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Abstract

The existence of a recursive minimal state space (MSS) representation is not
always guaranteed. However, because of its numerical efficiency, this type of equi-
librium is frequently used in practice. What are the consequences of computing
and simulating a model without a constructive proof? To answer this question, we
identify a condition which is associated with a convergent and computable MSS
representation in a RBC model with state contingent taxes. This condition ensures
the existence of a benchmark equilibrium that can be used to test frequently used
algorithms. To verify the accuracy of simulations even if this condition does not
hold, we derive a closed form recursive equilibrium which contains the MSS rep-
resentation. Both benchmark representations are accurate and ergodic. We show
that state of the art algorithms, even if they are numerically convergent, may un-
derestimate capital (and thus overestimate the benefits of capital taxes) by at least
65%, a figure which is in line with recent findings using accurate benchmarks. When
an existence proof is not available, we found 2 sources of inaccuracy: the lack of
a convergent operator and the absence of a well-defined (stochastic) steady state.
Moreover, we identify a connection between lack of convergence and the equilibrium
budget constraint which implies that simulated paths may be distorted not only in
the long run but also in any period. When we have a constructive proof, inaccuracy
is generated by the lack of qualitative properties in the computed policy functions.
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1 Introduction

Sometimes macroeconomics is about new answers to old questions. This is the takeaway
point of [Nakamura and Steinsson, 2018]. The authors analysis is based on the lack of
exogenous variability in the field. This is one of the reasons behind the lack of a definitive
answers to old questions, but maybe not the only one. In case we would like to per-
form a structural analysis, models may not have closed form solutions. Thus, numerical
methods are a fundamental ingredient in macroeconomics. Moreover, policy experiments
frequently imply that the welfare theorems do not hold. In this framework, even in the
simplest possible dynamic stochastic model, a canonical RBC with state dependent taxes
on capital, the existence of a computable representation is not always guaranteed (see for
instance [Santos, 2002]). This fact has not only theoretical but also practical implications:
along with an existence proof, if it is constructive, it comes a convergent algorithm.

What are the consequences of computing and simulating a model without a construc-
tive existence proof? In order to answer this question, we first identify a condition which is
associated with a computable representation in a RBC model with taxes. This condition
ensures the existence of a benchmark equilibrium that can be used to test frequently used
algorithms. These type of benchmarks are available in optimal economies due to the pres-
ence of welfare theorems as it is well known since, for instance, [Stokey, 1989]. However,
in non-optimal economies it is rather unusual to have the opportunity to accurately test
frequently used methods. To verify the accuracy of simulations even if this condition does
not hold, we derive a closed form recursive equilibrium. Both benchmark representations
are compact, continuous and unique. When the benchmark is numerical, the convergence
is uniform, and iterations start in a theoretically identified initial condition. Thus, we
know that both benchmark representations are accurate and ergodic. These results taking
together give us a unique opportunity to test commonly used methods.

We show that state of the art algorithms, even if they are numerically convergent, may
overestimate the benefits of capital taxes, as measured by a change in the composition
of aggregate demand in favor of consumption and against investment. Our estimation
for these biases is above 65%, a figure which is in line with recent finding using accurate
benchmarks (see [Pohl et al., 2018]). We find that simulations using standard algorithms
underestimate the long run average of capital (i.e. the computed average is at least 65%
below its accurate benchmark). Our goal is not to criticize these methods as it is not
always easy to measure the trade-offs (between numerical efficiency and accuracy) faced
by researchers, but to suggest that, if the identified condition holds, it is better to reduce
the speed of computations in order to increase the precision of the numerical solution.

Since the seminal paper of [Lucas, 1978] macroeconomists have been using a recursive
representation of sequential equilibria to solve and simulate models. There are numerical
and theoretical reasons behind this choice. As regards the former, it is easier to numer-
ically approximate a first order stationary dynamic process rather than the sequential
representation originally defined. In reference to the latter, a markovian structure allows



to define a well-behaved long-term equilibrium (i.e., a steady state) using a recursive
equilibrium notion (see for instance [Blume, 1982]). Finally, and more importantly, the
theoretical and computational arguments are related with each other since accurate nu-
merical simulations requires a Markovian representation and an appropriate steady state
(see for instance [Santos and Peralta-Alva, 2005] among others).

Numerical approximations can be done globally or locally. Depending on the question,
typically involving large fluctuations, the former one is preferred. However, global meth-
ods are more costly numerically, especially in recursive macroeconomics. The number of
states are deeply connected with this burden due to the curse of dimensionality. Thus,
it is critical to investigate the properties of minimal state space (MSS) methods, which
include only 2 states; 1 endogenous and 1 exogenous.

This paper has 2 contributions. First, we identify a verifiable condition, based on some
qualitative properties of the expected marginal utility of consumption, that ensure the
accurate performance of MSS methods in recursive macroeconomics. Our results hold in a
RBC model with state dependent capital taxes, but the identified condition can be found
in a large fraction of applied papers. Second, we measure the bias of solutions using an
accurate benchmark. When the critical condition holds (i), we compute a convergent op-
erator which has a continuous and unique fixed point; a fact which ensures the ergodicity
of simulations. When this condition does not hold (ii), to keep the benchmark accurate,
we derive a closed form continuous recursive equilibrium with an expanded state space.
In both cases, we obtain a recursive representation with an ergodic invariant measure, a
finite number of exogenous shocks and a well-behaved state space (i.e., compact). For
case (i), the bias is generated by the lack of qualitative properties of the solutions ob-
tained from state of the art algorithms. A recursive equilibrium with minimal state space
exists and it can be computed, but the algorithm cannot find it. For case (ii), we found 2
sources of inaccuracy: the absence of a minimal state space recursive representation and
the non-existence of a well-defined (stochastic) steady state.

This paper proposes a verifiable condition which is associated with the constructive
existence of a MSS recursive equilibrium. [Kubler and Schmedders, 2002] argued that
in the presence of multiple equilibria a MSS recursive representation may not exist. As
uniqueness has been an elusive quest in this field!, this fact justifies the necessity of a
condition associated with the existence of a MSS recursive equilibrium. We show that
when the expected marginal return of assets is monotonic in the endogenous state, we
can prove the existence of a MSS representation constructively. In the RBC model, this
happens when the tax rate is either constant or increasing. If this requirement is not
satisfied, to obtain an ergodic markov equilibrium, we must increase the number of en-
dogenous variables which are considered states. By enlarging the state space, we show
that it is possible to obtain multiple markovian representations in closed form, one of

! [Dana, 1993] provided conditions to guarantee the uniqueness of equilibria in an infinite horizon
economy with complete markets. There is no analogous result for incomplete markets



them continuous with a stationary state space. This last “selection” allows us to derive a
well-defined steady state by applying standard results. Formally, we derive a closed form
generalized markovian equilibrium (GME) for a standard version of the RBC model with
decreasing taxes on capital presented in [Santos, 2002]. As all MSS recursive equilibria
form a subset of all GME, if both equilibrium types are well defined in the long run,
any simulation from the latter must be matched using the former. It is shown that even
a numerically convergent MSS algorithm may not match the ergodic distribution of the
model as the MSS equilibrium might not have a well-defined steady state. The bias not
only affects long run simulations. We identify a connection between the lack of existence
of a MSS recursive equilibrium and the budget constraint which implies that simulated
paths are distorted in any time period.

The results in this paper has direct take away point: even if the numerical procedure
has been declared convergent using a demanding criteria, simulations may be far away
from the exact steady state. If the identified condition holds, the results in [Coleman,
1991] ensure the monotone convergence of successive approximations to an equicontin-
uous MSS recursive equilibrium using the SUP norm. Then the results in [Santos and
Peralta-Alva, 2005] guarantee the accuracy of simulations. When this condition does not
hold, we use the closed form GME to compute the biases. As we still need to numerically
simulate the exact Markov process, we need to show that simulations are accurate. We
prove that the GME is also equicontinous, which ensures the accuracy of simulations. In
this case, the MSS steady state of the model may not be well-defined as the equilibrium
has discontinuity points. Faster methods when applied to the same model may generate
significant biases because they do not preserve some of these qualitative properties, which
are deeply connected with sup-norm convergence and accuracy.

The paper is organized as follows: section 2 presents an overview of the main results
using a non-stochastic simple economy. Section 3 deals with the theory necessary to
obtain an accurate benchmark. Section 4 and 5 presents the numerical test when the
critical condition does not hold and holds respectively. Section 6 concludes.

1.1 Relation with the literature

Most macro model includes an Euler equation. In particular, the expected marginal utility
of consumption satisfies:

BE[u' (e (K)(1 — m(K))R(K)] (1)

Where ¢, denotes consumption “tomorrow”, exogenous shocks are assumed to be i.i.d.,
7 is a state dependent tax rate on assets K and R is the gross rate of return. In a model
of with production (as in [Santos, 2002]), K denotes capital and R its marginal product.
In a small open economy model, R is exogenous, T is a tax on debt (we must reinterpret



K in this case) and represent a macro-prudential policy (see [Bianchi, 2011]).

Following [Mirman et al., 2008] and [Coleman, 1991], in this paper we show that if
equation (1) is monotonic in K it is possible to derive an accurate algorithm that con-
verges to a well-defined recursive equilibrium 2. For instance, in the small open economy
literature, as 7 is increasing in external debt K but consumption is typically decreasing
in it, equation (1) is not monotonic. In the RBC literature, if 7 is decreasing in K, (1) is
not monotonic. The purpose of this paper is to measure the accuracy of state-of-the-art
algorithms when the monotonicity of (1) is and is not satisfied.

The literature (see for instance [Hatchondo, 2010]) focuses on the sensitivity of the
numerical results to different methods without an accurate benchmark or test methods
in optimal economies (see [Arellano et al., 2016]), but we were unaware of the size and
reasons behind the bias in MSS methods in non-optimal economies. Contrarily to what
is done in the numerical literature, we can measure this bias using an accurate solution
which also has a well-behaved steady state. Thus, we can measure the short and long run
implications of the lack of a constructive existence proof. [Santos and Peralta-Alva, 2005]
performed a similar exercise for optimal economies. We extend those results for models
with distortions.

From a theoretical point of view, we sharpen the characterization of ergodic recursive
equilibrium in [Blume, 1982]. We provide evidence against the equivalence between a
continuous markovian representation and the uniqueness of the sequential equilibrium.
In words of [Blume, 1982]:

“the existence of a continuous selection - tantamount to the uniqueness of equilibrium
i each state - is not often satisfied”.

We found a stationary (i.e., time independent) recursive representation with multiple
sequential equilibrium in some nodes which has a continuous selection. This result is
relevant to relax recently found conditions to ensure the existence of an ergodic steady
state. These conditions are at odds with the computation of the model as they involve
many continuations for each node (see [Santos et al., 2012]). The existence of a continuous
selection in a model with a finite number of shocks is essential to ensure the ergodicity of
simulations in a computable framework.

From a numerical perspective, this paper is connected with [Pohl et al., 2018]. We
also use accurate benchmarks and find a similar bias with respect to state-of-the-art al-
gorithms. While the results in [Pohl et al., 2018] depend on the presence of a persistent
stochastic process, ours can be explained for topological reasons: the lack of continuity
and the absence of an order structure in the space of policy functions.

2As shocks are i.i.d, the state space is composed only by K. If exogenous shocks were Markov, we
need to include them as an additional state variable.



2 Preview of the results in a deterministic economy

In this section we present a simple preview of the results that will be found in this paper.
For this purpose, we use a non-stochastic RBC model which is canonical except in the
tax function. Based on equation (1), we divide this section in 2: first we deal with the
fact that the Euler equation is not monotonic in the endogenous state. In this case, to
test the accuracy of simulations, we derive a closed form recursive equilibrium, which is
more general than the MSS representation. In the second case, where the Fuler equation
is monotonic, we can use a result due to [Coleman, 1991] in order to prove the existence of
a MSS equilibrium. We use the former to test a canonical procedure based on iterations
due to [Rios Rull, 2004] that exploit a map between perceived and actual laws of motion
for equilibrium states. The latter is used to test the performance of envelope conditions
methods (ECM) due to [Arellano et al., 2016], as we can ensure that the derivative of the
value function (i.e., an envelope) is continuous provided that the monotonicity requirement
holds. In both cases we can prove that the benchmark equilibrium exist, is unique and is
ergodic. Thus, they constitute a proper instrument to test the accuracy of simulations.

2.1 Non-Monotonic Euler Equations

Imagine a canonical RBC model distorted with ad valorem taxes. As a distinctive fact,
the aliquot can vary along with the business cycle. That is, it is state dependent. It
will be assumed that it is decreasing in the aggregate state of the economy. There is an
infinitely lived representative agent endowed with £y units of capital. She must choose a
sequence of consumption and savings for each unit of time, denoted ¢ > 0, to maximize
her lifetime utility. For simplicity, we will assume for now that there is no uncertainty,
and that capital depreciates entirely after 1 period. Accumulated saving is rented to a
firm, which is assumed to maximize profits using a decreasing returns to scale technology
represented by a strongly concave production function. There is a Government that levies
an ad-valorem tax on rental income. As mentioned, the aliquot depends on the aggregate
state of the economy, denoted K, even though this connection is not perceived by the
agent. The Government rebates back the collected taxes making lump-sum transfers to
the agent. Finally, as the agent owns the capital stock, she receives the profits form the
firm. Formally, time is discrete and infinite, ¢ = 0,1,2.... Let k denote the supply of
capital (services) and K its demand. There is a decreasing return to scale firm which
only uses capital as input and its technology is characterized by y; = f(K};) with f > 0,
f" < 0and f(0) =0 as usual.

As the firm is owned by the consumer, as she is endowed with kg > 0 units of capital,
she has two sources of current income: benefits, denoted by m;, and rents from capi-
tal, denoted by 7:k;. The flow of taxes paid and transfers received is 7(K;)r:k; and T}
respectively.



The problem faced by the consumer is to choose consumption ¢; and investment x;
that solves the following problem:

max Y fu(e()) )

{ct,xt} 7

s.t.

kipn =2+ (1—0)k, (3)
e +a=m — (1 —7(K)r(z"k + T(ky, Ky) (4)

¢ = 0 and ky > 0 given, § € [0, 1] is the depreciation rate and 3 € (0,1) the discount
factor. Moreover, 7 is the aliquot for the ad-valorem tax, r is the rental rate, m denotes
profits, z; represents investment and, due to full depreciation, k; ;. Finally, T; are trans-
fers.

The problem of the firm is standard. Taking r; as given it solves:

max F(Ky) — K. (5)

The Government simply transfers to the consumer the tax revenues:

T = 7(K)r(z")k,. (6)

The Government runs a balanced budget, 7(K;)r(K;)k; = T}, and profit maximization
implies F'(K;) = m(Ky) + r(K:) K where r(K;) = F'(K;) and F(K};) denotes aggregate
resources 3. As there is a single firm, the only price in the economy, r, is a function of
aggregate capital, K. Moreover, tax collection can explicitly depend on the aggregate
state of the economy in order to capture the interaction between the business cycle and
fiscal policy.

Replacing the equilibrium conditions into the flow budget constraint, we get:
Ct+ Xy = F(Kt) + (kt — Kt)F,(Kt)

The above equation is the aggregate budget constraint. Note that gross rental income
is proportional to individual capital holdings, k, and that the problem of the firm imply
that profits depend on aggregate states. In equilibrium, it will be required that k = K.
Thus, if we can ensure that individual and aggregate capital stocks remains closed to
each other along the computed equilibrium trajectories, we will say that the decentralized

3When 0 = 1 aggregate resources, F, and aggregate output, f, are equal.
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equilibrium is not distorted.

Now suppose we want to solve the model and simulate this economy. The canonical
approach since [Rios Rull, 2004] is to use the associated dynamic programming program
and the policy functions derived from it. In this framework, the agent is supposed to
solve:

V(k,K) = Maz., u(c) + BV (K, K')
Subject to

z,ce[0,7(K) + (1 — 7(K)r(K)k + T(k, K)]
v+ c=m(K) + (1 —7(K)r(E)k + T(k, K)

K' = G(K)

Where G is the perceived law of motion for aggregate capital.

Definition. Minimal State Space Recursive Equilibrium, (MSSRE): A MSSRE in this
economy is a pair of policy functions c(k, K), z(k, K) such that:

clk,K)+ xz(k,K) = F(K)

T(K)r(K)k =T

2(k, K) = G(K)
k=K
r(K) = F'(K)

We call z(k, K) = G(K) the rational expectations condition.

Now suppose we want to simulate the economy, given ky = Ky. We can use the set of
policy functions iteratively. In order to take care of rational expectations condition, note
that the Bellman equation above define a mapping 7(G,,)(k, K) —> G,11(k, K), where
T(G,)(k,K) = x(k, K;G,). In a recursive equilibrium the perceived law of motion G,
satisfies T(G.) (K, K) = o(K, K;G,) = G.(K).

Since [Rios Rull, 2004] it is frequent to iterate on 7', starting from an arbitrary initial
condition, obtaining a sequence {Gy},. It is not clear if G, will converge to G, starting

8



from an arbitrary initial condition Gy. Since [Mirman et al., 2008], we know that if
W (c(k, K))(1 —7(K))F'(K) is decreasing or increasing (in K, i.e., is monotonic), we can
provide a positive answer to this question. Unfortunately, there are some cases where this
condition does not hold for any K. In this section, as in [Santos, 2002], we assume that
7 is decreasing in K, which in turn implies that u'(c(k, K))(1 — 7(K))F'(K) when k = K
is not monotonic as F' is strictly concave.

More to the point, if we iterate on 7', the limiting function G satisfies:

!

¢ +a =F(K')+ (2(K,K;Gy) — K')F'(K')

Where K’ = Go(K). Now, if the numerical procedure does not converge, we know
that the perceived G and the actual x law of motion for capital will not be equal, at
least for some K. That is, T (G )(K, K) = (K, K;Gy) # Go(K). Thus, as the above
equation suggests the lack of convergence implies directly a bias in the computed long term
capital stock as the resources available to the household are permanently distorted by the
numerical procedure.

Note that the convergence criteria in any numerical procedure is relative. That is, the

algorithm will be ”declared convergent” if for n > N (e):

SU Py [AEEE 0] < ¢

Where € is the tolerance level. Thus, it is possible that x(K, K;G,) — G,,(K) may be
far away from zero even though the numerical procedure has ”converged”.

So far, we have discussed the implications of the lack of convergence on equilibrium
decisions. However, we have been silent about simulations. The first step is to define a
proper steady state, as simulated paths must converge to a meaningful object (i.e., an
unconditional moment of a stationary distribution). Since [Futia, 1982] we know that
compactness and continuity are sufficient to ensure the existence of a well-behaved steady
state (see theorem A.l in the appendix). Assume that K belongs to a compact set.
Since [Stokey, 1989] 4, we know that there are curvature conditions associated with F
which ensure the desired compactness, so this assumption seems mild. However, in non-
optimal economies, the continuity of the equilibrium equations remains an open question.
For instance, [Coleman, 1991] showed that if (1 —7(K))F'(K) is decreasing (in K), there
is a continuous recursive equilibria. However, in this section, as the net rental income is
not monotonic, we cannot use this result. We deal with the numerical implications of the
results in [Coleman, 1991] in the next subsection.

4see chapter 5.1.



Let g, (k, K) = n(K)+(1—7(K))r(K)k+T(k, K). If u(g,(k, K)—x) is strictly concave
(in k,x) and the feasibility correspondence for the recursive problem is convex, we know
from [Stokey, 1989, see section A.3 in the appendix, that V' (k, K) is strictly concave (in k).
Unfortunately, in the present framework, we cannot ensure the desired properties when
k = K and thus the value function may not be concave (see section A.3 for a discussion for
the stochastic case). Thus, we need to use more general results. From [Rockafellar, 1981]
and [Amir et al., 1991] we know that V' has a well-defined directional (left) derivative (see
section A.2 in the appendix). As, V' is not concave, the standard envelope theorem does
not hold even if the return function is differentiable (see section A.3 in the appendix). To
see why, note that the differentiability of V' would have implied that:

V(K K" =u (g (K, K") — (K, K")(1 — 7(K"))F'(K")

At k = K, the strict concavity of V would imply that «/(g,(K)—z(K))(1—7(K))F'(K)
is decreasing in K, a fact that requires the monotonicity of (1 —7(K))F’(K) and ensures
the sufficiency of first order conditions, which does not hold in this subsection by assump-
tion. Thus, any optimal solution must satisfy:

u'(g-(k; K) — a(k, K)) = pu' (g, (', K') — (K, K'))(1 — 7(K")) F'(K")

Where the above equation follows from the necessity of the Euler equation (see [Amir
et al., 1991]). As the tax function may generate multiple equilibrium values for z(K, K)
that solves this equation (see [Mirman et al., 2008]), the MSSRE may not be continuous.
Since a well-defined steady state requires continuity, the simulated paths may not be
convergent.

In order to test the (numerical) implications of the lack of a convergent operator and /
or the discontinuity of the equilibrium laws of motion this paper shows the existence of a
continuous and closed form recursive equilibrium in an enlarged state space. We call this
equilibrium notion Generalized Markov Equilibrium (GME). The qualitative properties of
this type of equilibrium allow us to test the size of the bias as any MSSRE must satisfy
the requirements of our definition. To ensure stationarity and compactness, we build a
modified version of canonical result due to [Duffie et al., 1994] (see section A.5 in the
appendix).

Definition. Generalized Markov Equilibrium, (GME): Let K, K, K., be the capital
stock today, tomorrow and the day after tomorrow, respectively. Then, the first order con-
dition associated with the sequential equilibrium for this economy, for interior solutions,
is:

w(g-(K) = Ky) = pu'(g-(K+) — Koy )(1 = 7(K4)) F' (K

10



A GME is a function H mapping (K, K. ) into K that solves the above equation
for any (K, K ) in the expanded state space [0, K] X [0, K], where K is an upper bound
for capital 5.

One of the main contributions of this paper is to find a function, H(K, K,) = K,
continuous, unique and with closed form which satisfy the above equation in an equilib-
rium path (i.e., when the transfers are budget feasible and the goods market clear). As we
do not need to solve for x(K, K), which is the source of the discontinuity in the MSSRE,
it is natural to expect a well-behaved solution.

In order to test the implications of our findings on the MSSRE, we can use a result
in [Amir et al., 1991]. The authors showed that even if the net rental income is not
monotonic, any solution to the dynamic programming program associated with a MSSRE
must satisfy:

u(gr(K) = x(K)) = Bu'(g-(¢(K)) = z(x(K))) (1 = 7(z(K)) F' (z(K))

Where z(K, K) = z(K) maybe discontinuous. Thus, any MSSRE is a GME as it is
restricting Ky to satify K, = z(K).

Suppose that we heuristically find a convergent sequence of functions {G,}, which
is also a MSSRE. In the numerical section below, we provide an example of this type
of functions. That is, we avoid the problems associated with z(K, K;G,) — G,(K) in
the equilibrium budget constraint of the household which may distort every period and
we focus on the long run. Despite the fact that the solution is convergent, we found
that the computed MSSRE converges to a steady state quite far away from the ”true”
equilibria. The pictures below illustrate the situation at hand: as K, is not pin down
by any stationary function (i.e., x in the MSSRE), the demarcation lines in the plane
(K, K, ,) are pushed towards the boundary of the system during the whole transition.
Of course, this is not the case for the MSSRE.

Figure 1 is borrowed from the numerical section of this paper (see section 7.1). It
depicts the demarcation lines for K, K, given K, which are downward sloping and
increasing in K. Also, the "upper contour” line reflects the maximal level of K, for
a given K, where the boundary reflects the zero consumption pairs. Note that for an
arbitrary large n, K, orbits near the intersection of the 45° ray with upper contour
line as the demarcation curves becomes "sufficiently flat”. That is, if K,y < K,, with
H(K, 1,K,) =K, and K,, 1, K, sufficiently close to each other, because K, intersects
the 45° degree line and the demarcation curve is flat in the neighborhood of K, we
know that K,, = K, ;. Then, in the next iteration, we have H(K,, K,41) = K,4o =
H(K,, K,) = K,, where the last equality follows from the fact that H(K,_1, K,) and

®The existence of this bound follows from standard arguments in [Stokey, 1989]. See chapter 5.1.
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Figure 1: Dynamic Behavior in a Generalized Markov Equilibria (GME)

H(K,, K,y1) are in the same contour. Then, we simply call K, = K* by the definition
of a (non-stochastic) steady state.

Figures 2 and 3 illustrate 2 different (numerically) convergent G,. We know from
previous paragraphs that the equilibrium policy function in the MSSRE may not be
continuous, maybe near its intersection with the 45° line. Moreover, any convergent and
continuous MSS with K,, = Kyssre,n = N, will also satisfy K,, = H(K,, K,). We
found 2 selections for the closed form GME. However, as a stationary Markov process is
constructed using a time independent transition function and state space, only 1 them is
suitable for the purpose of this paper. This is because one of the 2 selections generate a
the state space that is not stationary. Thus, as we only have 1 time independent GME,
the Markov equilibrium in the expanded state space is unique and, if the MSSRE is
continuous, the 2 equilibria must display the same long run behavior. Figure 2 depicts
this fact.

Figure 2 shows the pairs (k,z(k)) (in blue) and (k,z(x(k))) (in green) which satisfy
the equivalence between the 2 equilibrium types.

We now turn to the numerical solution of the problem. As we are computing the
MSSRE in a finite grid, denoted {Kj}, we choose to plot points, which are interpolated

for expositional purposes. Note that eventually, we can find a pair of elements in the grid
which satisfy:

Koy = Koz = Argmaz (W (K1) (K}, = Argmaz {W (Koz) ()

12
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Figure 2: Minimal State Space Markov Equilibria (MSSRE) and GME

Where W is the objective function of the Bellman equation in the MSS problem with
k = K. The expression above is the numerical equivalent to z(z(K,)) = K,. Note
that, as we are dealing with a finite set of points, the continuity requirement is trivial
as we can endow the function with the discrete topology. Thus, convergence is achieved
numerically even if the function is not continuous. Figure 3 depicts a discontinuous
mechanism which will be declared convergent by any iterative procedure based on a finite
set of points. This figure illustrates one of the main findings of the paper: it is possible that
a numerically convergent MSSRE has a significant bias with respect to the eract unique
ergodic equilibrium (i.e., the GME) because it does not have a steady state.

The blue dots are the pairs (K, z(K)). Note that we are plotting an evenly spaced grid
(kj,....,kj+4) and a discontinuity point of the MSSRE (in black dots). The actual image
of kj44 does not belong to the grid. Moreover, Argmax W (k;;4) is closer to kji4 than
any other point in the grid. Thus, as W is typically “bell shaped”, the algorithm will pick
k;+4 as a solution to the maximal problem when the aggregate state is k4. Thus, we
have x(k;44) = kj14 even though this policy function does not have a steady state. Note
that because all MSSRE are a subset of all possible GME, as we show that the latter is
unique, the former must be discontinuous in the presence of a bias between the 2 steady
states. If the MSSRE is continuous, the uniqueness of the GME implies that they must
have the same steady state as depicted in figure 2. When we solve the stochastic model,
we found several discontinuities in the MSSRE and an important bias with respect to the
ergodic GME.
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Figure 3: Dynamic Behavior in a Discontinuous MSSRE over an evenly spaced grid { K}

2.2 Monotonic Euler Equations

In this case, as (1 — 7(K))F'(K) is decreasing, we know that the derivative of the value
function is continuous and, thus, the classical Euler equation holds. Equipped with this
structure, we can define a monotonic operator A. Instead of iterating on GG, we will define
a procedure based on monotonic consumption functions, c¢. Along the equilibrium path,
i.e., k = K, the presence of an optimizing representative agent implies that we can write
the Euler equation u/'(¢;) = pu'(¢i11)(1 — 7(Ky)) F'(K}) as follows:

u'((Ac)(K)) = pu'(e(F(K) = (Ac)(K)))HR(F(K) — (Ac)(K))

Where HR(K) = (1 — 7(K))F'(K). There are 2 critical facts about operator A: i)
it is continuous, ii) it can be defined in the space of equicontinuous monotonic functions
once the set containing ¢ is wisely chosen (see the appendix, section A.6). Moreover, the
existence of a strictly positive fixed point can be proved using a theorem in the Tarski
family, provided the initial condition of the iterative procedure is appropriately chosen.
This fact ensures, together with some curvature assumptions, that Ac = ¢ is continuous
and unique (see the appendix, section A.6). Thus, when we move to the stochastic case, if
shocks are drowned from a finite state markov process, we are confident that simulations
are ergodic (see the appendix, section A.1). Finally, due to the equicontinuity of the
consumption set, the sup norm ensures convergence. This is due to the Arzela-Ascoli
theorem (see the appendix, section A.6).
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The operator A not only ensures the presence of a constructive existence proof which
can be used to defined an algorithm, it also preserves critical properties when it comes to
compute and simulate the model (i.e., uniform convergence and ergodicity). However, it
has a cost in terms of CPU time as noted by [Arellano et al., 2016]. To circumvent this
problem, the authors defined an algorithm based on the existence of a differentiable value
function called Envelope Condition Method (ECM).

If '(c(K))(1 —7(K))F'(K) is decreasing we know that the Euler operator defined
above is continuous (see appendix A.4 and A.6 which is based on [Coleman, 1991]), the
standard envelope theorem works (see appendix A.3 which is based on [Stokey, 1989)]),
and the first order conditions are sufficient. Thus, we can use standard results to compute
the equilibrium. The operator A allows us to measure the trade-off inherent in the use of
the ECM: numerical efficiency vs. accuracy. Below we briefly discuss the results described
in the numerical section for the stochastic case.

The ECM can be briefly described as follows:

1. Pick an initial condition ¢ for each K
2. Compute capital tomorrow z(K) = F(K) — ¢(K)
3. Compute the value function V(K) = u(c(K)) + V (z(K))

V’(K)}

4. Update consumption ¢(K) = u'~? [H(K)

5. Continue until convergence under the sup norm ¢ — ¢ — - - -

Note that we can pick the same initial condition that works for operator A, a monotonic
function. However, step 4 does not preserve the monotonicy in ¢ as the numerator and
the denominator are both decreasing. Moreover, the computed policy function for capital
is almost linear with a slope slightly bigger than 1. These facts have at least 2 important
implications. Let xgcy be the numerical fixed point found by the ECM. Then: i) as
rpem(0) > 0 and zpeyy is linear with a slope bigger than 1, there is no compact ergodic
equilibrium. ii) As the ECM does not ensure equicontinuity (see appendix A.6), ¢ — ¢ —
-++ does not converge under the sup norm. The literature is aware that the ECM is not
convergent. However, the arguments typically rely on the fact that the ECM does not
ensure that the computed policy functions are maximal (i.e., does not satisfy the sufficient
conditions associated with the recursive problem). However, in this paper we argue that,
even if the ECM does preserve maximality, it does not achieve convergence. The reasons
can be found in a combination of facts i) and ii). In particular, following [Arellano, 2008],
after totally differentiating V(K) = u(c(K)) + BV (x(K)) with respect to K the derivative
of the value function yields:

VI(K) =/ (c(K))HR(K) = [BV'(2(K)) — u/(c(K))] 2'(K) (7)
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As 2/(K) ~ 1, we know that imposing the envelope condition (the left hand side
in equation (7)) ensures that the sufficient condition for the maximality of the policy
function holds (the right side in equation (7)) . However, the Euler equation implied
by (7) and the ECM method has a different structure when compared with operator A.
Note that A ensures that not only Ac is increasing, but also F(K) — (Ac)(K) has the
same property (see [Coleman, 1991]). This last condition is critical to ensure that A
generates a set of equicontinuous functions {c,},, with ¢,41 = Ac, (see the appendix,
section A.6). This is not the case in equation (7). More to the point, fact i) implies
that the equilibrium generated by the ECM is not compact and thus the Arzela - Ascoli
theorem, which ensures the compactness of an equicontinuous set of function under the
sup norm, can’t hold. Thus, the convergence criteria in step 5 is not appropriate as
¢ — ¢ — --- if it converges, it does so under a weaker topology.

3 Equilibrium Definitions

From the previous section it was clear that when the Euler equation is not monotonic,
a fact associated with a decreasing tax function, a Minimal State Space Recursive Equi-
librium (MSSRE) is too restrictive to get a continuous representation, which in turn is
critical for simulations. In this section we show that by expanding the state space we gain
enough degrees of freedom to find a continuous recursive representation, even when the
tax function is decreasing. This representation is called Generalized Markov Equilibrium
(GME) and it is derived directly from the Sequential Competitive Equilibrium (SCE).
To understand the connection between these 3 equilibria the subsections below describe
them and relate them with each other.

3.1 Sequential Competitive Equilibrium

The model is a stochastic version of [Santos, 2002] (section 3.2). Consider a represen-
tative agent economy with discrete time, ¢ = 0,1, 2.... Exogenous shocks are markovian
and will be denoted z. For the sake of simplicity let us assume that the state space for
these shocks is {0,1}. An element of the transition matrix will be denoted p(.,.), where
the first position denotes rows and the second columns. Let {z;} be a sequence of shocks
and Z! the set of histories up to time ¢, being a typical element z¢. Using standard results
(see [Stokey, 1989], Ch. 8) it is possible to define, for any zy € {0, 1}, a stochastic process
(Q,0q, f12,) on Z*.

Preferences are represented by a utility function U and a instantaneous return function
u, where u is continuous differentiable, strictly concave and strictly increasing.

As in this section we are dealing with a sequential economy, k denotes the supply of

capital (services) and K its demand. There is a unique decreasing return to scale firm
which only uses capital as input and its technology is characterized by y, = A(z;) f(K})
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with f* >0, f” <0 and f(0) = 0 as usual. The firm is owned by the consumer as she is
endowed with kg > 0 units of capital. Thus, the agent has two sources of current income
derived from her endowment: benefits, denoted by m;, and rents from capital, denoted
by rik;. The flow of taxes paid and transfers received are 7(K;)rk, and T, respectively.
Note that the tax rate depends on the stock of capital. It is given by a piecewise linear
continuous function which can be either decreasing, increasing or constant with respect to
K. This is the distinctive feature of the model as it will allow us to classify the recursive
equilibrium depending on whether it is monotonic, if the tax function is constant or
increasing, or it is not, when taxes are decreasing, (see [Santos, 2002], page 87 for details).

The problem faced by the consumer is to choose a pair of functions ¢ : Z©° — R,
and z : Z* — R, that solves the following problem:

InaXES D yule(z")) s () (8)

{c,z} ezt

s.t.

k(") = 2(") + (1 = k(2" (9)
o) +a() <m(" ) = (L=7(" r(Hk(E"T) + T(") (10)

c(z") = 0,k(2") = 0 for any 2' € Z*, z5 and kg > 0 given, 0 € [0, 1] is the depreciation rate
and vy € (0,1) the discount factor.

Note that we are restricting the maximal random variables (¢, x) to take values on R, .
This restriction will be relevant for the recursive representation of the sequential equilibria
as boundary conditions will be critical to prove existence of a stationary state space. In
what follows 7(z'~1) stands for 7(k(z'"1)) or abusing notation 7(k;(z'=')). That is, the
tax rate affects the rents obtained from capital holdings at time ¢, which is in turn affected
by the information contained in 2! ! because k;(2' 1) = 2,1 (281) + (1 — 0) ki1 (202). A
similar argument can be used to understand r(z*) because the agent knows the clearing
condition for the market of factors and the optimality condition for the firm to be de-
scribed below.

The problem of the firm is standard. Taking r, as given it solves:

max Alz) f(KG) — K, for any z; € {0, 1}. (11)

Observe that the optimality of the firm implies r, = A(z)f'(K;). The Government
simply transfers to the consumer the tax revenues:

T =7(z""YHr(zHk(z"1). (12)
Finally, goods and factor markets clear:
c(2') + 2(2') = A(z) f(KY) Goods Market
k(") = Kip Capital Market
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where both equations hold for any 2! € Z.

Note that in equilibrium, the optimality condition of the firm and the market clear-
ing equation for capital holdings implies 7, = A(z)f(k(z"!)) which in turn implies
ry = r(z') as claimed. Further, both market clearing conditions imply c¢(z') + z(z') =

A(z) f(k(z'71) = y(2") as expected.
We can now define the sequential equilibrium for this economy:

Definition 1 A Sequential Competitive Equilibrium (SCE) for this economy is com-
posed by a triad of functions z* measurable functions (z, ¢, r) such that:

e Given 7, (z,¢) solve the Maximization problem of the household.
e For each 2!, given r(z'), K(z') solves the problem of the firm.
e For each 2!, Goods and Capital markets clear.

e For each 2!, the Government runs a balanced budget, equation (12).

Assuming 0 = 1, the SCE can be characterized by:
u'(Cy) = Z Az 1)p(2, ze01) (1 = 7(Ke1)) f (K )u' (Ciin), (13)
zt+1=0,1

With constrains given by

Kior = A(z) f(K}) — Ch (14)

3.2 Generalized Markov Equilibrium

The discussion in the appendix (see section A.2) describes a recursive mechanism based
on an enlarged state space X. In particular, we wrote K, in terms of (K, K11, 2):

Kipo = Q(Kt, K, Zt)‘

The mechanism, g, is closed form and, even more, continuous (of course, this representa-
tion has economic content if we can assure that the boundary conditions on endogenous
variables generated by g are satisfied).

Equipped with g we can define a stochastic version of the GME described in section
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Definition 2: Generalized Markov Equilibrium (GME)

A GME is a correspondence ¥ : X — X with X compact such that for any x € X,
the vector (z, ¥(z)):
i) satisfies the optimality conditions for the household problem, equation (8) s.t. (9) - (3).
ii) The firm solves (11)
iii) Markets clear
iv) The public sector runs a balanced budget. That is, equation (12) holds.

In section A.2 of the appendix we show that, if we can ensure the existence of a well-
behaved state space, the sequential version of the model presented in this paper has a GME
representation. Let W; be any selection of W. Using standard results (see [Stokey, 1989]),
we can show that Py, (x, A) defines a Markov kernel with Py, (x,.) being a probability
measure for any z € X and Py, (., A) being a measurable function for any A € Borel(X).
An invariant measure is any fixed point of Py,. Call one of the possible many fixed points

i

Let U/ be any numerical approximation of ¥; and Pyi(z, A), 1) the associated Markov
kernel and invariant measure respectively. Since [SantZ)s and Peralta-Alva, 2005], it is
known that even if W/ converge to W;, the simulations obtained from ¥/ may differ from
the exact ones, generated using ¥,. If ¥, is equicontinuous and defined over a compact
state space, these authors showed that numerical simulations will match the exact long
run behavior of the model. However, equicontinuity is associated with very restrictive
properties for non-optimal economies as noted in [Coleman, 1991].

The virtue of this paper is that it allows us to circumvent the mentioned problems.
On one hand, we show that a GMFE exist for the problem at hand and thus, it is possible
for us to compute it. Moreover, using (21) and (22), we show that ¥; has a continuous
closed form representation, which in turn eliminates the problem associated with the lack
of convergence of numerical simulations, provided that we can find a suitable state space.

The (numerical) cost of this representation is the enlargement of the state space with
respect to the natural one (i.e., (K}, z;)). As we have a closed form solution, these costs
are more than compensated by the accuracy of simulations. As discussed in [Kubler and
Schmedders, 2002], enlarging the state space might provide a recursive representation.
Unfortunately, the results in that paper does not address the continuity of the mecha-

nism; an aspect that has severe consequences for the steady state of the model as discussed
in [Duffie et al., 1994].

After taking care of the boundary conditions, we can ensure the compactness of the
state space. Coupled with the continuity of the mechanism, ¥;, we can show existence of
p; using canonical results in [Futia, 1982]. See section A.1 in the appendix for a detailed
discussion about the existence of invariant measures in compact spaces.
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We can use these results to simulate the model. Let U; := K;,1, we have now the
following iterative system:

Take first an arbitrary initial condition (K, Uy, zp) and a drawn {z,}, then

K1 =U
Ui = g(KhUt?Zt)a

provides a sequence {X,}. Such a sequence defines a Feller mechanism, with compact
state space X.

The quadratic structure in (26) ensures that the compactness of the state space and
the interiority of solutions are sufficient (if they are satisfied jointly, of course) to guaran-
tee ergodicity (see section A.1 and A.7 of the appendix). Below we will define an operator
which allows us to find a state space that it is compact and that ensures that capital and
consumption remains positive along equilibrium paths. Provided that pu; is ergodic, the
process {K;} has a well-defined invariant measure as well 6. Moreover, using standard
results on laws of large numbers for markov processes (see [Varadhan, 2001]), it can be
shown that choosing an appropriate initial condition suffices to guarantee that:

D, X))

teo,...,

T converges almost surely to £, (h),

Where h is a X-measurable function and p is one of the possibly many ergodic invari-
ant measures described above.

Finally, note that U,y is measurable with respect to z!, which in turn implies that
K. is measuble with respect to the same filtration. As Z! < Z!*! the measurability
requirements in definition 1 are satisfied. This is the cost of working with a Markov struc-
ture: we are losing memory inherited from the sequential equilibrium, a fact which may
affect the empirical performance of the model as noted by [Pierri and Reffett, 2019].

3.3 Minimal State Space Recursive Equilibrium

This paper deals with global methods. Any researcher choosing them must deal with the
limitations implied by the numerical burden associated with the solution of a consider-
able number of non-linear equations. Thus, it is natural to choose the minimal possible
number of states as this option significantly reduces the main disadvantage of this type of
methods.Thus, it is critical to understand the limitations of MSSRE methods. The MSS
version of the model described above can be written as follows:

SLet p; be and invariant measure for z = (K,U, z). Then by integrating out K,z we can find the
marginal distribution for U, which is an invariant measure for K’.
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Vn (kv Ka Z7 Hj) = MaxyeF(k,K,Z) u(gT(k7K7 Z)_y)""YZVn—l(ya Hj(Ka Z)v Z/a H])p(Z7 Z,)
Z/

(15)
Where the feasibility correspondence is given by:
T(k,K,Z)=|ye K;0<y<g,(k K, Z)]
Capital is allowed to fluctuate in a compact set, [0, KY?] = K and g, represent

disposable income and is defined by:

gk, K, Z)=7n(K,Z)+ (1 —7(K, Z2))r(K,Z)k+ T(K, Z)

Where 7(K, Z) and 7(K, Z) are defined in (9) and T'(K, Z) in (12). The policy function
for (15) is given by h,_1;(k, K, Z), which belongs to the set defined below:

argmaz {u(gT(l{:,K, Z)—y)+ 72 Vooaly, Hi (K, Z), Z' H))p(Z,Z") s.t.y e T'(k, K, Z)}
Z/

Note, remarkably that: i) the household take a guess at the evolution of the aggregate
states using a perceived law of motion denoted H;. ii) The value and the policy function
in the dynamic programming problem have to converge in j, which is associated with
the rational expectation nature of the problem (i.e., the perceived and the actual law of
motion must be equal when k£ = K), and in n, that is guaranteed by the contractive
nature of the Bellman operator in (15). iii) The dependence of disposable, g,(k,.,.), on
prices, r(.,.), justifies the presence of equilibrium states which are represented by capital
letters. They affect the household problem through the firm’s decisions, given by (11),
and market clearing conditions which are contained in the definition of recursive compet-
itive equilibrium, which is given below.

Definition 3 Minimal State Space Recursive Equilibrium (MSSRE)

A MSSRE is a value function Vi, a policy function h, , and a perceived law of motion
H, such that:
i) the household solves equation (15) obtaining Vi (k, K, Z; H,) and h,.(k, K, Z; H,) for
any feasible state k, K, Z.
ii) The firm solves (11)
iii) Markets clear. That is, k = K
iv) Expectations are fulfilled. That is, h, (K, K, Z; H,) = H.(K, K, Z) for any (K, Z)
v) The public sector runs a balanced budget. That is, equation (12) holds.
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To understand the connection between the existence of a MSSRE and its computa-
tion, we must characterize it. Even under strong curvature and smoothness assumptions
on the return function u, which are all satisfied imposing the parametrizations used in
section 3.1, even if we assume the continuity of the feasibility correspondence I', for an
interior optimal solutions, h,; (., K,.;H;) € I'(,, K,.), we can’t use the implications of
the envelope theorem in [Stokey, 1989] when & = K 7. In particular, as V'(K, K, z) is
not decreasing, the first order conditions are not sufficient. Moreover, as V'(k, K, z) is
continuous in k but V'(K, K, z) may not be as f'(K)(1 — 7(K)) is not monotonic, the
operator defined by the Euler equation, presented below, may have multiple roots.

Fortunately, using lemmas 3.3 and 3.4 in [Amir et al., 1991] we know that any solu-
tion to the dynamic program must satisfy the classical Euler equation and, thus, it can
be characterized (see section A.4 for a detailed discussion) using first order conditions.
Formally, a solution to the dynamic programming problem in definition 3 for any pair of
individual states (k, Z) and given the aggregate level of capital K must satisfy:

U [g-(k, K, Z) = haj] = vEz {u [g:(Hj, ha j) — b j(ha )] Af'(H;)(1 = 7(H;))}  (16)

Where the dependence of h, ; on (k,Z) for each K and of H; on (K, Z) have been
omitted for expositional purposes. 2 things must be noted from equation (16): 1) condi-
tion iv) in the definition of MSSRE may not hold in this model because we can not prove
that this type of equilibrium exists. 2) As f/(K)(1—7(K)) is not monotonic, there maybe
multiple values of H; for some (K, 2).

Equation (16) defines a mapping 7" from H; to h, ;. The discussion in section A.2 of
the appendix (see the supplementary material for section 3.2) shows that any fixed point
of this map is a MSSRE. This discussion also suggests that it is not possible to ensure that
a sequence of function {H; }j converging to H, will "hit” h, . as required by the definition
of MSSRE. Existence proofs require either a convex policy correspondence or an order
structure, which can not be proved in the non-monotonic case covered in this subsection.
That is, any numerical procedure based on iterations through T using the uniform metric,
as the one described in [Rios Rull, 2004], cannot be proved to be convergent to a MSSRE.
Thus, SUP |H, ; — h, ;| maybe arbitrarily large, a fact which can cause a severe bias in
the numerical simulations as discussed in section 2.

"The arguments used in section 2 hold mutatis mutandis. In particular, Benvenisite and Scheinkman
envelope theorem (see [Stokey, 1989] page 266, Th. 9.10) coupled with the strict concavity of V,, (in k)
(see [Stokey, 1989] page 265, Th. 9.8) would imply that V! is decreasing in k when k = K, which will
not hold globally as f'(K)(1 — 7(K)) is not monotonic.
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4 Decreasing taxes: non-monotonic Euler equations

The results in section 3 provide a unique opportunity to test the predictive power of MSS
methods. As any MSSRE must satisfy equations (13) and (14), the simulations generated

by it must converge to one of the possible multiple ergodic distributions obtained using a
GME.

To perform this test, we present a standard recursive competitive MSS algorithm with
2 different "updating” rules. The first does not numerically converge to a fixed point
between the perceived and actual law of motion and the second does, implying that in
the latter case we are dealing only with the effects of a discontinuous equilibrium as ex-
plained in section 2. Then, the policy functions are simulated, and the results compared
with those obtained from the exact solution of a GME, as described in the appendix (see
section A.2, supplementary material for section 3.2). In order to ensure that the exact
GME has a state space which generates a pair of equilibrium random variables (¢, x) tak-
ing values in the in the non-negative real numbers, we adapt a theorem from [Duffie et al.,
1994]. We found that only 1 mechanism has a well-defined state space. Thus, we know
that any MSSRE is a GME, which is also unique. So, any simulation obtained from the
former, must match the latter if this equilibrium exists and it is continuous.

As neither continuity nor existence hold in the MSSRE if «'(¢(K))(1 — 7(K)) f'(K)
is not monotonic, we found a significant deviation with respect to the true equilibrium
which, in turn, affects the long run distribution of capital. These findings provide evi-
dence in favor of the results in [Hatchondo, 2010] and [Feng et al., 2015] which suggest the
importance of theoretical results in the recursive numerical literature. That is, without
sufficient conditions that ensure the equivalence between numerical and actual simulations
of the model, a convergent algorithm does not quarantee by itself the absence of biases.

4.1 MSS Algorithm

We compute a MSSRE using the operator 7', which in turn follows from equation (16).
It is standard in the literature (see for instance, [Rios Rull, 2004]) to pick an arbitrary
function Hy as a candidate for the equilibrium aggregate perceived law of motion and
look for uniform convergence. However, theoretical results do not support such a strong

convergence notion °.

8If u/(c)(1 — 7)F’ is increasing in K, it is possible to show that any iteration starting from a lower
or upper bound on T (i.e., H € B such that H < T(H) or T(H) < H respectively) will converge
in the order topology. That is, take a sequence of increasing functions generated iteratively from T,
{H;} with Hj,, = T(H;). We say that H; —~, H,, meaning {H;} converge in the order topology
to Hy, if for any j, H; < H, and H, € B, given the compactness of the state space, this will suffice
(see section A.2, the supplementary material for section 3.2, A.4 and A.6 of the appendix for a detailed
discussion). If w/(c)(1 — 7)F’ is decreasing in K, the convergence will be uniform in the standard sup
norm. Unfortunately, as 7 is decreasing and F' strongly concave, we showed in section 3.4 that 7" is not
a monotonic operator and thus it is not possible to generate a convergent sequence of functions using 7.
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We do not have known sufficient conditions which ensure the convergence to a MSSRE
using T'. However, we found numerically a fixed point for T in the sup norm. In partic-
ular, the procedure described below was found to be convergent using the sup norm for
acceptable relative error levels (in the order of 1072)

HO > Equation(15) h*,O ™ Definition 37> Hl(Ka Z) = Gl(H07 h*,O)(K7 Z) - ()

Where the first — means that we are solving equation (15) using Hy as a guess for
the perceived law of motion. The second — stands for the fact that we are computing
the policy function h, o along the equilibrium path according to definition 3. The last
— implies that we are updating the perceived law of motion for aggregates states. The
functional G is an updating rule. We use 2 different types of them:

o () =aH;+ (1 —a)H,_,, with a € (0,1)
' J
.%:me
i=0

The last one was found convergent, that is: n = N(e) imply |G5 — hy | < €. Finally
note that “— (...)” means that we are starting the loop again if convergence using the
sup norm is not achieved.

4.2 Stationary GME

For any arbitrary state space X, with typical element (K, K,,Z) € X, equation U; =
K., =g(K,U, z) may imply that K, ¢ R, (i.e., K, may be an imaginary or negative
number). Let Z, be the smallest possible shock. Note that we may have A(Z.) f(K) < K
and / or A(Zp)f(K,) < K, which in turn imply that consumption is negative.

To solve these problems, we use theorem 1.2 in [Duffie et al., 1994]. The authors
showed that, given the compactness of the sequential equilibria, it is always possible to
find a stationary sate space J € X for the markov equilibrium associated with any root
of the system characterizing the closed form GME, see equation (26) in the appendix
(section A.2, supplementary material for section 3.2), using an iterative procedure. For
simplicity, the details of this procedure are contained in the appendix (see section A.2).
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4.3 Simulations

We now turn to measure the numerical bias. in the previous section we described the
algorithm typically used to compute a MSSRE and a GME.

The task is to compute definitions 2 and 3 using a concrete tax function based on
the model in [Santos, 2002], a standard algorithm borrowed from [Rios Rull, 2004] and
the refinement for the GME described in section 4.2. In particular, 7 is decreasing in
K. Thus, the operator T is not monotonic and, consequently, it is not possible to prove
that a numerical procedure based on iterations using 7" will converge to a MSSRE. The
parameters used to compute the model are contained in the table below. We are carefully
following the preferences and technology structure in [Santos, 2002]. However, as this
model is non-stochastic, we are setting the values for the exogenous shocks in set Z and

transitions probabilities pyy and pgyy in order to ensure a well-defined steady state for
the GME.

y=AZ)f(K)=e’K'"® | Zy=0.2
u(c) = In(c) Zr, =0.1275
0=1 pru = 0.5

Table 1: Parameters

The table below contains the results of simulating a MSSRE and a GME. The parame-
ters used are listed in Table 1. We refine the mechanisms for the GME using the operator
defined in section A.2 of the appendix (see the supplementary material for section 4.2).
We found 2 selections of the GME. For one of them J = [0.01,1.50] and for the other
J = . Thus, we will only report ¥z = ¥, where "NR” stands for negative root.

Model H Mean\ STD \ CV \

v 1.1976 | 0.0079 | 0.0066
MSSAvg, Kyp = 0.6 0.4058 | 0.0117 | 0.0289
MSSCes, Kyp = 0.6 || 0.2662 | 0.0106 | 0.0400
MSSCes, Kyp = 1.5 0.3098 | 0.0134 | 0.0431

Table 2: Simulation Results. Statistics for aggregate capital

Where STD stands for standard deviation and CV for the coefficient of variation (stan-
dard deviation / mean). The ”"empirical” distributions are constructed as follows: take
an arbitrary initial condition. Simulate a path of 5000 observations for aggregate capital.
Store the last 1000 observations. Then, the computed distribution is taken from the rel-
ative frequency of 25 grid positions out of these observations. The procedure is repeated
for any of the 4 listed distributions.
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We report 3 different solutions for the MSSRE, which differs in the updating rules
(1, G discussed in section 4.1 and in the upper bound (Kyp) of the grid. The first one
called "MSSAvg”, which stands for ”average”, is not convergent and thus it contains the 2
sources of biases: the lack of a steady state and the lack of convergence. When we expand
the state space, to make it comparable with J, the cesaro updating is not convergent. We
highlight in bold font the convergent simulation which contains only 1 source of error.
Below we report the associated biases.

Model H Min-Max Error ‘ Min-Max Rel. Error ‘ A(Zpp)F'(K*) ‘ Bias ‘
MSSAvg, Kyp = 0.6 [0.1062, 0.4248] [0.9696, 41.3] 0.6908 0.1834
MSSCes, Kyp = 0.6 | [—0.0059,0.0118] [0.072,0.1361] 0.9151 0.0027
MSSCes, Kyp = 1.5 [0.0596, 0.3129] [0.3460, 0.8994] 0.8270 0.1540

Table 3: Lack of Convergence: Implications for the accuracy of simulations

We define an error as the difference between the perceived (H, ;) and actual (h, ;)
law of motion for capital. The columns in the table contains the [minimum - maxi-
mum| relative and absolute errors across iterations j using the sup-norm. The relative
error determines the convergence of the algorithm. For instance, we declare MISSCes,
Kyp = 0.6 convergent because for some j the relative error was 0.072. Note that only
the cesaro updating procedure with a grid of [0.01,0.6] converged.

The absolute error is used to compute the distortion generated by the algorithm. If
we take as a reference value the mean of the capital stock under each procure, denoted
K*, the lack of convergence of the algorithm implies a distortion of (h. (K, K,Z) —
H,;(K,Z))A(Z)F'(K) in the equilibrium budget constraint ¢ + =z = F(K). That is, on
average, the MSSAvg procedure implies that the household receives 0.1834 more units of
the consumption good due to the lack of convergence of the algorithm. Thus, as the agent
is "wealthier”, capital stock is higher when compared with the accurate solution among
MSS algorithms (i.e., MSSCes, Ky = 0.6).

The numerical solutions in Table 2 has a significant bias, as measured by the difference
in mean with respect to the ergodic distribution. The table below presents the relative
deviations.

Model H Relative Mean | Relative CV
MSSAvg, Kyp = 0.6 0.34 4.38
MSSCes, Kyyg = 0.6 0.22 6.06
MSSCes, Ky = 1.5 0.25 6.53

Table 4: Relative Bias
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Where “Relative” stands for Mean(MSSAvg, Kyg = 0.6)/Mean(¥), etc. From Ta-
ble 4 the mean of the ergodic accurate distribution (as measured by the GME) is way
above the mean generated by any numerical approximation of the MSSRE. We observe
that mean capital is at least 66% below the accurate mean. On the contrary, the dispersion
is significantly below. Thus, despite the fact that the algorithm for the MSSRE converge
for the case of M SSCes, Kyp = 0.6 using a strong criteria (i.e., the sup norm and a
tolerance level of 0.075 for the relative error), the numerical distribution will present a
severe bias with respect to the distribution us well defined.

The results described above point out to the relevance of a well-defined steady state
(i.e., a fixed point of Py(K,Z;.), where P is the markov kernel defined in section 3.2
but constructed using the perceived law of motion for the MSS, H). From section 3.3 we
know that the discontinuity of V; , plays a central role in this fact. Below we show the
(numerical) derivative of the value function for the MSSCes, Kyp = 1.5 when k = K.
We choose this solution as the state space is comparable with J.

T T T
—— Derivative for the low shock
80 Derivative for the high shock |

20

\/ WVV VT VVV/\V‘v *v’ W\/ TV VvV

@)
T

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 4: Numerical Derivative of the Value Function when k = K

The blue line represents the derivative for the low shock. Even though the figure
depicts the expected convex shape for a concave function, it has several jumps, sug-
gesting the presence of more than 1 discontinuity. More to the point, the discontinuity
set seems large and dependent on the TFP shock, Z. Thus, it would be difficult to
know when we have a model with a well or an ill behaved steady state as depicted in
figure 3. These jumps are especially relevant near the numerical long run distribution.
Below we plot figure 4 for the points in the grid that have positive mass in the long
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run (i.e., [Mean — 25T D, Mean + 25T D] for the updating rule and grid size given by
MC@S,KUB = 15)

14r 7

121 —— Derivative for the low shock §
Derivative for the high shock
10 © 8

ol v |

| |
0.24 0.26 0.28 0.3 0.32 0.34 0.36

(\]
T

Figure 5: Numerical Derivative of the Value Function in the long run

Even though near the mean, 0.3098, the derivative seems continuous, the existence of
any unconditional moment depends on a well-defined invariant measure (i.e., on a fixed
point of the markov kernel Py). Thus, the jumps to the left and right of the numeri-
cal mean are relevant for the existence of a steady state as depicted in figure 3. More
importantly, given the finite cardinality of the grid, the algorithm may not capture the
discontinuity and display a well-behaved histogram.

As discussed in previous sections the observed bias could be generated either by the
lack of convergence of the perceived to the actual law of motion (i.e., H; — H, — h, ) or
by any difference between the numerical and the actual steady state (i.e., ,uf — i -» pfor
any computed MSS algorithm i € 1,2, 3 where p is the fixex point of Py ). As the regards
the former, note that any MSSRE must satisfy equation (16) which in turn ensures that
any path generated using h. . along the recursive equilibrium will also be a sequential
equilibrium. In other words, any path generated from a MSSRE satisfies equations (13)
and (14). The lack of coincidence between the perceived and the actual law of motion will
generate a distribution of capital that does not belong to any possible sequential compet-
itive equilibrium, which explains part of the bias as measured in Table 3. Moreover, as a
continuous MSSRE may not exist for this model, we cannot ensure the existence of a well
behaved steady state for this type of equilibria (i.e., gy ssrrp may not exist). If that is
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the case, any numerical distribution, namely pﬂw ssrp» could be arbitrarily far away from
i as it is not possible to show that prssre — p-

The figure in the appendix show, for the sake of completeness, the phase diagrams
depicted in figures 1 and 2. The numerical histograms used to compute the results in
table 2 are available under request.

We turn to the policy implications of the results in this paper. Note that the mean
capital stock for the MSSCes, Kyp = 1.5 algorithm is well below the ergodic mean.
Thus, as 7 is decreasing with 7 — 0 for K — Ky g, using the MSS to predic the long run
behavior of this model we may conclude that the observed tax rate is positive. Recent
results, see for instance [Straub and Werning, 2020], have shown that the optimal tax
rate is strictly positive in the long run. So, the policy advice would be to slightly change
the observed tax rate, if any. However, the true distribution, with a support close to the
upper bound of J, calls for a increase in the tax effective tax rate.

5 Increasing taxes: monotonic Euler equations

In this section we briefly modified the parameter structure in the previous paragraphs in
order to match the results in [Coleman, 1991]. We first derive the theoretical structure
for the benchmark case. Then we perform the numerical test of the Envelope condition
method.

5.1 Preliminary Results

The sequential equilibrium is the same as the one in definition 1. The differences with
respect to section 3 and 4 are as follows:

0 =0.019

u(c) =c"77/(1 — o) with o =4

o [(K) =K

In(Zyy1) = pln(Z;) + €41 with €1 being a distributed according to a normal dis-
tribution with mean 0 and standard deviation 0.007, discretized with a 10 points
grid.

7(K) = 0.1K/KY8 and HR(K,Z) = (1 —6) + Zf'(K)(1 — 7(K)) is decreasing

Definition 1 implies that any sequential competitive equilibrium must satisfy:
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u'(cr) = BE (v (c1) HR(K 1))

Where the dependence on Z;,; has been omitted as the integral in Fj; is with respect
to this variable. In order to define a recursive equilibrium with minimal state space we
can build an Euler equation operator, A. Let C be the space of candidate policy function.
In particular:

C(K,Z) = {

c: K x Z — R is continuous
<c(K,Z)< F(K,Z)
<cK',Z)-cK,Z)<F(K',Z)-F(K,Z),K' > K}

; (17)
0

Where, F(K,Z) = (1 —0) + Zf(K), K = [0,KY?] and Z is a grid of 10 evenly
spaced points. Note that equation (17) implies not only that the policy functions must
be continuous but also consumption and investment are increasing. Following [Coleman,
1991] we can defined the following operator:

U ((Ae)(K, 2)) = BEAU ((F(K, Z) = (Ac)(K, Z), Z")) (18)
HR(c(F(K, Z) — (Ac)(K, Z), Z'))}

Equipped with operator A, we can define and characterize a recursive equilibrium.

Definition 4 Coleman’s Minimal State Space Recursive Equilibrium (CMSSRE)

A CMSSRE is a policy function c, such that:
i) is a fixed point of A defined in equation (18).
ii) The firm solves (11)
iii) Markets clear. That is, z(K,Z) = F(K,Z) — c.(K, Z)
iv) The public sector runs a balanced budget. That is, equation (12) holds.

The results in the appendix (see section A.6) allows us to derive the following results,
which are all straightforward applications of [Coleman, 1991].

Lemma 1 Properties of a CMSSRE

Let {c,} be a sequence of function generated iteratively using A with ¢y(K,Z) =
F(K,Z). Then,
i) ¢, is the unique strictly positive fixed point of A
ii) ¢, is a CMSSRE
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iii) c4(., Z) is continuous for any Z € Z and monotonic in K x Z

iv) {c,} converges to ¢, in the Sup Norm

v) Let K' = K(K,Z) = F(K,Z) — c¢.(K,Z). Then, the markov process generated by
(K x Z,p) has an ergodic measure

Proof: See the appendix, section A.6.

Where p is a Markov kernel . Now we turn to the background results for the ECM.
From sections 3.2 and 3.3 we know that, if HR(., Z) is decreasing for any Z, the envelope
theorem holds. Thus, along the equilibrium path (i.e., & = K) we must have:

W (c)HR(K, Z) = V](K, Z) (19)

Note that equation (19) implicitly assumes that h, , = H,. Following [Mirman et al.,
2008] we know that, as HR is decreasing, the iterative procedure described in section
4.1 converges under the sup norm. In particular, we know that the mapping from the
perceived to the actual law of motion, H,, — h, . induced by the recursive problem (15)
generates an ordered space {c,, H,} and the convergence to H, is uniform '°. Moreover,
we know also from [Mirman et al., 2008] that H, is differentiable. However, as discuss
in section 2, the ECM does not induce a monotonic operator. That is, for the stochastic
case, the ECM can be described as follows:

1. Pick an initial condition ¢(K, Z)
2. Compute capital tomorrow z(K,Z) = F(K,Z) — (K, Z)
3. Compute the value function V (K, Z) = u(c(K, Z)) + BEZV(2(K, Z), Z")

4. Update consumption é(K, Z) = u'~* [‘gggg))]

5. Continue until convergence under the sup norm ¢ — ¢ — - --

Even if we choose ¢ in order to ensure the joint monotonicy of ¢ and x in steps 1 and
2, as V'(.,Z) and H(.,Z) are both decreasing, ¢ may not be monotonic. Thus, {c,} is
not an ordered space of equicontinuous functions and, thus, convergence is not ensured.
However, this is not because ¢ is not maximal in (15) as claimed in [Arellano et al., 2016].
That is, as z(., Z) is differentiable for each Z, we have:

VK, Z) - (c(K, 2)HR(K, Z) = [BE, [V'(2(K, Z), 2")] — ' (c(K, Z))] (K, Z) (20)

9p can be defined analogously to Py, in section 3.2. For further reference, see [Stokey, 1989], chapters
7to09.
10Tf we set Hy = Cy = F and hg = F — Ac, as the envelope theorem holds, the convergence is assured.
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Where (20) follows from the total differentiation of the value function at the optimum.
It is easy to see that, if 2/(K, Z) ~ 1 for every (K, Z), step 4 in the ECM algorithm implies
that {c,} is maximal in (15). However, as claimed above the ECM does not converge under
the sup norm even if 2/(K, Z) = 1.

5.2 Numerical performance: ECM

The table below illustrates the relative performance of the ECM with respect to its bench-
mark, the CMSSRE. Each result is classified according to the initial condition in the
sequence {c,}. For instance, the second row shows the results for simulations obtained
using a policy function numerically convergent using the ECM and with ¢q = ¢y /2, where
cvp(K,Z) = F(K, Z); the initial condition for operator A. The ECM algorithm was de-
scribed in the previous section. The algorithm for the benchmark case, the CMSSRE, is
described in the appendix (see section A.4 and A.6).

Model H Relative Mean ‘ Relative CV H Mean 'y,
ECM, ¢y = cuyB 0.002 558.8 0.9696
ECM, ¢y = cyp/2 0.049 45.4 0.9672
ECM, ¢y = cyp/4 0.175 47.8 1.045

Table 5: Relative Performance of the ECM

As in the previous case when H R is non-monotonic, frequently used procedures sub-
estimate the mean and over-estimate dispersion measures with respect to the ergodic
equilibrium. Note that there is a pattern: the lower the initial condition, the higher the
bias with respect to the mean. We observe that the mean of K is at least 82% below its
accurate benchmark.

6 Conclusions

This paper presents an example of a non-optimal economy with accurate benchmarks.
This type of equilibrium is useful to assess the predictions of the model as it allows to
generate reliable simulations. We also present a condition, the monotonicity of the Eu-
ler equation, that is associated with exact simulations and provide a description of the
reasons behind the lack of accuracy of them. We use the closed form nature and the
existence of a MSS the recursive equilibrium together with the induced Feller mechanism
to test the accuracy of MSS methods. The results in this paper does not depend on any
numerical procedure, they constitute a unique opportunity to assess the performance of
state-of-the-art algorithms.

From a purely economic perspective, as the model is built to study the effect of eco-
nomic policies, the presence of a bias constitutes a major drawback for the conclusion
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generated by the model. In particular, the presence of capital taxes generates a real-
location between consumption and savings which are not captured by state-of-the-art
algorithms. Ad valomen taxes on capital must shift the composition of aggregate demand
towards consumption, away from investment. As standard procedures subestimates the
long run average level of consumption, the estimated response to economic policies will
be frequently misrepresented.

The paper also connects two branches of the recursive literature: the one concerned
with the existence of a steady state (see for instance [Santos and Peralta-Alva, 2005]) and
the one concerned with the existence of a recursive representation of the sequential equi-
libria ( [Kubler and Schmedders, 2002]). We show that when the existence of equilibrium
can’t be shown constructively biases may arise.

The results in this paper have to be generalized. It is necessary to understand the
connection between the number of possible exogenous states and the number of distinct
economically meaningful recursive equilibria. That is, as the degree of the polynomial in
the equilibrium equation in the closed form of the GME is increasing in the number of
exogenous states and each root of the polynomial defines a different mechanism (provided
that the root is real and consumption / capital are positive), there is a tradeoff between
a realistic shock process and the predictive performance of the model as more than one
possible mechanism generates a less conclusive model. Moreover, the monotonicity con-
dition presented in this paper is sufficiently general to be used in other branches of the
literature such as default models.
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7 Appendix

7.1 Figures

1.5
o /"//7 -
1 B / N
0.5 ]
—— Upper Contour — KppMSS —— KppGME —45°
0 \ \
0 0.5 1 1.5

Figure 6: Phase Diagram

The light blue curve is the upper contour for K, ,, the blue curve is H(H (K, Z), Z)
for the MSS and the green line is H(K, K, Z) for the GME, where K, is fixed in the
50th grid point.
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7.2 Theorems and useful definitions

A.1 Invariant Measures

Let S be the state space and P a markov operator of the process (A, P). og is the
Borel sigma algebra generated by S. P has the Feller property if P(s, A) is continuous
(in s) for any A € S. P is tight if S is compact. The operator P maps the space of Borel
os -measures P into itself as follows: p/(A) = { P(s, A)u(ds) = Pp.

Theorem A1 (Futia, 1982, page 383, Th. 2.9) If P has the Feller property and is tight,
then there is a measure p such that y = Pu

A.2 Supplementary material for sections 3 and 4
Section 3.2: A Closed form GME

In this case, the solution to the model can be characterized by the equilibrium Euler
equation, which can be obtained by putting the optimality condition for the firm, the bud-
get constraint for the Government and the market clearing conditions into the optimality
condition for the consumer.

Assume that u(c) = In(c) and 6 = 1. Then, the equilibrium equation is given by:

Ly Z A(Zt+1)p(ztaZt+1)gt:lT(Kt+1))f,(Kt+l)7 (21)

zt+1=0,1

With constrains given by

K= A(z) f(K}) — Cy. (22)

Note that the market clearing condition for capital implies that given z! the demand
for capital K;,; does not depend on the realizations of the exogenous shock at ¢ + 1.
Hence, by replacing Cy.; in (21) with its expression obtained from (22) and after some
algebra we can rewrite (21) in the following way:

C
I 1

1
A F(K) = Kip) (1= (K AG) f(Ki)
0 o (23)
A(0)p(z,0) i A(D)p(z, 1)
AQ) f(Eo1) —Kevz  AQ) f(Kp1) —Kiss
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One of the purposes of this paper is to find an equation ¥ : X — X, where X is an
appropriately defined state space and V is a function that maps x; — ;1 with (24, 24, 1)
satisfying equation (23) for any t.

Notice that by standard arguments, by fixing § = 1 and f(0) = 0, K; stays in [0, KY5]
(see [Stokey, 1989], Ch. 5) for any t.

Let X = [0, KUB] x [0, KYB] x {0, 1}. With this state space ¥ becomes a vector valued
function of the form z; — (W (1), Yo(xy), Us(ay)) with z, = (K3, Uy, 24).

Let {z,} be a realization of (Q, 0q, ii.,). Then, it is possible to define each coordinate
in the image of ¥ as follows:

K1 = Vi(2) = Uy
zee1 = Vs(ze) = {2z} (t + 1).

In order define ¥y we could use (23). Notice that (23) takes the form

&1 Co

= + R
dy = U1 dy = Uy

Cc

(24)
or equivalently,

c(dy — Uppr)(dy — Uppr) = c1(dy — Upy1) + c2(dy — Uppa). (25)

Due to the fact that this is just a quadratic equation we can get U;.1 as a continuous
function of the parameters, namely:

i\/(—dlC — dQC +cp + 02)2 — 4C(d1d20 — Cldg — C2d1) + (dl + dQ)C —C1 — Cy

U —
t+1 9%
(26)
Equivalently:
U1 = g(di, ¢, da, 1, ¢2)
It is important to observe that (26) gives at most 2 different mechanisms '* | each

of them characterized by a different root of (26). Furthermore, note that c(Ky, Uy, 2),
d1(Uy), da(Uy) and the rest of the parameters in (26) depend on z; . Thus, U, is given by:

"Note that (23) implies that this model does not have a trivial solution at K; = 0 as u = In and
investment is not allowed to be negative. This fact in turn implies that the parameters in (23) are all
bounded away from 0. Of course, in order to have two non-trivial solutions it suffices to impose conditions
on the discriminant of (26)
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Ui = g(dlaca d2701702) = \Ifz(l’t)-

Note that once we start iterating the system, it is possible that simulations go outside
X. That is, some simulations could be imaginary, negative or not finite. The continuity
of ¥y (on Ky and Uy), provided that the state space is well defined across any possible
path, seems automatic. It suffices to verify the continuity of C,d;,dy (on K; and U,),
which is trivially satisfied. However, if we iterate forward equation (26), the restrictions
on dy,c,dsy, cq,co in order to keep U411 in R may affect the empirical performance of the
model as the set of parameters (i.e., 5, p(.,.), etc) can’t be freely choose in the calibra-
tion / numerical estimation procedure. Moreover, even if we could find an empirically
meaningful parameter set, any solution to (26) may imply a negative consumption level
or capital stock. Of course, due to the log preferences, these solutions will not be optimal.
Thus, we must find a procedure in order to rule out solutions outside R, and that imply
a negative consumption level. In the numerical section, we adapted a canonical result due
to [Duffie et al., 1994] to verify that the state space is well defined along equilibrium tra-
jectories. Given the quadratic structure in (26), the stationarity (i.e., time independence)
of the state space is sufficient to ensure both compactness and continuity of the recursive
mechanism.

Section 3.3: An Operator for the MSSRE

Define the function space B on K x Z = § as follows:

B(S) ={H(s) such that H : S — K with 0 < H(s) < A(Z)f(K), H measurable}

That is, a MSSRE is a fixed point in the functional 7" as the measurable maximum
theorem ensures that h,; € B when k = K. Any attempt to prove the existence of a
fixed point in a function space must circumvent the problem associated with the lack of
sufficiency of the first order conditions which typically ensure a convex graph in the policy
correspondence. That is, T'(H;) may not be convex for models with a finite number of
agents or finite shocks (see [Pierri, 2021] for a detailed discussion). Thus, the literature
has turned to the lattice dynamic programming framework because it works in non-convex
models. See section A.4 for a review of the results in this literature relevant for the model
presented in section 3.

Moreover, contrarily to the Fan - Gliksberg theorem, lattice dynamic programming
gives us a constructive fixed-point theorem which naturally generates an algorithm. In
fact, the numerical procedure in [Rios Rull, 2004] can be proved to be convergent en-
dowing B with an order topololgy if T' is a monotone operator; which in turn ensures
the existence of a MSSRE. That is, in order to prove the existence of a MSSRE and
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the convergence of the algorithm in [Rios Rull, 2004] for any H]’- >, H; we must have
T(HJ,») = h/*ﬁj >, hsj = T(H;) where >, is the pointwise order in B.

In order to prove the desired properties in 7" we can borrow from [Mirman et al., 2008]
and [Coleman, 1991]. We present the relevant theorems in section A.4. The former proved
that it is required to show that V,(k, K, Z; H;) has increasing differences (see section A.4 in
the appendix) in (k; K') for each (Z, H;) (lemma 12 and theorems 3 to 6). This condition,
in turn, is equivalent to show that V,(k, K, Z; H;) = ' (g, (K) — hu ;(K)) (1 — 7(K))r(K)
is increasing in K, where the dependence of V,; on (k,Z; H;) has been omitted in the
right hand side of the equation. Note that (1 — 7(K))r(K) is decreasing in K if 7 is
increasing and undefined otherwise.Thus, as 7 is decreasing by assumption, the results
in [Mirman et al., 2008] does not hold.

[Coleman, 1991] showed that, if u/'(g,(K) — h.;(K))(1 —7(K)) f'(K) is decreasing in
K when k = K, the operator based on (16) induces an order structure. As 7 is decreasing
by assumption, we cannot have an order structure for this model.

Section 4.2: An operator to stationarize the GME

Provided the compactness of the equilibrium, to have a well defined state space in the
GME we need 2 things: i) to keep the roots of the equation which defines the GME, (26),
into the positive real numbers, 2) to keep consumption positive. The following operator,
borrowed from [Duffie et al., 1994], serves this purpose. We start by defining the sets
which contain the elements in X that solves the system of equations that form a 2 period

economy. We allow the vectors that characterize the second period of this economy to lie
in Cy = X:

Cl={ZL'QEX|\I/(l’0)ﬁCQ75@}

Where Cy = X < R2. Moreover, for n = N, C,, — J. If the sequential equilibria is
compact, J is non-empty and compact. As some roots of equation (26) may not be a real
number, we can use this operator in order to keep C,, contained in R3. Moreover, the
authors showed that for any z € J, U(x) n J # @, which in turn implies that the GME
can be iterated forward. As this set is time invariant, it is a state space for W.

However, as we are solving for an internal solution, we need to get rid of any vec-
tor (¢, cl, K, ,) that contains a negative number, where ¢ = A(Z;)f(K) — K, and

ck = A(Zp)f(K,) — Ky+. In order to circumvent these problems, we use the following
modified operator:

Ci={zoe X, A(Z)f(K) = K. | U(ag) n Co # D, A(Zr) F(KL) = Walwo)}
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Where Wy(xg) = K, 4 is the second coordinate in the image of the vector valued func-
tion which defines the closed form solution of the GME (see section A.2 of this appendix,
supplementary material for section 3.2). The operator above generates a sequence of sets
in R? with non-negative consumption levels which converge to a possible empty set J. We
are interested in finding 1 mechanism ¥ from equation (26) which generates a non-empty
state space J.

A.3 Classical Dynamic Programming

The following paragraphs are borrowed from [Stokey, 1989]. Note that equation (15)
and the feasibility correspondence I' define a standard dynamic programming program, as
in [Stokey, 1989], with states (k, Z) for a given K. In order to prove the strict concavity of
V(k,.,.) (Theorem 9.8, page 265) we need the following set of assumptions: i) k € X < R",
ii) Z € Z and Z is countable, iii) T'(k, K, Z) is continuous in k, iv) Let A be the graph
of I'(k,K,Z). Then, u : A — R is bounded and continuous, v) w is strictly concave for
each Z € Z, vi) I'(k, K, Z) is convex for each Z € Z. If additionally, we assume that w is
differentiable in the interior of A for each Z € Z, V/(k, .,.) is continuously differentiable
(Theorem 9.10, page 266).

Unfortunately, when we look at I' when k = K, we loose some properties listed above.
As 7 is decreasing, (1 — 7(K))K is increasing and, as F' is strictly concave in K, r(K, Z)
is decreasing. Moreover, given the functional for for F' in Table 1, as 7 is piecewise linear
continuous, (see [Santos, 2002]), (1 —7(K))Kr(K) is convex, which implies that for some
yel(x,Z),y el'(a,Z), we have Oy + (1 —0)y' ¢ I'(0x + (1 —0)2’, Z). Thus, we may fail
to have a concave and differentiable value functions as property vi) is not satisfied. We
need thus to use some properties of LL functions, which are described below.

A.4 Lattice Dynamic Programming and Supermodularity

The following paragraphs are borrowed from [Rockafellar, 1981]. A function f : R" —
R is locally Lipschitzian (LL) if : |f(2") — f(2")] < A|2" — 2’|, where A = 0 and 2", 2’
belong to a neighborhood of x € R". A concave function is LL. Moreover, the generalized
directional derivative (GDD) is given by:
fo(a:,v) _ lzmsup o, 110 w
When f is LL, the GDD is finite. However, the GDD may be ”bizarrely disassociated”

from f (see [Rockafellar, 1981] page 5). Thus, we need to connect f°(z,v) with the
”classical” directional derivative (DD):

f’(x,v) = limyo f(x+t1;)—f(x)

We know from [Rockafellar, 1981] (see page 6), that when f is concave, f°(z,v) =

f(z,v) for all x,v. Of course if f is differentiable f'(x,v) = f'(z).v, where f’ is the
gradient. Moreover, let the superdifferential 0f be defined as:
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of ={peR" [ f(z)+p-(y—2) = fy), v,y e R"}

For concave functions at interior points Jf is non-empty, finite and p € Jf satisfies
p.v = f(z,v). Thus, we have a connection between the tangent p of a concave function
and it’s DD, which is finite at interior points. Finally, if f : R — R, the left and right
derivative (f'(x7), f'(z") respectively) satisfy f'(x7) = f'(z*) and f’ (the derivative) has
at most a countable discontinuity set. The left derivative is a minor simplification with
respect to f (z,v):

f,(l’_) — limyy f(w*ti*f(w)

The following paragraphs are borrowed from [Mirman et al., 2008] and [Amir et al.,
1991]. If equation (15) has interior solutions, V/(k~,.,.),V/(k™",.,.) exist every where
for each K, Z, in particular when & = K (see [Amir et al., 1991], Lemma 3.3). As
u(c) = In(c), we know that solutions will be interior. From Lemma 12 in [Mirman et al.,
2008] we know that Vi is LL. The results above imply in turn that V?(k,.,.) is finite,
thus, V/(k~,.,.), VI(k*,.,.) are finite.

As (k,K) € [O,m X [O,E and Z has finite cardinality and it is bounded, we know
that the domain of V, is a complete lattice (a POSET endowed with the pointwise order
such that each pair of elements in it, has a least upper bound A and a greatest lower
bound v that belong to [O,F] X [O,F]). Then, V, is supermodular if: V,(z v y,Z) +
Vilx Ay, Z) = Vi(x,Z) + Vi(y, Z). This concept is not really useful. Fortunately, we
have an alternative characterization which is called increasing difference (ID). Vj has ID
if: Vi(k,K1,7) — Vi(k, Ky, Z) is non-decreasing in k for K; > K,. [Mirman et al., 2008]
propose a set of sufficient conditions (see assumption E in page 78) in order to ensure that
Vi has ID which in turn imply that the operator 7' is convergent in a very precise sense.
We will only mention the assumptions that are not satisfied in the model presented in
this paper.

Assumption A.4.1 u'(c(k, K, Z))(1—7(K))r(K) is increasing in K and 0 < c(k, K', Z)—
c(k, K, 2Z) < F(K', Z) — F(K, Z) with K’ > K.

If assumption A.4.1 is satisfied, not only V, has ID (Lemma 12) but also: TV/(F) —
hY ., where TY/(F) is the j-th iteration of T starting at F' taking the supremum of each

®,%)
maximal element in ArgmazV, and h;, is the supremum in the set of fixed points of

T. Moreover, T*7(0) — h},, where the interpretation is analogous. Now we turn to the

result in [Coleman, 1991], which are generalized in [Mirman et al., 2008].

Assumption A.4.2 u'(c(k, K, Z))(1—7(K))r(K) is decreasing in K and 0 < c(k, K', Z)—
clk, K, 2Z) < F(K', 7Z) — F(K, Z) with K’ > K.

If assumption A.4.2 is satisfied we can define an operator, based on (23), which ensures
that there exist a MSSRE and that it can be computed by successive approximations
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(see [Mirman et al., 2008], theorem 10, page 86). When (1 —7(K))r(K) is non-monotonic,
we can not use any of these results.

A.5 Stationary Markov Equilibria

The results in this section are borrowed from [Duffie et al., 1994]. Let ¥ : X — X be
the correspondence which defines the GME (see definition 2). Let Cy = [0, m X [0, m X 7.
Then, we can define a sequence of sets as follows:

Cy ={xoe X | Y(xg) nCy# D} =Q(Ch)

Let {C;}, be the sequence of sets generated iteratively using Q). If C; is non-empty
and compact, then n;C; = J is non-empty and compact and satisfies the self-generation
property (i.e., x € J implies ¥(z) n J # ). Intuitively, J is a stationary state space
for the markov process generated by Pgy. Note that we have modified () in section 4.2
in order to ensure that consumption is positive along the equilibrium path. Thus, we
can not use this theorem in order to prove that .J is well defined. However, we found a
parameter structure and a mechanism which gives a stationary state space numerically.

A.6 Euler Equation Operators

This section contains a summary of the main results in [Coleman, 1991] and the
required definitions to make the paper self-contained.

Each element in a set of equicontinuous functions {c,} defined on a compact set K
satisfies: for each k£ € K and n in a countable set, if for any € > 0 there exists a § > 0
such that |, (k) — ¢, (k)| < e with |k — k| < §. The critical fact in an equicontinuous
set of functions is the existence of a bound, e, which is uniform across n, k. Note that
a collection of function in (17) form a set of equicontinuous functions and this is closely
connected with the fact that, both, consumption and investment are increasing in K. The
Arzela-Ascoli theorem states that a closed metric space of bounded real valued functions
(i.e., {c,} endowed with the sup norm, |.|) defined on a compact set (i.e., K) is compact
if it is equicontinuous. Thus, convergence in {c,} is uniform (using the sup norm).

Tarki’s fixed point theorem states that an order continuous, monotone self map of a
nonempty partially order (see section A.4) compact set (the candidate is A defined over C'
in section 5.1) in which some element ¢ is mapped downwards (i.e., Aco < ¢o) has a fixed
point (in A) and a sequence of functions generated iteratively from this map (i.e., {c,},
with Ac,, = ¢,41) converges to a maximal fixed point (i.e., in case there are more than one).
In order to use this theorem, we need to show that: i) A is continuous and monotone,
ii) {c,} is a partially ordered compact set, iii) ¢y maps down the sequence. [Coleman,
1991] shows i) in propositions 4 and 5, ii) proposition 3 and 5, iii) it follows by setting
co(K,Z) = F(K,Z). Moreover, {c,}, with Ac, = c¢,,1, converges uniformly to the
maximal fixed point (proposition 6). It remains to show that the fixed point of A is
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unique and strictly positive. Under the parameter structure in section 5.1, these facts
follows respectively from theorem 11.

The last 2 paragraphs coupled with section A.1 suffice to show Lemma 1.
A.7 Ergodicity of the invariant measure

Let & = {u | = Pu} be the correspondence of fixed points defined in section A.1 of
this appendix. [Santos and Peralta-Alva, 2005] shows that if the mechanism defining the
Markov process, WU;, is equicontinuous, then ® is weakly compact. Then, [Futia, 1982]
shows that p is ergodic. As W; is one of the roots of a polinomial of degree 2, equation
(23), the fact that the state space contains positive and bounded capital stocks, which
at the same time generates positive consumption levels (see sections A.2, supplementary
material for section 4.2, and A.4), implies that it has bounded derivatives if X is compact.
Thus, V; is equicontinuous and p is ergodic.
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