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Abstract. Nowadays, the modelling, design, evaluation and testing stages involved in the development of railway infrastruc-
tures are extensively assisted by computer simulators. Moreover, some expert systems take a step further to improve and pro-
pose designs, taking the user's knowledge as a baseline. These systems can generate and assess a large number of complex 
scenarios, which yields the execution of numerous, and potentially very complex simulations. Railway infrastructures rely 
heavily on these applications to analyze potential deployments prior to their installation. In this paper, we propose the railway 
power consumption simulator model (RPCS), a cloud-based model for the design, simulation and evaluation of railway electric 
infrastructures. This model integrates the parameters of an infrastructure within a search engine that generates and evaluates a 
set of simulations to achieve optimal designs, according to a given set of objectives and restrictions. The knowledge of the 
domain is represented as an ontology, which translates the elements in the infrastructure into an electric circuit, which is simu-
lated to obtain a wide range of metrics in each element of the infrastructure. In order to support the execution of thousands of 
scenarios in a scalable, efficient and fault-tolerant manner, we also propose an architecture to deploy the model in a Cloud 
environment. To illustrate how our model would adapt to a specific problem, we describe a case study that aims to maximize 
energy savings, while maintaining a high power provisioning quality. Using our model, we were able to obtain the optimal 
substation distribution that allowed the infrastructure to operate under normal and faulty conditions. Additionally, we include 
the economic costs that arose from the externalization of the computations to the Amazon Elastic Compute Cloud, which were 
minimized by our dimensioning model and the usage of spot instances.  
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1. Introduction

Power dimensioning and energy saving have been traditionally two main issues regarding the deployment of
electrical grids. Since their conception in the Industrial Age, power grids are designed and deployed following a 
trade-off between supporting high quality provisioning to the consumers, and saving as much energy as possible. 
Railway electric lines, as a particular case of electric grids, are also concerned about these issues, trying to supply 
a steady flow of energy to the moving trains, but not exceeding the power required by them.  

Within this context, simulators have been the main tools to design and test railway electric lines. Prior to its in-
stallation, a particular deployment can be tested on a simulator, modelling the infrastructure and the train traffic in 
order to check the behavior of the system. Simulators like the ones introduced in (1) and (2) are able to analyze in 
a per-instant basis whether the power supplied to the trains is enough of not, if there are voltage drops or over-
voltages, etc.  

Nevertheless, as computer systems evolve, the role of simulators must evolve from merely imitators of the real-
world, to expert systems with the ability to make decisions and complement the user knowledge with metrics in 
order to achieve the best solutions. In previous works (3), we stated that modern simulators should be capable of 
proposing and evaluating new designs, taking into account all possible issues that may affect, or even determine, 



the final validity of a solution. This search across the problem domain is driven by expert’s knowledge imple-
mented within the simulator, in the form of generation and evaluation rules that may reduce the number of simula-
tions performed, or give those solutions a score indicating their fitness according to specific criteria, and a search 
algorithm that leads further evolution of selected solutions in order to improve them.  

However, as the number of scenarios to be simulated increases, so does the computing resources required to 
perform the whole search. Exploring the search space of the problem in several dimensions (e.g. sweeping differ-
ent parameters of the simulation) leads to an explosive number of simulations that have to be performed. In this 
context, Cloud Computing raises as an option to achieve virtual on-demand resources, with minimal management 
effort. In fact, Cloud Computing brings the opportunity to tailor the hardware resources according to specific user 
needs or simulation characteristics, whereas the pay-per-use model frees the user from the burden of maintaining 
the infrastructure once the simulation has been performed. All things considered, outsourcing the infrastructure to 
Cloud Service Providers (CSP) is a meaningful decision when there is a high variation in the number of simula-
tions, or in the resources needed to execute them.  

In a previous work (4) we introduced the core elements of the simulation model described in this paper. With 
this baseline, the aim of this paper is to present a full cloud-based simulation model for the railway energy provi-
sioning domain. This extended version of the model supports the simulation, evaluation and optimization of rail-
way infrastructure designs according to a series of user-defined metrics, restrictions and optimization criteria. In 
order to cope with the numerous simulations that may result from this process, and their inherently massive com-
putational requirements, this model takes advantage of the elasticity of cloud infrastructures. For the purpose of 
demonstrating the capabilities of this model, a case study is conducted by stating a multi-objective optimization 
(MMO) problem. The results will show the solutions achieved, the search process, and the economic costs billed 
by the cloud service provider (CSP) after the whole process is completed. 

The paper is structured as follows: Sec. 2 discusses relevant publications related to the topics in this work; Sec. 
3 introduces the main aspects of the proposed model, including the ontology used to represent the railway domain, 
the simulator’s structure, and the elements that constitute the search engine; Sec. 4 describes a use case that par-
ticularizes the application of this model, along with the formalization of this case as an MOO problem; Sec. 5 ex-
poses the cloud-based architecture that reinforces the scalability and parallelism of the simulation model; Sec. 6 
describes the evaluation conducted and the results obtained, specifying the target infrastructure and its impact on 
the economic cost of the execution; finally, Sec. 7 provides key ideas as conclusions and some insight in future 
work. 

2.  Related work 

The research community has been aware of the need for optimal planning of power distribution systems as a 
whole (5). In particular, many of the relevant works in the field are focused on providing a near-optimal solution 
in a computationally efficient manner. To achieve this, different artificial intelligence (AI) techniques have served 
as a baseline for the implementation of the aforementioned decision making process, such as particle swarms (6), 
genetic algorithms (7,8), ant colonies (9), simulated annealing (10), artificial neural networks (11), multi-agent 
systems (12,13), and evolutionary algorithms (14). These methodologies provide a holistic approach in which the 
simulator proposes consistent, well-suited solutions to a particular problem.  

Ontologies have been traditionally used to model and represent the simulated domain in expert systems. The 
authors themselves hold broad experience in this topic and in railway-related domains, as shown by previous 
works that support the need for ontology-driven decision support systems (15,16). Nevertheless, given the wide 
variety of sub-domains within the railway domain, it is hard to find an ontology which includes all the required 
elements and contemplates all the facets of a particular engineering problem. (17) represents a first attempt to join 
experts and create an ontology of railway objects, which was addressed as a great challenge. (18) presented a 
methodology to develop and infer railway ontologies, but the ontology described as case study was far from the 
electric problem. Dedicated ontologies for railway power dimensioning are not easy to find, as most of them are 
focused on scheduling and operation, like the one introduced by (19). (20) proposed in their work an ontology that 
includes, but is not focused on, the railway power dimensioning problem, leaving relevant aspects aside.  

 



It may occur that the optimization process depends on different conflicting criteria, leading to an MOO problem. 
Works like (21–25) approach the design of simulation models from an MOO perspective, which allows to define 
several optimization metrics such as minimization of power losses, overall deployment cost, system failure index, 
or maximization of energy savings, etc. This approach has been also translated to the field of railway power sup-
ply systems, especially along with the previously cited evolutionary techniques. For instance, (26,27) consider a 
trade-off between failure recovery and load sharing is exposed and tackled as an MOO problem.  

Nowadays, many scientific areas make use of the Cloud Computing paradigm to overcome scalability issues in 
simulations, and increase their performance. In particular, computing frameworks, like MapReduce (28,29), have 
been increasingly used as building-blocks for distributed large scale simulators in a wide range of areas (30,31). 
Railway simulators have also been affected by this trend, integrating MapReduce and Cloud environments to ex-
isting techniques with promising results in large datasets and scenarios (32). Finally, (33,34) demonstrate the eco-
nomic feasibility of migrating scientific or engineering simulations to the Cloud, even though making use of 
Cloud resources entails paying for such resources to the CSP.  

From the related works researched by the authors, only a few stay close to the present work, in terms of useful-
ness and capabilities. (11) proposes a fast approximation based on neural networks in order to plan power supply 
investments. On the contrary, our approach is independent from the underlying AI techniques, so different search 
strategies can be implemented with minimal modifications. (12) implements an agent-based smart power router, 
which can flexibly integrate network areas and optimally manage power flows. Nevertheless, this approach is out-
side the railway domain, so it does not take into account the particular railway domain characteristics. (1) and (25) 
both propose an optimization problem for AC railway power systems, with well-developed and consistent models. 
These models, however, do not consider as many details regarding the infrastructure as our model does. Despite 
(35) follows an approach similar than ours by presenting an integrated framework for simulation and solution 
evaluation for scenario optimization, it is not oriented towards infrastructure design, but train scheduling. Finally, 
neither of these proposals is based on Cloud Computing, nor they can make use of elastic computing infrastruc-
tures according to simulation sizes and deadlines. 

3. The RPCS model 

The objective of this model is to support the assessment of potential infrastructures in order to develop new 
routes, increase train traffic across the tracks, or test failure situations where services have to be operated in de-
graded mode. RPCS is able to model a problem in order to simulate, evaluate and optimize a set of potential solu-
tions for the problem of designing and deploying electric infrastructure on railway lines, according to a given op-
timization criteria and restrictions. In this section we describe in detail the main elements that compose the model: 
an ontology of the railway electric infrastructure domain, a simulation kernel, and a search engine. Figure 1 shows 
an overview of the model, including these elements and their relations. The ontology drives a translation of real 
infrastructure components into elements of an electric circuit: voltage sources, branches, and consumers (current 
sources). This information is used by the simulation kernel, which uses the knowledge of the railway infrastruc-
ture and its elements (tracks, feeders, electrical substations and trains) to build an electric circuit, which is solved 
afterwards. Finally, the search engine generates and evaluates solutions varying a set of parameters, performing 
the search across the solution space to meet user-defined restrictions and objectives. Further information on the 
domain’s ontology, the simulation kernel, and the architecture of the search engine is provided in the following 
subsections. 

 

 
Figure 1: RPCS model high-level architecture. 



3.1. Ontology 

The main role of the domain ontology is to propose a taxonomy to translate real infrastructure elements into an 
electric circuit. This electric circuit should reflect the actual behavior of the system (i.e. trains, tracks, electrical 
substations) accurately, in order to approach the results of the analysis as close to reality as possible. The main 
reason behind the need for an ontology is that it brings the formalization required to interact with the problem do-
main outside the simulation kernel, helping to set out optimization problems, defining heuristics and restrictions, 
and performing searches across the problem space using different algorithms.  

The proposed ontology represents the domain of a railway installation containing a set of railway stations 
linked by tracks at a specific milemarker. A number of trains circulate with a pre-defined profile along these sta-
tions, and through the tracks. These trains consume electric energy during their operation, and this energy is pro-
vided by electric substations placed strategically within the infrastructure. The electricity is transported from the 
electric stations to the trains by means of catenaries deployed over the tracks, and returns to the substations 
through the rails. As a whole, these elements conform an electric circuit that changes constantly over time, due to 
the train movement and consumption variations.  

The entities and their relationships are represented in Fig. 2. This ontology is designed to distinguish the ele-
ments that belong to the infrastructure, and the mobile elements that use it (i.e. trains). In this context, trains are 
defined by their electric properties, as well as the profile of its run. This profile is constituted by a collection of 
records that relate the power consumption of the train with a specific instant and position, expressed as a mi-
lemarker of a track. More specifically, we can define the profile of a specific train as indicated by Eq. 1. This pro-
file, ℘, is defined as a set of 3-tuples, where t is the instant in the simulated time in which we know the position of 
the train on the track, m, and its instantaneous power consumption, P. 

 
℘ = {(𝑡,𝑚, 𝑃): 𝑡 ∈ 𝑇,𝑚 ∈ 𝑀, 𝑃 ∈ ℝ!}								(1)	

 
 

Figure 2: Ontology for the railway power provisioning domain considered in RPCS. 

 



3.2. Simulation kernel 

The aim of the simulation kernel is, provided a number of trains circulating across the line(s), to calculate the 
electric status of the infrastructure in the form of voltages and currents in the system. Subsequently, this permits to 
assess whether the amount of power supplied by the electrical substations is sufficient to allow the trains to render 
without delays, failures, or any other contingency. 

The main algorithm that composes the electric circuit requires the definition of a set of electrically independent 
tracks, voltage sources, and ground connections that link the track to the electric substation.  Trains run across the 
track demanding power at the time and point marked by their profile, thus acting as consumers in a circuit. These 
entities are translated by the ontology to characterize the resulting electric circuit with its nodes, branches, and 
voltage/current sources. Subsequent circuit analysis is conducted to obtain data that reflects the state of the circuit 
and all its components. These results are translated back in order to map the outcome of the analysis to the physi-
cal entities of the domain. A summary of this procedure can be seen in Fig. 3.  

Note that, due to the fact that the trains are in movement, the system is constantly changing, so every instant the 
electric circuit must be composed and calculated, varying the position of the consumers. As consequence, modi-
fied nodal analysis (MNA) (36) must be performed on every simulated instant, thus requiring a significant amount 
of computing power to perform the whole simulation. The MNA general formulation can be simplified in this 
domain considering branches as resistors, and independent voltage sources only. This results in Eq. 2, where G, B 
and C are matrices of known values obtained from the circuit elements (connections, conductances, etc.), 𝑢" and 
𝑖#are the unknown voltages and currents, and, finally, i and e contain the sum of the currents through the passive 
elements, and the values of the independent voltage sources, respectively. 

 
 

Figure 3: Simulation process scheme. 
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The larger the simulated times and installation, and the larger the larger the number of elements to be simulated 
(lines, trains, power stations, etc.), the bigger are the MNA matrices that need to be solved. 

This simulation kernel relies on two types of input data: 
- Shared infrastructure specification data, containing the initial and final time of the simulation, plus a wide 

range of domain-specific simulation parameters such as station and railway specifications and power supply 
definition. 

- A set of train movements data, structured in a time-based manner, in which each register contains the calcula-
tion of speed and distance profiles for a particular train at a specific instant regarding the infrastructure con-
straints, and most important, the instantaneous power demand, with a one second interval. 

3.3. Multi-objective optimization engine 

In the previous section we have described how the ontology and simulation kernel can be used to simulate a 
scenario with several tracks, trains, electric substations, etc. Nevertheless, as we stated before,  modern simulators 
should be capable of proposing and evaluating new designs taking into account possible issues that may affect the 
final validity of a solution. In order to do so, we broaden the RPCS model turning towards a generic MOO prob-
lem that can be tailored to meet user-defined constraints and objectives, supporting experiment generation, evalua-
tion and solution improvement. 

The proposed MOO engine consists of the following elements: 
- An experiment generator that models the parameters that will vary to generate the pool of scenarios to be 

simulated. This permits to execute not one, but many simulations, each one constituting a variation of the in-
put data –either the infrastructure or the trains–. 

- A solution evaluator that models how the results of each of the former experiments are going to be assessed. 
Its main objective is to detect the solutions that meet given constraints and objective functions, introduced in 
the form of an MOO problem. 

- A search algorithm in charge of guiding the selection of the optimal solutions. This could also include evolu-
tionary and iterative techniques to improve solutions in further generation-execution-evaluation cycles. 

These elements wrap the simulation kernel and the ontology. In this way, the model supports the definition of dif-
ferent search problems by only defining the generation and evaluation procedures, plus choosing the algorithm to 
perform the search. 

Nevertheless, setting out search problems typically entails the execution of not one, but many simulations, thus 
requiring a high amount of computing resources. The inherent complexity of the simulation process is factored by 
the number of simulations to be executed, which is also dependent on the selected search algorithm and optimiza-
tion metrics. For instance, a single-objective search aiming to maximize the overall provisioning quality would 
require much less simulations than a bi-criterion optimization that also minimizes power losses. 

In order to set the basis for the rest of the paper, the next section will describe in detail a case study following 
our model. 

4. Case study: optimizing energy provisioning on railway lines 

At this point we focus on the modelization of the trade-off between energy saving and quality of energy provi-
sioning. As trains circulate along the tracks demanding power, voltage oscillations may arise all across the electric 
circuit, leading to voltage drops or over-voltages. These situations should be avoided, maintaining a constant flow 
of electric power to the trains. Note that trains do not always consume the same amount of power, and even more, 
they can return power to the circuit due to regenerative braking technologies. The quality of the power supply re-
fers to the concept of maintaining the system as close to the nominal voltage as possible. While voltage drops can 
be avoided by adding more electric substations on the tracks, the fluctuating energy consumption in the trains 
might lead to an excessive voltage in the system, especially if the regenerative braking mechanism is operative. 
Besides, the more substations to be placed, the more expensive the deployment is, and the more aggregated energy 



is consumed by the electric substations. This leads to conflicting objectives, thus to a MOO problem: the goal of 
maintaining a constant power flow, in favor of providing more energy, against the target benefit of saving energy.  

Our search problem will be to find the corresponding Pareto frontier of the MOO problem. To evaluate the gen-
erated scenarios, we propose a set of restriction rules that must be fulfilled by the design in order to be considered 
as acceptable, and set of optimization metrics in order to score those accepted solutions. Both sets are obtained by 
analyzing the European regulations (37–39). 

4.1. Problem formalization 

As previously described, there are two objectives that guide the optimization process: 
- Improving the quality of the power supply. 
- Reducing the amount of power consumed by the groups. 
We define from these goals the following criteria: 
- Maximizing the mean useful voltage per train, O1. 
- Minimizing total amount of energy consumed by the groups, O2. 
As described in European normative UNE-EN-50388 (39), for direct current installations the mean useful volt-

age is defined as the mean of all voltages at the pantograph of each train in the geographic zone, along all simula-
tion steps. This measure indicates the quality of the power supply. The lower the mean useful voltage is, the less 
energy is transferred from the supply stations to the trains, on average. 

For the formalization of this problem, let T be the set of trains in the whole system, and G be the set of groups 
in the network. The first objective is defined in Eq. 3, where 𝑈$%&  is the mean useful voltage per train, and 𝑈$'() 
constitutes the maximum permanent voltage. 

𝐦𝐚𝐱𝑂) =	
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# +,-..
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	∀𝑡 ∈ 𝑇            (3) 

 
The second objective is formulated in Eq. 4, where Eig is the energy consumed per group, in kW/h. 
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				𝑖 ≠ 𝑔, ∀𝑔 ∈ 𝐺										(4) 

The problem is subject to the following constraints: 
- According to the normative (39), the mean useful voltage per train, 𝑈$%& , must never be lower than 2800V, 

and it shall not surpass the maximum permanent voltage, Umax1. 
2800	 ≤ 𝑈$%& ≤ 𝑈$'()  (5) 

 
- No sharp voltage drops or over-voltages shall exist on normal (i.e. non-failure) operating conditions (37). 

Therefore, instantaneous voltages should be in the range of non-permanent conditions on every instant of the 
simulation. This derives Eq. 6a and Eq. 6b. 

𝑈$0") ≤ 𝑈& ≤ 𝑈$'(,		∀𝑡 ∈ 𝑇 (6a) 
𝑈$0") ≤ 𝑈/ ≤ 𝑈$'(,		∀𝑔 ∈ 𝐺 (6b) 

The mean voltages on trains and the simulated zone, shall be within the limits of permanent operating conditions, 
even if voltages fall beyond that limits for a moment during the simulation [2, 11]. This yields Eq. 7a and Eq. 7b. 

𝑈$0") ≤ 𝑈$%& ≤ 𝑈$'(,		∀𝑡 ∈ 𝑇  (7a) 
𝑈$0") ≤ 𝑈$%3 ≤ 𝑈$'()   (7b) 

4.2. Experiment generation rules 

We selected as benchmark a standard railway scenario described in the European normative EN-50641 (38). 
This proposal of normative establishes the requirements for the validation of simulation tools used for the design 
of traction power supply systems. Therefore, it is meaningful to apply such normative to assess the capabilities of 
a model for a railway power infrastructure simulator.  

The problem’s search space will be generated by simulating a wide set of experiments that take as baseline the 
former CENELEC test case, and differ in the placement of the electrical substations along the tracks –i.e. the con-



nection milemarker of the substation to the track–. By modifying the location of the substations, we vary the elec-
tric circuit, thus we obtain different measures of instantaneous and mean voltages, as well as the consumed poten-
cy. Therefore, substation placement has a direct impact on the power supply quality and energy savings. Further-
more, we want to assess fault tolerance in the base design, so we also need to consider the situation in which a 
substation is unavailable. 

4.2.1. Base simulation scenarios 
 
First we need to determine the generation rules for the scenarios with all of the substations available. For each 

substation, 𝐸4, the initial and final points of the interval in which they can be placed must be defined –𝐸4,0"0 and 
𝐸4,60", respectively–, along with the distance between each planned position for the genera tion of the experiment 
set, ∆k. Each substation can be assigned to any of the points within the [𝐸4,0"0 , 𝐸4,60"]	interval, leading to the num-
ber of base scenarios indicated in Eq. 8, where M is the number of substations to be manipulated. 

𝑁7'89 =NO
𝐸460" − 𝐸40"0

∆4
R

:

42)

															(8) 

This definition of the parameters involved in our target experiments leads to Nbase different base scenarios. Each 
of them constitute an independent experiment. 

4.2.2. Fault-tolerance assessment 
 

In order to assess fault tolerance, we can eliminate one of the substations at a time in the designs that result 
from the rules in Sec. 4.2.1. Therefore, we obtain a set of faulty scenarios, each of them with a single substation 
missing. As these faulty cases might lead to scenarios that do not permit proper operation, we can also consider 
extended scenarios that included an additional group to increase the capacity of the system. 

Given the former, we take into account the possible combinations of M − 1 substations, with and without the 
added group in each of the remaining substations. This yields that, for every base scenario, we would obtain as 
many scenarios as indicated in Eq. 9. 

𝑁6'%;& = 𝑀	 ∙ T 𝑀
𝑀 − 1V + 1          (9) 

 
From these equations we can see that, the finer the grain of the planned experiments, and the larger the number 

of substations, the more simulations have to be executed in order to generate the solution space. Considering that 
the number of experiments to be simulated grows exponentially with the number of substations in the worst case, 
as indicated by Eq. 10, the overall computing resources required to generate the solution space of the MOO would 
quickly outscale those typically available in current desktop computers.  

𝑁 =	𝑁7'89 ∙ 𝑁6'%;&      (10) 
For instance, considering the previous case study, we can generate a set of base scenarios using the variations of 

the positions indicated in Tab. 1, displacing each substation from one kilometer to the next, without overlapping 
their ranges. Following Eq. 10, this leads to an overall number of 1040 experiments to be executed. Since each 
experiment is composed of 4,800 simulation steps –one per simulated instant, corresponding to 1h and 20m of 
simulated time–, it would be required to solve 4,800 equation systems like the one introduced in Eq. 2, per exper-
iment. Therefore the total workload would yield the resolution of 4,992,000 equation systems. The potentially 
huge experiment pool we can generate is the main reason behind the cloud-oriented architecture presented in the 
following section. 

Table 1: Variations of electrical substations placement for the MOO optimization. 

Electrical substation E1 E2 E3 

Milemarkers (km) (initial, final, Δ) (0, 20, 1) (20, 40, 1) (40, 50, 1) 
 



5. Cloud-based design and deployment 

Cloud Computing paradigm brings us several features that can be useful in the context of a simulation frame-
work: 
- Virtual unlimited scalability of resources. Execution is not tied to the local infrastructure, and more compu-

ting power may be allocated on-demand. 
- Flexibility by means of adapting computing resources. We can allocate more or less computing power de-

pending on the size of the simulation, the deadline for obtaining the results, and the available budget to con-
duct the experimentation. 

Nevertheless, in order to take advantage of the Cloud Computing paradigm, it is essential to propose an effi-
cient way to distribute the workload among multiple nodes. Otherwise, as the simulation problem increases in size, 
we would not be able to scale up the infrastructure by adding more nodes. Therefore, the problem has been de-
composed at two levels of abstraction to overcome this issue: 

- Simulation concurrency. The way some search problems are performed yields an implicit opportunity for 
parallelization, provided that some of the simulations can be conducted independently, with no dependenc-
es between them 

- Domain decomposition. RPCS target simulations consist of a period of simulated time. Within this period, 
each instant must be represented as an electric circuit to be solved. Because the train positions and their 
consumption are known all along the simulated time, there is no dependency between one instant and the 
following, so multiple instants can be solved in parallel.  

In our approach both levels of concurrency are exploited to maximize scalability and performance. 



The simulation domain -i.e. the simulated time– is distributed between the Cloud nodes. This distribution is 
conducted by dividing the simulated period in a number of independent instants, simulating each instant inde-
pendently through the simulation kernel, and finally merging the results. Furthermore, multiple simulations are 
conducted in parallel. All concurrent simulations are distributed in the same way, thus in the virtual cluster in-
stants from different simulations are scheduled together, leading to an efficient resource usage.  

From this perspective, we can consider that the whole simulation set –which we will refer to as experiment pool 
in the next paragraphs– can be partitioned into smaller subsets (experiment partitions) that can be distributed in 
the infrastructure. Regarding the domain decomposition, each experiment is composed of a series of independent 
jobs, which are composed of tasks that handle specific simulation instants. The methodology used to perform this 
transformation is described in (40), as well as all the evaluation performed in order to assure scalability when 
dealing with a large number of experiments.  

5.1. Architecture definition 

The high-level design of the architecture to adapt the model to the cloud environment is shown in Fig. 4. There 
are two main master-worker schemes within this architecture: one in charge of interacting with the search engine 
and managing the experiment pool resulting from the generation process; and another that is responsible for the 

 
 

Figure 4: Cloud deployment architecture for the RPCS model. 



execution of the tasks associated with each experiment. The former, which we will refer to as the experiment or-
chestration subsystem, is composed of the following elements: 
- The coordinator is an entity that distributes the experiment pool generated by the experiment generator of the 

search engine. This large set is divided into smaller subsets, resulting in several experiment partitions that 
will be delegated to other nodes. Besides experiment distribution, the coordinator receives the results of eve-
ry experiment, so it is able to execute the evaluation and search stages of the search engine.  

- There are one or more client nodes, each of them being assigned with one or more experiment partitions, so 
that they can concurrently request the execution of every element in this subset simultaneously. 

Once the experiment pool is properly distributed, each client requests the execution of its experiments to the ex-
ecution infrastructure, which is constituted by the following entities: 
- A master node entitled to the orchestration of the set of simulated instants that compound the execution of a 

distributed experiment. 
- One or more slaves that run the simulations assigned by the master, reporting to it both their progress and the 

resulting data. 
Figure 5 shows the hierarchy of the former entities and their relation to the experiments within the RPCS model. 

As we have seen, the experiment generator holds the necessary information to generate the experiment pool, 
which is partitioned and distributed by the coordinator according to its knowledge of the underlying infrastructure. 
Afterwards, each client manages its experiment subset by requesting it to be run in the execution infrastructure. 
Therefore, the management infrastructure acts as a link between the search engine and the execution infrastructure, 
in which the clients link the scheduled experiments to the nodes that perform the executions. 

5.2. Cloud infrastructure dimensioning model 

Once we have clearly described the cloud-based RPCS architecture design, we need to consider the amount of 
resources that are necessary to accomplish a successful execution. Having an accurate estimation of the kind and 
number of nodes that we need to meet a deadline or minimize the total execution time is very interesting to esti-
mate the amount resources and their cos on on-demand environments like clouds. 

We provide guidelines that could help to dimension the size of the infrastructure –i.e. the number and type of 
cloud instances– that is required for a particular use case, starting from a profile of a sample experiment. This 
model permits to optimize the performance, the operational cost of the whole process, or a trade-off between them. 
This estimation is performed for the two sub-infrastructures described in the previous section: coordinator-clients 
and master-slaves. 

 
 

Figure 5: Summary of infrastructure entities and their assigned role. 



5.2.1. Definitions and assumptions 
 
First of all, we define the concept of a task. A task is a single instant of the simulated time of one of the exper-

iments which are part of the experiment pool. The input data associated to a task is the smallest autonomous piece 
of data which can be processed by an execution of the simulation kernel. Next, we consider the following assump-
tions: 

1. All the slaves shall be equal in terms of memory and number of cores. The same occurs with the clients. 
2. The sets of instance types for the slaves, I, and the clients, C, are finite, and may overlap. 
3. The execution time required to process a task, 𝑡9 ∈ ℝ!, is known and homogeneous for all the tasks. This 

is the time required to execute the simulation kernel and simulate a single instant of an experiment.  
4. The amount of memory required to process a task, 𝑚9 ∈ ℝ!, is known and homogeneous for all the tasks. 

This is the memory needed to allocate and simulate one single simulation kernel and merge the results.  
5. The amount of memory required to submit and manage the map-reduce jobs of an experiment, 𝑚8 ∈ ℝ!, is 

known. This value is usually platform-dependent, thus homogeneous for all experiments. 
6. The total number of experiments (i.e. submissions), 𝑛8 ∈ ℕ, is known. 
7. The number of tasks per submission, 𝑛9,8 ∈ ℕ, is known and homogeneous for every experiment. 
Regarding the instance types, both sets are defined by the CSP. An instance in the set of slave types, I, is de-

fined by its price per unit of time, 𝑝<, its amount of memory, 𝑚<, and its number of cores, 𝑐<. An instance in the set 
of client types, C, is also defined by its price, 𝑝=, and its amount of memory, 𝑚=. 

5.2.2. Balancing the infrastructure 
 
The first consideration that must be reflected in the model is the need for balance among the different elements 

of the architecture. We first need to define a series of key concepts:  
1. Let 𝑁9 ∈ ℕ be the number of schedulable tasks within the whole cluster, this is, the amount of tasks we can 

concurrently execute in an infrastructure while preserving a maximum degree of parallelism among them. 
A formalization of the concept is introduced in Eq. 11, where 𝑛0 ∈ ℕ is the number of instances in the tar-
geted cluster. 

𝑁9 = 𝑛0 	min _`
∑ 𝛿0𝑚<0

𝑚9
c ,D𝛿0𝑐<

0

d 				(11) 

Additionally, in Eq. 10 we introduce an auxiliary variable, 𝛿0 ∈ {0,1}, which indicates whether the instance 
type 𝑖 ∈ 𝐼 is selected or not. Since we are considering that all the slaves belong to the same instance type, 
we force 𝛿0 to be one only once by introducing the restriction in Eq. 12.  

D𝛿0 = 1
0

																							(12) 

2. Let 𝑁8 ∈ ℕ be the number of schedulable submitters within the whole cluster, this is, the amount of exper-
iments we can spawn among all the client machines simultaneously. Equation 13 represents this idea, in 
which 𝑛> ∈ ℕ is the number of clients in the management infrastructure.  

𝑁8 = 𝑛> `
∑ 𝛾?𝑚=?

𝑚8
c 																(13) 

Here we also need an auxiliary variable, 𝛾? ∈ {0,1}, to control the selection or not of each client type 𝑗 ∈ 𝐶. 
Equation 14 also restricts 𝛾? to select only one instance type.  

D𝛾? = 1
?

																								(14) 

3. Let 𝑛9 ∈ ℕ be the total number of entries to be executed for the whole experiment set, which is computed 
as follows: 

𝑛9 = 𝑛9,8𝑛8																						(15)	 
Notice that 𝑛9 ≥ 𝑁9 and 𝑛8 ≥ 𝑁8, hence 𝑁9 might not equal 𝑛9,8𝑁8. In particular, we can derive three different 

cases according to the relation between 𝑁9 and 𝑁8: 



- If 𝑁9 > 𝑛9,8𝑁8, we are in a situation in which we can execute more tasks than the ones we are able to submit, 
hence the execution infrastructure is underutilized and we are incurring in unnecessary costs for the slaves. 

- If 𝑁9 = 𝑛9,8𝑁8, the resources of the selected clients and slaves instances match perfectly the amount of sub-
mittable and executable tasks, leading to an optimal infrastructure in terms of balance. 

- If 𝑁9 < 𝑛9,8𝑁8, the clients are in the position of submitting too many tasks to the execution infrastructure be-
cause we can schedule too many experiments at once. In this circumstance, the execution infrastructure be-
comes overloaded, while we have too many resources in the management infrastructure.  

As we have seen, the optimal balance between both infrastructures is attained when we can schedule as many 
tasks as we can submit. Despite this situation is not easy to reach, it is highly desirable to waste as little resources 
as possible in one of the subsystems. Therefore, we need to balance the resources of both subsystems. This leads 
to the constraint represented in Eq. 16, which states that we shall minimize the difference between the available 

execution slots and the schedulable tasks. In Eq. 16, 𝑁9m  is the number of tasks that we can execute taking into con-
sideration the resource limitation in the submitter side. 

𝑁9m = minn𝑁9 , 𝑛9,8𝑁8o 																						(16) 
Analogously, we can define Eq. 17, which computes 𝑁8m, the actual number of submitters we can schedule con-

sidering the resources in the execution infrastructure. 

𝑁8m = q
𝑁9m
𝑛9,8

r 																												(17) 

5.2.3.  Optimizing performance 
 
One of the primary objectives of dimensioning the infrastructure is to select the proper resources to reduce the 

execution time. In order to understand the aspects that affect performance in this architecture we need to consider 
the platform overhead. Let 𝛼, 𝛽 ∈ ℝ! be two parameters that represent the compute overhead factor of the under-
lying platform for spawning processes, assigning resources and other managerial tasks, for the slaves and clients, 
respectively. Both parameters are considered constant, but could be refined to reflect platform-specific features.  

Given the former, we can define the total execution time of an experiment set running on the cloud architecture 
as indicated by Eq. 18. Naturally, the execution time is desired to be as low as possible. 

min
	A'B,A(B

𝑇 =
𝑛9
𝑁9m
(𝑡9 + 𝛼) +

𝑛8
𝑁8m
𝛽												(18) 

This minimization problem could be modified by letting T be a fixed value, in order to find suitable instances to 
meet a specific deadline. This deadline-oriented planning can be very beneficial to minimize costs in pay-as-you-
go infrastructures. Therefore, this heuristic can be used to: (a) provide a VM configuration and calculate the ex-
pected execution time using that configuration, or (b) select the best VM configuration in order to meet a given 
deadline. 

Table 4: Problem solution proposed by the model. 

Variable Value Variable Value 

𝛿. 0 𝛾. 0 

𝛿) 1 𝛾) 0 

𝛿, 0 𝛾, 1 

𝛿C 0 𝛾C 0 

𝑛0 400 𝑛> 1 

v
𝑇
𝑢w 

9 h C 886.41 $ 

 

Table 3: Problem definition. 

Parameter Value Parameter Value 

𝑡9 1 𝑛8 1040 

𝑚9 7168 MB 𝑚8 256 MB 

𝑛9 4992000 α 0.5 

𝑛9,8 4800 β 20 
 

 



5.2.4. Minimizing the operational costs 
 
In order to provide a mean to control economical costs and keep an execution on a budget, we include an addi-

tional objective in the cluster planning: monetary costs must be minimized. Assuming the prices for the slave and 
client instances types are known --	𝑝< , 𝑝= ∈ ℝ!, respectively--, we can compute the final cost of an execution as 
shown in Eq. 19, where 𝑢 ∈ ℝ! constitutes the time unit in which the provider charges for the resources.  

min
"),"*,D),E+

𝐶 = v
𝑇
𝑢wx𝑛0D𝛿0𝑝<

0

+ 𝑛>D𝛾?𝑝=
?

y 	(19) 

6. Evaluation 

6.1. Experimental setup 

Table 2: Description of the selected EC2 instances 

Instance Type Virtual 
CPUs Memory (GB) Storage (GB) Price/h ($) 𝒊 ∈ 𝑰 𝒋 ∈ 𝑪 

m3.large Generalist 2 7.5 32 (SSD) 0.140 0 0 

m2.2xlarge Memory 
optimized 4 34.2 850 0.490 1 1 

m2.xlarge Memory  
optimized 2 17.1 420 0.245 2 2 

c3.xlarge Compute 
optimized 2 3.75 2x40 (SSD) 0.210 3 3 

 
 



We applied our cloud dimensioning model to a subset of the full Amazon EC2 instance offer. Table 2 describes 
the main characteristics of these instance classes, which constitute representatives of Amazon’s instance flavors: 
with a focus on memory resources (memory optimized), computing power (compute optimized), or a balance be-
tween the former (general purpose). Considering our case study, we set the model’s parameters as shown in Tab. 
3. Following the guidelines of the optimization model, shown in Tab. 4, the resulting cloud infrastructure consist-
ed of a general purpose m3.large node as dedicated master, four hundred m2.xlarge machines as slaves, and three 
m2.2xlarge client instances, each controlling a partition of the whole experiment pool, while one of them did also 
act as coordinator. Despite the model suggests that a single client would suffice, we replicated the client for fault-
tolerance reasons, as we relied on spot instances to reduce the operational costs of the whole process. Additionally, 
only one master machine was considered, but this could be extended to implement backup mechanisms in order to 
further improve fault tolerance. 

Spot instances are constituted by spare resources in the EC2 infrastructures, thus they are priced according to 
their availability, which varies over time. Additionally, their price is based on a bidding mechanism, in which us-
ers set the maximum price they are willing to pay for a specific instance type. The allocated resources are availa-
ble to the user unless the instance price exceeds this bid. It is important to remark that we can take the risk of los-
ing some spot instances due to the application’s inherent fault tolerance. Because the implementation of the RPCS 
model is built on top of the Hadoop MapReduce computing platform (41), it inherits its features regarding task 
independence, replication and robustness. In particular, the platform’s replication strategy forces input data to be 
present in different node s, so the whole computation is able to proceed in the case some of the nodes fail.  

6.2. Results  

 Table 5 shows the amount that was charged for the overall execution, considering that the simulation took 8.43 
hours, including the time spent during system setup. This configuration and start-up stage is tightly related to the 
number of nodes in the virtual cluster. This stage is arguably auxiliary, and its relevance in the final price could be 

Table 5: Execution cost of the experiments using spot instances against the theoretical price. 

 Time 
(hours) Spot ($) Full ($) Savings (%) 

Execution 9 66.436 903.420 92.646 

Storage - 44.896 44.896 0.000 

Total  111.332 948.316 88.260 
 

 
Figure 6: Solution space and Pareto-optimal frontier for the 
CENELEC experiment set, including base solutions and fault-
tolerant solutions supporting voltage drops 

 



diluted over time if the cluster is partially reused for subsequent experimentations. In any case, we are currently 
considering several improvements aimed towards reducing the complexity and time required for this process.  

The results we obtained for the base and faulty scenarios were parsed and evaluated according to the metrics 
defined in Sec. 4.1. The Pareto-optimal frontiers for the former datasets are shown in Fig. 6, along with the other 
solutions that resulted from the subsequent simulations. The solutions that belong to the Pareto-optimal frontiers 
highlighted in Fig. 6 are the ones that meet the optimization criteria developed in Sec. 4.1. The final selection 
could balance the supply quality (O1) and the wasted energy (O2), or be directed towards emphasizing one of the 
optimization objectives. From the resulting data we are able to draw the following conclusions: 
- Base scenarios. While any solution in the Pareto-optimal frontier of the base configurations meets the opti-

mization criteria, we can highlight two particular cases: the ones that fully optimize each of the objectives. In 
order to maximize the provisioning quality, O1, the substation configuration shall place, taking as reference 
the beginning of the track, E1 at 16km, E2 at 25km, and E3 at 40km. To minimize the consumed power, O2, the 
best configuration is the one that places E1 at 4km, E2 at 23km, and E3 at 46km of the beginning of the track.  

- Fault-tolerant scenarios. Among the fault-tolerant solutions, the one that maximizes O1 situates E2 at 36km 
of the beginning of the track, while E3 is located at 40km. In this case, E1 is the substation that could fail or be 
eliminated without leaving the infrastructure out of operation. Additionally, E3 would require an additional 
group to provide a better quality in the power provisioning. The scenario that minimizes O2 corresponds to a 
design that is able to operate with two substations –E1 and E3–, the first placed at the beginning of the track, 
and the second 40km away from the former. In Fig. 6 we can clearly see three different solution subsets, one 
of them partially overlapping the base solutions set. We are currently working towards analyzing the correla-
tion between these results, in order to detect the relation between substation placement and the electric profile 
of this particular traffic configuration. 

7. Conclusions 

In this paper, we have presented RPCS, a model for the design, simulation and evaluation of electric railway in-
frastructure deployments. It supports the assessment of simulation scenarios with respect to case-specific re-
strictions and constraints, generating a whole set of experiments to evaluate, and optionally evolve, in order to 
provide near-optimal solutions to a wide range of problems.  

The model is constituted by three core elements: an ontology, a simulator, and a multi-objective optimization 
engine. The first element translates the entities within the railway infrastructure into the items that constitute an 
electric circuit. The second supports the simulation of this circuit in a per instant basis by means of the MNA 
technique. Finally, the third element allows the definition of experiment generation guidelines to support the exe-
cution of multiple simulations concurrently. The results are assessed according to an MOO problem to find the 
solution set. This procedure can be iterated to evolve into subsequently better solutions.  

Since the experiment generation procedure might lead to hundreds, or even thousands of scenarios to be simu-
lated, scalability and elasticity of the model are key features by design. We achieve this by orienting the model 
towards cloud-based distributed infrastructures, which provide the possibility to scale up or down according to the 
experiment pool size. The model also supports scalability regarding the simulation size, as a single experiment can 
be run in multiple nodes to overcome resource limitations in standalone machines. Hence, we are able to achieve 
parallelism among different simulations, and within a single experiment, which results in very high scalability and 
resource usage efficiency. Additionally, we propose a dimensioning model to estimate the proper cluster size that 
would minimize cost, execution time, or a trade-off between them. 

In order to show the capabilities of this model, we have illustrated the process of defining a search problem fo-
cused on the trade-off between saving energy while providing a high quality provisioning, applied to a standard 
railway scenario defined in an European normative. The evaluation was conducted on Amazon EC2, running a 
virtual cluster of hundreds of nodes executing the computing tasks. Given that it is a pay-per-use infrastructure, 
we aimed to minimize our operational costs by using spare spot instances, which are available at a reduced fare, 
but are subject to be terminated by the provider as prices vary. Remarkably, our model’s fault tolerance capabili-
ties allowed us to reduce the expenses drastically with no significant performance loss.  

As future work, we intend to minimize the system setup and configuration time, which has a major impact in 
costs for large clusters. Currently the model considers only DC systems, but its extension to AC systems is now 



work in progress. Finally, we are investigating the possibility to expand the model to support efficient stream pro-
cessing, so that the generation, execution and evaluation procedures could be conducted periodically to adjust el-
ements of the infrastructure dynamically –such as train position and speed–, according to a specified problem. 
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