vol. 30,

no. 7, pp. 817–840, Jul. 2004. doi: 10.1016/J.PARCO.2004.04.001. [Online].

Available: https://www.sciencedirect.com/science/article/pii/

S0167819104000535.

[12] sFlow.org - Making the Network Visible, 2018. [Online]. Available: https://

sflow.org/ (visited on 10/25/2018).

[13] Ganglia Monitoring System, 2020. [Online]. Available: http : / / ganglia .

sourceforge.net/ (visited on 10/29/2018).

[14] Nagios - The Industry Standard In IT Infrastructure Monitoring, 2018. [Online].

Available: https://www.nagios.org/ (visited on 10/25/2018).

[15] E. Imamagic and D. Dobrenic, “Grid infrastructure monitoring system based on

Nagios,” in Proceedings of the 2007 workshop on Grid monitoring - GMW ’07,

New York, New York, USA: ACM Press, 2007, p. 23. doi: 10.1145/1272680.

1272685. [Online]. Available: http://portal.acm.org/citation.cfm?

doid=1272680.1272685.

[16] S. Andreozzi et al., “GridICE: a monitoring service for Grid systems,” Future

Generation Computer Systems, vol. 21, pp. 559–571, 2005. doi: 10.1016/j.

future.2004.10.005. [Online]. Available: https://ac.els-cdn.com/

S0167739X04001669/1-s2.0-S0167739X04001669-main.pdf?%7B%5C_

%7Dtid=60adef6a-82f1-49b9-a5e8-fa51786a915b%7B%5C&%7Dacdnat=

1540810667%7B%5C_%7D5a5f142ae9b011db2d8926503006ee04.

[17] H. Newman, P. Galvez, R. Voicu, and C. Cirstoiu, “MonALISA : A Distributed

Monitoring Service Architecture,” Tech. Rep. [Online]. Available: http : / /

monalisa.caltech.edu/documentation/MOET001.pdf.

144

https://medium.com/@reevesastronomy/is-current-progress-in-artificial-intelligence-exponential-8e18f126d2cb
https://medium.com/@reevesastronomy/is-current-progress-in-artificial-intelligence-exponential-8e18f126d2cb
https://doi.org/10.1016/J.PARCO.2004.04.001
https://www.sciencedirect.com/science/article/pii/S0167819104000535
https://www.sciencedirect.com/science/article/pii/S0167819104000535
https://sflow.org/
https://sflow.org/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
https://www.nagios.org/
https://doi.org/10.1145/1272680.1272685
https://doi.org/10.1145/1272680.1272685
http://portal.acm.org/citation.cfm?doid=1272680.1272685
http://portal.acm.org/citation.cfm?doid=1272680.1272685
https://doi.org/10.1016/j.future.2004.10.005
https://doi.org/10.1016/j.future.2004.10.005
https://ac.els-cdn.com/S0167739X04001669/1-s2.0-S0167739X04001669-main.pdf?%7B%5C_%7Dtid=60adef6a-82f1-49b9-a5e8-fa51786a915b%7B%5C&%7Dacdnat=1540810667%7B%5C_%7D5a5f142ae9b011db2d8926503006ee04
https://ac.els-cdn.com/S0167739X04001669/1-s2.0-S0167739X04001669-main.pdf?%7B%5C_%7Dtid=60adef6a-82f1-49b9-a5e8-fa51786a915b%7B%5C&%7Dacdnat=1540810667%7B%5C_%7D5a5f142ae9b011db2d8926503006ee04
https://ac.els-cdn.com/S0167739X04001669/1-s2.0-S0167739X04001669-main.pdf?%7B%5C_%7Dtid=60adef6a-82f1-49b9-a5e8-fa51786a915b%7B%5C&%7Dacdnat=1540810667%7B%5C_%7D5a5f142ae9b011db2d8926503006ee04
https://ac.els-cdn.com/S0167739X04001669/1-s2.0-S0167739X04001669-main.pdf?%7B%5C_%7Dtid=60adef6a-82f1-49b9-a5e8-fa51786a915b%7B%5C&%7Dacdnat=1540810667%7B%5C_%7D5a5f142ae9b011db2d8926503006ee04
http://monalisa.caltech.edu/documentation/MOET001.pdf
http://monalisa.caltech.edu/documentation/MOET001.pdf

Chapter 8. Conclusion and future work 145

[18] J. Montes, A. Sánchez, B. Memishi, M. S. Pérez, and G. Antoniu, “GMonE: A

complete approach to cloud monitoring,” Future Generation Computer Systems,

vol. 29, no. 8, pp. 2026–2040, Oct. 2013. doi: 10.1016/J.FUTURE.2013.02.011.

[Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0167739X13000496.

[19] E. Volk et al., “Towards Intelligent Management of Very Large Computing Sys-

tems,” in Competence in High Performance Computing 2010, Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 191–204. doi: 10.1007/978-3-642-

24025-6_16. [Online]. Available: http://link.springer.com/10.1007/

978-3-642-24025-6%7B%5C_%7D16.

[20] M. Badger, Zenoss core network and system monitoring. Packt Pub, 2008, p. 280.

[Online]. Available: https://books.google.es/books?hl=es%7B%5C&

%7Dlr=%7B%5C&%7Did=B3YBMfU%7B%5C_%7Du8sC%7B%5C&%7Doi=fnd%7B%

5C&%7Dpg=PT1%7B%5C&%7Ddq=zenoss%7B%5C&%7Dots=WdvjzcAkfn%7B%

5C&%7Dsig=t2q2qRP48piXUcaug9ggSxbYZ-8%7B%5C#%7Dv=onepage%7B%

5C&%7Dq=zenoss%7B%5C&%7Df=false.

[21] S. Sanchez et al., “Design and Implementation of a Scalable HPC Monitoring Sys-

tem,” in 2016 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), IEEE, May 2016, pp. 1721–1725. doi: 10.1109/IPDPSW.

2016.167. [Online]. Available: http://ieeexplore.ieee.org/document/

7530073/.

[22] Trinity, 2018. [Online]. Available: https : / / www . lanl . gov / projects /

trinity/ (visited on 10/30/2018).

[23] Collectd - The system statistics collection daemon, 2020. [Online]. Available:

https://collectd.org/ (visited on 10/30/2018).

[24] R. P. Centelles, M. Selimi, F. Freitag, and L. Navarro, “DIMON: Distributed

monitoring system for decentralized edge clouds in guifi.net,” in Proceedings -

2019 IEEE 12th Conference on Service-Oriented Computing and Applications,

SOCA 2019, Institute of Electrical and Electronics Engineers Inc., 2019. doi:

10.1109/SOCA.2019.00009.

[25] M. J. Sottile and R. G. Minnich, in Proceedings. IEEE International Conference

on Cluster Computing, 2002. doi: 10.1109/CLUSTR.2002.1137727.

[26] K. Stefanov, V. Voevodin, S. Zhumatiy, and V. Voevodin, “Dynamically Reconfig-

urable Distributed Modular Monitoring System for Supercomputers (DiMMon),”

145

https://doi.org/10.1016/J.FUTURE.2013.02.011
https://www.sciencedirect.com/science/article/pii/S0167739X13000496
https://www.sciencedirect.com/science/article/pii/S0167739X13000496
https://doi.org/10.1007/978-3-642-24025-6_16
https://doi.org/10.1007/978-3-642-24025-6_16
http://link.springer.com/10.1007/978-3-642-24025-6%7B%5C_%7D16
http://link.springer.com/10.1007/978-3-642-24025-6%7B%5C_%7D16
https://books.google.es/books?hl=es%7B%5C&%7Dlr=%7B%5C&%7Did=B3YBMfU%7B%5C_%7Du8sC%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PT1%7B%5C&%7Ddq=zenoss%7B%5C&%7Dots=WdvjzcAkfn%7B%5C&%7Dsig=t2q2qRP48piXUcaug9ggSxbYZ-8%7B%5C#%7Dv=onepage%7B%5C&%7Dq=zenoss%7B%5C&%7Df=false
https://books.google.es/books?hl=es%7B%5C&%7Dlr=%7B%5C&%7Did=B3YBMfU%7B%5C_%7Du8sC%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PT1%7B%5C&%7Ddq=zenoss%7B%5C&%7Dots=WdvjzcAkfn%7B%5C&%7Dsig=t2q2qRP48piXUcaug9ggSxbYZ-8%7B%5C#%7Dv=onepage%7B%5C&%7Dq=zenoss%7B%5C&%7Df=false
https://books.google.es/books?hl=es%7B%5C&%7Dlr=%7B%5C&%7Did=B3YBMfU%7B%5C_%7Du8sC%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PT1%7B%5C&%7Ddq=zenoss%7B%5C&%7Dots=WdvjzcAkfn%7B%5C&%7Dsig=t2q2qRP48piXUcaug9ggSxbYZ-8%7B%5C#%7Dv=onepage%7B%5C&%7Dq=zenoss%7B%5C&%7Df=false
https://books.google.es/books?hl=es%7B%5C&%7Dlr=%7B%5C&%7Did=B3YBMfU%7B%5C_%7Du8sC%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PT1%7B%5C&%7Ddq=zenoss%7B%5C&%7Dots=WdvjzcAkfn%7B%5C&%7Dsig=t2q2qRP48piXUcaug9ggSxbYZ-8%7B%5C#%7Dv=onepage%7B%5C&%7Dq=zenoss%7B%5C&%7Df=false
https://books.google.es/books?hl=es%7B%5C&%7Dlr=%7B%5C&%7Did=B3YBMfU%7B%5C_%7Du8sC%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PT1%7B%5C&%7Ddq=zenoss%7B%5C&%7Dots=WdvjzcAkfn%7B%5C&%7Dsig=t2q2qRP48piXUcaug9ggSxbYZ-8%7B%5C#%7Dv=onepage%7B%5C&%7Dq=zenoss%7B%5C&%7Df=false
https://doi.org/10.1109/IPDPSW.2016.167
https://doi.org/10.1109/IPDPSW.2016.167
http://ieeexplore.ieee.org/document/7530073/
http://ieeexplore.ieee.org/document/7530073/
https://www.lanl.gov/projects/trinity/
https://www.lanl.gov/projects/trinity/
https://collectd.org/
https://doi.org/10.1109/SOCA.2019.00009
https://doi.org/10.1109/CLUSTR.2002.1137727

Chapter 8. Conclusion and future work 146

Procedia Computer Science, vol. 66, 2015. doi: https://doi.org/10.1016/j.

procs.2015.11.071.

[27] J. Sperhac et al., “Federating XDMoD to Monitor Affiliated Computing Re-

sources,” in Proceedings - IEEE International Conference on Cluster Computing,

ICCC, vol. 2018-September, Institute of Electrical and Electronics Engineers Inc.,

2018, pp. 580–589.

[28] R. Chakode, Monitoring with Graphite: Architecture and Concepts |MetricFire

Blog, 2019. [Online]. Available: https : / / www . metricfire . com / blog /

monitoring-with-graphite-architecture-and-concepts/.

[29] Amazon CloudWatch: Monitoreo de infraestructuras y aplicaciones, 2018. [Online].

Available: https://aws.amazon.com/es/cloudwatch/.

[30] IBM Tivoli Monitoring - Overview, 2018. [Online]. Available: https://www.ibm.

com/support/knowledgecenter/en/SSTFXA%7B%5C_%7D6.3.0/com.ibm.

itm.doc%7B%5C_%7D6.3/install/itm%7B%5C_%7Dover.htm (visited on

11/05/2018).

[31] IBM Tivoli Monitoring for Virtual Environments. [Online]. Available: https:

//www.ibm.com/support/knowledgecenter/en/SS9U76%7B%5C_%7D7.2.

0.2/com.ibm.tivoli.itmvs.doc%7B%5C_%7D7.2.0.2/VE72fp2%7B%5C_

%7Dqsg%7B%5C_%7Den.html (visited on 11/05/2018).

[32] Nagios Core Documentation, 2018. [Online]. Available: https : / / assets .

nagios.com/downloads/nagioscore/docs/nagioscore/4/en/index.

html%7B%5C#%7D%7B%5C_%7Dga=2.149213937.691373301.1541418878-

1705882606.1540813970 (visited on 11/05/2018).

[33] High Availability Solution for Nagios XI, 2018. [Online]. Available: https://

www.nagios.com/news/2015/10/press-release-nagios-enterprise-

and-linbit-release-high-availability-solution-for-nagios-xi/

(visited on 11/05/2018).

[34] M. Li, M. Baker, and John Wiley & Sons., The grid : core technologies. Wiley,

2005, p. 423.

[35] HLRS High Performance Computing Center Stuttgart - TIMaCS. [Online]. Avail-

able: https://www.hlrs.de/about- us/research/past- projects/

timacs/ (visited on 11/05/2018).

[36] Collectl, 2021. [Online]. Available: http://collectl.sourceforge.net/

(visited on 06/02/2021).

146

https://doi.org/https://doi.org/10.1016/j.procs.2015.11.071
https://doi.org/https://doi.org/10.1016/j.procs.2015.11.071
https://www.metricfire.com/blog/monitoring-with-graphite-architecture-and-concepts/
https://www.metricfire.com/blog/monitoring-with-graphite-architecture-and-concepts/
https://aws.amazon.com/es/cloudwatch/
https://www.ibm.com/support/knowledgecenter/en/SSTFXA%7B%5C_%7D6.3.0/com.ibm.itm.doc%7B%5C_%7D6.3/install/itm%7B%5C_%7Dover.htm
https://www.ibm.com/support/knowledgecenter/en/SSTFXA%7B%5C_%7D6.3.0/com.ibm.itm.doc%7B%5C_%7D6.3/install/itm%7B%5C_%7Dover.htm
https://www.ibm.com/support/knowledgecenter/en/SSTFXA%7B%5C_%7D6.3.0/com.ibm.itm.doc%7B%5C_%7D6.3/install/itm%7B%5C_%7Dover.htm
https://www.ibm.com/support/knowledgecenter/en/SS9U76%7B%5C_%7D7.2.0.2/com.ibm.tivoli.itmvs.doc%7B%5C_%7D7.2.0.2/VE72fp2%7B%5C_%7Dqsg%7B%5C_%7Den.html
https://www.ibm.com/support/knowledgecenter/en/SS9U76%7B%5C_%7D7.2.0.2/com.ibm.tivoli.itmvs.doc%7B%5C_%7D7.2.0.2/VE72fp2%7B%5C_%7Dqsg%7B%5C_%7Den.html
https://www.ibm.com/support/knowledgecenter/en/SS9U76%7B%5C_%7D7.2.0.2/com.ibm.tivoli.itmvs.doc%7B%5C_%7D7.2.0.2/VE72fp2%7B%5C_%7Dqsg%7B%5C_%7Den.html
https://www.ibm.com/support/knowledgecenter/en/SS9U76%7B%5C_%7D7.2.0.2/com.ibm.tivoli.itmvs.doc%7B%5C_%7D7.2.0.2/VE72fp2%7B%5C_%7Dqsg%7B%5C_%7Den.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/index.html%7B%5C#%7D%7B%5C_%7Dga=2.149213937.691373301.1541418878-1705882606.1540813970
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/index.html%7B%5C#%7D%7B%5C_%7Dga=2.149213937.691373301.1541418878-1705882606.1540813970
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/index.html%7B%5C#%7D%7B%5C_%7Dga=2.149213937.691373301.1541418878-1705882606.1540813970
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/index.html%7B%5C#%7D%7B%5C_%7Dga=2.149213937.691373301.1541418878-1705882606.1540813970
https://www.nagios.com/news/2015/10/press-release-nagios-enterprise-and-linbit-release-high-availability-solution-for-nagios-xi/
https://www.nagios.com/news/2015/10/press-release-nagios-enterprise-and-linbit-release-high-availability-solution-for-nagios-xi/
https://www.nagios.com/news/2015/10/press-release-nagios-enterprise-and-linbit-release-high-availability-solution-for-nagios-xi/
https://www.hlrs.de/about-us/research/past-projects/timacs/
https://www.hlrs.de/about-us/research/past-projects/timacs/
http://collectl.sourceforge.net/

Chapter 8. Conclusion and future work 147

[37] T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth, F. Gaud, and J. Pei, “A practical

method for estimating performance degradation on multicore processors, and its

application to hpc workloads,” in Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis, IEEE Computer

Society Press, 2012, p. 83.

[38] M. Bhadauria and S. A. McKee, “An approach to resource-aware co-scheduling

for cmps,” in Proceedings of the 24th ACM International Conference on Super-

computing, ACM, 2010, pp. 189–199.

[39] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux Utility for

Resource Management,” Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 2862, pp. 44–60, 2003. doi: 10.1007/10968987_3.

[40] X. Jiang et al., “Energy-Efficient Scheduling of Periodic Applications on Safety-

Critical Time-Triggered Multiprocessor Systems,” Electronics, vol. 7, no. 6, p. 98,

Jun. 2018. doi: 10.3390/electronics7060098. [Online]. Available: http:

//www.mdpi.com/2079-9292/7/6/98.

[41] A. Mahmood et al., “Energy-Aware Real-Time Task Scheduling in Multiprocessor

Systems Using a Hybrid Genetic Algorithm,” Electronics, vol. 6, no. 2, p. 40,

May 2017. doi: 10.3390/electronics6020040. [Online]. Available: http:

//www.mdpi.com/2079-9292/6/2/40.

[42] X. Su, F. Lei, X. Su, and F. Lei, “Hybrid-Grained Dynamic Load Balanced GEMM

on NUMA Architectures,” Electronics, vol. 7, no. 12, p. 359, Nov. 2018. doi:

10.3390/electronics7120359. [Online]. Available: http://www.mdpi.

com/2079-9292/7/12/359.

[43] S. Rajkumar, N. Rajkumar, and V. G. Suresh, “Automated object counting for

visual inspection applications,” in International Conference on Information Com-

munication and Embedded Systems (ICICES2014), IEEE, 2014.

[44] T. Jones, “Linux kernel co-scheduling for bulk synchronous parallel applications,”

in Proceedings of the 1st international workshop on runtime and operating systems

for supercomputers, ACM, 2011, pp. 57–64.

[45] J. Breitbart, J. Weidendorfer, and C. Trinitis, “Case study on co-scheduling for hpc

applications,” in 2015 44th ICPP Conference Workshops, Sep. 2015, pp. 277–285.

[46] J. Weidendorfer and J. Breitbart, “Detailed characterization of hpc applications for

co-scheduling,” in Proceedings of the 1st COSH Workshop on Co-Scheduling of

HPC Applications, 2016, p. 19.

147

https://doi.org/10.1007/10968987_3
https://doi.org/10.3390/electronics7060098
http://www.mdpi.com/2079-9292/7/6/98
http://www.mdpi.com/2079-9292/7/6/98
https://doi.org/10.3390/electronics6020040
http://www.mdpi.com/2079-9292/6/2/40
http://www.mdpi.com/2079-9292/6/2/40
https://doi.org/10.3390/electronics7120359
http://www.mdpi.com/2079-9292/7/12/359
http://www.mdpi.com/2079-9292/7/12/359

Chapter 8. Conclusion and future work 148

[47] A. Sedighi, M. Smith, and Y. Deng, “Fud—balancing scheduling parameters in

shared computing environments,” in 2017 IEEE 4th International Conference on

Cyber Security and Cloud Computing (CSCloud), IEEE, 2017, pp. 363–368.

[48] D. Klusáček, H. Rudová, R. Baraglia, M. Pasquali, and G. Capannini, “Compari-

son of multi-criteria scheduling techniques,” in Grid Computing, Springer, 2008,

pp. 173–184.

[49] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, and J. Kołodziej, “Resource-aware

hybrid scheduling algorithm in heterogeneous distributed computing,” Future

Generation Computer Systems, vol. 51, pp. 61–71, 2015.

[50] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-

resource packing for cluster schedulers,” SIGCOMM Comput. Commun. Rev.,

vol. 44, no. 4, pp. 455–466, 2014.

[51] T. T. Tran, M. Padmanabhan, P. Y. Zhang, H. Li, D. G. Down, and J. C. Beck,

“Multi-stage resource-aware scheduling for data centers with heterogeneous servers,”

Journal of Scheduling, vol. 21, no. 2, pp. 251–267, Apr. 2018.

[52] A. Raveendran, T. Bicer, and G. Agrawal, “A framework for elastic execution of

existing mpi programs,” in 2011 IEEE International Symposium on Parallel and

Distributed Processing Workshops and Phd Forum, May 2011, pp. 940–947. doi:

10.1109/IPDPS.2011.240.

[53] R. d. R. Righi, V. F. Rodrigues, C. A. da Costa, G. Galante, L. C. E. de Bona,

and T. Ferreto, “Autoelastic: Automatic resource elasticity for high performance

applications in the cloud,” IEEE Transactions on Cloud Computing, vol. 4, no. 1,

pp. 6–19, Jan. 2016. doi: 10.1109/TCC.2015.2424876.

[54] D. E. Singh and J. Carretero, “Combining malleability and I/O control mecha-

nisms to enhance the execution of multiple applications,” Journal of Systems and

Software, vol. 148, pp. 21–36, Feb. 2019. doi: 10.1016/j.jss.2018.11.006.

[55] M. Rodriguez-Gonzalo, D. E. Singh, J. G. Blas, and J. Carretero, “Improving the

Energy Efficiency of MPI Applications by Means of Malleability,” in Proceedings

- 24th Euromicro International Conference on Parallel, Distributed, and Network-

Based Processing, PDP 2016, Institute of Electrical and Electronics Engineers

Inc., Mar. 2016, pp. 627–634. doi: 10.1109/PDP.2016.98.

[56] S. Blagodurov and A. Fedorova, “Towards the contention aware scheduling in HPC

cluster environment,” Journal of Physics: Conference Series, vol. 385, p. 012 010,

Oct. 2012. doi: 10.1088/1742-6596/385/1/012010.

148

https://doi.org/10.1109/IPDPS.2011.240
https://doi.org/10.1109/TCC.2015.2424876
https://doi.org/10.1016/j.jss.2018.11.006
https://doi.org/10.1109/PDP.2016.98
https://doi.org/10.1088/1742-6596/385/1/012010

Chapter 8. Conclusion and future work 149

[57] A. Gupta, B. Acun, O. Sarood, and L. V. Kalé, “Towards realizing the potential

of malleable jobs,” in 2014 21st International Conference on High Performance

Computing (HiPC), Dec. 2014, pp. 1–10. doi: 10.1109/HiPC.2014.7116905.

[58] K. Ekanadham et al., “Application Oriented Resource Management on Large Scale

Parallel Systems,” IBM RESEARCH, YORKTOWN HEIGHTS, pp. 56–63, 1995.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.56.1178.

[59] A. Agelastos et al., “Continuous whole-system monitoring toward rapid understand-

ing of production HPC applications and systems,” Parallel Computing, vol. 58,

pp. 90–106, 2016.

[60] T. Rohl, J. Eitzinger, G. Hager, and G. Wellein, “LIKWID monitoring stack: A

flexible framework enabling job specific performance monitoring for the masses,”

in Proceedings - IEEE International Conference on Cluster Computing, ICCC,

vol. 2017-September, Institute of Electrical and Electronics Engineers Inc., 2017,

pp. 781–784.

[61] A. Cascajo, D. E. Singh, and J. Carretero, “Performance-aware scheduling of

parallel applications on non-dedicated clusters,” Electronics, vol. 8, no. 9, p. 982,

2019.

[62] Y. Yu, L. Guo, J. Huang, F. Zhang, and Y. Zong, “A cross-layer security monitoring

selection algorithm based on traffic prediction,” IEEE Access, vol. 6, pp. 35 382–

35 391, 2018.

[63] S. M. Rashti, M. Mollanoori, M. S. Nia, and N. M. Charkari, “A prediction-based

algorithm for target tracking in wireless sensor networks,” in 2009 International

Conference on Ultra Modern Telecommunications and Workshops, 2009.

[64] H. Tang, G. Tang, and L. Meng, “Prediction of the bridge monitoring data based

on support vector machine,” in Proceedings - International Conference on Natural

Computation, vol. 2016-January, IEEE Computer Society, 2016, pp. 781–785.

[65] X. Kang and M. Xu, “Explore of monitoring data pattern prediction of gas tun-

nel,” in 2011 International Conference on Remote Sensing, Environment and

Transportation Engineering, RSETE 2011 - Proceedings, 2011, pp. 4046–4049.

[66] R. Lijia, L. Hong, and L. Yan, “On-line monitoring and prediction for transmission

line sag,” in Proceedings of 2012 IEEE International Conference on Condition

Monitoring and Diagnosis, CMD 2012, 2012, pp. 813–817.

149

https://doi.org/10.1109/HiPC.2014.7116905
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.1178
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.1178

Chapter 8. Conclusion and future work 150

[67] S. Bhulai, “Nearest neighbour algorithms for forecasting call arrivals in call cen-

ters,” in Smart Innovation, Systems and Technologies, vol. 39, Springer Science

and Business Media Deutschland GmbH, 2015, pp. 77–87.

[68] N. Wiebe, A. Kapoor, and K. M. Svore, Tech. Rep. eprint: 1401.2142v1.

[69] D. M. Nelson, A. C. Pereira, and R. A. De Oliveira, “Stock market’s price move-

ment prediction with LSTM neural networks,” in Proceedings of the International

Joint Conference on Neural Networks, vol. 2017-May, Institute of Electrical and

Electronics Engineers Inc., 2017, pp. 1419–1426. doi: 10.1109/IJCNN.2017.

7966019.

[70] K. Li, J. Daniels, C. Liu, P. Herrero, and P. Georgiou, “Convolutional Recurrent

Neural Networks for Glucose Prediction,” IEEE Journal of Biomedical and Health

Informatics, vol. 24, pp. 603–613, 2020. doi: 10.1109/JBHI.2019.2908488.

[71] I. M. Nasser and S. S. Abu-Naser, “Predicting Tumor Category Using Artificial

Neural Networks,” 2019. [Online]. Available: http://dspace.alazhar.edu.

ps/xmlui/handle/123456789/303.

[72] T. Y. Yang, C. G. Brinton, C. Joe-Wong, and M. Chiang, “Behavior-Based Grade

Prediction for MOOCs Via Time Series Neural Networks,” IEEE Journal on

Selected Topics in Signal Processing, vol. 11, no. 5, pp. 716–728, Aug. 2017. doi:

10.1109/JSTSP.2017.2700227.

[73] L. Zhang, G. Yu, D. Xia, and J. Wang, “Protein–protein interactions prediction

based on ensemble deep neural networks,” Neurocomputing, vol. 324, pp. 10–19,

Jan. 2019. doi: 10.1016/j.neucom.2018.02.097.

[74] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, “Disease Prediction by

Machine Learning over Big Data from Healthcare Communities,” IEEE Access,

vol. 5, pp. 8869–8879, 2017. doi: 10.1109/ACCESS.2017.2694446.

[75] M. Sabah, M. Talebkeikhah, D. A. Wood, R. Khosravanian, M. Anemangely, and A.

Younesi, “A machine learning approach to predict drilling rate using petrophysical

and mud logging data,” Earth Science Informatics, vol. 12, no. 3, pp. 319–339,

Sep. 2019. doi: 10.1007/s12145-019-00381-4. [Online]. Available: https:

//link.springer.com/article/10.1007/s12145-019-00381-4.

[76] X. Zeng, S. Yan, F. He, and Y. Shi, “Multi-variable grey model based on dynamic

background algorithm for forecasting the interval sequence,” Applied Mathematical

Modelling, vol. 80, pp. 99–114, Apr. 2020. doi: 10.1016/j.apm.2019.11.032.

150

1401.2142v1
https://doi.org/10.1109/IJCNN.2017.7966019
https://doi.org/10.1109/IJCNN.2017.7966019
https://doi.org/10.1109/JBHI.2019.2908488
http://dspace.alazhar.edu.ps/xmlui/handle/123456789/303
http://dspace.alazhar.edu.ps/xmlui/handle/123456789/303
https://doi.org/10.1109/JSTSP.2017.2700227
https://doi.org/10.1016/j.neucom.2018.02.097
https://doi.org/10.1109/ACCESS.2017.2694446
https://doi.org/10.1007/s12145-019-00381-4
https://link.springer.com/article/10.1007/s12145-019-00381-4
https://link.springer.com/article/10.1007/s12145-019-00381-4
https://doi.org/10.1016/j.apm.2019.11.032

Chapter 8. Conclusion and future work 151

[77] P. Mercati et al., “Multi-variable Dynamic Power Management for the GPU Subsys-

tem,” in Proceedings - Design Automation Conference, vol. Part 128280, Institute

of Electrical and Electronics Engineers Inc., Jun. 2017. doi: 10.1145/3061639.

3062288.

[78] K. Nagarajan, “A Predictive hill climbing algorithm for real valued multi-variable

optimization problem like PID tuning,” International Journal of Machine Learning

and Computing, vol. 8, no. 1, pp. 14–19, Feb. 2018. doi: 10.18178/ijmlc.2018.

8.1.656.

[79] D. Selvathi and H. Selvaraj, “Segmentation of brain tumor tissues in MR images

using multiresolution transforms and random forest classifier with adaboost tech-

nique,” in 26th International Conference on Systems Engineering, ICSEng 2018 -

Proceedings, Institute of Electrical and Electronics Engineers Inc., Feb. 2019. doi:

10.1109/ICSENG.2018.8638244.

[80] H. Ma, W. Yan, Z. Yang, and H. Liu, “Real-Time Foot-Ground Contact Detection

for Inertial Motion Capture Based on an Adaptive Weighted Naive Bayes Model,”

IEEE Access, vol. 7, pp. 130 312–130 326, 2019. doi: 10.1109/ACCESS.2019.

2939839.

[81] R. Bamler and S. Mandt, “Extreme Classification via Adversarial Softmax Approx-

imation,” arXiv, Feb. 2020. arXiv: 2002.06298.

[82] T. H. Lee, A. Ullah, and R. Wang, “Bootstrap Aggregating and Random Forest,”

in Advanced Studies in Theoretical and Applied Econometrics, Springer, 2020,

pp. 389–429. doi: 10.1007/978-3-030-31150-6_13.

[83] H. Lu and X. Ma, “Hybrid decision tree-based machine learning models for short-

term water quality prediction,” Chemosphere, vol. 249, p. 126 169, Jun. 2020. doi:

10.1016/j.chemosphere.2020.126169.

[84] B. Mor, S. Garhwal, and A. Kumar, “A Systematic Review of Hidden Markov Mod-

els and Their Applications,” Archives of Computational Methods in Engineering

volume, vol. 28, pp. 1429–1448, 2021. doi: 10.1007/s11831-020-09422-4.

[85] W. M. Shaban, A. H. Rabie, A. I. Saleh, and M. A. Abo-Elsoud, “A new COVID-19

Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced

KNN classifier,” Knowledge-Based Systems, vol. 205, p. 106 270, Oct. 2020. doi:

10.1016/j.knosys.2020.106270.

151

https://doi.org/10.1145/3061639.3062288
https://doi.org/10.1145/3061639.3062288
https://doi.org/10.18178/ijmlc.2018.8.1.656
https://doi.org/10.18178/ijmlc.2018.8.1.656
https://doi.org/10.1109/ICSENG.2018.8638244
https://doi.org/10.1109/ACCESS.2019.2939839
https://doi.org/10.1109/ACCESS.2019.2939839
https://arxiv.org/abs/2002.06298
https://doi.org/10.1007/978-3-030-31150-6_13
https://doi.org/10.1016/j.chemosphere.2020.126169
https://doi.org/10.1007/s11831-020-09422-4
https://doi.org/10.1016/j.knosys.2020.106270

Chapter 8. Conclusion and future work 152

[86] I. Shahin, A. B. Nassif, and S. Hamsa, “Novel cascaded Gaussian mixture model-

deep neural network classifier for speaker identification in emotional talking

environments,” Neural Computing and Applications, vol. 32, no. 7, pp. 2575–

2587, Apr. 2020. doi: 10.1007/s00521-018-3760-2. [Online]. Available:

https://doi.org/10.1007/s00521-018-3760-2.

[87] H. Alsghaier and M. Akour, “Software fault prediction using particle swarm

algorithm with genetic algorithm and support vector machine classifier,” Software:

Practice and Experience, vol. 50, no. 4, pp. 407–427, Apr. 2020. doi: 10.1002/

spe.2784.

[88] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide: A Distributed

Real-Time Search and ... - Clinton Gormley, Zachary Tong - Google Libros, First

Edition. O’Reilly Media, 2015. [Online]. Available: https://books.google.

es/books?id=Ul9aBgAAQBAJ%7B%5C&%7Dprintsec=frontcover%7B%5C&

%7Dhl=es%7B%5C&%7Dsource=gbs%7B%5C_%7Dge%7B%5C_%7Dsummary%7B%

5C_%7Dr%7B%5C&%7Dcad=0%7B%5C#%7Dv=onepage%7B%5C&%7Dq%7B%5C&

%7Df=false.

[89] IPMITOOL - Linux man page. [Online]. Available: https://linux.die.net/

man/1/ipmitool (visited on 03/11/2021).

[90] Top500.org. (2020). “Top 500 List,” [Online]. Available: www . top500 . org

(visited on 12/19/2020).

[91] D. E. Singh, G. M. Martín, M. C. Marinescu, and J. Carretero, FlexMPI source

code software, http://www.arcos.inf.uc3m.es/flexmpi/, 2019.

[92] G. Martín, D. E. Singh, M. C. Marinescu, and J. Carretero, “Enhancing the per-

formance of malleable MPI applications by using performance-aware dynamic

reconfiguration,” Parallel Computing, vol. 46, pp. 60–77, Jun. 2015. doi: 10.1016/

j.parco.2015.04.003.

[93] F. Isaila, J. Carretero, and R. Ross, “CLARISSE: A Middleware for Data-Staging

Coordination and Control on Large-Scale HPC Platforms,” in Proceedings - 2016

16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,

CCGrid 2016, Institute of Electrical and Electronics Engineers Inc., Jul. 2016,

pp. 346–355. doi: 10.1109/CCGrid.2016.24.

[94] What is ElasticSearch? | Elastic. [Online]. Available: https://www.elastic.

co/es/what-is/elasticsearch (visited on 03/11/2021).

[95] Y. Gupta, Kibana Essentials. 2015, p. 303.

152

https://doi.org/10.1007/s00521-018-3760-2
https://doi.org/10.1007/s00521-018-3760-2
https://doi.org/10.1002/spe.2784
https://doi.org/10.1002/spe.2784
https://books.google.es/books?id=Ul9aBgAAQBAJ%7B%5C&%7Dprintsec=frontcover%7B%5C&%7Dhl=es%7B%5C&%7Dsource=gbs%7B%5C_%7Dge%7B%5C_%7Dsummary%7B%5C_%7Dr%7B%5C&%7Dcad=0%7B%5C#%7Dv=onepage%7B%5C&%7Dq%7B%5C&%7Df=false
https://books.google.es/books?id=Ul9aBgAAQBAJ%7B%5C&%7Dprintsec=frontcover%7B%5C&%7Dhl=es%7B%5C&%7Dsource=gbs%7B%5C_%7Dge%7B%5C_%7Dsummary%7B%5C_%7Dr%7B%5C&%7Dcad=0%7B%5C#%7Dv=onepage%7B%5C&%7Dq%7B%5C&%7Df=false
https://books.google.es/books?id=Ul9aBgAAQBAJ%7B%5C&%7Dprintsec=frontcover%7B%5C&%7Dhl=es%7B%5C&%7Dsource=gbs%7B%5C_%7Dge%7B%5C_%7Dsummary%7B%5C_%7Dr%7B%5C&%7Dcad=0%7B%5C#%7Dv=onepage%7B%5C&%7Dq%7B%5C&%7Df=false
https://books.google.es/books?id=Ul9aBgAAQBAJ%7B%5C&%7Dprintsec=frontcover%7B%5C&%7Dhl=es%7B%5C&%7Dsource=gbs%7B%5C_%7Dge%7B%5C_%7Dsummary%7B%5C_%7Dr%7B%5C&%7Dcad=0%7B%5C#%7Dv=onepage%7B%5C&%7Dq%7B%5C&%7Df=false
https://books.google.es/books?id=Ul9aBgAAQBAJ%7B%5C&%7Dprintsec=frontcover%7B%5C&%7Dhl=es%7B%5C&%7Dsource=gbs%7B%5C_%7Dge%7B%5C_%7Dsummary%7B%5C_%7Dr%7B%5C&%7Dcad=0%7B%5C#%7Dv=onepage%7B%5C&%7Dq%7B%5C&%7Df=false
https://linux.die.net/man/1/ipmitool
https://linux.die.net/man/1/ipmitool
www.top500.org
http://www.arcos.inf.uc3m.es/flexmpi/
https://doi.org/10.1016/j.parco.2015.04.003
https://doi.org/10.1016/j.parco.2015.04.003
https://doi.org/10.1109/CCGrid.2016.24
https://www.elastic.co/es/what-is/elasticsearch
https://www.elastic.co/es/what-is/elasticsearch

Chapter 8. Conclusion and future work 153

[96] InfluxDB: Purpose-Built Open Source Time Series Database | InfluxData. [Online].

Available: https://www.influxdata.com/ (visited on 03/11/2021).

[97] E. Betke and J. Kunkel, “Real-time I/O-monitoring of hpc applications with SIOX,

elasticsearch, grafana and FUSE,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), vol. 10524 LNCS, Springer Verlag, 2017, pp. 174–186. doi: 10.1007/978-

3-319-67630-2_15. [Online]. Available: https://link.springer.com/

chapter/10.1007/978-3-319-67630-2%7B%5C_%7D15.

[98] Grafana: The open observability platform | Grafana Labs. [Online]. Available:

https://grafana.com/ (visited on 03/11/2021).

[99] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance data

with PAPI-C,” in Proceedings of the 3rd International Workshop on Parallel Tools

for High Performance Computing 2009, Springer Verlag, 2010, pp. 157–173. doi:

10.1007/978-3-642-11261-4_11. [Online]. Available: https://link.

springer.com/chapter/10.1007/978-3-642-11261-4%7B%5C_%7D11.

[100] H. Jagode, A. Danalis, H. Anzt, and J. Dongarra, “PAPI software-defined events for

in-depth performance analysis,” The International Journal of High Performance

Computing Applications, vol. 33, no. 6, pp. 1113–1127, Nov. 2019. doi: 10.1177/

1094342019846287. [Online]. Available: http://journals.sagepub.com/

doi/10.1177/1094342019846287.

[101] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A Portable Interface to

Hardware Performance Counters,” Tech. Rep.

[102] The proc File System. [Online]. Available: https://web.mit.edu/rhel-

doc/4/RH-DOCS/rhel-rg-en-4/ch-proc.html (visited on 03/11/2021).

[103] Top - Linux man page. [Online]. Available: https://man7.org/linux/man-

pages/man1/top.1.html (visited on 03/11/2021).

[104] “Linux Administration,” in Pro Oracle Database 10g RAC on Linux, Apress,

Jan. 2008, pp. 385–400. doi: 10.1007/978-1-4302-0214-1_15. [Online].

Available: https://link.springer.com/chapter/10.1007/978-1-4302-

0214-1%7B%5C_%7D15.

[105] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers–,” arXiv preprint

arXiv:2004.04523, 2020.

[106] N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum algorithms for nearest-neighbor

methods for supervised and unsupervised learning,” Quantum Inf. Comput., vol. 15,

pp. 316–356, 2015.

153

https://www.influxdata.com/
https://doi.org/10.1007/978-3-319-67630-2_15
https://doi.org/10.1007/978-3-319-67630-2_15
https://link.springer.com/chapter/10.1007/978-3-319-67630-2%7B%5C_%7D15
https://link.springer.com/chapter/10.1007/978-3-319-67630-2%7B%5C_%7D15
https://grafana.com/
https://doi.org/10.1007/978-3-642-11261-4_11
https://link.springer.com/chapter/10.1007/978-3-642-11261-4%7B%5C_%7D11
https://link.springer.com/chapter/10.1007/978-3-642-11261-4%7B%5C_%7D11
https://doi.org/10.1177/1094342019846287
https://doi.org/10.1177/1094342019846287
http://journals.sagepub.com/doi/10.1177/1094342019846287
http://journals.sagepub.com/doi/10.1177/1094342019846287
https://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-rg-en-4/ch-proc.html
https://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-rg-en-4/ch-proc.html
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://doi.org/10.1007/978-1-4302-0214-1_15
https://link.springer.com/chapter/10.1007/978-1-4302-0214-1%7B%5C_%7D15
https://link.springer.com/chapter/10.1007/978-1-4302-0214-1%7B%5C_%7D15

Chapter 8. Conclusion and future work 154

[107] OMNET++ Discrete event simulator. [Online]. Available: https://omnetpp.

org.

[108] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Carretero,

and I. M. Llorente, “ICanCloud: A Flexible and Scalable Cloud Infrastructure

Simulator,” Journal of Grid Computing, vol. 10, no. 1, pp. 185–209, Mar. 2012.

doi: 10.1007/s10723-012-9208-5.

[109] A. Núñez, J. Fernández, R. Filgueira, F. Garc\’\ia, and J. Carretero, “SIMCAN: A

flexible, scalable and expandable simulation platform for modelling and simulating

distributed architectures and applications,” Simulation Modelling Practice and

Theory, vol. 20, no. 1, pp. 12–32, 2012.

[110] INET Framework. [Online]. Available: https://inet.omnetpp.org/Introduction.

html.

[111] L. Mészáros, A. Varga, and M. Kirsche, “Inet framework,” in EAI/Springer Inno-

vations in Communication and Computing, Springer Science and Business Media

Deutschland GmbH, 2019, pp. 55–106. doi: 10.1007/978-3-030-12842-5_2.

[Online]. Available: https://link.springer.com/chapter/10.1007/978-

3-030-12842-5%7B%5C_%7D2.

[112] G. Martín, M. C. Marinescu, D. E. Singh, and J. Carretero, “Parallel algorithm

for simulating the spatial transmission of Influenza in EpiGraph,” in ACM Inter-

national Conference Proceeding Series, Association for Computing Machinery,

2013, pp. 205–210. doi: 10.1145/2488551.2488585. [Online]. Available: http:

//dl.acm.org/citation.cfm?doid=2488551.2488585.

[113] G. Martín, D. E. Singh, M. C. Marinescu, and J. Carretero, “Towards efficient

large scale epidemiological simulations in EpiGraph,” Parallel Computing, vol. 42,

pp. 88–102, Feb. 2015. doi: 10.1016/j.parco.2014.09.004.

[114] EpiGraph - Simulating COVID-19 at large scale. [Online]. Available: https:

//www.arcos.inf.uc3m.es/epigraph/ (visited on 03/11/2021).

[115] Sudheer Chunduri et al, “Gpcnet: Designing a benchmark suite for inducing

and measuring contention in hpc networks,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis,

ser. SC ’19, Denver, Colorado: Association for Computing Machinery, 2019. doi:

10.1145/3295500.3356215. [Online]. Available: https://doi.org/10.

1145/3295500.3356215.

154

https://omnetpp.org
https://omnetpp.org
https://doi.org/10.1007/s10723-012-9208-5
https://inet.omnetpp.org/Introduction.html
https://inet.omnetpp.org/Introduction.html
https://doi.org/10.1007/978-3-030-12842-5_2
https://link.springer.com/chapter/10.1007/978-3-030-12842-5%7B%5C_%7D2
https://link.springer.com/chapter/10.1007/978-3-030-12842-5%7B%5C_%7D2
https://doi.org/10.1145/2488551.2488585
http://dl.acm.org/citation.cfm?doid=2488551.2488585
http://dl.acm.org/citation.cfm?doid=2488551.2488585
https://doi.org/10.1016/j.parco.2014.09.004
https://www.arcos.inf.uc3m.es/epigraph/
https://www.arcos.inf.uc3m.es/epigraph/
https://doi.org/10.1145/3295500.3356215
https://doi.org/10.1145/3295500.3356215
https://doi.org/10.1145/3295500.3356215

	Introduction
	Definitions and Scope
	Motivation
	Objectives
	Research methodology
	Structure and content

	State-of-the-Art
	Monitoring systems
	Scheduling algorithms
	Modeling, securing and predicting based on monitoring data
	Summary

	System architecture and design
	LIMITLESS System monitor
	Smart Analytic Component
	Application scheduler
	InfiniBand support
	Cooperation with third-party components
	FlexMPI
	CLARISSE
	ElasticSearch and Kibana

	Summary

	Framework logic and algorithms
	Performance counter collection
	Monitoring system
	Communication between components
	Monitoring policies
	Fault tolerance
	Limitless Daemon Server

	Communication API and Visualization tools
	Improving control congestion for InfiniBand networks
	Summary

	Analytic component
	Smart analytic support
	Multi-criteria scheduling
	Scheduling based on monitoring: Coarse-grain scheduling
	Scheduling based on monitoring: Fine-grained scheduling

	Summary

	Theoretical modeling
	System monitor model
	Communication model
	Server workload

	In-node threshold filter
	Fault tolerance
	Simulation model
	Simulation model validation

	Communication cost calculator
	In-node threshold calculation
	Summary

	Evaluation and results
	Monitoring overhead
	LIMITLESS monitoring tool vs Collectd
	Scheduling based on monitoring
	Coarse-grain scheduling based on monitoring information
	Fine-grained scheduling based on monitoring

	Optimizations
	In-node analysis optimization
	In-transit analysis optimization

	Improving control congestion for InfiniBand networks
	Platform and experiments description
	Results

	Summary

	Conclusion and future work
	Contribution
	Future work

	Bibliography

