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Abstract

One of the latest trends in Computed Tomography (CT) is the reduc-
tion of the radiation dose delivered to patients through the decrease of the
amount of acquired data. This reduction results in artifacts in the final im-
ages if conventional reconstruction methods are used, making it advisable to
employ iterative algorithms to enhance image quality. Most approaches are
built around two main operators, backprojection and projection, which are
computationally expensive.

In this work, we present an implementation of those operators for iter-
ative reconstruction methods exploiting the Big Data paradigm. We define
an architecture based on Apache Spark that supports both Graphical Pro-
cessing Units (GPU) and CPU-based architectures. The aforementioned are
parallelized using a partitioning scheme based on the division of the volume
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and irregular data structures in order to reduce the cost of communication
and computation of the final images. Our solution accelerates the execution
of the two most computational expensive components with Apache Spark,
improving the programming experience of new iterative reconstruction al-
gorithms and the maintainability of the source code increasing the level of
abstraction for non-experienced high performance programmers. Through
an experimental evaluation, we show that we can obtain results up to 10×
faster for projection and 21× faster for backprojection when using a GPU-
based cluster compared to a traditional multi-core version. Although a linear
speed up was not reached, the proposed approach can be a good alternative
for porting previous medical image reconstruction applications already im-
plemented in C/C++ or even with CUDA or OpenCL programming models.
Our solution enables the automatic detection of the GPU devices and execu-
tion on CPU and GPU tasks at the same time under the same system, using
all the available resources.
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1. Introduction

X-Ray Computed Tomography (CT) is a medical imaging modality that
obtains high-contrast projection images (radiographs) of anatomical struc-
tures based on the intrinsic differences in attenuation properties to X-rays
of bone, air and soft tissue. A three dimensional volume is obtained by the
combination of several radiographs of the patient taken from different angles
in a process called reconstruction.

The growing concern on the radiation dose delivered to the patients has
pushed the design of new acquisition protocols based on the reduction of the
number of acquired radiographs. However, this data reduction results in a
substantial decrease of the quality of the reconstructed images if conventional
reconstruction algorithms are used [1]. Iterative algorithms allow to incor-
porate a priori information to compensate the lack of data at the expense of
a higher computational cost.

The development of iterative algorithms poses two main difficulties. First,
new clinical applications for CT, such as image-guided surgery and intensive
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care unit, require near real-time processing. This requirement poses the ne-
cessity of exploiting the performance of the employed computational systems.
Second, algorithms deal with large data volumes and are computationally ex-
pensive, thus leading to the need of better hardware and software optimiza-
tions. And third, the evolution of the various hardware setups increases the
effort required for maintaining and adapting the implementations to current
and future programming models.

Most iterative reconstruction implementations are based on the repeated
execution of two main components, namely backprojection and projection,
which represent the largest computational cost. To deal with the need of
higher computational resources when the size of the images increases, dis-
tributed versions of these components have been proposed [2, 3]. Neverthe-
less, programming, designing, and porting these components to distributed
environments require specific expertise to properly exploit the underlying
hardware and potential parallelism. The native programming languages em-
ployed in distributed environments are not as accessible for domain experts.

The importance of accessibility is perceived by the growing number of
languages, programming models, and frameworks proposed in the last years.
Programming models for Big Data, like Map Reduce, have recently been em-
braced in many scientific fields. The easiness of managing data in massively
distributed environments, like clusters or cloud systems [4], has transformed
many applications of the biomedical field, such as DNA analysis, protein dis-
covery, and image processing, to the Big Data paradigm. The simplification
of the programming functions and the abstraction of both data and task man-
agement make it accessible to a wider range of developers, not necessarily
skilled in low level programming.

In previous works [5, 6], we presented a preliminary study of a Python-
based implementation of the backprojector component. This paper extends
those works by presenting a novel approach for adapting iterative image re-
construction algorithms for low-dose CT to work on a Big Data framework
using accessible programming languages without performance degradation.
We focus on a specific programming language, Python, and a specific frame-
work, Apache Spark.

Our approach, although similar to those presented in [7, 8], aims to be
a more general solution for different iterative algorithms with support for
legacy C/C++ code, new Python code, and CUDA kernels. With respect to
the support of GPUs, this work does not require modifications in the base
framework in contrast with [9, 10], making this approach accessible to a large
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variety of clusters or clouds environments.
We include a complete description of our heterogeneous solution, the

implementation of the projector component, the integration of CPU-based
and GPU-based architectures, and a wide evaluation for both architectures.

The rest of the paper is organized as follows. Section 2 describes the
problem. Section 3 presents the CPU and accelerated architectures presented
in this paper. Section 4 shows the evaluation experiments executed and the
results obtained. Section 5 shows works related to this paper. Finally, Section
6 presents the discussion and major conclusions of the paper.

2. Problem description

The aim of this section is to briefly introduce the necessary concepts to
facilitate the understanding of this paper and its complexity.

The objective of CT reconstruction algorithms is to obtain tomographic
3D images, also referred here as reconstructed volumes, from radiographs,
or projections, taken from different angles of the sample. An example of
different projections is shown in Figure 1 as well as two of the reconstructed
slices that compose the three-dimensional volumes.

The reconstruction process can be defined by different algorithms. De-
pending on the quality of the input data and the required quality, the com-
putational complexity of these algorithms can significantly increase. This is
the case of the iterative reconstruction algorithms addressed in this paper.

Most iterative reconstruction algorithms are based on the repetition of
the backprojection and projection operators over images that are gradually
enhanced on every iteration until the desired image quality is achieved. Those
components represent the most expensive computational steps of the algo-
rithm and are normally optimized by using parallel, distributed, and hetero-
geneous architectures. Those components are described below.

2.1. Projection

Projection emulates the process of data acquisition in an X-ray scanner
given an initial 3D volume and the geometry of the system (i.e. source-to-
detector distance and angular positions) based on the computation of diverse
trajectories of the X-rays from the source to the detector panel traversing the
3D volume.

The projection component presented in this work relies on the ray-driven
interpolation approach, in which the line integral (the final pixel value) is
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Figure 1: Left: Projection data of a rodent study for angles 1, 25, 45 and 90 degrees.
Right: Axial and coronal views of the reconstructed image.

based on the computation of the sum of Nstep values along the X-ray to
update the contribution to the detector pixel, as shown in Equations 1, 2
and 3.

projθ(x, y) = step×

rad

step∑
voli=−

rad

step

1

cosα
× vol( 1

Mag
×

× cosθ + vsinθ,− 1

Mag
× sinθ + vcosθ,

1

Mag
y) (1)

where rad is the maximum radius of the field of view (FOV ) (in mm),
f(u, v, z) is the voxel value in the sample at coordinates (u, v, z), pθ(x, y)
is the projection data for position (x, y) in the detector at angle θ, α is the
angle of the ray with respect to the central ray of the beam, and Mag is the
magnification due to the cone angle, given by Equations 2 and 3.
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x = arctg

√
x2 + y2

DSO +DDO
(2)

Mag =
DSO + v

DSO +DDO
(3)

where DSO and DDO are the distance from the center of the FOV to the
source and the detector, respectively. Sampling is performed along the v-axis
given by step (in mm), which is set by default to the minimum dimension of
the pixel, covering 2× rad.

2.2. Backprojection

Backprojection builds a 3D volume from different projections or radio-
graphies obtained from the scanner or from the projection component. The
backprojection algorithm implemented in this work follows the voxel-driven
approach. Voxel-driven interpolation implies integrating all the intersecting
rays, going from the source to the center of each voxel. The mathematical for-
mulation of our implementation of the component can be seen in Equations
4 and 5.

vol(u, v, z) = ∆θ ×
ini+nproj∑
θ=ini

projθ(Mag × [ucosθ−

− vsinθ],Mag × z) (4)

where ini is the initial projection angle, nproj is the total number of pro-
jections, vol(u, v, z) is the value in the backprojected volume at coordinates
(u, v, z), projθ(x, y) the projection data for position (x, y) in the detector at
angle θ, ∆θ the step angle in radians, and Mag the magnification due to the
cone shape of the beam given that:

Mag =
DSO + usinθ + vcosθ

DSO +DDO
(5)

where DSO (Distance Source Object) and DDO (Distance Detector Object)
are the distance from the center of the FOV to the source and the detector,
respectively.
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3. Heterogeneous architecture for iterative CT

As described in Figure 2, our solution is fundamentally based on the of-
fload of the computation of the most computationally expensive components,
i.e., projection and backprojection, to a distributed environment, being com-
patible with heterogeneous resources containing CPU and GPU-based nodes.

Offload computation

Contribution 
Data

Cluster / Cloud

Backprojection Projection

GPU

R
e

so
u

rc
e

s
D

at
a

(Prior)

(Derivatives)(Filter, normalization, contrast 
adjustment )
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Figure 2: Diagram of a generic iterative reconstruction algorithm with accelerated an-
alytical components: backprojection and projection. Iterative reconstruction algorithms
consist of multiple phases in which different contributions are computed. Prior information
of the reconstructed object can be included in the form of surface models or previously
reconstructed volumes.

Our proposed architecture for Apache Spark, shown in Figure 3, includes
the presence of a master process (Driver) that manages the execution of the
different steps of the application and several workers in charge of executing
the programmed tasks that compose the application, as in most Big Data
frameworks. Additionally we enable the support of GPUs inside the Worker
nodes.

The Driver component manages the application context and is in charge
of communicating with the resource manager for the acquisition of compu-
tational resources from the Spark cluster. Worker nodes are in charge of
executing the programmed tasks in different executor processes. An addi-
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tional Intra-Scheduler is added to each worker node in order to manage the
accelerator devices and assign the execution of these tasks to a specific GPU.

Our main components (Backprojection and Projection) are executed in-
side Worker nodes, either using the CPU or the GPUs, if present.

An explanation of the execution flow of an application in our architecture
(with/out GPUs) can be found in Figure 4. Data (projections or volume)
are distributed over all the nodes, assigning to each node one or more par-
titions of the data, on which each executor will work independently. The
work is performed during the map stage of the application, in which data
are transformed. Projection and Backprojection are considered the trans-
formations of the volume and projections, respectively. Final results can
be obtained by reducing the data obtained from the transformation of each
partition (action).

Driver Program

Spark Context Cluster Manager
Worker Node

Executor Cache

Task

Scheduler

GPU 0 GPU 1 GPU n

Task Task Task

Worker Node

Executor Cache

Task

Scheduler

GPU 0 GPU 1 GPU n

Task Task Task

Figure 3: Extended architecture of Apache Spark including support for multi-GPU com-
pute nodes. Tasks acquire/release an available GPU orchestrated by a intra-node sched-
uler.

The suitability of this architecture for both components derives from the
easy parallelization of the ray computations, which are independent, and the
automatic division of work and data management provided by the framework.
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Figure 4: Execution of an application in our accelerated architecture.

3.1. Data partitioning

For an efficient parallelization of the computation, suitable partitioning
schemes for each component must be found. How the data is partitioned
influences the execution of the application at several stages, from the total
time spent in each task to the amount of communication between different
nodes.

3.1.1. Backprojection
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Figure 5: Execution and partitioning of the Backprojection in our proposed schema.

Inside the backprojection component, the map stage corresponds to the
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computation of the geometry of each independent ray. Since there is only one
ray per voxel, we have dimu×dimv×dimz map operations corresponding to
the dimensions of the volume in the three different axes. The transformation
function is defined as:

vol(u, v, z)←−
ini+nproj∑
θ=ini

projθ(x, y) (6)

where each point in proj is obtained using Equation 4.
The volume is divided into subvolumes (partitions) along the z axis. As

we can see in Figure 5, the backprojection task is executed per partition.
This division is represented inside the framework as an ordered array with
the position of each partition inside the complete volume. Thus, partitioning
is performed at the output (volume), not at the input (projections). This
strategy implies that input data must be transferred to all worker nodes
through a broadcast operation inside Apache Spark.

3.1.2. Projection

In this case, the partitioning of the computation and data is also based
on dividing the volume into smaller subvolumes, which are now the input
data of the map operations. Therefore, in the projection task there is no
need of a previous broadcast of data since each executor already possesses
his partition, thanks to the functionality provided by Apache Spark RDDs
(Resilient Distributed Dataset). The number of map operations is equal to
dimx× dimy × nproj corresponding to the number of projections and their
dimension. The transformation function is described as:

projθ(x, y)←−
depth∑
v=0

vol(u, v, z) (7)

where the points in vol that contribute to each point in proj are obtained
following Equation 1.

As shown in Figure 6, every core computes all projections from the corre-
sponding subvolume. To reduce the computational load for each subvolume,
the projection task only computes the specific rows of the projection data
corresponding to each subvolume. Each row is identified by a key computed
based on the projection angle (θ in Equation 7) and its spatial position inside
the complete projection. Due to the cone geometry, multiple subvolumes can
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contribute to the same row of the projection thus having tuples containing
the same key.

Then, when every projection task has been completed, a reduction of all
the projection rows is executed over the tuple (key and its corresponding
projection row).

The reduce stage does not require additional functions due to the native
implementation of element-wise additions in Numpy arrays. Although this
approach requires to have a temporal copy of all projections in each execu-
tor and it may seem memory expensive, it is important to highlight that
low-dose CT techniques normally imply the use of a lower number of projec-
tions. Therefore, this replication does not create a high overhead in terms of
memory usage.
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Figure 6: Execution and partitioning of the Projection in our proposed schema.

3.2. Accelerated Architecture for GPU-based Big Data Computing

With our approach, Apache Spark with GPUs can be used without any
modification. The main addition to the architecture is the inclusion of a
novel Intra-Scheduler that will be executed in each Worker node. This Intra-
Scheduler orchestrates the different executors, offloading computation into
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the GPUs. Using different policies (Round-robin, Random, Least Processes)
[6], the Intra-Scheduler decides which tasks are executed in the GPUs, taking
into account the number of devices that are installed inside the node and the
memory needs of the task to be executed. Additionally, the Intra-Scheduler
collects information of the load of each available GPU. If no GPU is available
(due to the limited memory), it stalls the execution of the task or sends it
to the CPU if possible, until there is space available. Device management
is done inside the Apache Spark task. The implementation of the function
executed inside the task (projection and backprojection components) can be
made using CUDA native kernels or using PyCUDA methods. Therefore,
the execution of the mapping in the heterogeneous architecture consists of
five phases:

1. Device acquisition: executor communicates with the Intra-Scheduler to
obtain a device in which the function should be executed. Based on
the acquired device, the context for that specific GPU is created.

2. Transfer of the input data onto the device memory: using the PyCUDA
API, it is possible to transfer the memory containing the input data to
the acquired device.

3. Execution of the CUDA/PyCUDA kernel: the kernel is loaded, com-
piled on-demand, and executed with the required parameters passed to
the function.

4. Transfer of the output data to the host memory: to be able to obtain
the final data, each executor should return its output stored in the
device memory to host memory for Apache Spark to be able to manage
it. The output data generated in the device is transferred to the host
memory before finishing the task.

5. Device release: executor requests the Intra-Scheduler to release the
device and the context for that device is destroyed.

The communication with the Intra-Scheduler, provided through RPCs, is
implemented with the RPyC package [11].

3.3. CPU-Based Execution Model Architecture

We have implemented two alternatives to take advantage of the available
parallelism in CPU-only systems:

• To exploit the parallelism already provided by the platform.
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• To incorporate additional parallelism by using native programming
models, widely employed in clusters and supercomputers, like OpenMP.

For both alternatives, we use a native programming language, C, due to
its higher performance over interpreted programming languages (i.e., Java,
Scala or Python). Since Apache Spark lacks of support for native program-
ming languages, we take advantage of the close relation between Python and
C, which allows the invocation of specialized functions implemented in this
language using the provided Python headers.

The architecture of the framework (Figure 3) as well as the execution flow
is the same regardless of the aforementioned alternatives. However, there are
differences regarding the execution setup:

• Apache Spark-based parallelism: this alternative is the most widely
used in the community. We evaluate this alternative as it takes ad-
vantage of the possibility of using more cores per executor in the node
and provides straight-forward parallelization when running the recon-
struction algorithm. In general, to obtain full parallelism, one executor
per core would be ideal. However, since executors are launched inde-
pendently with a decoupled memory space, there would be a need of
larger resources on Worker nodes. When configuring the execution, we
balance the number of executors per node and the cores per execu-
tor, complying with the trade-off between memory usage and resources
exploitation.

• Native-based parallelism: In this case, to parallelize the algorithm, we
rely on OpenMP for our backprojection and projection components,
in which we parallelize each ray with a different CPU core. Memory
footprint also increases, as in the previous alternative. Nevertheless,
in this case the number of executors needed is lower, resulting in a
reduction of the memory requirements. This approach is based on a
two level parallel strategy managed by two different techniques: coarse-
grained parallelism at a distributed level using Apache Spark (external
parallelism) and fine-grained parallelism inside the node using OpenMP
(internal parallelism).

In both cases, an invocation of a C module is introduced inside each task.
This C module contains the proper map function in which each element is
transformed, returning the corresponding projection or volume. Data are not
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copied between Python and C since the reference is valid for both languages,
saving memory and execution time. Python tasks are therefore only respon-
sible of setting the parameters of the C module. Inside the C module, Python
parameters are transformed into C variables and the algorithm is executed
with or without OpenMP depending on what alternative is chosen. After
the algorithm is executed, the resulting data is returned to Python with the
correct format, in this case, a Numpy array containing the corresponding
subvolume or projections.

4. Evaluation

We evaluated our solution using two environment setups:

• CPU-based cluster: 8 nodes with Intel(R) Xeon(R) CPU E5-2603 v4
(12 cores), 126 GB of DDR4 RAM, and 256 GB of SSD for temporary
storage. The Apache Spark driver was launched in a separated node
with two Intel(R) Xeon(R) CPU E5-2630 v3 processors (12 cores) and
252 GB of RAM.

• GPU-based cluster: 2 nodes with an Intel(R) Xeon Phi(TM) CPU 7210,
148 GB of RAM, 256 GB of SSD for temporary storage. Each node
has 2 NVidia GTX 1070 installed, each with 8GB of GDDR5 memory.
The Apache Spark driver was launched in a separated node with two
Intel(R) Xeon(R) CPU E5-2630 v3 processors (12 cores) and 252 GB
of RAM.

Both systems are supervised through Cloudera 5.13 over Ubuntu 16.04.
We used Apache Spark version 2.2 in stand-alone mode. For the distributed
evaluation, Apache Yarn 2.6, with the FairScheduler, was used as resource
manager. The input files were stored in a local SSD and the result files were
stored in a HDFS running on top of SSDs disks and a 10 Gbps Ethernet
network. The Python version was 2.7, complemented with PyCUDA 1.3 and
CUDA 9.0 for the heterogeneous architecture and a C/C++ module compiled
with GCC 5.1 and OpenMP for the homogeneous architecture. Each result
was obtained as the average of three consecutive executions.

For both backprojection and projection components we have worked with
volume data of 10243 voxels and 360 projections of size 10242. This number
of projections is higher than the one normally acquired in low-dose CT,

14



therefore representing a worst case in performance. Input data is read from
a SSD in the Driver program, requiring first a partitioning of the data.

To better evaluate all possibilities we used two configurations:

• Configuration A: single core per executor. Parallelization is done inter-
nally either by using OpenMP in the CPU based approach or with the
GPU cores.

• Configuration B : 5 cores per executor. Parallelization in the CPU-
based approach is done at external level without further usage of other
parallel programming models. In the case of GPU-based execution,
additional parallelization is introduced with the usage of the multiple
GPU cores.

The executors can be assigned to the same node, provided that it has
enough memory capacity.

4.1. CPU-based Architecture Evaluation

We executed both backprojection and projection components, with con-
figurations A and B, in the CPU-based cluster.

In Figure 7, we plot the evaluation results of the backprojection com-
ponent employing configuration B, which can execute 5 tasks at the same
time per executor. We explore the results given a varying number of ex-
ecutors and partitions. As we increase the number of executors, we note
the benefits of having a number of tasks larger than the number of executor
threads. This is due to the better management of the imbalances between
nodes when smaller tasks are scheduled. This effect can also be appreciated
when employing OpenMP , as shown in Figure 8.

In the case of the projection component, the results obtained for configu-
ration B depict a significant increase in the execution time when the number
of partitions is incremented (as shown in Figure 9). In this case, a higher
number of partitions does not decrease the computational size of the task,
due to the discrepancies between the number of slices in a volume and the
FOV projected. Because of this reason, the increment of parallelism using
Apache Spark can degrade the performance of this component. Nevertheless,
it is important to note that this growth is sublinear, as the execution time
does not increase at the same rate as the number of partitions.

The projection performs better in configuration A than in configuration
B, in contrast with what happens with the backprojection, as we can observe
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Figure 7: Overall execution time of the backprojection component on a CPU-based cluster
varying the number of executors and partitions without using OpenMP (Configuration B).

when comparing Figure 10 and Figure 9. However, in configuration A the
increment in the number of partitions does not positively affect the overall
performance of the application, similarly to what we have seen in the case of
the backprojection component. Considering the overall execution time, the
number of partitions required when using OpenMP is lower than the one
required in configuration B.

4.2. GPU-based Architecture Evaluation

We have also evaluated the performance of the Apache Spark/GPU-based
architecture based on our proposed Intra-Scheduler, varying the number of
executors and partitions. Given that the maximum number of GPUs present
in the system is four, we evaluated up to four parallel executors over dif-
ferent number of cores. This decision of increasing the number of cores per
executor allows us to exploit the available concurrency, given that modern
NVidia GPUs enables the execution of multiple concurrent kernels if enough
resources are available (mainly, computing units and internal main memory).

Figures 11 and 12 show the evaluation of the backprojection component in
the GPU-based architecture. For both configurations we observe that beyond
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Figure 8: Execution time of the backprojection component on a CPU-based cluster varying
the number of executors and partitions using OpenMP (Configuration A).

100 partitions (4 executors), the overall execution time increases for both
cases. Execution times do not differ between configurations when executing
with similar conditions (around 200 seconds for one partition per thread and
4 Executors and also around 200 seconds for one partition per executor and
4 executors), which indicates that the limiting factor is the computing power
of the GPU device.

Furthermore, in case of projection, Figures 13 and 14 show that there
is a significant difference between both configurations in the GPU based
approach. Executing the algorithm with 4 executors employing configuration
A results in an execution time of around 1,000 seconds, meanwhile with 4
executors and one partition per core in configuration B the algorithm takes
around 700 seconds. The number of tasks in the second case is higher, 20
tasks for 4 executors vs 4 tasks, in contrast with the previous observations
for the projection component in the CPU-based cluster. However, as seen
in Figure 9, the number of tasks from which we can perceive a significant
increase in time is 40. Being 20 tasks, a lower number than this threshold
and considering the benefits of executing smaller tasks for better balance
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Figure 9: Execution time of the projection component on a distributed CPU-based cluster
for a different number of executors and partitions using 5 cores per executor (Configuration
B).

the load between the GPUs, it is reasonable that Configuration B performs
better than Configuration A in this case. The drawback detected in the CPU-
based approach is also reproduced when employing GPUs with a much higher
number of tasks. The decrease of performance starts with a lower number of
partitions than in the case of the backprojection, since in projection a greater
number of partitions also increases the amount of work that is executed. For
the same amount of work (same number of partitions), both configurations
scale out almost perfectly when increasing the number of executors.
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Figure 10: Execution time of the projection component on a distributed CPU-based clus-
ter for a different number of executors and partitions using OpenMP in each executor
(Configuration A).
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Figure 13: Execution time of the projection component on a distributed GPU-based cluster
for a different number of executors and partitions (Configuration A).
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Figure 11: Execution time of the backprojector component on a GPU-based cluster for a
different number of executors and partitions (Configuration A).
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Figure 14: Execution time of the projection component on a GPU-based cluster for a
different number of executors and partitions with 5 cores per executor (Configuration B).
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Figure 12: Execution time of the backprojector component on a GPU-based cluster for a
different number of executors and partitions with 5 cores per executor (Configuration B).
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Figure 15: Comparison of all configurations for both algorithms with 4 executors.
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4.3. Image quality

We have evaluated the effect of our partitioning scheme on the final results
using simulations with the Digimouse phantom1. We performed a backpro-
jection followed by a projection with 1, 8 24 and 48 partitions, with 360
projections of 5122 pixels, resulting in a volume of 5123 voxels. The Root
Mean Square Error (RMSE) in the projections with respect to the 1 par-
tition case is significantly low (under 1.0e − 4) for all partition sizes. The
small errors, not noticeable with visual inspection, appear in the intersection
between the chunks due to the reduction stage in projection, as shown in
Figure 16 (the difference images are shown with a narrow window so the
small errors are noticeable). No effect was observed for the backprojection
step.
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Figure 16: Projection obtained with one partition and different image (subtraction from
the one partition case) corresponding to 8, 24 and 48 partitions setups.

5. Related work

Iterative reconstruction algorithms have normally taken advantage of
most traditional parallel environments [12, 13] as well as of the use of GPUs
[14, 15, 16, 17, 18, 19] at a non-distributed level due to their increasing popu-
larity and reduced price. In many cases they have followed a similar approach
focusing on the adaptation of the main two components (i.e., projection and
backprojection in the case of iterative reconstruction) to the underlying ar-
chitecture, even taking into account low level details such as exploiting the
different caches of the device [20]. The use of GPUs has also been expanded

1http://neuroimage.usc.edu/neuro/Digimouse
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to the distributed level in an HPC environment in works such as the one
presented by Harley et al. in [21], where the authors presented a work on
image analysis on a cooperative cluster of GPUs and multi-cores, with the
coexistence of multiple execution modes.

However the use of these distributed environments is not available for
everyone. Last years have shown a trend of enabling the use of traditional
programming models for parallel execution, typically employed in High Per-
formance Computing (HPC) environments to non HPC programmers, with
more accessible paradigms. IN this context, we can find in the literature a
large variety of solutions using HPC and Big Data paradigms for the med-
ical image processing field, with good results in terms of execution time
[22]. Optimized distributed implementations of image processing tools and
reconstruction algorithms can also be found employing either the MapRe-
duce programming model using Hadoop [23, 24, 25, 26] or MPI [3, 27], with
the idea of exploiting massive parallelism. An example of fast tomographic
image reconstruction via large-scale parallelization combining a MapReduce-
like computing middleware with MPI can be found in [28]. However, most
of those works using MapReduce do not obtain an acceptable scalability due
to limitations in the MapReduce frameworks [29]. To address this scalability
problem, some works have proposed the exploitation of GPUs in the Apache
Hadoop framework [30, 31, 32].

Nowadays, Apache Spark [33] has become very popular for implementing
applications using an extension of the MapReduce model, instead of Hadoop.
For this reason, several works have focused on extending Apache Spark to
support GPUs: HeteroSpark [10], a heterogeneous CPU/GPU Spark plat-
form for machine learning algorithms, IBMSparkGPU [9], with the same
approach as the one used in [34]. Recently, Fukutomi et al. [35] added to
Apache Yarn, a resource manager mainly used in MapReduce frameworks,
support for GPUs, although targeting Java applications. Even without na-
tive support for GPUs in these frameworks, Boubela et al. [8] managed to
combine Big Data approaches for the pre-processing of large-scale fMRI data
using Apache Spark with separate GPU servers for accelerating specific steps
of the processing pipeline. Cao et al. [7] compared the performance of a dis-
tributed medical image application in Spark with respect to a GPU-based
implementation, showing the benefits of the use of GPUs but without inte-
grating them in their system. At the end, our solution closes the gap between
big data distributed solutions and the use of HPC architectures for medical
imaging.
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For both multi-core CPUs and distributed solutions, Python has become
a widely extended language for image processing in all branches of science.
An early work presented Matplotlib [36], a 2D graphics package and program-
ming interfaces that includes a toolkit for medical image processing. More
recently, scikit-image [37], an open source image processing library, has been
also applied to MRI or CT reconstruction. Another example is Gadgetron
[38], an open source framework that implements a flexible system for creat-
ing dynamical streaming configurable data processing pipelines. A complete
toolkit for image reconstruction in tomography is TomoPy [39], which in-
cludes a large number of reconstruction and projection algorithms that can
be invoked from Python.

Our approach, although similar to those presented in [7, 8], aims to be
a more general solution for different iterative algorithms with support for
legacy C/C++ code, new Python code, and CUDA kernels. With respect to
the support of GPUs, this work does not require modifications in the base
framework in contrast with [9, 10], making this approach accessible to a large
variety of clusters or clouds environments.

6. Discussion and Conclusions

In this work, we present a new approach based on Python and Apache
Spark for the implementation of the projection and backprojection compo-
nents of an iterative reconstruction method for cone-beam geometry. Our
solution enables two alternatives for different architectures: a GPU-based ar-
chitecture, supporting NVidia GPUs, and a CPU-based architecture, relying
on CPU-only acceleration and the compatibility with C/C++ native code.
The main contributions of this work are the following. First, we present
a novel approach for accelerated iterative reconstruction algorithms based
on the offload of the most computationally expensive components. Second,
we introduce a GPU-based architecture for the Apache Spark framework.
Third, we carry out a study of the partitioning problem in the projection
and backprojection component in terms of performance. Finally, the pro-
posed architecture is evaluated in a heterogeneous CPU/GPU-based cluster,
combining both HPC programming models and Big Data frameworks.

Although both projection and backprojection components are similar in
terms of execution and complexity, their inclusion in a Big Data framework
exposes different behaviour. As seen in Section 4, the partitioning of 3D
volumes (which is the most memory consuming data structure) is a suitable
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approach for backprojection, in which partitioning also implies increasing the
computational parallelism in the application. However, this principle does
not hold for the case of the projection component, in which computational
cost is based on the total number of projections and their size, and a parti-
tioning of the volume can even increase the cost due to the increment of the
FOV.

Out of the four different evaluated configurations, the best solution com-
bines an increased number of partitions in the backprojection component
(configuration B), aiming at maximizing external/coarse-grained parallelism
(even increasing the number of executors per node), and a lower number of
partitions in the case of projection, exploiting the computational resources
through a shared-memory mechanism like OpenMP (as shown in Figure 15)
(configuration A). This shared-memory mechanism enables the parallelism
at a fine grained level inside the partition and not per partition as it happens
when using the configuration B. Moreover, with this configuration, OpenMP
internal parallelism can be favoured by a larger amount of work organized
larger partitions, a factor that it is penalized in configuration B.

Commonly, in GPU-based architectures parallelism is provided by using
the underlying GPU (internal/fine grained) and the usage of multiple GPUs
devices by different executors (external/coarse grain). To avoid the limitation
on the external parallelism offered by multiple concurrent executors running
in the same node, the execution of a large amount of tasks is orchestrated
by our proposed internal scheduler. This approach is specially beneficial in
the case of the backprojection component.

We have identified that the Apache Spark framework presents certain
performance limitations, especially noticeable in the case of the GPU-based
architectures. The overhead imposed by Apache Spark can cause, not only
a problem of performance, but also a problem of memory exhaustion. The
layered software architecture of Apache Spark is translated to a higher mem-
ory usage to hold both RDDs and network serialization structures. This
is a problem already mentioned in other works [40, 29, 41, 42]. To over-
come these problems, we have carried out a meticulous configuration of the
framework execution parameters. This tuning process, in some cases, is more
cumbersome than implementing the application itself.

Our approach is based on Apache Spark, but it is applicable to other Big
Data frameworks that support Python, enabling quickly updates to new re-
quirements. Moreover, since the alternatives presented here are based on the
combination of different components, they can be generalised to other types

25



of architectures or acceleration devices. In the case of the heterogeneous ap-
proach, OpenCL could also be used for compatibility with other accelerators
or even for a better exploitation of the CPU.
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