
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This document is published at:

M. Gimenez-Aguilar, J. M. De Fuentes, L. González-
Manzano and C. Camara, "Zephyrus: An Information 
Hiding Mechanism Leveraging Ethereum Data Fields," 
in IEEE Access, vol. 9, pp. 118553-118570, 2021.

DOI: 10.1109/ACCESS.2021.3106713

© The Authors, 2021

https://doi.org/10.1109/ACCESS.2021.3106713.
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Received July 19, 2021, accepted August 11, 2021, date of publication August 23, 2021, date of current version September 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3106713

Zephyrus: An Information Hiding Mechanism
Leveraging Ethereum Data Fields
MAR GIMENEZ-AGUILAR , JOSE M. DE FUENTES , LORENA GONZÁLEZ-MANZANO ,
AND CARMEN CAMARA
Computer Security Laboratory, Universidad Carlos III de Madrid, 28911 Leganes, Spain

Corresponding author: Jose M. De Fuentes (jfuentes@inf.uc3m.es)

This work was supported in part by the Spanish Ministry of Science and Innovation under Grant ODIO/COW(PID2019-111429RB-C21),
in part by the Region of Madrid under Grant CYNAMON-CM(P2018/TCS-4566), in part by European Structural Funds European Social
Fund (ESF) and Fondo Europeo de Desarrollo Regional (FEDER), in part by the Madrid Government (Comunidad de Madrid) under the
Multiannual Agreement with Universidad Carlos III de Madrid (UC3M) in the line of ‘‘Fostering Young Doctors Research’’ under Grant
CAVTIONS-CM-UC3M, in part by the context of the V PRICIT (Regional Programme of Research and Technological Innovation), and in
part by the Excellence Program for University Researchers.

ABSTRACT Permanent availability makes blockchain technologies a suitable alternative for building a
covert channel. Previous works have analysed its feasibility in a particular blockchain technology called
Bitcoin. However, Ethereum cryptocurrency is gaining momentum as a means to build distributed apps. The
novelty of this paper relies on the use of Ethereum to establish a covert channel considering all transaction
fields and smart contracts. No previous work has explored this issue. Thus, a mechanism called Zephyrus,
an information hiding mechanism based on steganography, is developed. Moreover, its capacity, cost and
stealthiness are assessed both theoretically, and empirically through a prototype implementation that is
publicly released. Disregarding the time taken to send the transaction to the blockchain, its retrieval and
the mining time, experimental results show that, in the best case, 40 Kbits can be embedded in 0.57 s. for
US$ 1.64, and retrieved in 2.8 s.

INDEX TERMS Ethereum, information hiding, steganography, blockchain.

I. INTRODUCTION
Blockchain is a well-known technology that allows the
execution of transactions ensuring their integrity. In short,
a blockchain is described as ‘‘an open, distributed ledger that
can record transactions between two parties efficiently and in
a verifiable and permanent way’’ [1].

This technology has been used in different fields such
as health care [2], financial contracts [3] or digital rights
management [4]. Among all possible uses of a blockchain,
cryptocurrencies are quite well-known. A cryptocurrency is
a digital asset that serves as a medium of exchange [5]. Bit-
coin [6] and Ethereum are two of the main cryptocurrencies
nowadays [7].

The extensive adoption of cryptocurrencies make them
interesting to build covert channels (that is, a way to secretly
send information) over a publicly available medium (that is,
the list of transactions of the cryptocurrency). Since a great
variety of use cases can be devised, in the following several
examples are considered.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yassine Maleh .

Motivating use cases. There are three situations in which
such a covert communication is interesting, although with
different degrees of immediacy. On one hand, in the panic
button case a threatened individual is willing to leave some
secret material (e.g., account keys) to be released in case
of emergency and thus, without immediacy in mind. On the
other hand, in a sabotage case a malicious insider aims to
immediately exfiltrate sensitive data without being detected.
Also looking for this feature, in a censorship case an indi-
vidual is willing to share information in a controlled and
censored environment.

Blockchain provides a set of intrinsic features (availability
and integrity [8]), which make it attractive for this purpose.
Thus, any data inserted into the ledger will remain unaltered
and readable by any party virtually anytime.

To hide a secret in such a setting, steganography is the
art of concealing messages within a non-secret piece of data
called cover [9]. It is a branch of cryptography used when
discretion is a priority. Steganographic approaches can be
generally divided into implicit and explicit ones. Implicit
techniques rely upon theway inwhich the system is used [10].
For example, if the sending time is odd or even, it can be

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 118553

https://orcid.org/0000-0002-1030-8338
https://orcid.org/0000-0002-4023-3197
https://orcid.org/0000-0002-3490-621X
https://orcid.org/0000-0002-2728-8724
https://orcid.org/0000-0003-4704-5364


M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

understood by the receiver as 1 or 0, respectively. On the
other hand, explicit approaches base on modifying the cover
to embed the secret [11]. In this paper we focus on this latter,
information-based approaches.

Several works have already applied steganography in Bit-
coin for use cases like the examples above [12]–[15]. For
example, it has been applied to counter censorship [16].
However, few efforts have been devoted to information hiding
in Ethereum. To the best of authors’ knowledge, only [17]
leveraged a single data field, and [18] proposed the use of
a Ethereum-related protocol. Thus, no previous work has
focused on leveraging Ethereum for covert communications
considering all its data fields. Most of them have never been
used for steganographic purposes and this paper addresses
this issue for the first time. Since this cryptocurrency holds
significant differences against Bitcoin, it is necessary to char-
acterize its suitability for this purpose. In particular, Ethereum
is gaining momentum thanks to its support to distributed apps
by means of smart contracts. They are pieces of software
that can be executed without human intervention. Since they
are stored in the blockchain, they remain permanently [19].
Moreover, the underlying data structures that are also stored
in the blockchain are heavily different to those present in
Bitcoin. Thus, the unique features of Ethereum motivate the
need for proposing a tailored mechanism for covert commu-
nications.

In this paper the following contributions are achieved:

• Development of a steganographic system in Ethereum,
called Zephyrus.1 It considers all Ethereum transaction
and smart contracts fields to hide a secret. The design
of Zephyrus leverages a large amount of real-world
Ethereum blockchain data to ensure the stealthiness of
the secret. Indeed, the mechanism is assessed in terms
of capacity, stealthiness and cost.

• An open-source proof of concept is released to fos-
ter further research. Moreover, it is used to assess the
time taken for embedding and revealing a secret in a
real-world Ethereum network.

The structure of the paper is the following. Section II
provides the background to understand the proposal. After-
wards, the underlying model is described in Section III.
Since the goal is to mimic existing transactions and con-
tracts, Section IV focuses on a preliminary study of current
Ethereum data. The proposed mechanism is introduced in
Section V, whereas Section VI focuses on its evaluation.
Section VII analyses the related work. Finally, Section VIII
concludes the paper and points out future research directions.

II. BACKGROUND
In this Section, the main concepts needed to understand the
proposal are presented. Thus, the basics on steganographic

1The name Zephyrus is based on one of the winds of the Greek mythology
called Anemoi. Anemoi lives in the upper-air or Aether, which later derived
in the English word Ether. Thus, Zephyrus lives in Ether but being invisible
to the plain eye.

FIGURE 1. Entities in a steganographic system.

systems are introduced in Section II-A. Afterwards, the main
notions of Ethereum are described in Section II-B.

A. STEGANOGRAPHIC SYSTEMS
In a steganographic system different elements are involved,
see Fig.1. A sender and one or more receivers share a key
to hide or extract a secret message. This key is essential to
provide confidentiality by means of encryption [20]. Basi-
cally, the sender has an element (e.g. code, image, text, etc.),
called cover, in which a secret is hidden. The steganographic
system receives the cover, the secret and the key and outputs
a steganographic object. This object is sent to the receiver
through the channel. In the destination, the receiver uses the
steganographic object and the shared key to get the hidden
message. Between both parties, an attacker or warden might
be placed. It can be passive, thus eavesdropping the channel,
or active, thus being able to tamper with the transmitted
data [21].

In order to transmit information, different operations
have to be carried out for hiding (also called embed-
ding) and retrieving (usually called revealing) the secret at
stake. In information-based steganography, one of the most
well-known examples is the Least Significant Bit (LSB) [22].
In LSB, the cover’s rightmost bit(s) are replaced by the secret.
This technique should be applied while keeping the cover
appearance to avoid raising suspicions.

B. ETHEREUM
Ethereum is an open-source decentralized platform that runs
smart contracts. They are pieces of code executed by the
nodes maintaining the network. In this way, censorship or
code changes by third parties are avoided, thus enabling
building distributed applications [23]. Apart from smart con-
tracts, Ethereum enables sending funds among parties as any
other cryptocurrency. Every interaction with this blockchain
is carried out through transactions. To avoid false transac-
tions, a distributed consensus algorithm is run by Ethereum
nodes. This process involves a computational task called min-
ing. In Ethereum, mining involves a trial-and-error process
until the result of a cryptographic process (in particular, a hash
function) meets a given condition [24].

In order to run smart contracts andmaintain the blockchain,
Ethereum comes with a decentralized virtual machine called
EVM. It uses a Turing-complete language to be able to create
sophisticated smart contracts [25].

In the following, the different data items of transactions
and smart contracts are introduced.

118554 VOLUME 9, 2021



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

FIGURE 2. Ethereum transaction fields with their size in bytes. White
boxes are stored immutably in the blockchain, while the greyed one is
not.

1) ETHEREUM TRANSACTIONS
A transaction in Ethereum contains several fields of different
size (Fig. 2). Each transaction is sent by a user, identified by a
Sender address that results from the 20 last bytes of the hash
of the user’s public key. The receiver is also identified by an
address. Note that it can be another user (using a Receiver
address) or a smart contract. In the latter case, the Contract
address comes from the hash of the sender address and the
amount of transactions sent by that account. A particular case
happens when the receiver address is null, that is when a
contract is deployed.

On the other hand, the Value field includes the amount of
funds at stake. Apart from the value itself, two fields (Gas
price andGas limit) express the costs that the sender assumes
to include this transaction in the blockchain. In particular,
Gas price defines the cost per operation and Gas limit sets
the maximum incurred cost [26]. Such a cost depends on the
information included in the data field. This can be of three
types, namely a text message, a contract to be deployed (as
explained in Section II-B2) or a function call to an existing
contract. In the latter case, an encoded representation (called
ABI [27]) of the called function name and arguments is
included.

Last but not least, each transaction is identified by a serial
number (Nonce field) and an Identifier which is the hash of
the previous fields. The legitimacy of the transaction is shown
by the sender’s digital signature. The signature is formed
by three values, namely V , r and s, which are the result of
applying the ECDSA algorithm [28].

2) SMART CONTRACTS
A smart contract is a piece of code formed by functions
to be executed by any Ethereum node through its EVM.
It can be written in different languages, for example, Solidity,
Serpent, LLL or Vyper. Those are high-level languages that
contain functions, arguments and control flow instructions
and operators. Since Solidity is the most widespread one, it is
the one considered in this proposal.

When Solidity code is compiled, it is transformed into
a hexadecimal string known as bytecode. It is formed by

opcodes or low-level, human-readable instructions the EVM
can execute. For example, JUMP instruction indicates the
EVM to go to a particular part of the program and execute it.
The order and placement of instructions is essential because
they set the execution flow. The cost of each instruction
depends on its type [25].

For the interest of this proposal, it is relevant to under-
stand how the bytecode ends its execution. Before the last
instruction (STOP or ASSERT), usually a JUMP is placed,
which makes the code continue its execution from an address
pointed out in that instruction. That address must contain
a JUMPDEST instruction – otherwise the EVM throws an
error. We will refer to this region as the JUMP-JUMPDEST
block.

Apart from bytecode, metadata describing the contract at
stake is produced by the compiler when Solidity is used.
This information is intended to be published in an exter-
nal repository to help in verifying the contract integrity.
Thus, the Swarm hash field (which is the hash of the con-
tract, including its file name) is included at the end of
bytecode. It serves as a pointer to find the contract in a
content-addressed storage outside the blockchain [29].

Smart contracts may optionally store their current state.
Such storage can be initialized with a special function called
constructor. Stored values can be updated by calling to
the appropriate contract functions. Since storage leverages
Ethereum nodes’ memory space, these operations involve
additional costs.

III. MODEL
The model consists of the description of the involved entities
and attackers (Section III-A), goals at stake (Section III-B)
and working assumptions (Section III-C).

A. ENTITIES AND ATTACKER MODEL
In this steganographic system two entities are identified,
namely sender and receiver, communicating through a chan-
nel – the Ethereum blockchain. While the sender trans-
mits information, the receiver is merely an observer of the
blockchain.

With respect to the attacker, three different types are con-
sidered. A pair of them are assumed to be passive, inspect-
ing blockchain contents using a block explorer (e.g., Ether-
scan [30]). However, while one of them is an eavesdropper
(Basic Eavesdropper, BE), the other one might carry out syn-
tactic checks on each transaction (Advanced Eavesdropper,
AE). The third type of attacker (Interactive Attacker, IA) is
active, being able to make transactions. Therefore, while BE
andAE threaten the secret’s confidentiality, IA aims to impact
its integrity.

B. GOALS
The development of a steganographic mechanism should be
designed to be resilient against any kind of suspicion. In this
regard, the following goals are identified:

VOLUME 9, 2021 118555



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

TABLE 1. Characterization per data field.

• Stealthiness: embedded messages should be difficult to
identify for an attacker.

• Simplicity: any user who is able to interact with the
Ethereum blockchain should be able to use the mech-
anism.

• Efficiency: the mechanism should be efficient in terms
of time and amount of sent information. It should allow
sending a practical amount of information in an afford-
able amount of time.

• Cost: sending hidden information should be economi-
cally affordable for the sender.

• Secret integrity: hidden information’s integrity should
remain over time.

C. WORKING ASSUMPTIONS
The following assumptions are considered in this proposal:
• The receiver knows the following data items to get
access to the secret:
– The first transaction identifier. Sending a secret

may involve several transactions, but knowing just
the first identifier should be enough to retrieve the
whole message.

– Cryptographic materials, that is, the encryption key
and a random number called nonce.

– Fields in which the secret is embedded.
• Secrets are sent sequentially, thus avoiding sending
simultaneous messages.

• The sender uses the same source or destination Ethereum
address for a given secret.

IV. PRELIMINARY ETHEREUM DATA STUDY
Since Zephyrus aims to achieve stealthiness, transactions and
contracts including secrets must mimic existing ones. For
this purpose, we have analysed 16,942,215 transactions and
65,346 contracts. In order to reflect the evolution of trans-
actions over time, we have considered one week every six
months from 2017 to 2019. In particular, transactions are
collected between March 24th and April 1st, and between
September 24th and October 1st each year.

Once collected, transactions have been classified into three
categories: sent to another blockchain user (8,998,787 trans-

TABLE 2. Most common types of arguments and their coverage.

TABLE 3. Fields with highest prevalence of patterns.

actions), to a function in a contract (7,943,428 transactions)
and to deploy a contract (65,346 transactions). The proportion
is in line with expectations, as transactions among Ethereum
accounts are the most prevalent ones.

Since the secret is embedded in one or more transaction
fields, or as part of the contract code, the analysis is carried
out for each one independently. It must be noted that some
fields are freely set by the user whereas others are the result
of a cryptographic operation (e.g., hash function). Therefore,
the techniques to characterize each field are different. In the
former case the variability of each field is analysed by using
statistical measures (Section IV-A). In the latter, entropy is
studied because randomness is an essential cryptographic
property (Section IV-B).
Note that the Data field has not been analysed for

all transactions. Using this field to insert a secret would
raise suspicions. However, function arguments and con-
tract information (which are contained in this field
for transactions related to contracts) have been char-
acterized as they could potentially be used for covert
communications.

118556 VOLUME 9, 2021



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

TABLE 4. Analysis of patterns.

A. VARIABILITY
Intuitively, a high variability of a given data field is beneficial
for the sake of embedding secret information. Otherwise, if a
given data field always has the same value, any alteration
would easily be noticed. Thus, determining the variability of
a field requires analysing the amount of different values, and
their statistical distributionwith respect to all potential values.
Several metrics have been considered, namely the coverage
of the value range, the mean and standard deviation of the
amount of appearances per value, and the prevalence of the
most frequent values for each field. Concerning coverage,
it must be noted that the amount of collected transactions is
usually smaller than the range size. Therefore, the minimum
between these two factors will be considered. With respect
to prevalences, the accumulated frequency for the 8 and
16 most frequent values is computed. Table 1 summarizes the
analysis.

There are some fields that exhibit a suitable variability.
For example, Value in transactions to another user, shows
a reasonable degree of homogeneity. On the contrary, some
fields (such as Gas limit to other users) are discarded as only
two values account for the vast majority of cases.

For those fields which do not have such a variability but
cannot be discarded either, the accumulated frequency of the
top 8 and 16 elements has been studied. If that frequency is
beyond 50%, a given set of values are frequent, so they could
also be used to represent a secret. This happens, for example,
for the Gas price field in bold in Table 1.
The analysis of function and constructor arguments

requires special handling, as it is necessary to study each
type of argument independently. For simplicity, the most
common types are considered herein (see Table 2). In the
case of Function arguments, they are ‘‘uint256’’, ‘‘address’’
and ‘‘bytes32’’, which together cover 92.25% of transactions
(adding Function arguments percentages fromTable 2). In the
case of Constructor arguments, we focus on ‘‘uint256’’ and
‘‘address’’, which account for 76.11% of cases (adding both
percentages of Constructor arguments from Table 2). The
third most common type, ‘‘string’’, has not been considered
as it is usually human-readable.

The analysis of the values contained in these argument
types reveals one interesting feature. Particularly, some fields
show a prevalent pattern a number ending with a variable

TABLE 5. Top 5 pairs of instructions after JUMPDEST.

amount of consecutive zeros. This is the case of uint256 type
for Function and Constructor arguments, as well as the Value
field. For the sake of illustration, 76.36% of transactions to
users show this pattern in Value field (see Table 3). Table 4
shows the most prevalent patterns. For each one, patterns
containing more non-zero digits are regarded as suitable,
as they show nice coverage and homogeneity. The only excep-
tion is in the Value field, due to economic issues explained
later (see Section V-B).

Beyond patterns, the address argument is considered a
crypto-related field. Concerning bytes32, given the low
mean and standard deviation (see Table 1), as the
lack of patterns, it is also studied as crypto-related (see
Section IV-B).

Last but not least, the Bytecode field requires a tai-
lored analysis. In particular, it is relevant to characterize
the amount of instructions, their frequency and the value
of their arguments, if any. In all cases, we focus on the
JUMP-JUMPDEST block (recall Section II-B), as it is the
region that can be altered with lower risks. Concerning
the amount of instructions, 9 and 13 are selected as they
are the biggest amounts among the most common ones
(see Table 14 in the Appendix). POP and PUSH1 are the
most common opcodes, covering 39.87% of the cases (see
Table 13 in the Appendix). However, as there is room for
more variable instructions, the 20 most used opcodes are
chosen. Among them, just the variability of PUSH1 and
PUSH20 is studied because the remaining opcodes do not use
bytes as parameters, so they would offer very low capacity.
PUSH20 is discarded due to its high cost and low vari-
ability. Finally, the 4 most common pairs of instructions
after the JUMPDEST and before the JUMP are selected (see
Tables 5 and 6). They cover 62.91% and 76.35%of the sample
respectively.

VOLUME 9, 2021 118557



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

TABLE 6. Top 5 pairs of instructions before the JUMP.

B. ENTROPY
Entropy has been computed, combined and individually, in
those fields that are the result of cryptographic operations and
those meant to represent binary information. The calculus of
the individual entropy involves computing Shannon entropy
per value in each field, normalized from 0 to 1 [31]. By con-
trast, combined entropy is calculated concatenating all values
per field and computing Shannon entropy. In this way, a high
individual entropy ensures random value fields and a high
combined entropy guarantees that value fields are different
among transactions. Moreover, in both cases the mean and
standard deviation are also computed.

Table 7 presents the results of the analysis. Concerning
hashes, namely Receiver address and Swarm hash, we have
computed entropy for all studied transactions. Furthermore,
we have generated multiple hashes to compare their entropy.
This allows us to reason about the possibility of generating
hashes with the same or similar entropy to avoid suspicions.
Their high entropy with low standard deviation support the
uniqueness of the values and their possible use for embedding
purposes.

V. PROPOSED MECHANISM
This Section presents Zephyrus by introducing both the
embedding and revealing procedures of hidden messages
for all transaction fields. Given the different nature of the
fields at stake as well as their value distribution (recall
Section IV), several embedding strategies are firstly proposed
in Section V-A.

It must be noted that for the covert communication to
take place, the mining procedure must be carried out [32].
However, it is out of the scope of this Section as it is the reg-
ular process for every Ethereum transaction. For the sake of
brevity, the embedding procedure does not describe the poten-
tial retransmissions needed if a transaction is not included in
the blockchain. The notation used in the remainder of this
proposal is shown on Table 8.

A. EMBEDDING STRATEGIES
According to the previous analysis four different embedding
strategies are identified. Table 9 summarizes the strategy
applied for each data field. It must be noted that not all fields
for all transaction types are considered. For example, not all
types of Function arguments are selected. Similarly, the Gas
limit field is used in transactions related to contracts.

On the one hand, crypto-related fields (such as Receiver
addresses) and and those without patterns (bytes32 and

address type) have been shown to have high entropies.
Since the embedding mechanism will encrypt the secret (as
explained later), the result exhibits high entropy as well.
Indeed, this happens for the whole secret and for each indi-
vidual fragment. Therefore, these fields are used in full (strat-
egy S1).

On the other hand, strategy S2 is applied over those fields
which count on acceptable variability, but in which a subset
of numval values are prominently common. Such values are
used for embedding purposes, though the amount of them
depends on each field. This leads to a capacity given by
Equation 1. For example, if numval = 8, 3 bits can be
embedded.

CapacityS2(bits) =
⌊
log2 numval

⌋
(1)

Strategy S3 is applied in fields with acceptable variability
and exhibiting some patterns in their values. In this case,
the embedding operation uses these patterns to ensure that the
result seems legitimate. Based on our observations, patterns
are formed by a prefix and a suffix. Prefixes are formed by
a set of digits ending in any number but 0. Suffixes are a
sequence of z zeros. Therefore, for a value of total length
l, the capacity of this strategy is given by Equation 2. For
instance, for values of length 17 ending with 10 zeros, 22 bits
can be embedded.

CapacityS3(bits) =
⌊
log2(81× 10l−z−2)

⌋
(2)

Last but not least, a bytecode-specific strategy S4 is also
proposed. As opposed to the previous ones, S4 does not
consider the values of the data fields, but the set of instruc-
tions contained in the bytecode. Therefore, it provides with
variable capacity, as it is explained in the following.

B. EMBEDDING PROCEDURE
The embedding process starts by preparing the secret to make
it suitable for Ethereum transactions. Afterwards, data is
hidden in fields according to their size and type. The capacity
of each field per transaction (summarized in Table 10) is
studied, as well as the applied embedding strategy selected
according to last column of Table 1 and highlighted in bold
in case of S2, and Table 4.

Note that embedding operations, regardless of the field, are
limited by LBB and LBGL. LBB refers to the fact that the
sender’s balance should be bigger than the cost of sending the
transaction (incluiding deploying a contract or calling func-
tions). By contrast, LBGL refers to the maximum block gas
limit, which depends on the network at stake – no transaction
can surpass this limit [33], [34].

1) SECRET PREPARATION
The preparation process is depicted in Fig. 3. A key genera-
tion function is used to generate keys for the encryption pro-
cesses (step 0). Firstly, the secret is symmetrically encrypted
(step 1). In this process, the secret is adjusted by including
encrypted control information. This is essential in the reveal-
ing process. In particular, the message length is necessary to

118558 VOLUME 9, 2021



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

TABLE 7. Entropies per field.

TABLE 8. Notation. Cost and capacity-related symbols (left). Cost magnitudes (right).

FIGURE 3. Secret preparation process.

distinguish between the secret itself and padding information.
Moreover, additional data should be included for Executable
bytecode (as explained in Section V-B2). Secondly, control

data is also encrypted but with a stream cipher to keep the
resulting size at a minimum (step 2). To randomize the output,
the nonce from the last existing sender’s transaction is also
taken as input for this cipher. Finally, the secret is split if it
exceeds the capacity of the transaction fields at stake (step 3).

2) DATA HIDING
For the sake of clarity, the description of the hiding process is
divided into three main blocks, namely addresses, transaction
information and smart contract data.

a: IN ADDRESSES
The three types of addresses (namely Sender, Receiver and
Contract ones) can be modified in all cases, thus S1 strategy
is applied. However, the required computational effort is
dramatically different.

VOLUME 9, 2021 118559



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

TABLE 9. Embedding strategy per selected field.

Recalling that the Sender address is the hash of a public
key, the embedding process is limited by the computation of a
valid inverse (i.e., private key) according to the cryptographic
algorithm at stake (in particular, secp256k1 [25], [35]). Con-
sequently, embedding data in this field involves a trial-and-
error procedure.

A similar situation happens withContract addresses. Since
they are computed considering the number of transactions
sent by the contract creator (recall Section II-B2), a trial-and-
error process is carried out to find a suitable number.

On the contrary, the Receiver address is not under any
restriction. Therefore, it can be modified at will.

b: IN TRANSACTION INFORMATION
Capacity and effort to do the embedding varies greatly among
fields.

The Value field can be used considering its underlying
patterns (strategy S3). However, it is limited by LBB as the
secret is represented as the payment amount. In this case, only
values of length 17 and 10 ending zeros will be considered
as a trade-off between capacity and cost. Note that value to
functions and contracts is discarded because the top 2 values
(though for simplicity not presented in Table 1) represent
more than 90% of the sample. Thus, it would allow a very
small capacity.

On the other hand, the most prominent Gas limit and Gas
price values (strategy S2) are considered for representing the
secret. In this case, their use is bounded by LBB, and also by
LBGL in Gas limit. These limitations depend on the sending
account and the Ethereum blockchain, respectively. In the
same line as Value field to functions and contracts, Gas limit
to users is discarded because the top 2 values cover more than
62% of the sample.

As opposed to the previous field, signature values r and s
and the Sender public key can be used in full (strategy S1).
Furthermore, there is no technical limitation for the secret.

However, a trial-and-error process must be followed to find
the right cryptographic materials and produce a value that
represents the fragment of the secret at stake.

c: IN SMART CONTRACTS
Depending on the field, a different embedding strategy is
used, specially when bytecode is at stake.
Swarm hash field can be used in full (strategy S1) and with

no limitations, since block scanners such as Etherscan do not
currently check its value.
Function arguments appear within function calls or in a

Contract constructor. Each function receives a different num-
ber of arguments and of varied types. In practice, the capacity
is limited by LBB, LBGL and the technical limit for each
argument type (called ArL). For instance, uint256 corre-
sponds to 32 bytes and uint8 to 1 byte [36]. As it was stated
in Section IV-A, only uint256, address and bytes32 types
are used to embed information in Function arguments and
uint256 and address types for Constructors arguments. In
address and bytes32 types the whole capacity (S1) is used,
while uint256 type follows a pattern (strategy S3).

With respect to the bytecode, there are two limitations
in this regard – the code should look like a valid set of
instructions and it has to be well-formed. In particular,
two alternatives can be chosen – including instructions to
represent the secret in an unreachable part of the code
(called Non-executable bytecode) or in a reachable one
(calledExecutable bytecode). Thus,Non-executable bytecode
is placed between the JUMP-JUMPDEST block and the
STOP/ASSERT instruction (recall Section II-B2). The code
added in that region is never executed by any function of the
contract. However, this should look like a legitimate JUMP-
JUMPDEST block, so starting and ending instructions should
follow the regular distribution.

The second way, Executable bytecode, involves includ-
ing instructions in the JUMP-JUMPDEST block. It requires

118560 VOLUME 9, 2021



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

FIGURE 4. Embedding process in executable bytecode.

managing instructions carefully to keep the state of the stack
and cause a failure. Therefore, the stack should be correctly
restored.

In order to encode the secret, two strategies are followed.
On the one hand, the choice of instructions (strategy S4) – the
20 most used opcodes (Table 13 in the Appendix) are divided
in a couple of sets, one to represent 0 and another to repre-
sent 1. Thus, one opcode is chosen on a random weighted
way. On the other hand, the argument of PUSH1 follows
strategy S2.

In both cases, the capacity of the bytecode is limited in
practice by EVM’s total memory (ML), as well as LBB and
LBGL. Moreover, the amount of instructions to be inserted
is limited by the usual size of the JUMP-JUMPDEST block
(9 and 13 instructions, recall Section IV-A). It must be noted
that in the Executable bytecode case some instructions are
needed to restore the stack. Therefore, they do not convey the
secret themselves. As a result, in the Executable bytecode the
capacity is limited by the number of secret-related opcodes
applied. They are all instructions except for PUSH1, used
to control the stack (if any), and the final POPs at stake.
However, arguments of PUSH1 instructions are still used
to embed information. Since the amount of secret-related
instructions is not known in advance by the receiver, such
information should be included as control data. Fig. 4 illus-
trates the process–colored instructions represent the secret,
and the stack is properly managed to keep the execution of the
bytecode. The secret message corresponds to ‘‘00000111’’,
such that ‘‘000’’ is encoded with PUSH1 00, ‘‘011’’ with
PUSH1 a0 and the last ‘‘1’’ with ADD operation. Then, after
the initial state of the stack, PUSH1 00 is pushed to the stack
(State 1), then PUSH1 a0 is pushed (State 2) and thirdly ADD
(State 3). Finally, the stack should be restored by POPing all
elements (Final state).

By contrast, in the Non-executable bytecode, all instruc-
tions are secret-related, which also includes PUSH1

arguments. No extra information is required as the message
is inserted in the new JUMP-JUMPDEST block.

C. REVEALING MECHANISM
This process is analogous to the embedding one but in
reverse order. Firstly, hidden data is extracted considering the
field at stake. Secondly, control information is decrypted to
delimit the message appropriately. Finally, the decryption is
enforced.

However, one significant difference regarding the embed-
ding procedure is that extraction does not require trial-and-
error procedures. However, there is a performance overhead
if the secret is to be revealed immediately (i.e., the sabotage
case, recall Section I). In this situation, the receiver has to
wait until all transactions containing the secret are included
(after mining) in the blockchain.

VI. EVALUATION
The evaluation of the proposedmechanism is performed from
a theoretical and a practical point of view. Firstly, the com-
pliance of established goals is analysed (Section VI-A).
Secondly, an experimental analysis has been carried out to
determine the actual cost and time required to hide a secret
per Ethereum transaction field (Section VI-B).

A. GOALS COMPLIANCE
Table 10 summarizes the analysis on the imposed goals per
Ethereum field, whose compliance is discussed in the follow-
ing sections.

1) STEALTHINESS
The type of attacker in terms of stealthiness to which each
field is resistent is depicted in Table 10. Since the secret has
been tailored to be disguised as normal values for each field
(Section IV), almost all fields pass unnoticed to both BE and
AE attackers, as there are no hints they might leverage on.
For example, the Swarm hash has been proved to be random
enough to be used in full and AE would need to have the
original contract with the same file name to verify it, though
there are situations with certain limitations (* is applied).
In case of Gas Limit field, the study shows that it does not
always match with the spent gas in the transaction and then,
an attacker could have suspicions. Moreover, in Executable
bytecode, the attacker should debug and understand that some
of the instructions are really ‘‘dummy’’ code tailored as legit-
imate one but it is considered tedious and not really worthy.
Nonetheless, there are a couple of exceptions in which just
a single type of attacker applied. AE would notice some
deviations from normality inNon-executable bytecode, as this
code is never executed and could be more easily debugged.

2) SIMPLICITY
The proposed mechanism achieves simplicity as long as there
is no special requirement to embed secret information in
any of the fields. However, the computational effort varies
among fields. Most of them, marked as O(1), only require

VOLUME 9, 2021 118561



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

TABLE 10. Goals assessment per Ethereum transaction field. (*) means conditional achievement.

one operation to hide information. Thus, the original contents
of the field are replaced (partially or in full) by the secret.
However, Sender address, Contract address, Hash, signature
fields and Public key involve several repetitive operations
until the right value is found. Since the required effort is anal-
ogous to solving proof-of-work computational puzzles [37],
they are marked as O(PoW ).

3) EFFICIENCY
Though time efficiency will be studied in Section VI-B3,
efficiency in terms of the amount of sent information is
studied herein. For this purpose, the size of the secret has
to be higher than the data to be privately shared with the
receiver beforehand – otherwise, the mechanism would not
be needed. The data shared with the receiver is formed by
388 bits, namely transaction identifier (256 bits), encryption
key (64 bits), nonce (64 bits) and fields to hide the secret
(4 bits). Note that the use of functions and the constructor
in smart contracts may require to know the ABI code but this
is not necessary if such contracts are verified.

Efficiency of the amount of sent information, called Infor-
mation Efficiency (IE), depends on the secret size ‖S‖ and it
is calculated following Equation 3.

IE =
‖S‖
388

(3)

The system is efficient as long as IE > 1. It must be
noted that the individual capacity of each field per transaction
would not meet this condition. However, Zephyrus enables
using a series of transactions to hide a secret. In this way, as

TABLE 11. Maximum secret size, cost and IE per field in our experiments.

explained in Section VI-B2, in our experiments secrets range
from 400 to 40,000 bits, thus leading to 1.90 < IE < 315.05.
Moreover, an analysis per field is shown in Table 11.

4) COST
Embedding information in each of the fields has an associated
cost. It is related to the fees required for sending information
to Ethereum’s blockchain. Particularly, sending transactions
or deploying contracts have an associated cost, which can
be measured according to Ethereum’s documentation [25].
These costs are described by Equations 4 and 5 for trans-
actions and contracts, respectively. In both cases, they have
a fixed cost per operation and a variable part depending on
the amount of data at stake. Note that the notation is the
one introduced in Table 8. Moreover, constant values are as

118562 VOLUME 9, 2021



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

follows: a is the number of transactions or contracts required
to send the message; b and c are the number of bytes 0 and
1 respectively; and d is the amount of bytes of the contract
code.

TransCost(a, b, c) = a× CTr + b× CB0 + c× CBn0 (4)

ContCost(a, b, c, d) = a× (CTr + CCt )

+b× CB0 + c× CBn0 + d × CCtCd
(5)

Table 10 shows the cost per field leveraging these equa-
tions. Sender and Receiver addresses only need to send a
transaction, and no additional payload is required. Optionally,
some Ether could be included in the value to look like a
natural transaction. RegardingContract addresses, apart from
deploying the contract, it is necessary to send transactions
so as to make the nonce value lead to the required address
value. Other fields involve a transaction in which the variable
part increases with the size of the secret. In some of them,
such part is increased with some inherent costs, such as
the name of the function at stake in the case of Function
arguments. It should be noted that in some cases (e.g.,Gas
limit or Signature and Hash fields) the sender might decide
using a transaction to another user or a to a function in a
contract or deploy a contract for embedding information. Last
but not least, most contract-related fields involve deploying a
contract, with some additions like the cost of storing informa-
tion. To illustrate this discussion, Section VI-B3 describes the
real costs incurred by each of these fields in real transactions.

5) SECRET INTEGRITY
The immutability property of Ethereum ensures that the
secret embedded in most fields can always be recovered.
In particular, even if the IA attacker creates any transaction,
the secret message is not affected. Nevertheless, the only
exception is the use of the contract storage.

B. EXPERIMENTAL STUDY
Aproof of concept has been implemented to measure the time
taken for the proposed mechanism, as well as its associated
costs. The implementation is described in Section VI-B1.
The description of the experimental settings is presented in
Section VI-B2. Afterwards, the obtained results are presented
in Section VI-B3.

1) PROOF OF CONCEPT
Zephyrus has been implemented in an open-source software
tool available in Gitlab.2 Through a command-line interac-
tion, the user will be asked to provide the input required
depending on the field at stake.

From a technical viewpoint, the tool has been developed in
Python 3.5. For encryption purposes, AES in Counter (CTR)
mode is applied for the secret and ChaCha20 for the con-
trol data. Encryption keys are derived by means of the

2https://gitlab.com/MarGA2503/zephyrus.git

Password-Based Key Derivation Function 2 (PBKDF2) algo-
rithm [38]. Sender and receiver/s can agree on an AES pass-
word and a nonce in a initial stage and increase this one
per message transmission. ChaCha20 password is derived
from the AES one and it changes per transaction to avoid
patterns in encrypted information. Besides, the sender may
send a message in different transactions and smart contracts
to different receivers.

Regarding network connection options, Zephyrus is able
to connect to a local node by interacting with the Go
Ethereum Client (geth [39]), or to a Infura [40] node,
so neither the sender or receiver/s need to have the
blockchain synchronized, saving space and computational
power.

In this current version of the implementation, all O(1)
(recall Table 10) methods have been implemented, except for
Gas price to functions and contracts, as it is significantly
cheaper, and Executable bytecode, as it allows embedding
fewer information. Besides, only one field can be used for
each secret.

2) EXPERIMENTAL SETTINGS
Experiments have been run in a AMD FX-8370 8-Core pro-
cessor equipped with Debian 9 OSwith 16 Gb. of RAM. Note
that the mining process is not part of our system and Zephyrus
would work in any computer with similar characteristics and
once installed Python 3.5 and used libraries (described in
the prototype implementation2). Concerning the blockchain,
Ropsten [41] has been used. Addresses have been provided
with enough funds to carry out all transactions and Infura
nodes have been used to connect to the blockchain.

To ensure the validity of our results, each embedding and
revealing operation has been carried out 5 times. Afterwards,
the arithmetic mean has been computed.

Concerning applied elements, the secret is a random set
of 400, 2,000, 4,000, 8,000, 24,000 and 40,000 bits. On the
other hand, the cover is different depending on the field at
stake. In case of regular transaction fields, a tailored trans-
action has been created. In contract-related fields, different
smart contracts are at stake. For the Swarm hash field and
the Non-executable bytecode one, the same contract has been
used [42]. Regarding Constructor arguments, another con-
tract with a constructor function has been applied [43]. Most
common smart contracts in Ethereum use ERC-20 tokens,
the most popular ERC-20 token by market capitalization [44]
has been used to test Function arguments. For the Gas limit
field the contract used is [45]. The gas limit for the rest of
the fields has been set up according to a method available in
Ethereum which estimates the necessary gas to complete the
transaction [46].

Strategies and values analyzed in Section IV has been used
and function ‘‘approve’’, selected from [44], is applied to test
Function arguments. For the sake of a balance between com-
putational cost and time, the experiment allows a maximum
of 255 transactions per field.

VOLUME 9, 2021 118563



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

FIGURE 5. Gas cost per field (log scale).

The use existing contracts provides realism to our results
– Zephyrus could be applied immediately leveraging the cur-
rent Ethereum contents.

3) RESULTS
Concerning the actual costs incurred by Zephyrus, Fig. 5
shows the gas cost per field depending on the secret size in
bits. Note that when a contract deployment is at stake the
amount of gas is affected by the size of the contract. Similarly,
the capacity of the constructor and function arguments field
depends on the number and types of arguments. As expected,
the cost increases with the secret size, but depending on the
field more or less data can be embedded. In the case of Gas
price and Gas limit 400 bits can be embedded, as they are
fields with embedding restrictions. It costs 6.5 and 7.2 gas
units respectively. Indeed, the best alternative from the cost
point of view is the use of the Receiver address and Function
calls – their cost is 6.7 gas units in both cases when embed-
ding 40 Kbits and 4.8 and 5.0 for 400 bits.

Table 10 depicts the maximum capacity per individual
transaction, identifying fields in which up to 256 and 512 bits
can be embedded. Moreover, Table 11 shows the maximum
capacity of each field and the actual cost in USD, along with
their IE ratio for all carried out transactions (255 in this exper-
iment). For this purpose, the average price [47] of 1 Ether
in 2020 (1 Ether= $ 305.76) has been considered, taking the
cheapest gas price (1 Gwei) [48]. Note that embedding into
Value and Gas price fields involves an additional cost.

The most efficient field, regarding stealthiness and cost
is to embed a message in Function arguments allowing up
to 43,824 bits for $ 3.28. However, inserting data in the
Receiver address also provides great results. In relation to the

quantity of embedded data, Constructor arguments method
is the best with the tested contract. The most expensive one,
Value, allows 5,560 bits for around $ 2,542, as real Ether
is transferred. Besides, in terms of IE, results show that the
system is efficient even using a single field in all cases.
Nevertheless, significant differences exist between them like
Gas price or Non-executable bytecode.

With respect to the time taken by Zephyrus and linked
to the efficiency goal, it can be divided into three main
parts, namely embedding time, network management time
and revealing time. Note that network management time
corresponds to sending the transaction to the blockchain, its
retrieval and the mining time. Although such management is
out of the scope of Zephyrus, it will be unavoidably required
for its usage in the real world.

The embedding (E) and revealing (R) time for every field
depending on the secret’s size is presented in Fig. 6. Embed-
ding involves the encryption of the secret and the prepara-
tion of required transactions. Conversely, revealing requires
extracting the secret and decrypting it afterwards. The time
of encryption and decryption is quite similar for all fields,
4.5 × 10−3 s on average for both operations. As expected,
the size of the message directly affects the time of embedding
and revealing but not to a great extent. However, the secret’s
size slightly affects the time spent in the revealing, as more
transactions are managed and more checking operations are
required. Though the time differs between embedding and
revealing, it is minimum considering the applied scale (max.
65 s). This is in line with expectations, as both operations
are similar but applied in reverse order. Also noticeable is the
fact that including data in the Value is the toughest operation
because of the amount of required numbers according to

118564 VOLUME 9, 2021



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

FIGURE 6. Embedding and revealing time per field.

FIGURE 7. Network management time per field.

the selected pattern (recall Section IV-A), it takes 24.2 s for
embedding and 41.4 s for revealing 4 Kbits, which is the
worst case. As a trade-off between efficiency and stealthi-
ness, the best choice is the use of Function calls, as they
allow embedding 40 Kbits in 0.93 s and retrieving them
in 4.3 s. On the contrary, just looking for time restrictions,
Receiver address provides meaningful results as embedding
and revealing time is quite reduced even for 40 Kbits – 0.57 s
and 2.8 s respectively.
For illustration purposes, though it depends on the net-

work status, a complete overview of the steganographic pro-
cess is analysed including network management time. Fig. 7
presents the time of embedding (E) and revealing (R) data.
E includes the mining time and that of sending data to the
network, and R includes the retrieving time from the net-
work. When contracts are not involved, for instance, min-

ing time for Receiver address and 40 Kbits takes around
50 s on average, whereas the time to connect and send
the information to Infura is around 130 s, 180.1 s for the
whole embedding process. However, in those cases involv-
ing a contract deployment, for example the Swarm hash,
mining times are usually higher, 84 s, and 94 s to send
the transaction to the network, leading to a total embedding
time of 178.1 s. Regarding revealing time, it depends on
the amount of transactions at stake and how they are mined
(i.e., same or different block and distance between them). For
instance, transactions with smaller sizes mined in the same
blocks take less time to be retrieved than larger transactions
in different blocks. In the worst case, the revealing time of
Function calls is 201.1 s for 40 Kbits. In the best case, it is
90.4 s for Swarm hash and the same amount of transmitted
data.

VOLUME 9, 2021 118565



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

This analysis shows the feasibility of using Zephyrus for
building covert channels. In sum, on average, the embed-
ding and revealing procedures take 8.07 s, while network
management takes 154.23 s and thus, 162.3 s (2.71 min)
in total.

VII. RELATED WORK
Several works combine the concepts of steganography and
blockchain. For instance, in [49] secrets are embedded in
images which are later shared through a blockchain and a file
system. On the other hand, in [50] each transaction is divided
in two parts which are hidden in videos. However, here we
focus on the use of the blockchain itself for steganographic
purposes – the secret is directly hidden in blockchain data.
In this regard, recent results show that it has not been detected
in Bitcoin [51], although most proposals focus on this cryp-
tocurrency. This is the case of Ken Shirriff’s blog [12], which
presents some basic steganographic techniques. They use
encoding (e.g. hexadecimal, base64, etc.) to hide different
messages, texts or files but any of them is really sophis-
ticated. In this way, decoding is the only process required
to access secret messages. One example is the use of the
receiver address to store data, namely the inclusion of an
image of Nelson Mandela and a tribute text. Many transac-
tions were generated to store all information, in hexadecimal,
into receiver addresses. Each transaction can contain 20 bytes
of data. The use of an arbitrary field of 100 bytes or more,
in the coinbase block (e.g. the initial block of the chain)
has been also applied to hide data, namely a political sen-
tence or some prayer names. Another example pointed out
is the concealment of data in the hash of the public key
script (P2PKH), used to verify performed transactions. Dan
Kaminsky used this method to embed a tribute to the cryp-
tographer Len Sassaman. It is also common to replace keys
in a multi-signature transaction, in these case the 1-3 type.
A final example is the use of Nulldata transactions, in which
the OP_RETURN (Null data transaction) field is applied for
invalid transactions. This technique has been used to store
lyrics of Rick Astley. However, though OP_RETURN can be
used once per transaction, its use should be limited to not raise
suspicions.

Also with the focus on Bitcoin, [52] presents differ-
ent fields to hide messages without the use of encryption.
Data is included in the timestamp (nLockTime) and in
the sequence number, but a combination of multi-signature
(1-12) inputs and outputs, transaction amount and Nulldata
transactions were finally used. In the case of signatures,
the secret message is embedded when a valid signature is
computed; and in case of the transaction amount, the budget
is split in multiple transactions based on a combinatorial
composition.

In relation to this cryptocurrency, A. Sward et al. [13]
review the different existing data insertion methods like
including information in the public key in a Pay to Public Key
(P2PK) transaction, or in the hash of the public key in a Pay
to Script Hash (P2SH), both methods using the ScriptPubKey

of a transaction. Regarding the ScriptSig, P2SH script could
also be used, either inserting data on the Reedem part of the
script or in the Data Input part.

R. Matzutt et al. [14] analyse the impact of inserting con-
tent on Bitcoin, explaining different methods and naming
some of the existing tools that are able to perform this action.

On the other hand, R. Recabarren at al. [16], propose Thi-
tonious, an anti-censorship Bitcoin tool, using the scriptSig of
a P2SH multisignature transaction by inserting the message
on the 28 most significant bytes. Thitonious allows users to
access free-altruistic content published in clear text, or pay for
on-demand content. In this case, the information is encrypted.

M.D. Sleiman et al. [53] propose inserting text in the trans-
action amount of Bitcoin by using an arithmetic encoding,
which provides an space of eight characters (seven plus ter-
mination symbol in an ideal case) that should be lower-case
English characters, spaces or periods. Multiple transactions
can be used to insert larger messages.

Tian et al. [54] use the OP_RETURN and Private key in
Bitcoin transactions. The private key (32 bytes) is used to
embed the message while the OP_RETURN is used in order
to change the labels between messages which are generated
in a dynamic way and are stadistically indistinguishable from
normal transactions. Data is encrypted before the embedding
process.

Fionov [55] reviews briefly the existing covert channel in
Bitcoin. Futhermore, he proposes a method based on per-
mutations of transaction outputs, inputs and values (pay-
ments), whose number affects capacity. The secret message
is encrypted. However, just one transaction is used to justify
the number of inputs and outputs in this study and further
analysis is highlighted as a necessity.

Torki et al. [56] propose a pair of algorithms to embed data
in blockchains. One of them has high embedding capacity as
secret data is embedded in transactions’ data and the other one
has medium capacity embedding data in sender addresses.
Though both algorithms seem to be general, they are directly
related to Bitcoin transactions.

D. Frkat et al. [57] propose ChainChannels, a scheme
to send hidden information to bots within ECDSA signa-
tures. The sender introduces the message in the random
number used to generate the signature and the receiver
needs to know the signature private key to retrieve the
message. Besides, Bitcoin network is used for evaluation
purposes.

By contrast, Ethereum is used by Basuki et al. [58], work-
ing with image steganography. Instructions for recovering the
secret within the image are included in the timestamp of a
smart-contract, allowing 29 bits of capacity. Then, the image
is stored in a web server and clear text data is stored in the
blockchain for the secret recovery.

Gao et al. [59] use kleptographic algorithms in order to
identify which transactions have secret information. Even
though different fields of Bitcoin and Ethereum blockchains
are mentioned, most of them are not studied. According to
a proof of concept, just Ethereum OP_RETURN and data

118566 VOLUME 9, 2021



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

TABLE 12. Related work summary.

field are used for steganographic purposes with 80 bytes of
capacity, embedding encrypted data.

Ethereum is also used in Liu et al. [17]. They only use the
Value field. They propose three different ways of including

VOLUME 9, 2021 118567



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

information with a maximum of 1, 30 and 15 bits per
transaction.

Some other proposals are applicable to a different range
of blockhains and cryptocurrencies. J. Partala [60] suggests
a method for securely embedding covert messages into a
general blockchain. The sender generates payments and the
secret message is embedded, bit by bit, in the LSB of each
receiver address. Then, the sender and the receiver have to
order and collect bits accordingly.

N. Alsalami et al. [61] propose the use of CryptoNote
framework, applied in cryptocurrencies like Monero,
by embedding a message in the ring signature’s random
numbers.

Finally, Xu et al. [62] embed secret information in the
blockchain using the sender address of preselected transac-
tions according to a certain key. Selected transactions are
arranged in a certain way in order to carry the secret message.
The amount of data that this method is able to transmit
depends on the quantity of transactions that can fit in a block
and the number of different senders. However, the sender of
the secret message should mine the block and the receiver
needs the key to retrieve it.

A. SUMMARY OF RELATED WORK
Table 12 presents a summary of this analysis describing the
applied cryptocurrency, the blockchain element in which data
is hidden, the equivalent element in Ethereum, the maxi-
mum capacity of secret data per transaction, the stealthiness,
the simplicity, the embedding computational cost and the
secret integrity of each technique. Results show that only
three proposals study the use of steganography in Ethereum.
Moreover, as opposed to this paper, none of these works
considers all data fields. Furthermore, [54] and [17] are
the only ones studying the proposed mechanism in relation
to the blockchain actual content, Bitcoin and Ethereum in
particular.

In the case of [17], authors focus on the Value field
by characterizing its entropy and length. However, their
approach does not consider the frequent patterns appear-
ing in this field, as we have discovered in our study.
Moreover, some of their proposed schemes require the
message starts by 1, which may be of interest for an
attacker.

Note that there are elements marked as equivalent to smart
contracts, but they correspond to an extremely simplified
version of them. Capacity is expressed in terms of a single
input and output in a Bitcoin transaction, though Bitcoin
transactions may have multiple one. In Bitcoin, the maxi-
mum size of inputs is of 1,650 bytes, each element in the
stack can have a maximum size of 520 bytes, whereas that
of the whole transaction should not exceed 100,000 bytes.
Ethereum, on the other hand, works per transaction. It means
that each action in the chain requires a different transaction.
However, the maximum capacity per single input/output in
Bitcoin is comparable with Zephyrus in many cases.

On the other hand, [57], [60]–[62] could be used in
Ethereum too. In the case of [53], Bitcoin could be replaced
by Ether, but it should be noticed that this method only allows
English text messages, whereas Zephyrus can transmit any
binary information.

On the other hand, stealthiness is the most remark-
able issue, except for [54]–[57], [59]–[62] and [16] when
paying for content, all techniques offer a limited protec-
tion against BE. Approaches in [52], [58] embed data
in clear text and [12] applies encoding. Zephyrus allows
users the exchange of encrypted (or clear) messages with-
out any retrieving cost, unlike Thitonious which is a com-
mercial service for demand and encryted content. [54]
uses dynamic labels in order to hide the communica-
tion, Zephyrus could also change the sender address
for each transaction using the control and pre-shared
information.

In terms of simplicity, almost all techniques can be used by
regular users and just ‘Block coinbase’ [12] and [62] require
to be a miner. Similarly, the computation cost of embed-
ding is also analogous in most approaches (O(1)), except
for [52] in which ‘ScriptSig’ and ‘ScriptPubKey:scripthash-
multisig’ need to compute a valid key to make coins
reedemable; [16] requires generating valid-looking quadratic
residues; and [61] uses a non-lineal message retrieval process.
Finally, secret integrity is achieved in all cases, thus being
resistant against IA.

VIII. CONCLUSION AND FUTURE WORK
Ethereum permanent availability is an appealling feature to
build covert communications on top of it. No previous work
has considered all its fields for this purpose. In this paper,
Zephyrus, a mechanism to hide information in Ethereum
transactions has been proposed. An open-source implemen-
tation has been released to foster further research in this area.
Our results show that some information can be concealed
in most transaction fields while remaining stealthy if some
limits are observed. Moreover, cost and time incurred have
been characterized, supporting the real-world suitability of
this proposal.

Future work will go towards the identification of the
optimal fields to embed information considering time, cost
and stealthiness restrictions all together. Furthermore, control
structures can be adapted to efficiently support multi-field
usage. Open and interactive channel communications can
also be implemented, by letting Zephyrus scan the network
and automatically retrieve content that fullfil certain char-
acteristics. Lastly, adaptive steganographic techniques will
be considered to improve capacity considering the existing
Ethereum contents.

APPENDIX
The 20most common opcodes and their frequency is depicted
in Table 13.

118568 VOLUME 9, 2021



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

TABLE 13. 20 most common opcodes in smart contracts.

The top 5 number and quantity of instruction in the
JUMP-JUMPDEST block is presented in Table 14.

TABLE 14. Top 5 number of instructions in the JUMP-JUMPDEST block.

REFERENCES
[1] M. Iansiti and K. R. Lakhani, ‘‘The truth about blockchain,’’ Harvard Bus.

Rev., vol. 95, no. 1, pp. 118–127, 2017.
[2] V. Dhillon, D. Metcalf, and M. Hooper, ‘‘Blockchain in healthcare,’’ in

Blockchain Enabled Applications. Berkeley, CA, USA: Apress, 2021,
pp. 201–220.

[3] S. F Fahmy, ‘‘Blockchain and its uses,’’ in Arab Academy for Science and
Technology and Maritime Transport. Cairo, Egypt: Sheraton, 2018.

[4] Z. Ma, M. Jiang, H. Gao, and Z.Wang, ‘‘Blockchain for digital rights man-
agement,’’ Future Gener. Comput. Syst., vol. 89, pp. 746–764, Dec. 2018.

[5] U. W. Chohan, ‘‘Cryptocurrencies: A brief thematic review,’’
Tech. Rep., 2017.

[6] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’
Tech. Rep., 2008, p. 21260.

[7] R. Bagshaw. Top 10 Cryptocurrencies by Market Capitalisation.
Accessed: Apr. 2021. [Online]. Available: https://coinrivet.com/top-10-
cryptocurrencies-by-market-capitalisation/%

[8] E. Kane. (Mar. 11, 2017). Is Blockchain a General Purpose Technology?
[Online]. Available: https://ssrn.com/abstract=2932585

[9] S. Katzenbeisser and F. Petitcolas, Information Hiding Techniques for
Steganography and Digital Watermarking. Norwood, MA, USA: Artech
House, 2000.

[10] P. Cuff and L. Zhao, ‘‘Coordination using implicit communication,’’ 2011,
arXiv:1108.3652. [Online]. Available: http://arxiv.org/abs/1108.3652

[11] A. Abuadbba, I. Khalil, and M. Atiquzzaman, ‘‘Robust privacy preserva-
tion and authenticity of the collected data in cognitive radio network—
Walsh–hadamard based steganographic approach,’’ Pervas. Mobile Com-
put., vol. 22, pp. 58–70, Sep. 2015.

[12] K. Shirriff. Hidden Surprises in the Bitcoin Blockchain and how
They are Stored. Accessed: Apr. 2021. [Online]. Available: http://www.
righto.com/2014/02/ascii-bernanke-wikileaks-photographs.ht%ml#ref6

[13] A. Sward, I. Vecna, and F. Stonedahl, ‘‘Data insertion in bitcoin’s
blockchain,’’ Ledger, vol. 3, pp. 1–19, Apr. 2018.

[14] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Müllmann,
O. Hohlfeld, and K. Wehrle, ‘‘A quantitative analysis of the impact of
arbitrary blockchain content on bitcoin,’’ in Proc. Int. Conf. Financial
Cryptogr. Data Secur., 2018, pp. 420–438.

[15] F. Ding, ‘‘Broadcasting steganography in the blockchain,’’ in Proc.
18th Int. Workshop Digit. Forensics Watermarking, (IWDW), vol. 12022,
Chengdu, China: Springer, Nov. 2019, p. 256.

[16] R. Recabarren and B. Carbunar, ‘‘Tithonus: A bitcoin based censorship
resilient system,’’ Proc. Privacy Enhancing Technol., vol. 2019, no. 1,
pp. 68–86, Jan. 2019.

[17] S. Liu, Z. Fang, F. Gao, B. Koussainov, Z. Zhang, J. Liu, and
L. Zhu, ‘‘Whispers on ethereum: Blockchain-based covert data embedding
schemes,’’ in Proc. 2nd ACM Int. Symp. Blockchain Secure Crit. Infras-
truct., Oct. 2020, pp. 171–179.

[18] L. Zhang, Z. Zhang, Z. Jin, Y. Su, and Z. Wang, ‘‘An approach of covert
communication based on the Ethereum whisper protocol in blockchain,’’
Int. J. Intell. Syst., vol. 36, no. 2, pp. 962–996, Feb. 2021.

[19] draglet. Smart Contracts Explained. Accessed: Apr. 2021. [Online]. Avail-
able: https://www.draglet.com/blockchain-services/smart-contracts/

[20] A. Westfeld and A. Pfitzmann, ‘‘Attacks on steganographic systems,’’ in
Proc. Int. Workshop Inf. Hiding. Berlin, Germany: Springer, Sep. 1999,
pp. 61–76.

[21] R. J. Anderson and F. A. P. Petitcolas, ‘‘On the limits of steganography,’’
IEEE J. Sel. Areas Commun., vol. 16, no. 4, pp. 474–481, May 1998.

[22] C.-C. Chang, J.-Y. Hsiao, and C.-S. Chan, ‘‘Finding optimal least-
significant-bit substitution in image hiding by dynamic programming strat-
egy,’’ Pattern Recognit., vol. 36, no. 7, pp. 1583–1595, Jul. 2003.

[23] Ethereum Foundation. Ethereum. Blockchain Application Platform.
Accessed: Apr. 2021. [Online]. Available: https://www.ethereum.org/

[24] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, ‘‘An overview
of blockchain technology: Architecture, consensus, and future trends,’’
in Proc. IEEE Int. Congr. Big Data (BigData Congr.), Jun. 2017,
pp. 557–564.

[25] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Ethereum Project Yellow Paper, vol. 151, pp. 1–32, Apr. 2014.

[26] V. Buterin et al., ‘‘A next-generation smart contract and decentralized
application platform,’’ White Paper, 2014, vol. 3, no. 37.

[27] Abi Spec. Accessed: Apr. 2021. [Online]. Available: https://solidity.
readthedocs.io/en/develop/abi-spec.html Last

[28] D. Johnson, A. Menezes, and S. Vanstone, ‘‘The elliptic curve digital
signature algorithm,’’ J. Inf. Secur., vol. 1, no. 1, pp. 36–63, 2001.

[29] Solidity Metadata Specification. Accessed: Apr. 2021. [Online]. Available:
https://solidity.readthedocs.io/en/v0.5.10/metadata.html

[30] Etherscan. Accessed: Apr. 2021. [Online]. Available: https://etherscan.io/
[31] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.

Tech. J., vol. 27, no. 3, pp. 379–423, Jul./Oct. 1948.
[32] Mining in Ethereum. Accessed: Apr. 2021. [Online]. Available:

https://github.com/ethereum/wiki/wiki/Mining
[33] Ethereum. (Jan. 2019). Ethereum Wiki. Accessed: Apr. 2021. [Online].

Available: https://github.com/ethereum/wiki/wiki/Design-Rationale#gas-
and-fees

[34] H. Moriya. (May 2018).How to Get Ethereum Block Gas Limit. Accessed:
Apr. 2021. [Online]. Available: https://medium.com/@piyopiyo/how-to-
get-ethereum-block-gas-limit-eba2c8%f32ce

[35] V. Kobel. (2017). Generating a Usable Ethereum Wallet and its Corre-
sponding Keys. Accessed: Apr. 2021. [Online]. Available: https://kobl.one/
blog/create-full-ethereum-keypair-and-address/

[36] Solidity Types. Accessed: Apr. 2021. [Online]. Available: https://solidity.
readthedocs.io/en/v0.5.10/types.html

[37] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, ‘‘On the security and performance of proof of work
blockchains,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 3–16.

[38] B. Kaliski, Password-Based Cryptography Specification, document RFC
2898, 2000.

[39] Geth. Accessed: Apr. 2021. [Online]. Available: https://geth.ethereum.org/
[40] Infura. Accessed: Apr. 2021. [Online]. Available: https://infura.io/
[41] Ropsten. Accessed: Apr. 2021. [Online]. Available: https://github.com/

ethereum/ropsten
[42] Salt Contract. Accessed: Apr. 2021. [Online]. Available: https://etherscan.

io/address/0x4156d3342d5c385a87d264f90653733592000581%
[43] UniswapMakerBroker Contract. Accessed: May 2020. [Online]. Avail-

able: https://etherscan.io/address/0xa35f3acb4d6c43e6f9a1c2d8c136ad
4be725152f%#code

[44] BNB Token Contract. Accessed: Apr. 2021. [Online]. Available:
https://etherscan.io/address/0xB8c77482e45F1F44dE1745F52C74426
C631bDD52%

VOLUME 9, 2021 118569



M. Gimenez-Aguilar et al.: Zephyrus: Information Hiding Mechanism Leveraging Ethereum Data Fields

[45] UniversalDeployer Contract. Accessed: Apr. 2021. [Online]. Available:
https://etherscan.io/address/0x252f1c9aee12a65ac113e4b6c4660a4c2f
572b06%#code

[46] Estimate Gas. Accessed: Apr. 2021. [Online]. Available:
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_estimategas

[47] J. Rudden. (May 2020). Ethereum Price Monthly 2016–2020. [Online].
Available: https://www.statista.com/statistics/806453/price-of-ethereum/

[48] ETH Gas Station. Accessed: Apr. 2021. [Online]. Available:
https://ethgasstation.info/

[49] W. She et al., ‘‘A double steganography model combining blockchain
and interplanetary file system,’’ Peer-to-Peer Netw. Appl., vol. 14,
pp. 3029–3042, 2021.

[50] S. Liu, Y. Liu, C. Feng, H. Zhao, and Y. Huang, ‘‘Blockchain privacy data
protection method based on HEVC video steganography,’’ in Proc. 3rd Int.
Conf. Smart BlockChain (SmartBlock), Oct. 2020, pp. 1–6.

[51] A. A. Giron, J. E. Martina, and R. Custódio, ‘‘Bitcoin blockchain stegano-
graphic analysis,’’ in Proc. Int. Conf. Appl. Cryptogr. Netw. Secur. Cham,
Switzerland: Springer, Oct. 2020, pp. 41–57.

[52] S. K. Okupski, ‘‘(Ab) using bitcoin for anti-censorship tool,’’ M.S. thesis,
Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2014.

[53] M. D. Sleiman, A. P. Lauf, and R. Yampolskiy, ‘‘Bitcoin message: Data
insertion on a proof-of-work cryptocurrency system,’’ in Proc. Int. Conf.
Cyberworlds (CW), Oct. 2015, pp. 332–336.

[54] J. Tian, G. Gou, C. Liu, Y. Chen, G. Xiong, and Z. Li, ‘‘Dlchain: A
covert channel over blockchain based on dynamic labels,’’ Information and
Communications Security, in J. Zhou, X. Luo, Q. Shen, and Z. Xu, Eds.
Cham, Switzerland: Springer, 2020, pp. 814–830.

[55] A. Fionov, ‘‘Exploring covert channels in bitcoin transactions,’’ in
Proc. Int. Multi-Conf. Eng., Comput. Inf. Sci. (SIBIRCON), Oct. 2019,
pp. 0059–0064.

[56] O. Torki, M. Ashouri-Talouki, and M. Mahdavi, ‘‘Blockchain for
steganography: Advantages, new algorithms and open challenges,’’ 2021,
arXiv:2101.03103. [Online]. Available: http://arxiv.org/abs/2101.03103

[57] D. Frkat, R. Annessi, and T. Zseby, ‘‘ChainChannels: Private botnet com-
munication over public blockchains,’’ in Proc. IEEE Int. Conf. Internet
Things (iThings) IEEEGreen Comput. Commun. (GreenCom) IEEECyber,
Phys. Social Comput. (CPSCom) IEEE Smart Data (SmartData), Jul. 2018,
pp. 1244–1252.

[58] A. I. Basuki and D. Rosiyadi, ‘‘Joint transaction-image steganography
for high capacity covert communication,’’ in Proc. Int. Conf. Comput.,
Control, Informat. Appl. (IC3INA), Oct. 2019, pp. 41–46.

[59] F. Gao, L. Zhu, K. Gai, C. Zhang, and S. Liu, ‘‘Achieving a covert channel
over an open blockchain network,’’ IEEE Netw., vol. 34, no. 2, pp. 6–13,
Mar. 2020.

[60] J. Partala, ‘‘Provably secure covert communication on blockchain,’’ Cryp-
tography, vol. 2, no. 3, p. 18, Aug. 2018.

[61] N. Alsalami and B. Zhang, ‘‘Uncontrolled randomness in blockchains:
Covert bulletin board for illicit activity,’’ in Proc. IEEE/ACM 28th Int.
Symp. Qual. Service (IWQoS), Jun. 2020, pp. 1–10.

[62] F. Ding, ‘‘Broadcasting steganography in the blockchain,’’ in Proc.
18th Int. Workshop, Digit. Forensics Watermarking (IWDW), vol. 12022.
Chengdu, China: Springer, Mar. 2020, p. 256.

MAR GIMENEZ-AGUILAR received the M.Sc.
degree in cybersecurity from the University Carlos
III of Madrid, Spain, where she is currently pursu-
ing the Ph.D. degree with the Computer Security
Laboratory. Her research interests include cyberse-
curity, specially steganography and cryptography,
and blockchain. At the moment, she is focused
studying different aspects of cybersecurity in rela-
tion with blockchain technologies.

JOSE M. DE FUENTES received the Ph.D. degree
in computer science from the University Carlos
III of Madrid, Spain. He is currently an Asso-
ciate Professor with the Department of Computer
Science and Engineering, University Carlos III of
Madrid. He is also a Computer Scientist Engineer
with the University Carlos III of Madrid. He has
published several articles in international confer-
ences and journals. He is participating in several
national research and development projects. His

main research interests include cybersecurity as well as security and privacy
in the Internet of Things and ad-hoc networks.

LORENA GONZÁLEZ-MANZANO received the
Ph.D. degree in computer science from the Uni-
versity Carlos III of Madrid, Spain, with a focus
on security and privacy in social networks. She
is currently an Associate Professor with the Com-
puter Security Laboratory, University Carlos III of
Madrid. She is also a Computer Scientist Engineer
with the University Carlos III of Madrid. She has
published several papers in national and interna-
tional conferences and journals. She is involved in

national research and development projects. Her research interests include
the Internet of Things, cloud computing security, and cybersecurity.

CARMEN CAMARA received the M.Sc. degree
in biomedical engineering from the Technical
University of Madrid and the Ph.D. degree in
computer science and technology, with specializa-
tion in artificial intelligence from the University
Carlos III of Madrid, Spain. She is currently an
Assistant Professor with the Computer Security
Laboratory, University Carlos III of Madrid. She
is also focused on designing secure solutions for
implantable medical devices. Her research inter-

ests include applied cryptography and biometrics.

118570 VOLUME 9, 2021




