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Abstract-This work presents LIMITLESS, a HPC framework 
that provides new str ategies for monitor ing clusters. LTh1ITLESS 
is  a scalable light-weight monitor  that is integrated with other 
HPC runtimes in order  to  obtain  an holistic view of the system 
that combines  both  platform and application monitoring. This 
paper  presents a  description  of  the novel components of the 
architecture,  including new approaches for reaching  a  higher 
scalability based on  a combination of in-transit processing  and 
performance prediction. This work also includes a  practical 
evaluation on simulated and real platforms, that shows significant 
monitoring scalability, retrieving data capacity  and reduced 
overheads. 
Index Terms-Monitoring, application modelling, performance 
prediction. 

I . INTRODUCTION 

Currently, one of the key challenges in large-scale clusters 
is to determine as accurately as possible the status of the 
system every small fraction of time.  There are two main 

approaches for obtaining this information: by means of the 
compute-node monitoring or by means of the analysis of 

the applications that running on the platform. The first one 
involves a system-wide monitoring infrastructure while the 

second one is usually restricted to the use of monitoring 
software executed with the applications. In this work we 
combine these two approaches in order to provide, not only 

a more accurate cluster monitoring, but also a scheme that 
permits to model the application behavior in order to reduce 
the infrastructure monitoring overhead 

This work presents LIMITLESS, a highly-scalable monitor 
that is able to work under near-to-second sampling rates. LIM-
ITLESS is fully integrated with other system software like the 

scheduler, CLARISSE and FlexMPI runtimes to enhance the 
monitor scalability. CLARISSE  [l ] is a middleware for data-
staging coordination and control on large-scale HPC platforms 
that provides application 1/0 monitoring. AexMPI [2] provides 
malleable capabilities to MPI applications and performs appli-
cation CPU monitoring. In this way, the main contributions of 
this work are: 

• An integration between LIMITLESS monitor and other 
runtimes for collecting application-related information. 

This work was partially supported by the European  Union's Horizon 2020 
ASPIDE project (grant agreement No 801091), and the Spanish Ministry of 
Science and innovation Project DECIDE (Ref. PID2019-107858GB-IOO.) 
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Fig. I . General overview of the system architecture and interrelation with 
other components. 

•  A novel analytic module for application performance 
modeling. 

•  A novel in-transit processing scalable feature for reducing 
the monitor traffic. 

•  A practical evaluation of the complete infrastructure on 
both simulated and real platforms. 

The structure of the paper is as follows: Section II de-
scribes the architecture organization; Section ill describes 
LIMITLESS's features for providing monitoring scalability; 

Section IV presents the different algorithms used to predict 
the immediate future state of the cluster; Section V provides 
a practical evaluation of the LIMITLESS monitor and the 
analytic tools provided; Section VI shows relevant works 
related to our proposal. Finally, Section VII summarizes the 
main conclusions and future work. 

II. MONITOR ARCHITECTURE 

LIMITLESS is a light-weight scalable monitor that operates 
on each compute node and provides information about the 
platform resources and  applications that are being executed. 
Figure 1 shows a general overview of how LIMITLESS is 
integrated with other system components like the application 
scheduler, FlexMPI and CLARISSE runtimes. As shown in 

this figure, LIMITLESS includes four main components: a 
System monitor that collects the performance metrics from the 



2

cluster, an ElasticSearch database [3] that provides persistent 

storage, Kibana, a GUI for displaying the cluster  information 
in an user-friendly format, and an Analytic component that is 

used to analyse and model the executing applications. 
Limitless Analytics (LAN) is the component that deals with 

the storage, visualization, communication with the scheduler 

and is the responsible of the performance prediction. It stores 
and manage the application  models, generates the predictors, 
trains and executes the neural networks and the machine learn-

ing algorithms, and, in addition to that, the LAN component 
includes an API based on sockets for plugging other programs 
or modules, including user programs or other data visualizers. 
When one application is executed, the scheduler notifies 

LIMITLESS Analytics (arrow 1) about the application charac-
teristics (which is used to identify and classify the application). 
In a second step, when the applications are executed two 
different metrics are collected simultaneously: at node level 
to the monitor (arrow 2) and at application-level to FlexMPI 
and CLARISSE (arrow 3). Then, both metrics are processed 
by the respective runtimes  and are written into Elastic search 
(arrows 4 and 5). Note that this process is concurrent. Then, 

the LIMITLESS analytics creates an application model using 
the information stored in ElasticSearch (arrow 6). And finally, 
the  prediction model (arrow 7) is sent to LIMITLESS in 
order to perform in-transit processing for reducing the network 
monitoring traffic. During all these processes, Kibana may be 
used to visualize (arrow 8) the cluster status. 

A. System monitor 

LIMITLESS is a monitoring tool designed to provide perfor-

mance information for generic purposes in large scale systems. 
One of its main interesting features is the possibility of change 
the monitoring period (also called sample interval) online, 
having one different for each node, and without the necessity 
of restart the system or the monitor. The monitoring interval 
can be set in a range of time from hours to seconds and also 
sub-second. 

The System Monitor consists of one UMITLESS Daemon 
Monitor (LDM) per node, which periodically collects the per-
formance metrics; a set of LIMITLESS DaeMon Aggregators 
(LDAs), that forwards the information from the LDMs to other 
aggregators or servers; and the LIMITLESS DaeMon Server 
(LDS) that gathers and stores the monitoring information 
in ElasticSearch. Figure 2 shows a typical deployment of 
LIMITLESS with replication of the LDAs and LDSs. The 

purpose of replicating these components is to enhance the 
monitor scalability and resilience. The monitoring information 
collected by LIMITLESS includes different per-compute-node 
metrics related to CPU, GPU, cache memory, 1/0, and network 
usage as well as energy consumption. 

B. Monitoring policies 

The monitoring policies specify how the performance met-
rics are collected by the LDS. There are two different alterna-
tives: continuous monitoring and event-based monitoring. In 
the first one each LDM sends all metrics collected (usually 
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in one network packet) every sample interval for obtaining 
an updated cluster status. The second one  is not designed to 
provide a  global vision of the cluster, but to notify events 
in certain compute nodes that are relevant or could  harm the 
platform performance. We assume that an event occurs when 
a given performance metric (such as CPU energy usage) is 
above a certain user-defined threshold.  Based on this, LDM 
will transmit only monitoring metrics that are bigger than the 
threshold Note that this policy reduces the network traffic, as 
the system  will only receive a  notification when an event is 

produced These notifications are displayed in the GUI and 
also sent to the scheduler, allowing to enhance the application 
scheduling  [4]. 

C. Framework Deployment 

Generic topologies can be used to deploy LIMITLESS. This 
permits to adapt the monitor deployment with the same topol-
ogy as the cluster's communication network. Figure 2 shows 
an example of a particular deployment with four compute-
nodes per LDA, one LDA per LDS, and one ElasticSearch 
database. In addition to the topological deployment, each 
component (for instance, a LDM) can be dynamically config-
ured to adapt to the application characteristics (for instance, 
reducing the sampling interval in some nodes with a more 
variable workload) or to dynamically reconfigure the monitor 

connection topology. 

D. Fault tolerance 

LIMITLESS includes two different policies that are comple-
mentary: triple modular redundancy and watchdog. The first 
one allows the monitor components to be connected with a 
set of three different  next-level components: each LDM is 
connected with three LDAs; each LDA is connected with 

another three LDAs and/or LDSs; and each LDS is connected 
with three ElasticSearch databases. 
The watchdog policy provides resilience by launching each 

component with a service that checks whether the node works 
properly. In case of a component failure, the monitor will 
attempt to rerun the component with the same configuration. 
If this is not possible, the node  is flagged as non-operational. 
Figure 2 shows the fault tolerance mechanisms in red colour. 



The dotted red lines shows the triple module redundancy
configuration for each node.

E. Data Storage and Visualization

ElasticSearch is used to store the data produced by the
framework. Main features of ElasticSearch are high perfor-
mance processing, its suitability for big data storage, com-
pression support and prebuilt data replications. Note that it
is configured to deal efficiently with large network packets,
so with this approach we aim to leverage this feature ef-
ficiently. Moreover, ElasticSearch is integrated with Kibana
[5], an open-source scalable web interface for visual data
representation. Kibana provides plugins to manage the data
stored in the database, creating dashboards, performing time-
series analysis and applying machine learning algorithms to
the stored data.

F. CLARISSE and FlexMPI support

The execution framework shown in Figure 1 includes
CLARISSE and FlexMPI runtimes. CLARISSE main goal
is to provide control mechanisms through the I/O software
stack in order to enhance the application I/O by means of
coordinated policies. FlexMPI brings malleable capabilities
to MPI applications that are able to dynamically increase
or reduce the number of processes. Both runtimes include
libraries that are linked and executed with the application.
These libraries that monitor the application I/O activity (by
means of CLARISSE) and the application CPU and memory
usage (by means of FlexMPI). The performance metrics are
sent to the corresponding external controllers for CLARISSE
and FlexMPI and subsequently are stored in ElasticSearch. By
means of this approach it is possible to include fine-grained
information about the application characteristics. For instance,
it is possible to record the duration of each I/O phase with a
precision of milliseconds. This information will be used for
carrying out a more precise application modelling that will be
subsequently used by the monitor.

III. SCALABLE SUPPORT

This section describes the three functionalities included in
LIMITLESS for enhancing the monitoring scalability: opti-
mized Data Packing, in-situ and in-transit processing. Opti-
mized Data Packing is performed by the LDMs. In order to
maximize the efficiency of this process, architecture-dependent
features like the maximum packet length, are taken into
account to optimally group different metrics into a single
network packet by means of bit-level codifications that results
in a significant reduction in the packet size.
LDMs include in-situ processing algorithms [4] that analyse
the captured metrics and selectively avoid transmitting them
when the difference regarding the previous metrics is under a
predefined threshold. By means of this approach, the amount
of monitoring traffic related to a steady compute node can be
reduced while guaranteeing a continuous monitoring of the
system. Note that this algorithm is light-weight, given that it
is executed in the same compute nodes as the applications.

Algorithm 1LIMITLESS in-transit pseudocode executed by
the Analytic components.Aistands for the application context
of application i-th.Eis the ensemble related to the application.
Pistands for the application’s performance predictor.
.
1:// Limitless Analytic
2:INPUT (from scheduler):Ai
3:E=getensemble(Ai)
4:ifE==∅then
5: E=createensemble(Ai)
6:else
7: Pi=generatepredictor(mi,E)
8: sendpredictor(Pi)
9:end if

Algorithm 2LIMITLESS in-transit pseudocode executed by
the LDA.Pistands for the i-th application’s performance
predictor.

1:// Limitless DaeM on Aggregator(LDA)
2:INPUT (from analytics):Pj,j=1,... Napp
3:whileTRUEdo
4: for(i=0;i<Napp;i++)do
5: mi=getmetrics(Ai)
6: ifPi==∅then
7: sendmetrics(mi)
8: else
9: ni=generatemetrics(Pi)
10: if||ni−mi||< thresholdthen
11: donothing
12: else
13: sendmetrics(mi)
14: end if
15: end if
16: end for
17:end while

In [4] we have shown that by means of this approach it is
possible to reduce up to the 87% of the metrics sent from the
LDMs to the LDAs.

In-transit processing is based on using prediction algorithms
in the LDA components. Figure 3 shows an example of this
strategy which leverages the integration between LIMITLESS
and scheduler for developing a prediction algorithm based
on the application characteristics. For each new executing
application, the scheduler notifies the monitor (arrow 1) the ap-
plication name, input arguments and compute nodes that have
been allocated. We denote it asapplication context. Based on
that, a unique application ID is created and used for indexing
all the performance metrics related to this execution. These
metrics, along with the identifier and application context, are
stored in Elastic Search.

In many cases, during the application development, the
applications are executed several times with minor changes
in its configuration. We call this collection of executions
application ensemble. Note that the executions belonging
to the same ensemble have similar characteristics, like the
duration of the CPU and communication phases, or the I/O
access pattern. LIMITLESS includes anAnalytic component
that is able to identify the application ensemble related to

3
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Algorithm 3 LIMITLESS in-transit pseudocode executed by 

the LDS. P. stands for the i-th application's performance 
predictor. 

I : // Limitless DaeM on Server  (LDS) 
2: INPUT (from analytics): P3,j = 1, ... N"PP 
3:  while TRUE do 
4 : for(i=O;i < N_app;i++)do 
5: if new_metrics(A,) then 
6: m. = get_metrics(A,) 
7: write_metrics(m,) 
8: else 
9: n , = generate_metrics(P, ) 
JO: write_metrics(n,) 
I I : end if 
12: e nd for 
13: end while 

each new executing application. This is done by comparing the 
application execution context with the existing ones stored in 
Elastic Search. Algorithm 1 shows the Analytic component 
pseudocode.  For every newly executed application Ai the 
related ensemble is obtained (line 3). If it doesn't already 
exist,  a new one is created (line 5). Otherwise, once the 
ensemble is identified, the Analytic component compares (line 
7) the collected application metrics with the ones related to 
previous executions (that are stored in Elastic Search). If they 
are similar (in terms of duration of the CPU, communication 
and 1/0 phases)  a predictor is generated taking into account 
both the current and previous executions. This predictor is sent 
(line 8) to the LDAs and LDSs involved in the application 

execution'. 
Figure 3 illustrates an overview of this process for an 

application (denoted as App) that is executed several times. We 

denote Ai with i = 1, . . . n each one of the related execution 
context i . When the application is executed for the first time, 

a new application ensemble is created, E = {Ai}. Then, 
before starting the second  execution, the related application 
context sent by the scheduler (arrow 1) permits the Analytic 
component to identify if it belongs to any existing ensemble 
E based on the Elastic Search records (arrow 2), which is 
properly updated E = {A1, A2} and the generated model is 
created and sent to the corresponding LDAs and LDS (arrow 
3). When  the application is executed, the LDAs compare the 
incoming metrics (arrow 4) from the LDM with the ones 
predicted by the model (arrow 5). If the metrics are the same 
(within a  given threshold), these metrics are not sent (arrow 
6) because the LDS is able to generate them (arrow 7) using 
the previous model. 
Algorithm 2 shows the logic related to the LDAs.  When 
the A2 execution starts, the performance metrics are collected 
(line 5). If the performance predictor does not exist, then the 
metrics are sent to the LDS (line 7). Otherwise, the metrics 
are compared with the generated ones by the model (line 
10). If they are the same (within some limits), they are not 

1 Note that the specific list of LDAs and LDSs related to the application 
is obtained from the scheduler which determines the specific compute nodes 
where the application is executed. 

I Scheduler ~ - - - -_1_ - - - -~ 
I 

3 I 
~ App :-------T-------------------, I 

" 6 7 . 28 ·- ·- ·- ·- · LOS Elast,c  - - - Analytic 
Search 
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Fig.  3. LIMITLESS -Network traffic reduction thanks to modeling and 
prediction. 

Algorithm 4 Application performance model  logic based on 
pattern matching. Variables ni and m i corresponds, respec-
tively, to the ith measured and recorded performance metrics. 

I: // Lim itless Analytic 
2: INPUT (from Elastic search): m. 
3: {n,} = ES_read_metrics(i) 
4: if lln. -m.11 < threshold then 
5: n,+1 = ES_read_metrics(i + 1) 
6: return(n ,+1) 
7: else 
8: return(" Prediction failed") 
9: end if 

sent to the LDS (line 11) saving network traffic. In the other 
case, the predictor fails to reproduce the application behaviour. 
Consequently, the prediction is overridden and the metrics 
are sent to the LDS (line 13) until  a more accurate model 

is generated. 
Algorithm 3 shows the logic related to the LDSs.  The 

basic idea behind this algorithm is that if the prediction fails 
in the LDAs, performance metrics should arrive from these 
components. In this way, the LDSs waits for incoming metrics 
(line 5). If they arrive, they are taken and stored in Elastic 
Search (lines 6 and 7).  Otherwise, the metrics are generated 
using the model and stored (lines 9 and 10). Note that the 

performance prediction Pi used by the LDAs and LDSs is the 
same. 

IV. PERFORMANCE PREDICTION TECHNIQUES 

This section describes the different algorithms used to 
predict the immediate future state of the cluster. The idea 
of this component is to leverage the large amount of data 
that  LIMITLESS collects for predicting the future behaviour 
of the applications. We have used three different prediction 
techniques based on single-variable analysis (application pat-
tern matching, prediction based on historical window, and 
classification  based on neural networks) and one based on 
multi-variable correlation (based on machine learning). 
The first technique (depicted in Algorithm 4) is based 

on pattern generation. This solution stores the performance 
metrics as a pattern during an execution of an application. In 
next executions, each collected metric is compared with the 
corresponding metric in the pattern. If the difference is below 
a given threshold, then the following metric is generated from 
the next recorded one. Otherwise, the model fails to provide 



a prediction. This model is lightweight and works well with
applications that exhibit the same execution pattern in different
executions.

The second technique corresponds to a short-time predic-
tor based on a sample-window. This algorithm predicts the
performance values based on the interpolation of a certain
amount of previous values. The size of the set used in the
interpolation is proportional to the size of the window. For
instance, a window of size 5 uses the last recorded five samples
to compute the interpolation and produce each prediction. Note
that this approach works well for periodic applications with
different phases (CPU, communication, I/O), where the length
of the phases is similar during the execution and there are little
variations in the performance metrics during each phase. The
main different aspect of the first solution is the utilization of
an interpolation algorithm that is used to refine the predicted
values, instead of using directly the next pattern value.

The third technique uses neural networks to learn the
application behaviour from data coming from many previous
executions and to predict the immediate states when a known
application is deployed. We have used one neural network
per application which is trained with the monitor data of the
application ensemble. Each neural network is composed of
three layers with 120, 60 and 1 neurons respectively. The
training starts when the first application of a given ensemble
is performed. After that, each network is capable of adjusting
its weights to recognize the application pattern. The second
application execution is used to assess the accuracy of the
prediction. If it is not accurate enough, further executions
are used to provide more training data. Note that the main
advantage of this approach is that it is not necessary to use
historical values for making a prediction.

The last prediction technique is based on a multi-variable
correlation using the Nearest Neighbour Machine Learning
algorithm [6] [7]. In this approach, given a set ofkperfor-
mance metrics collected by a LDM in a current sample, this
algorithm finds the most similar k-metrics to this set in the
complete historical data. Then, the following recorded ones are
provided as prediction. Note that this algorithm is able to make
predictions using very large datasets (like the historical records
related to an application ensemble) with a low overhead. The
idea behind this approach is to leverage the similarity between
different metrics belonging to the same application ensemble
to make a prediction.

V. EVALUATION

The evaluation has been done both by simulation and in
a real platform that consists of eight compute nodes divided
in two racks. The cluster contains two nodes with Intel(R)
Xeon(R) E5 with 8 cores and 256GB of RAM in one rack
and six nodes with Intel(R) Xeon(R) E7 with 12 cores and
128GB of RAM in the other. The connection between nodes
in the same rack is a 10 Gbps Ethernet, whilst the connection
between racks is made through a 1 Gbps Ethernet. The I/O is
based on Gluster parallel file system.

A. Scalability evaluation

The overhead of the LDMs depends on the sampling inter-
val, which is user-defined. In our experiments we have tested
the LDMs with a minimum sampling interval of one second,
which produces less than 1.0% of CPU and consumption
with a memory footprint of 160 KB. These overheads are
obtained from the system log. It shows the time that a
process is executing CPU operations and the total time that
the process has been alive. Also, we can get the real size
that a process occupies in memory, and the communication
overhead is directly related to the size of a monitoring message
and the sending time. Note that LDMs are executed in the
same compute nodes as the applications, so this overhead
should be keep as low as possible. The LDAs and LDS
use more computational resources than the LDMs. Note that
these components are supposed to be executed in nodes not
exclusively used by the applications or with more resources
than the standard compute nodes. These two modules are
in charge of receiving, processing and re-transmitting the
performance metrics provided by LDMs. For this reason the
main source of overhead for them is not the CPU but the
network traffic (especially if the sampling interval is reduced).

To estimate the scalability limit, we have simulated a cluster
with OMNET++ [8] under different workloads. The simulated
architecture corresponds to a simple deployment:nnodes
(with one IO and network interface, and without GPU, that
execute LDM functions) connected to a switch, and the switch
connected to another node (that represents LDS). The connec-
tion between nodes and the switch is 1Gbps Ethernet. When
we consider a particular computational-intensive configuration
of LIMITLESS consisting of a sampling interval of one second
and a single-thread implementation of the LDAs and LDS2.
Under these circumstances in our experiments each LDA and
LDS are able to be connected at the same time with 200
other components (either LDMs or LDAs). Consequently, one
LDA in the first aggregation level is able to gather the metrics
of 200 nodes, and one LDA in the second aggregation level
could manage 40,000 nodes. Note that the packet size used for
sending each sample ranges from 64 to 1024 bytes, according
to the number of metrics collected by each LDM. Assuming
that a sampling interval of 1 second and 40,000 nodes,
the related bandwidth would range between 2.4Mbit/s and
39Mbit/s, much smaller than the typical bandwidth values of
the network, like 10Gbits/s. Besides, note that the monitoring
infrastructure could use the service network existing in many
clusters producing no-overhead in the communication fabric.

In addition to this, we have done a performance test in a
real cluster consisting of 50 nodes with this configuration per
node: 2 Intel processors, 12 cores per processor, 256GB of
RAM, and 44TB of global storage. The monitor was running
for several months successfully with a sample period of 1
second.

2Note that in the latest version of LIMITLESS the LDS is multithreaded
which considerably improves the performance.
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B. Smart analytic evaluation

In our experiments, we have considered three different use
cases. The first use corresponds to a parallel implementation
Jacobi method written in MPI that alternates CPU, commu-
nication and I/O phases. Jacobi is executed using 8 processes
with a matrix size of 15,000 entries. Given that the application
is executed exclusively most of the time in one compute node,
the duration of each phase is approximately constant during
all the execution. Figure 4 shows the percentage of CPU in use
during the use case execution. The spikes show a reduction in
the CPU usage and corresponds to the I/O phases which are
performed periodically. There is sharp increase in the CPU use
around t=25,000 sec. that corresponds to another application
running in the same compute node for a while.

The second use case corresponds to the simultaneous exe-
cution of two Jacobi applications that are exclusively executed
in different nodes. Because of that, the duration of the CPU
and communication phases is barely constant, but the I/O
phase duration changes when both applications perform the
I/O at the same time. In this case, there is an I/O interference
that make that the I/O bandwidth would be shared by both
applications, increasing the phase duration. Figure 5 shows the
CPU use corresponding to this use case. The uses case uses
12 processes, consuming nearly 100% of the computer node’s
CPU. Now the distance between the spikes related to the I/O is
not constant because of the I/O interference. The third use case
corresponds to btio from NAS Parallel Benchmarks configured
as class C. This benchmark alternates CPU and I/O phases.
Figure 6 shows the CPU usage for this benchmark.

Table I shows the accuracy of each predictor for the three
considered use cases using the performance metrics collected
by LIMITLESS. This accuracy is expressed as a percentage
of correct predictions. We used a tolerance value of 3% in
each predictor. When we compare both executions of Jacobi
method (use cases 1 and 2), the predictors are in general more
accurate for the first use case because it has a more steady
behaviour. Note that the amount of saved LDA network traffic
is proportional to the predictor accuracy given that each correct
prediction avoids sending one monitoring sample to the LDS.
Regarding the memory usage, we do not include results for
reasons of space, but these results have even better accuracy
given that the memory use has less variations that the CPU
use.

Note that the key idea of this approach is that both LDA and
LDS execute the same predictor configured by the Analytic
component. The predictors based on pattern matching and
historical window have no input parameters, thus there is no
transmission overhead. The parameters related to the neural
network have a size of 28 KB whereas the ones related to
the multi-variable correlation using the Nearest Neighbour
Machine Learning algorithm have a size of 23 KB.

Table II shows the accuracy of each predictor for the first
two use cases using the performance metrics collected by
CLARISSE and FlexMPI and stored in ElasticSearch. It was
not possible to integrate Btio in CLARISSE nor FlexMPi

Fig. 4. CPU use of first use case, Jacobi method executed exclusively.

Fig. 5. CPU use of the second use case, Jacobi method executed with I/O
interference.

because it is written in Fortran. Note that these runtime use
timestamps for recording the duration of the CPU, communica-
tion and I/O phases. This brings a more accurate representation
of the application that enhances the modelling. As we can
see in Table II the accuracy of the prediction algorithms is
improved.

We show only CPU information but the framework pro-
cesses all metrics. We distinguish between two kinds of
metrics: with high and low variability. For example, the first
group includes CPU, IO, and Network, and the second one
includes Memory and temperature. The first group metrics are
harder to predict because of the variability. However, if the
metrics has more constant values (like the second group), the
predictor accuracy increases.

In a summary, all of these optimizations have an impact
into the amount of packets sent by the monitor. Table III
shows the overall traffic reduction related to the different

Use case 1: Use case 2: Use case 3:
Jacobi excl. Jacobi interf. btio

Pattern matching 25.2% 25.2% 24.7%
Historical window 61.5% 82.7% 50.0%
Neuronal networks 99.5% 93.3% 98.0%
Machine Learning 90.8% 90.5% 88.5%

TABLE I
ACCURACY OF THE DIFFERENT PREDICTION ALGORITHMS FOR THE THREE
USE CASES EXPRESSED AS PERCENTAGE OF CORRECT PREDICTIONS.
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Fig. 6. CPU use of the third use case, btio code from NAS Parallel
Benchmarks.

modelling algorithms. Note that those values includes the
analysis of four collected metrics: CPU, IO, Memory and
Network communications. These results are a bit worsen than
the displayed in table I because of the extra metrics analysed
and their variability.

VI. RELATED WORK

System monitoring for large-scale HPC platforms is a
complex task, which becomes increasingly challenging as the
scale and complexity of the infrastructure increases [4]. In
the context of system monitors, we can find solutions like
Ganglia [9], one of the most-used monitoring tools for HPC
systems. One of its main features is that all the nodes receive
information from the others. One drawback of this solution
is that the fault tolerance mechanisms that use increase the
communication and processing overhead and the amount of
replicated information. Another similar tool is Collectd [10],
which is a daemon that collects system and application perfor-
mance metrics. Its main strength is that it has a low overhead.
However, it only collects and stores the monitor metrics in the
form of raw data. The user has to gather, manage and process
the collected information. Another well-known framework for

Use case 1: Use case 2:
Jacobi excl. Jacobi interf.

Pattern matching 48.5% 53.3.2%
Historical window 98.6% 98.7%
Neuronal networks 99.3% 99.5%
Machine Learning 98.7% 98.8%

TABLE II
ACCURACY OF THE DIFFERENT PREDICTION ALGORITHMS USING

FLEXMPIANDCLARISSE AS INPUTS.

Use case 1: Use case 2: Use case 3:
Jacobi excl. Jacobi interf. btio

Pattern matching 24% 23% 4%
Historical window 60% 80% 50%
Neuronal networks 96% 92% 96%
Machine Learning 90% 90% 88%

TABLE III
PERCENTAGE OF NETWORK TRAFFIC SAVED OF ALL THE PREDICTION
ALGORITHMS,INCLUDINGCPU, IO, MEMORY ANDNETWORK

COLLECTED METRICS.

monitoring computer network is Nagios [11]. Nagios gathers
a variety of information in clusters and is also able to get data
from different services. The main drawback in Nagios is that
it was not designed for HPC systems, so that, its performance
and scalability in large-scale platforms is unclear. DiMMon
[12] is a Distributed Modular Monitoring system that provides
different paths to send the data, application profiling features,
and dynamic reconfiguration of the modes. In addition to this,
it has been adapted for decentralized edge clouds [13]. Besides
these works, surveys of system monitoring tools based on
collecting performance metrics are available in [14] and [15],
but their application for HPC platforms is unclear.

Application performance monitoring in large scale systems
is an important topic to enhance applications performance and
to maximize system usage. Many applications exhibit a per-
formance that changes among the time, thus some authors [16]
have focused on making dynamic application profiling based
on system monitoring. The usual technique is to collect system
metrics and sending the information to a central component
through a hierarchical model. Then, different algorithms are
used to extract the knowledge about the application behaviour
and to elaborate application profiles that are subsequently used
to guide different components, like the scheduler. Other ex-
ample of application monitoring based on system monitoring
is [17], where the authors developed a system that parses
the Slurm log file and extracts the information, generating
reports for the users. LIKWID [18] is a framework that
performs job or task monitoring. Its architecture is similar
to LIMITLESS because its model is based on a monitor
(Diamond), a non-SQL database (influxDB) and a visualizer
(Grafana). The difference is that this solution is oriented to
small and medium-sized clusters while LIMITLESS includes
more scalable features, combines monitoring in two levels
(system and application) and includes different features to
reduce network traffic and perform application modeling. In a

Features Included Future

System performance metrics

Process performance metrics

Scalability (>200nodes per aggregator)

Overhead in compute-nodes (<0.1%)

Hierarchical model overhead (<0.1%)

Fault tolerance (node level)

Fault tolerance (communication level)

Data redundancy (database)

Topological deployment

Auto-deployment based on topology

Manage resources for energy reduction

Node failure detection

API to give data to external modules

Soft-real time visualization (<5secs)

Smart monitor (take decisions based on ML&NN)

Application pathological behaviour detection

Monitor traffic optimization

Reporting
TABLE IV

LIMITLESSFEATURES SUMMARY.
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different area there are works that combine monitoring with
machine-learning techniques. Yu et al. [19] present a paper that
combines network monitoring with prediction techniques to
design a cross-layer security algorithms for intrusion detection.
Rashti et al. [20] uses prediction models in order to reduce the
power consumption of a wireless sensor network. Tang et al.
[21] proposed a similar work to predict a bridge monitoring
data based on regressions using support vector machine. Xi-
aobing et al. [22] made a study of the historical data of a gas
tunnel to predict the gas emission tendency based on monitor
data. This work includes a detailed methodology description
and an exhaustive evaluation of the prediction accuracy.

The monitor presented in this work (LIMITLESS) uses
machine learning or neural networks to provide application
modelling that is used for reducing the monitor traffic and
enhancing the application scheduling. Table IV shows the
features that are currently covered by our solution (LIM-
ITLESS) such as system monitoring, dynamic scheduling
based on monitoring, or machine learning and neural networks
techniques for performance prediction. Note that we it is not
possible to compare directly our proposed solutions to other
related works because we have been unable to find a solution
that includes a similar solution (based on in-transit processing)
that the one presented in this paper.

VII. CONCLUSION

In this paper we introduce new features on LIMITLESS,
a light-weight monitoring tool that was designed to monitor
large-scale computing infrastructures. These features include
topological-aware deployment, dynamic reconfiguration, in-
situ and in-transit processing for reducing the monitor traffic,
performance modelling and event detection and notification.
One of the main characteristics of LIMITLESS is its in-
tegration with other platform software components like the
application scheduler, CLARISSE and FlexMPI runtimes. In
this paper we present novel techniques that leverage this
integration for reducing the monitoring traffic. By leveraging
these features, LIMITLESS is able to reduce the monitoring
traffic up to 85%, and to provide application profiles based
on the detected performance. In this work we carried out
different experiments showing that LIMITLESS exhibits a
good scalability and is suitable for very large scale machines.

As a future work, we plan to monitor I/O interference and
other application-related metrics for supporting multi-criteria
application scheduling. We also plan to include new features
to automatically detect the cluster topology with the objective
of auto-deploy the monitor with an efficient layout. Finally, we
want to extend this feature including more refined prediction
algorithms for improving the in-transit processing algorithms.
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